OLD | NEW |
(Empty) | |
| 1 // Copyright 2013 the V8 project authors. All rights reserved. |
| 2 // Redistribution and use in source and binary forms, with or without |
| 3 // modification, are permitted provided that the following conditions are |
| 4 // met: |
| 5 // |
| 6 // * Redistributions of source code must retain the above copyright |
| 7 // notice, this list of conditions and the following disclaimer. |
| 8 // * Redistributions in binary form must reproduce the above |
| 9 // copyright notice, this list of conditions and the following |
| 10 // disclaimer in the documentation and/or other materials provided |
| 11 // with the distribution. |
| 12 // * Neither the name of Google Inc. nor the names of its |
| 13 // contributors may be used to endorse or promote products derived |
| 14 // from this software without specific prior written permission. |
| 15 // |
| 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 27 |
| 28 #include "v8.h" |
| 29 |
| 30 #if V8_TARGET_ARCH_A64 |
| 31 |
| 32 #include "bootstrapper.h" |
| 33 #include "code-stubs.h" |
| 34 #include "regexp-macro-assembler.h" |
| 35 #include "stub-cache.h" |
| 36 |
| 37 namespace v8 { |
| 38 namespace internal { |
| 39 |
| 40 |
| 41 void FastNewClosureStub::InitializeInterfaceDescriptor( |
| 42 Isolate* isolate, |
| 43 CodeStubInterfaceDescriptor* descriptor) { |
| 44 // x2: function info |
| 45 static Register registers[] = { x2 }; |
| 46 descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
| 47 descriptor->register_params_ = registers; |
| 48 descriptor->deoptimization_handler_ = |
| 49 Runtime::FunctionForId(Runtime::kNewClosureFromStubFailure)->entry; |
| 50 } |
| 51 |
| 52 |
| 53 void FastNewContextStub::InitializeInterfaceDescriptor( |
| 54 Isolate* isolate, |
| 55 CodeStubInterfaceDescriptor* descriptor) { |
| 56 // x1: function |
| 57 static Register registers[] = { x1 }; |
| 58 descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
| 59 descriptor->register_params_ = registers; |
| 60 descriptor->deoptimization_handler_ = NULL; |
| 61 } |
| 62 |
| 63 |
| 64 void ToNumberStub::InitializeInterfaceDescriptor( |
| 65 Isolate* isolate, |
| 66 CodeStubInterfaceDescriptor* descriptor) { |
| 67 // x0: value |
| 68 static Register registers[] = { x0 }; |
| 69 descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
| 70 descriptor->register_params_ = registers; |
| 71 descriptor->deoptimization_handler_ = NULL; |
| 72 } |
| 73 |
| 74 |
| 75 void NumberToStringStub::InitializeInterfaceDescriptor( |
| 76 Isolate* isolate, |
| 77 CodeStubInterfaceDescriptor* descriptor) { |
| 78 // x0: value |
| 79 static Register registers[] = { x0 }; |
| 80 descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
| 81 descriptor->register_params_ = registers; |
| 82 descriptor->deoptimization_handler_ = |
| 83 Runtime::FunctionForId(Runtime::kNumberToString)->entry; |
| 84 } |
| 85 |
| 86 |
| 87 void FastCloneShallowArrayStub::InitializeInterfaceDescriptor( |
| 88 Isolate* isolate, |
| 89 CodeStubInterfaceDescriptor* descriptor) { |
| 90 // x3: array literals array |
| 91 // x2: array literal index |
| 92 // x1: constant elements |
| 93 static Register registers[] = { x3, x2, x1 }; |
| 94 descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
| 95 descriptor->register_params_ = registers; |
| 96 descriptor->deoptimization_handler_ = |
| 97 Runtime::FunctionForId(Runtime::kCreateArrayLiteralStubBailout)->entry; |
| 98 } |
| 99 |
| 100 |
| 101 void FastCloneShallowObjectStub::InitializeInterfaceDescriptor( |
| 102 Isolate* isolate, |
| 103 CodeStubInterfaceDescriptor* descriptor) { |
| 104 // x3: object literals array |
| 105 // x2: object literal index |
| 106 // x1: constant properties |
| 107 // x0: object literal flags |
| 108 static Register registers[] = { x3, x2, x1, x0 }; |
| 109 descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
| 110 descriptor->register_params_ = registers; |
| 111 descriptor->deoptimization_handler_ = |
| 112 Runtime::FunctionForId(Runtime::kCreateObjectLiteral)->entry; |
| 113 } |
| 114 |
| 115 |
| 116 void CreateAllocationSiteStub::InitializeInterfaceDescriptor( |
| 117 Isolate* isolate, |
| 118 CodeStubInterfaceDescriptor* descriptor) { |
| 119 // x2: feedback vector |
| 120 // x3: call feedback slot |
| 121 static Register registers[] = { x2, x3 }; |
| 122 descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
| 123 descriptor->register_params_ = registers; |
| 124 descriptor->deoptimization_handler_ = NULL; |
| 125 } |
| 126 |
| 127 |
| 128 void KeyedLoadFastElementStub::InitializeInterfaceDescriptor( |
| 129 Isolate* isolate, |
| 130 CodeStubInterfaceDescriptor* descriptor) { |
| 131 // x1: receiver |
| 132 // x0: key |
| 133 static Register registers[] = { x1, x0 }; |
| 134 descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
| 135 descriptor->register_params_ = registers; |
| 136 descriptor->deoptimization_handler_ = |
| 137 FUNCTION_ADDR(KeyedLoadIC_MissFromStubFailure); |
| 138 } |
| 139 |
| 140 |
| 141 void KeyedLoadDictionaryElementStub::InitializeInterfaceDescriptor( |
| 142 Isolate* isolate, |
| 143 CodeStubInterfaceDescriptor* descriptor) { |
| 144 // x1: receiver |
| 145 // x0: key |
| 146 static Register registers[] = { x1, x0 }; |
| 147 descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
| 148 descriptor->register_params_ = registers; |
| 149 descriptor->deoptimization_handler_ = |
| 150 FUNCTION_ADDR(KeyedLoadIC_MissFromStubFailure); |
| 151 } |
| 152 |
| 153 |
| 154 void RegExpConstructResultStub::InitializeInterfaceDescriptor( |
| 155 Isolate* isolate, |
| 156 CodeStubInterfaceDescriptor* descriptor) { |
| 157 // x2: length |
| 158 // x1: index (of last match) |
| 159 // x0: string |
| 160 static Register registers[] = { x2, x1, x0 }; |
| 161 descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
| 162 descriptor->register_params_ = registers; |
| 163 descriptor->deoptimization_handler_ = |
| 164 Runtime::FunctionForId(Runtime::kRegExpConstructResult)->entry; |
| 165 } |
| 166 |
| 167 |
| 168 void LoadFieldStub::InitializeInterfaceDescriptor( |
| 169 Isolate* isolate, |
| 170 CodeStubInterfaceDescriptor* descriptor) { |
| 171 // x0: receiver |
| 172 static Register registers[] = { x0 }; |
| 173 descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
| 174 descriptor->register_params_ = registers; |
| 175 descriptor->deoptimization_handler_ = NULL; |
| 176 } |
| 177 |
| 178 |
| 179 void KeyedLoadFieldStub::InitializeInterfaceDescriptor( |
| 180 Isolate* isolate, |
| 181 CodeStubInterfaceDescriptor* descriptor) { |
| 182 // x1: receiver |
| 183 static Register registers[] = { x1 }; |
| 184 descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
| 185 descriptor->register_params_ = registers; |
| 186 descriptor->deoptimization_handler_ = NULL; |
| 187 } |
| 188 |
| 189 |
| 190 void KeyedStoreFastElementStub::InitializeInterfaceDescriptor( |
| 191 Isolate* isolate, |
| 192 CodeStubInterfaceDescriptor* descriptor) { |
| 193 // x2: receiver |
| 194 // x1: key |
| 195 // x0: value |
| 196 static Register registers[] = { x2, x1, x0 }; |
| 197 descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
| 198 descriptor->register_params_ = registers; |
| 199 descriptor->deoptimization_handler_ = |
| 200 FUNCTION_ADDR(KeyedStoreIC_MissFromStubFailure); |
| 201 } |
| 202 |
| 203 |
| 204 void TransitionElementsKindStub::InitializeInterfaceDescriptor( |
| 205 Isolate* isolate, |
| 206 CodeStubInterfaceDescriptor* descriptor) { |
| 207 // x0: value (js_array) |
| 208 // x1: to_map |
| 209 static Register registers[] = { x0, x1 }; |
| 210 descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
| 211 descriptor->register_params_ = registers; |
| 212 Address entry = |
| 213 Runtime::FunctionForId(Runtime::kTransitionElementsKind)->entry; |
| 214 descriptor->deoptimization_handler_ = FUNCTION_ADDR(entry); |
| 215 } |
| 216 |
| 217 |
| 218 void CompareNilICStub::InitializeInterfaceDescriptor( |
| 219 Isolate* isolate, |
| 220 CodeStubInterfaceDescriptor* descriptor) { |
| 221 // x0: value to compare |
| 222 static Register registers[] = { x0 }; |
| 223 descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
| 224 descriptor->register_params_ = registers; |
| 225 descriptor->deoptimization_handler_ = |
| 226 FUNCTION_ADDR(CompareNilIC_Miss); |
| 227 descriptor->SetMissHandler( |
| 228 ExternalReference(IC_Utility(IC::kCompareNilIC_Miss), isolate)); |
| 229 } |
| 230 |
| 231 |
| 232 static void InitializeArrayConstructorDescriptor( |
| 233 Isolate* isolate, |
| 234 CodeStubInterfaceDescriptor* descriptor, |
| 235 int constant_stack_parameter_count) { |
| 236 // x1: function |
| 237 // x2: allocation site with elements kind |
| 238 // x0: number of arguments to the constructor function |
| 239 static Register registers_variable_args[] = { x1, x2, x0 }; |
| 240 static Register registers_no_args[] = { x1, x2 }; |
| 241 |
| 242 if (constant_stack_parameter_count == 0) { |
| 243 descriptor->register_param_count_ = |
| 244 sizeof(registers_no_args) / sizeof(registers_no_args[0]); |
| 245 descriptor->register_params_ = registers_no_args; |
| 246 } else { |
| 247 // stack param count needs (constructor pointer, and single argument) |
| 248 descriptor->handler_arguments_mode_ = PASS_ARGUMENTS; |
| 249 descriptor->stack_parameter_count_ = x0; |
| 250 descriptor->register_param_count_ = |
| 251 sizeof(registers_variable_args) / sizeof(registers_variable_args[0]); |
| 252 descriptor->register_params_ = registers_variable_args; |
| 253 } |
| 254 |
| 255 descriptor->hint_stack_parameter_count_ = constant_stack_parameter_count; |
| 256 descriptor->function_mode_ = JS_FUNCTION_STUB_MODE; |
| 257 descriptor->deoptimization_handler_ = |
| 258 Runtime::FunctionForId(Runtime::kArrayConstructor)->entry; |
| 259 } |
| 260 |
| 261 |
| 262 void ArrayNoArgumentConstructorStub::InitializeInterfaceDescriptor( |
| 263 Isolate* isolate, |
| 264 CodeStubInterfaceDescriptor* descriptor) { |
| 265 InitializeArrayConstructorDescriptor(isolate, descriptor, 0); |
| 266 } |
| 267 |
| 268 |
| 269 void ArraySingleArgumentConstructorStub::InitializeInterfaceDescriptor( |
| 270 Isolate* isolate, |
| 271 CodeStubInterfaceDescriptor* descriptor) { |
| 272 InitializeArrayConstructorDescriptor(isolate, descriptor, 1); |
| 273 } |
| 274 |
| 275 |
| 276 void ArrayNArgumentsConstructorStub::InitializeInterfaceDescriptor( |
| 277 Isolate* isolate, |
| 278 CodeStubInterfaceDescriptor* descriptor) { |
| 279 InitializeArrayConstructorDescriptor(isolate, descriptor, -1); |
| 280 } |
| 281 |
| 282 |
| 283 static void InitializeInternalArrayConstructorDescriptor( |
| 284 Isolate* isolate, |
| 285 CodeStubInterfaceDescriptor* descriptor, |
| 286 int constant_stack_parameter_count) { |
| 287 // x1: constructor function |
| 288 // x0: number of arguments to the constructor function |
| 289 static Register registers_variable_args[] = { x1, x0 }; |
| 290 static Register registers_no_args[] = { x1 }; |
| 291 |
| 292 if (constant_stack_parameter_count == 0) { |
| 293 descriptor->register_param_count_ = |
| 294 sizeof(registers_no_args) / sizeof(registers_no_args[0]); |
| 295 descriptor->register_params_ = registers_no_args; |
| 296 } else { |
| 297 // stack param count needs (constructor pointer, and single argument) |
| 298 descriptor->handler_arguments_mode_ = PASS_ARGUMENTS; |
| 299 descriptor->stack_parameter_count_ = x0; |
| 300 descriptor->register_param_count_ = |
| 301 sizeof(registers_variable_args) / sizeof(registers_variable_args[0]); |
| 302 descriptor->register_params_ = registers_variable_args; |
| 303 } |
| 304 |
| 305 descriptor->hint_stack_parameter_count_ = constant_stack_parameter_count; |
| 306 descriptor->function_mode_ = JS_FUNCTION_STUB_MODE; |
| 307 descriptor->deoptimization_handler_ = |
| 308 Runtime::FunctionForId(Runtime::kInternalArrayConstructor)->entry; |
| 309 } |
| 310 |
| 311 |
| 312 void InternalArrayNoArgumentConstructorStub::InitializeInterfaceDescriptor( |
| 313 Isolate* isolate, |
| 314 CodeStubInterfaceDescriptor* descriptor) { |
| 315 InitializeInternalArrayConstructorDescriptor(isolate, descriptor, 0); |
| 316 } |
| 317 |
| 318 |
| 319 void InternalArraySingleArgumentConstructorStub::InitializeInterfaceDescriptor( |
| 320 Isolate* isolate, |
| 321 CodeStubInterfaceDescriptor* descriptor) { |
| 322 InitializeInternalArrayConstructorDescriptor(isolate, descriptor, 1); |
| 323 } |
| 324 |
| 325 |
| 326 void InternalArrayNArgumentsConstructorStub::InitializeInterfaceDescriptor( |
| 327 Isolate* isolate, |
| 328 CodeStubInterfaceDescriptor* descriptor) { |
| 329 InitializeInternalArrayConstructorDescriptor(isolate, descriptor, -1); |
| 330 } |
| 331 |
| 332 |
| 333 void ToBooleanStub::InitializeInterfaceDescriptor( |
| 334 Isolate* isolate, |
| 335 CodeStubInterfaceDescriptor* descriptor) { |
| 336 // x0: value |
| 337 static Register registers[] = { x0 }; |
| 338 descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
| 339 descriptor->register_params_ = registers; |
| 340 descriptor->deoptimization_handler_ = FUNCTION_ADDR(ToBooleanIC_Miss); |
| 341 descriptor->SetMissHandler( |
| 342 ExternalReference(IC_Utility(IC::kToBooleanIC_Miss), isolate)); |
| 343 } |
| 344 |
| 345 |
| 346 void StoreGlobalStub::InitializeInterfaceDescriptor( |
| 347 Isolate* isolate, |
| 348 CodeStubInterfaceDescriptor* descriptor) { |
| 349 // x1: receiver |
| 350 // x2: key (unused) |
| 351 // x0: value |
| 352 static Register registers[] = { x1, x2, x0 }; |
| 353 descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
| 354 descriptor->register_params_ = registers; |
| 355 descriptor->deoptimization_handler_ = |
| 356 FUNCTION_ADDR(StoreIC_MissFromStubFailure); |
| 357 } |
| 358 |
| 359 |
| 360 void ElementsTransitionAndStoreStub::InitializeInterfaceDescriptor( |
| 361 Isolate* isolate, |
| 362 CodeStubInterfaceDescriptor* descriptor) { |
| 363 // x0: value |
| 364 // x3: target map |
| 365 // x1: key |
| 366 // x2: receiver |
| 367 static Register registers[] = { x0, x3, x1, x2 }; |
| 368 descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
| 369 descriptor->register_params_ = registers; |
| 370 descriptor->deoptimization_handler_ = |
| 371 FUNCTION_ADDR(ElementsTransitionAndStoreIC_Miss); |
| 372 } |
| 373 |
| 374 |
| 375 void BinaryOpICStub::InitializeInterfaceDescriptor( |
| 376 Isolate* isolate, |
| 377 CodeStubInterfaceDescriptor* descriptor) { |
| 378 // x1: left operand |
| 379 // x0: right operand |
| 380 static Register registers[] = { x1, x0 }; |
| 381 descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
| 382 descriptor->register_params_ = registers; |
| 383 descriptor->deoptimization_handler_ = FUNCTION_ADDR(BinaryOpIC_Miss); |
| 384 descriptor->SetMissHandler( |
| 385 ExternalReference(IC_Utility(IC::kBinaryOpIC_Miss), isolate)); |
| 386 } |
| 387 |
| 388 |
| 389 void BinaryOpWithAllocationSiteStub::InitializeInterfaceDescriptor( |
| 390 Isolate* isolate, |
| 391 CodeStubInterfaceDescriptor* descriptor) { |
| 392 // x2: allocation site |
| 393 // x1: left operand |
| 394 // x0: right operand |
| 395 static Register registers[] = { x2, x1, x0 }; |
| 396 descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
| 397 descriptor->register_params_ = registers; |
| 398 descriptor->deoptimization_handler_ = |
| 399 FUNCTION_ADDR(BinaryOpIC_MissWithAllocationSite); |
| 400 } |
| 401 |
| 402 |
| 403 void StringAddStub::InitializeInterfaceDescriptor( |
| 404 Isolate* isolate, |
| 405 CodeStubInterfaceDescriptor* descriptor) { |
| 406 // x1: left operand |
| 407 // x0: right operand |
| 408 static Register registers[] = { x1, x0 }; |
| 409 descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
| 410 descriptor->register_params_ = registers; |
| 411 descriptor->deoptimization_handler_ = |
| 412 Runtime::FunctionForId(Runtime::kStringAdd)->entry; |
| 413 } |
| 414 |
| 415 |
| 416 void CallDescriptors::InitializeForIsolate(Isolate* isolate) { |
| 417 static PlatformCallInterfaceDescriptor default_descriptor = |
| 418 PlatformCallInterfaceDescriptor(CAN_INLINE_TARGET_ADDRESS); |
| 419 |
| 420 static PlatformCallInterfaceDescriptor noInlineDescriptor = |
| 421 PlatformCallInterfaceDescriptor(NEVER_INLINE_TARGET_ADDRESS); |
| 422 |
| 423 { |
| 424 CallInterfaceDescriptor* descriptor = |
| 425 isolate->call_descriptor(Isolate::ArgumentAdaptorCall); |
| 426 static Register registers[] = { x1, // JSFunction |
| 427 cp, // context |
| 428 x0, // actual number of arguments |
| 429 x2, // expected number of arguments |
| 430 }; |
| 431 static Representation representations[] = { |
| 432 Representation::Tagged(), // JSFunction |
| 433 Representation::Tagged(), // context |
| 434 Representation::Integer32(), // actual number of arguments |
| 435 Representation::Integer32(), // expected number of arguments |
| 436 }; |
| 437 descriptor->register_param_count_ = 4; |
| 438 descriptor->register_params_ = registers; |
| 439 descriptor->param_representations_ = representations; |
| 440 descriptor->platform_specific_descriptor_ = &default_descriptor; |
| 441 } |
| 442 { |
| 443 CallInterfaceDescriptor* descriptor = |
| 444 isolate->call_descriptor(Isolate::KeyedCall); |
| 445 static Register registers[] = { cp, // context |
| 446 x2, // key |
| 447 }; |
| 448 static Representation representations[] = { |
| 449 Representation::Tagged(), // context |
| 450 Representation::Tagged(), // key |
| 451 }; |
| 452 descriptor->register_param_count_ = 2; |
| 453 descriptor->register_params_ = registers; |
| 454 descriptor->param_representations_ = representations; |
| 455 descriptor->platform_specific_descriptor_ = &noInlineDescriptor; |
| 456 } |
| 457 { |
| 458 CallInterfaceDescriptor* descriptor = |
| 459 isolate->call_descriptor(Isolate::NamedCall); |
| 460 static Register registers[] = { cp, // context |
| 461 x2, // name |
| 462 }; |
| 463 static Representation representations[] = { |
| 464 Representation::Tagged(), // context |
| 465 Representation::Tagged(), // name |
| 466 }; |
| 467 descriptor->register_param_count_ = 2; |
| 468 descriptor->register_params_ = registers; |
| 469 descriptor->param_representations_ = representations; |
| 470 descriptor->platform_specific_descriptor_ = &noInlineDescriptor; |
| 471 } |
| 472 { |
| 473 CallInterfaceDescriptor* descriptor = |
| 474 isolate->call_descriptor(Isolate::CallHandler); |
| 475 static Register registers[] = { cp, // context |
| 476 x0, // receiver |
| 477 }; |
| 478 static Representation representations[] = { |
| 479 Representation::Tagged(), // context |
| 480 Representation::Tagged(), // receiver |
| 481 }; |
| 482 descriptor->register_param_count_ = 2; |
| 483 descriptor->register_params_ = registers; |
| 484 descriptor->param_representations_ = representations; |
| 485 descriptor->platform_specific_descriptor_ = &default_descriptor; |
| 486 } |
| 487 { |
| 488 CallInterfaceDescriptor* descriptor = |
| 489 isolate->call_descriptor(Isolate::ApiFunctionCall); |
| 490 static Register registers[] = { x0, // callee |
| 491 x4, // call_data |
| 492 x2, // holder |
| 493 x1, // api_function_address |
| 494 cp, // context |
| 495 }; |
| 496 static Representation representations[] = { |
| 497 Representation::Tagged(), // callee |
| 498 Representation::Tagged(), // call_data |
| 499 Representation::Tagged(), // holder |
| 500 Representation::External(), // api_function_address |
| 501 Representation::Tagged(), // context |
| 502 }; |
| 503 descriptor->register_param_count_ = 5; |
| 504 descriptor->register_params_ = registers; |
| 505 descriptor->param_representations_ = representations; |
| 506 descriptor->platform_specific_descriptor_ = &default_descriptor; |
| 507 } |
| 508 } |
| 509 |
| 510 |
| 511 #define __ ACCESS_MASM(masm) |
| 512 |
| 513 |
| 514 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm) { |
| 515 // Update the static counter each time a new code stub is generated. |
| 516 Isolate* isolate = masm->isolate(); |
| 517 isolate->counters()->code_stubs()->Increment(); |
| 518 |
| 519 CodeStubInterfaceDescriptor* descriptor = GetInterfaceDescriptor(isolate); |
| 520 int param_count = descriptor->register_param_count_; |
| 521 { |
| 522 // Call the runtime system in a fresh internal frame. |
| 523 FrameScope scope(masm, StackFrame::INTERNAL); |
| 524 ASSERT((descriptor->register_param_count_ == 0) || |
| 525 x0.Is(descriptor->register_params_[param_count - 1])); |
| 526 // Push arguments |
| 527 // TODO(jbramley): Try to push these in blocks. |
| 528 for (int i = 0; i < param_count; ++i) { |
| 529 __ Push(descriptor->register_params_[i]); |
| 530 } |
| 531 ExternalReference miss = descriptor->miss_handler(); |
| 532 __ CallExternalReference(miss, descriptor->register_param_count_); |
| 533 } |
| 534 |
| 535 __ Ret(); |
| 536 } |
| 537 |
| 538 |
| 539 // See call site for description. |
| 540 static void EmitIdenticalObjectComparison(MacroAssembler* masm, |
| 541 Register left, |
| 542 Register right, |
| 543 Register scratch, |
| 544 FPRegister double_scratch, |
| 545 Label* slow, |
| 546 Condition cond) { |
| 547 ASSERT(!AreAliased(left, right, scratch)); |
| 548 Label not_identical, return_equal, heap_number; |
| 549 Register result = x0; |
| 550 |
| 551 __ Cmp(right, left); |
| 552 __ B(ne, ¬_identical); |
| 553 |
| 554 // Test for NaN. Sadly, we can't just compare to factory::nan_value(), |
| 555 // so we do the second best thing - test it ourselves. |
| 556 // They are both equal and they are not both Smis so both of them are not |
| 557 // Smis. If it's not a heap number, then return equal. |
| 558 if ((cond == lt) || (cond == gt)) { |
| 559 __ JumpIfObjectType(right, scratch, scratch, FIRST_SPEC_OBJECT_TYPE, slow, |
| 560 ge); |
| 561 } else { |
| 562 Register right_type = scratch; |
| 563 __ JumpIfObjectType(right, right_type, right_type, HEAP_NUMBER_TYPE, |
| 564 &heap_number); |
| 565 // Comparing JS objects with <=, >= is complicated. |
| 566 if (cond != eq) { |
| 567 __ Cmp(right_type, FIRST_SPEC_OBJECT_TYPE); |
| 568 __ B(ge, slow); |
| 569 // Normally here we fall through to return_equal, but undefined is |
| 570 // special: (undefined == undefined) == true, but |
| 571 // (undefined <= undefined) == false! See ECMAScript 11.8.5. |
| 572 if ((cond == le) || (cond == ge)) { |
| 573 __ Cmp(right_type, ODDBALL_TYPE); |
| 574 __ B(ne, &return_equal); |
| 575 __ JumpIfNotRoot(right, Heap::kUndefinedValueRootIndex, &return_equal); |
| 576 if (cond == le) { |
| 577 // undefined <= undefined should fail. |
| 578 __ Mov(result, GREATER); |
| 579 } else { |
| 580 // undefined >= undefined should fail. |
| 581 __ Mov(result, LESS); |
| 582 } |
| 583 __ Ret(); |
| 584 } |
| 585 } |
| 586 } |
| 587 |
| 588 __ Bind(&return_equal); |
| 589 if (cond == lt) { |
| 590 __ Mov(result, GREATER); // Things aren't less than themselves. |
| 591 } else if (cond == gt) { |
| 592 __ Mov(result, LESS); // Things aren't greater than themselves. |
| 593 } else { |
| 594 __ Mov(result, EQUAL); // Things are <=, >=, ==, === themselves. |
| 595 } |
| 596 __ Ret(); |
| 597 |
| 598 // Cases lt and gt have been handled earlier, and case ne is never seen, as |
| 599 // it is handled in the parser (see Parser::ParseBinaryExpression). We are |
| 600 // only concerned with cases ge, le and eq here. |
| 601 if ((cond != lt) && (cond != gt)) { |
| 602 ASSERT((cond == ge) || (cond == le) || (cond == eq)); |
| 603 __ Bind(&heap_number); |
| 604 // Left and right are identical pointers to a heap number object. Return |
| 605 // non-equal if the heap number is a NaN, and equal otherwise. Comparing |
| 606 // the number to itself will set the overflow flag iff the number is NaN. |
| 607 __ Ldr(double_scratch, FieldMemOperand(right, HeapNumber::kValueOffset)); |
| 608 __ Fcmp(double_scratch, double_scratch); |
| 609 __ B(vc, &return_equal); // Not NaN, so treat as normal heap number. |
| 610 |
| 611 if (cond == le) { |
| 612 __ Mov(result, GREATER); |
| 613 } else { |
| 614 __ Mov(result, LESS); |
| 615 } |
| 616 __ Ret(); |
| 617 } |
| 618 |
| 619 // No fall through here. |
| 620 if (FLAG_debug_code) { |
| 621 __ Unreachable(); |
| 622 } |
| 623 |
| 624 __ Bind(¬_identical); |
| 625 } |
| 626 |
| 627 |
| 628 // See call site for description. |
| 629 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, |
| 630 Register left, |
| 631 Register right, |
| 632 Register left_type, |
| 633 Register right_type, |
| 634 Register scratch) { |
| 635 ASSERT(!AreAliased(left, right, left_type, right_type, scratch)); |
| 636 |
| 637 if (masm->emit_debug_code()) { |
| 638 // We assume that the arguments are not identical. |
| 639 __ Cmp(left, right); |
| 640 __ Assert(ne, kExpectedNonIdenticalObjects); |
| 641 } |
| 642 |
| 643 // If either operand is a JS object or an oddball value, then they are not |
| 644 // equal since their pointers are different. |
| 645 // There is no test for undetectability in strict equality. |
| 646 STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE); |
| 647 Label right_non_object; |
| 648 |
| 649 __ Cmp(right_type, FIRST_SPEC_OBJECT_TYPE); |
| 650 __ B(lt, &right_non_object); |
| 651 |
| 652 // Return non-zero - x0 already contains a non-zero pointer. |
| 653 ASSERT(left.is(x0) || right.is(x0)); |
| 654 Label return_not_equal; |
| 655 __ Bind(&return_not_equal); |
| 656 __ Ret(); |
| 657 |
| 658 __ Bind(&right_non_object); |
| 659 |
| 660 // Check for oddballs: true, false, null, undefined. |
| 661 __ Cmp(right_type, ODDBALL_TYPE); |
| 662 |
| 663 // If right is not ODDBALL, test left. Otherwise, set eq condition. |
| 664 __ Ccmp(left_type, ODDBALL_TYPE, ZFlag, ne); |
| 665 |
| 666 // If right or left is not ODDBALL, test left >= FIRST_SPEC_OBJECT_TYPE. |
| 667 // Otherwise, right or left is ODDBALL, so set a ge condition. |
| 668 __ Ccmp(left_type, FIRST_SPEC_OBJECT_TYPE, NVFlag, ne); |
| 669 |
| 670 __ B(ge, &return_not_equal); |
| 671 |
| 672 // Internalized strings are unique, so they can only be equal if they are the |
| 673 // same object. We have already tested that case, so if left and right are |
| 674 // both internalized strings, they cannot be equal. |
| 675 STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0)); |
| 676 __ Orr(scratch, left_type, right_type); |
| 677 __ TestAndBranchIfAllClear( |
| 678 scratch, kIsNotStringMask | kIsNotInternalizedMask, &return_not_equal); |
| 679 } |
| 680 |
| 681 |
| 682 // See call site for description. |
| 683 static void EmitSmiNonsmiComparison(MacroAssembler* masm, |
| 684 Register left, |
| 685 Register right, |
| 686 FPRegister left_d, |
| 687 FPRegister right_d, |
| 688 Register scratch, |
| 689 Label* slow, |
| 690 bool strict) { |
| 691 ASSERT(!AreAliased(left, right, scratch)); |
| 692 ASSERT(!AreAliased(left_d, right_d)); |
| 693 ASSERT((left.is(x0) && right.is(x1)) || |
| 694 (right.is(x0) && left.is(x1))); |
| 695 Register result = x0; |
| 696 |
| 697 Label right_is_smi, done; |
| 698 __ JumpIfSmi(right, &right_is_smi); |
| 699 |
| 700 // Left is the smi. Check whether right is a heap number. |
| 701 if (strict) { |
| 702 // If right is not a number and left is a smi, then strict equality cannot |
| 703 // succeed. Return non-equal. |
| 704 Label is_heap_number; |
| 705 __ JumpIfObjectType(right, scratch, scratch, HEAP_NUMBER_TYPE, |
| 706 &is_heap_number); |
| 707 // Register right is a non-zero pointer, which is a valid NOT_EQUAL result. |
| 708 if (!right.is(result)) { |
| 709 __ Mov(result, NOT_EQUAL); |
| 710 } |
| 711 __ Ret(); |
| 712 __ Bind(&is_heap_number); |
| 713 } else { |
| 714 // Smi compared non-strictly with a non-smi, non-heap-number. Call the |
| 715 // runtime. |
| 716 __ JumpIfNotObjectType(right, scratch, scratch, HEAP_NUMBER_TYPE, slow); |
| 717 } |
| 718 |
| 719 // Left is the smi. Right is a heap number. Load right value into right_d, and |
| 720 // convert left smi into double in left_d. |
| 721 __ Ldr(right_d, FieldMemOperand(right, HeapNumber::kValueOffset)); |
| 722 __ SmiUntagToDouble(left_d, left); |
| 723 __ B(&done); |
| 724 |
| 725 __ Bind(&right_is_smi); |
| 726 // Right is a smi. Check whether the non-smi left is a heap number. |
| 727 if (strict) { |
| 728 // If left is not a number and right is a smi then strict equality cannot |
| 729 // succeed. Return non-equal. |
| 730 Label is_heap_number; |
| 731 __ JumpIfObjectType(left, scratch, scratch, HEAP_NUMBER_TYPE, |
| 732 &is_heap_number); |
| 733 // Register left is a non-zero pointer, which is a valid NOT_EQUAL result. |
| 734 if (!left.is(result)) { |
| 735 __ Mov(result, NOT_EQUAL); |
| 736 } |
| 737 __ Ret(); |
| 738 __ Bind(&is_heap_number); |
| 739 } else { |
| 740 // Smi compared non-strictly with a non-smi, non-heap-number. Call the |
| 741 // runtime. |
| 742 __ JumpIfNotObjectType(left, scratch, scratch, HEAP_NUMBER_TYPE, slow); |
| 743 } |
| 744 |
| 745 // Right is the smi. Left is a heap number. Load left value into left_d, and |
| 746 // convert right smi into double in right_d. |
| 747 __ Ldr(left_d, FieldMemOperand(left, HeapNumber::kValueOffset)); |
| 748 __ SmiUntagToDouble(right_d, right); |
| 749 |
| 750 // Fall through to both_loaded_as_doubles. |
| 751 __ Bind(&done); |
| 752 } |
| 753 |
| 754 |
| 755 // Fast negative check for internalized-to-internalized equality. |
| 756 // See call site for description. |
| 757 static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm, |
| 758 Register left, |
| 759 Register right, |
| 760 Register left_map, |
| 761 Register right_map, |
| 762 Register left_type, |
| 763 Register right_type, |
| 764 Label* possible_strings, |
| 765 Label* not_both_strings) { |
| 766 ASSERT(!AreAliased(left, right, left_map, right_map, left_type, right_type)); |
| 767 Register result = x0; |
| 768 |
| 769 Label object_test; |
| 770 STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0)); |
| 771 // TODO(all): reexamine this branch sequence for optimisation wrt branch |
| 772 // prediction. |
| 773 __ Tbnz(right_type, MaskToBit(kIsNotStringMask), &object_test); |
| 774 __ Tbnz(right_type, MaskToBit(kIsNotInternalizedMask), possible_strings); |
| 775 __ Tbnz(left_type, MaskToBit(kIsNotStringMask), not_both_strings); |
| 776 __ Tbnz(left_type, MaskToBit(kIsNotInternalizedMask), possible_strings); |
| 777 |
| 778 // Both are internalized. We already checked that they weren't the same |
| 779 // pointer, so they are not equal. |
| 780 __ Mov(result, NOT_EQUAL); |
| 781 __ Ret(); |
| 782 |
| 783 __ Bind(&object_test); |
| 784 |
| 785 __ Cmp(right_type, FIRST_SPEC_OBJECT_TYPE); |
| 786 |
| 787 // If right >= FIRST_SPEC_OBJECT_TYPE, test left. |
| 788 // Otherwise, right < FIRST_SPEC_OBJECT_TYPE, so set lt condition. |
| 789 __ Ccmp(left_type, FIRST_SPEC_OBJECT_TYPE, NFlag, ge); |
| 790 |
| 791 __ B(lt, not_both_strings); |
| 792 |
| 793 // If both objects are undetectable, they are equal. Otherwise, they are not |
| 794 // equal, since they are different objects and an object is not equal to |
| 795 // undefined. |
| 796 |
| 797 // Returning here, so we can corrupt right_type and left_type. |
| 798 Register right_bitfield = right_type; |
| 799 Register left_bitfield = left_type; |
| 800 __ Ldrb(right_bitfield, FieldMemOperand(right_map, Map::kBitFieldOffset)); |
| 801 __ Ldrb(left_bitfield, FieldMemOperand(left_map, Map::kBitFieldOffset)); |
| 802 __ And(result, right_bitfield, left_bitfield); |
| 803 __ And(result, result, 1 << Map::kIsUndetectable); |
| 804 __ Eor(result, result, 1 << Map::kIsUndetectable); |
| 805 __ Ret(); |
| 806 } |
| 807 |
| 808 |
| 809 static void ICCompareStub_CheckInputType(MacroAssembler* masm, |
| 810 Register input, |
| 811 Register scratch, |
| 812 CompareIC::State expected, |
| 813 Label* fail) { |
| 814 Label ok; |
| 815 if (expected == CompareIC::SMI) { |
| 816 __ JumpIfNotSmi(input, fail); |
| 817 } else if (expected == CompareIC::NUMBER) { |
| 818 __ JumpIfSmi(input, &ok); |
| 819 __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail, |
| 820 DONT_DO_SMI_CHECK); |
| 821 } |
| 822 // We could be strict about internalized/non-internalized here, but as long as |
| 823 // hydrogen doesn't care, the stub doesn't have to care either. |
| 824 __ Bind(&ok); |
| 825 } |
| 826 |
| 827 |
| 828 void ICCompareStub::GenerateGeneric(MacroAssembler* masm) { |
| 829 Register lhs = x1; |
| 830 Register rhs = x0; |
| 831 Register result = x0; |
| 832 Condition cond = GetCondition(); |
| 833 |
| 834 Label miss; |
| 835 ICCompareStub_CheckInputType(masm, lhs, x2, left_, &miss); |
| 836 ICCompareStub_CheckInputType(masm, rhs, x3, right_, &miss); |
| 837 |
| 838 Label slow; // Call builtin. |
| 839 Label not_smis, both_loaded_as_doubles; |
| 840 Label not_two_smis, smi_done; |
| 841 __ JumpIfEitherNotSmi(lhs, rhs, ¬_two_smis); |
| 842 __ SmiUntag(lhs); |
| 843 __ Sub(result, lhs, Operand::UntagSmi(rhs)); |
| 844 __ Ret(); |
| 845 |
| 846 __ Bind(¬_two_smis); |
| 847 |
| 848 // NOTICE! This code is only reached after a smi-fast-case check, so it is |
| 849 // certain that at least one operand isn't a smi. |
| 850 |
| 851 // Handle the case where the objects are identical. Either returns the answer |
| 852 // or goes to slow. Only falls through if the objects were not identical. |
| 853 EmitIdenticalObjectComparison(masm, lhs, rhs, x10, d0, &slow, cond); |
| 854 |
| 855 // If either is a smi (we know that at least one is not a smi), then they can |
| 856 // only be strictly equal if the other is a HeapNumber. |
| 857 __ JumpIfBothNotSmi(lhs, rhs, ¬_smis); |
| 858 |
| 859 // Exactly one operand is a smi. EmitSmiNonsmiComparison generates code that |
| 860 // can: |
| 861 // 1) Return the answer. |
| 862 // 2) Branch to the slow case. |
| 863 // 3) Fall through to both_loaded_as_doubles. |
| 864 // In case 3, we have found out that we were dealing with a number-number |
| 865 // comparison. The double values of the numbers have been loaded, right into |
| 866 // rhs_d, left into lhs_d. |
| 867 FPRegister rhs_d = d0; |
| 868 FPRegister lhs_d = d1; |
| 869 EmitSmiNonsmiComparison(masm, lhs, rhs, lhs_d, rhs_d, x10, &slow, strict()); |
| 870 |
| 871 __ Bind(&both_loaded_as_doubles); |
| 872 // The arguments have been converted to doubles and stored in rhs_d and |
| 873 // lhs_d. |
| 874 Label nan; |
| 875 __ Fcmp(lhs_d, rhs_d); |
| 876 __ B(vs, &nan); // Overflow flag set if either is NaN. |
| 877 STATIC_ASSERT((LESS == -1) && (EQUAL == 0) && (GREATER == 1)); |
| 878 __ Cset(result, gt); // gt => 1, otherwise (lt, eq) => 0 (EQUAL). |
| 879 __ Csinv(result, result, xzr, ge); // lt => -1, gt => 1, eq => 0. |
| 880 __ Ret(); |
| 881 |
| 882 __ Bind(&nan); |
| 883 // Left and/or right is a NaN. Load the result register with whatever makes |
| 884 // the comparison fail, since comparisons with NaN always fail (except ne, |
| 885 // which is filtered out at a higher level.) |
| 886 ASSERT(cond != ne); |
| 887 if ((cond == lt) || (cond == le)) { |
| 888 __ Mov(result, GREATER); |
| 889 } else { |
| 890 __ Mov(result, LESS); |
| 891 } |
| 892 __ Ret(); |
| 893 |
| 894 __ Bind(¬_smis); |
| 895 // At this point we know we are dealing with two different objects, and |
| 896 // neither of them is a smi. The objects are in rhs_ and lhs_. |
| 897 |
| 898 // Load the maps and types of the objects. |
| 899 Register rhs_map = x10; |
| 900 Register rhs_type = x11; |
| 901 Register lhs_map = x12; |
| 902 Register lhs_type = x13; |
| 903 __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset)); |
| 904 __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset)); |
| 905 __ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset)); |
| 906 __ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset)); |
| 907 |
| 908 if (strict()) { |
| 909 // This emits a non-equal return sequence for some object types, or falls |
| 910 // through if it was not lucky. |
| 911 EmitStrictTwoHeapObjectCompare(masm, lhs, rhs, lhs_type, rhs_type, x14); |
| 912 } |
| 913 |
| 914 Label check_for_internalized_strings; |
| 915 Label flat_string_check; |
| 916 // Check for heap number comparison. Branch to earlier double comparison code |
| 917 // if they are heap numbers, otherwise, branch to internalized string check. |
| 918 __ Cmp(rhs_type, HEAP_NUMBER_TYPE); |
| 919 __ B(ne, &check_for_internalized_strings); |
| 920 __ Cmp(lhs_map, rhs_map); |
| 921 |
| 922 // If maps aren't equal, lhs_ and rhs_ are not heap numbers. Branch to flat |
| 923 // string check. |
| 924 __ B(ne, &flat_string_check); |
| 925 |
| 926 // Both lhs_ and rhs_ are heap numbers. Load them and branch to the double |
| 927 // comparison code. |
| 928 __ Ldr(lhs_d, FieldMemOperand(lhs, HeapNumber::kValueOffset)); |
| 929 __ Ldr(rhs_d, FieldMemOperand(rhs, HeapNumber::kValueOffset)); |
| 930 __ B(&both_loaded_as_doubles); |
| 931 |
| 932 __ Bind(&check_for_internalized_strings); |
| 933 // In the strict case, the EmitStrictTwoHeapObjectCompare already took care |
| 934 // of internalized strings. |
| 935 if ((cond == eq) && !strict()) { |
| 936 // Returns an answer for two internalized strings or two detectable objects. |
| 937 // Otherwise branches to the string case or not both strings case. |
| 938 EmitCheckForInternalizedStringsOrObjects(masm, lhs, rhs, lhs_map, rhs_map, |
| 939 lhs_type, rhs_type, |
| 940 &flat_string_check, &slow); |
| 941 } |
| 942 |
| 943 // Check for both being sequential ASCII strings, and inline if that is the |
| 944 // case. |
| 945 __ Bind(&flat_string_check); |
| 946 __ JumpIfBothInstanceTypesAreNotSequentialAscii(lhs_type, rhs_type, x14, |
| 947 x15, &slow); |
| 948 |
| 949 Isolate* isolate = masm->isolate(); |
| 950 __ IncrementCounter(isolate->counters()->string_compare_native(), 1, x10, |
| 951 x11); |
| 952 if (cond == eq) { |
| 953 StringCompareStub::GenerateFlatAsciiStringEquals(masm, lhs, rhs, |
| 954 x10, x11, x12); |
| 955 } else { |
| 956 StringCompareStub::GenerateCompareFlatAsciiStrings(masm, lhs, rhs, |
| 957 x10, x11, x12, x13); |
| 958 } |
| 959 |
| 960 // Never fall through to here. |
| 961 if (FLAG_debug_code) { |
| 962 __ Unreachable(); |
| 963 } |
| 964 |
| 965 __ Bind(&slow); |
| 966 |
| 967 __ Push(lhs, rhs); |
| 968 // Figure out which native to call and setup the arguments. |
| 969 Builtins::JavaScript native; |
| 970 if (cond == eq) { |
| 971 native = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS; |
| 972 } else { |
| 973 native = Builtins::COMPARE; |
| 974 int ncr; // NaN compare result |
| 975 if ((cond == lt) || (cond == le)) { |
| 976 ncr = GREATER; |
| 977 } else { |
| 978 ASSERT((cond == gt) || (cond == ge)); // remaining cases |
| 979 ncr = LESS; |
| 980 } |
| 981 __ Mov(x10, Operand(Smi::FromInt(ncr))); |
| 982 __ Push(x10); |
| 983 } |
| 984 |
| 985 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) |
| 986 // tagged as a small integer. |
| 987 __ InvokeBuiltin(native, JUMP_FUNCTION); |
| 988 |
| 989 __ Bind(&miss); |
| 990 GenerateMiss(masm); |
| 991 } |
| 992 |
| 993 |
| 994 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) { |
| 995 // Preserve caller-saved registers x0-x7 and x10-x15. We don't care if x8, x9, |
| 996 // ip0 and ip1 are corrupted by the call into C. |
| 997 CPURegList saved_regs = kCallerSaved; |
| 998 saved_regs.Remove(ip0); |
| 999 saved_regs.Remove(ip1); |
| 1000 saved_regs.Remove(x8); |
| 1001 saved_regs.Remove(x9); |
| 1002 |
| 1003 // We don't allow a GC during a store buffer overflow so there is no need to |
| 1004 // store the registers in any particular way, but we do have to store and |
| 1005 // restore them. |
| 1006 __ PushCPURegList(saved_regs); |
| 1007 if (save_doubles_ == kSaveFPRegs) { |
| 1008 __ PushCPURegList(kCallerSavedFP); |
| 1009 } |
| 1010 |
| 1011 AllowExternalCallThatCantCauseGC scope(masm); |
| 1012 __ Mov(x0, Operand(ExternalReference::isolate_address(masm->isolate()))); |
| 1013 __ CallCFunction( |
| 1014 ExternalReference::store_buffer_overflow_function(masm->isolate()), |
| 1015 1, 0); |
| 1016 |
| 1017 if (save_doubles_ == kSaveFPRegs) { |
| 1018 __ PopCPURegList(kCallerSavedFP); |
| 1019 } |
| 1020 __ PopCPURegList(saved_regs); |
| 1021 __ Ret(); |
| 1022 } |
| 1023 |
| 1024 |
| 1025 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime( |
| 1026 Isolate* isolate) { |
| 1027 StoreBufferOverflowStub stub1(kDontSaveFPRegs); |
| 1028 stub1.GetCode(isolate); |
| 1029 StoreBufferOverflowStub stub2(kSaveFPRegs); |
| 1030 stub2.GetCode(isolate); |
| 1031 } |
| 1032 |
| 1033 |
| 1034 void MathPowStub::Generate(MacroAssembler* masm) { |
| 1035 // Stack on entry: |
| 1036 // jssp[0]: Exponent (as a tagged value). |
| 1037 // jssp[1]: Base (as a tagged value). |
| 1038 // |
| 1039 // The (tagged) result will be returned in x0, as a heap number. |
| 1040 |
| 1041 Register result_tagged = x0; |
| 1042 Register base_tagged = x10; |
| 1043 Register exponent_tagged = x11; |
| 1044 Register exponent_integer = x12; |
| 1045 Register scratch1 = x14; |
| 1046 Register scratch0 = x15; |
| 1047 Register saved_lr = x19; |
| 1048 FPRegister result_double = d0; |
| 1049 FPRegister base_double = d0; |
| 1050 FPRegister exponent_double = d1; |
| 1051 FPRegister base_double_copy = d2; |
| 1052 FPRegister scratch1_double = d6; |
| 1053 FPRegister scratch0_double = d7; |
| 1054 |
| 1055 // A fast-path for integer exponents. |
| 1056 Label exponent_is_smi, exponent_is_integer; |
| 1057 // Bail out to runtime. |
| 1058 Label call_runtime; |
| 1059 // Allocate a heap number for the result, and return it. |
| 1060 Label done; |
| 1061 |
| 1062 // Unpack the inputs. |
| 1063 if (exponent_type_ == ON_STACK) { |
| 1064 Label base_is_smi; |
| 1065 Label unpack_exponent; |
| 1066 |
| 1067 __ Pop(exponent_tagged, base_tagged); |
| 1068 |
| 1069 __ JumpIfSmi(base_tagged, &base_is_smi); |
| 1070 __ JumpIfNotHeapNumber(base_tagged, &call_runtime); |
| 1071 // base_tagged is a heap number, so load its double value. |
| 1072 __ Ldr(base_double, FieldMemOperand(base_tagged, HeapNumber::kValueOffset)); |
| 1073 __ B(&unpack_exponent); |
| 1074 __ Bind(&base_is_smi); |
| 1075 // base_tagged is a SMI, so untag it and convert it to a double. |
| 1076 __ SmiUntagToDouble(base_double, base_tagged); |
| 1077 |
| 1078 __ Bind(&unpack_exponent); |
| 1079 // x10 base_tagged The tagged base (input). |
| 1080 // x11 exponent_tagged The tagged exponent (input). |
| 1081 // d1 base_double The base as a double. |
| 1082 __ JumpIfSmi(exponent_tagged, &exponent_is_smi); |
| 1083 __ JumpIfNotHeapNumber(exponent_tagged, &call_runtime); |
| 1084 // exponent_tagged is a heap number, so load its double value. |
| 1085 __ Ldr(exponent_double, |
| 1086 FieldMemOperand(exponent_tagged, HeapNumber::kValueOffset)); |
| 1087 } else if (exponent_type_ == TAGGED) { |
| 1088 __ JumpIfSmi(exponent_tagged, &exponent_is_smi); |
| 1089 __ Ldr(exponent_double, |
| 1090 FieldMemOperand(exponent_tagged, HeapNumber::kValueOffset)); |
| 1091 } |
| 1092 |
| 1093 // Handle double (heap number) exponents. |
| 1094 if (exponent_type_ != INTEGER) { |
| 1095 // Detect integer exponents stored as doubles and handle those in the |
| 1096 // integer fast-path. |
| 1097 __ TryConvertDoubleToInt64(exponent_integer, exponent_double, |
| 1098 scratch0_double, &exponent_is_integer); |
| 1099 |
| 1100 if (exponent_type_ == ON_STACK) { |
| 1101 FPRegister half_double = d3; |
| 1102 FPRegister minus_half_double = d4; |
| 1103 FPRegister zero_double = d5; |
| 1104 // Detect square root case. Crankshaft detects constant +/-0.5 at compile |
| 1105 // time and uses DoMathPowHalf instead. We then skip this check for |
| 1106 // non-constant cases of +/-0.5 as these hardly occur. |
| 1107 |
| 1108 __ Fmov(minus_half_double, -0.5); |
| 1109 __ Fmov(half_double, 0.5); |
| 1110 __ Fcmp(minus_half_double, exponent_double); |
| 1111 __ Fccmp(half_double, exponent_double, NZFlag, ne); |
| 1112 // Condition flags at this point: |
| 1113 // 0.5; nZCv // Identified by eq && pl |
| 1114 // -0.5: NZcv // Identified by eq && mi |
| 1115 // other: ?z?? // Identified by ne |
| 1116 __ B(ne, &call_runtime); |
| 1117 |
| 1118 // The exponent is 0.5 or -0.5. |
| 1119 |
| 1120 // Given that exponent is known to be either 0.5 or -0.5, the following |
| 1121 // special cases could apply (according to ECMA-262 15.8.2.13): |
| 1122 // |
| 1123 // base.isNaN(): The result is NaN. |
| 1124 // (base == +INFINITY) || (base == -INFINITY) |
| 1125 // exponent == 0.5: The result is +INFINITY. |
| 1126 // exponent == -0.5: The result is +0. |
| 1127 // (base == +0) || (base == -0) |
| 1128 // exponent == 0.5: The result is +0. |
| 1129 // exponent == -0.5: The result is +INFINITY. |
| 1130 // (base < 0) && base.isFinite(): The result is NaN. |
| 1131 // |
| 1132 // Fsqrt (and Fdiv for the -0.5 case) can handle all of those except |
| 1133 // where base is -INFINITY or -0. |
| 1134 |
| 1135 // Add +0 to base. This has no effect other than turning -0 into +0. |
| 1136 __ Fmov(zero_double, 0.0); |
| 1137 __ Fadd(base_double, base_double, zero_double); |
| 1138 // The operation -0+0 results in +0 in all cases except where the |
| 1139 // FPCR rounding mode is 'round towards minus infinity' (RM). The |
| 1140 // A64 simulator does not currently simulate FPCR (where the rounding |
| 1141 // mode is set), so test the operation with some debug code. |
| 1142 if (masm->emit_debug_code()) { |
| 1143 Register temp = masm->Tmp1(); |
| 1144 // d5 zero_double The value +0.0 as a double. |
| 1145 __ Fneg(scratch0_double, zero_double); |
| 1146 // Verify that we correctly generated +0.0 and -0.0. |
| 1147 // bits(+0.0) = 0x0000000000000000 |
| 1148 // bits(-0.0) = 0x8000000000000000 |
| 1149 __ Fmov(temp, zero_double); |
| 1150 __ CheckRegisterIsClear(temp, kCouldNotGenerateZero); |
| 1151 __ Fmov(temp, scratch0_double); |
| 1152 __ Eor(temp, temp, kDSignMask); |
| 1153 __ CheckRegisterIsClear(temp, kCouldNotGenerateNegativeZero); |
| 1154 // Check that -0.0 + 0.0 == +0.0. |
| 1155 __ Fadd(scratch0_double, scratch0_double, zero_double); |
| 1156 __ Fmov(temp, scratch0_double); |
| 1157 __ CheckRegisterIsClear(temp, kExpectedPositiveZero); |
| 1158 } |
| 1159 |
| 1160 // If base is -INFINITY, make it +INFINITY. |
| 1161 // * Calculate base - base: All infinities will become NaNs since both |
| 1162 // -INFINITY+INFINITY and +INFINITY-INFINITY are NaN in A64. |
| 1163 // * If the result is NaN, calculate abs(base). |
| 1164 __ Fsub(scratch0_double, base_double, base_double); |
| 1165 __ Fcmp(scratch0_double, 0.0); |
| 1166 __ Fabs(scratch1_double, base_double); |
| 1167 __ Fcsel(base_double, scratch1_double, base_double, vs); |
| 1168 |
| 1169 // Calculate the square root of base. |
| 1170 __ Fsqrt(result_double, base_double); |
| 1171 __ Fcmp(exponent_double, 0.0); |
| 1172 __ B(ge, &done); // Finish now for exponents of 0.5. |
| 1173 // Find the inverse for exponents of -0.5. |
| 1174 __ Fmov(scratch0_double, 1.0); |
| 1175 __ Fdiv(result_double, scratch0_double, result_double); |
| 1176 __ B(&done); |
| 1177 } |
| 1178 |
| 1179 { |
| 1180 AllowExternalCallThatCantCauseGC scope(masm); |
| 1181 __ Mov(saved_lr, lr); |
| 1182 __ CallCFunction( |
| 1183 ExternalReference::power_double_double_function(masm->isolate()), |
| 1184 0, 2); |
| 1185 __ Mov(lr, saved_lr); |
| 1186 __ B(&done); |
| 1187 } |
| 1188 |
| 1189 // Handle SMI exponents. |
| 1190 __ Bind(&exponent_is_smi); |
| 1191 // x10 base_tagged The tagged base (input). |
| 1192 // x11 exponent_tagged The tagged exponent (input). |
| 1193 // d1 base_double The base as a double. |
| 1194 __ SmiUntag(exponent_integer, exponent_tagged); |
| 1195 } |
| 1196 |
| 1197 __ Bind(&exponent_is_integer); |
| 1198 // x10 base_tagged The tagged base (input). |
| 1199 // x11 exponent_tagged The tagged exponent (input). |
| 1200 // x12 exponent_integer The exponent as an integer. |
| 1201 // d1 base_double The base as a double. |
| 1202 |
| 1203 // Find abs(exponent). For negative exponents, we can find the inverse later. |
| 1204 Register exponent_abs = x13; |
| 1205 __ Cmp(exponent_integer, 0); |
| 1206 __ Cneg(exponent_abs, exponent_integer, mi); |
| 1207 // x13 exponent_abs The value of abs(exponent_integer). |
| 1208 |
| 1209 // Repeatedly multiply to calculate the power. |
| 1210 // result = 1.0; |
| 1211 // For each bit n (exponent_integer{n}) { |
| 1212 // if (exponent_integer{n}) { |
| 1213 // result *= base; |
| 1214 // } |
| 1215 // base *= base; |
| 1216 // if (remaining bits in exponent_integer are all zero) { |
| 1217 // break; |
| 1218 // } |
| 1219 // } |
| 1220 Label power_loop, power_loop_entry, power_loop_exit; |
| 1221 __ Fmov(scratch1_double, base_double); |
| 1222 __ Fmov(base_double_copy, base_double); |
| 1223 __ Fmov(result_double, 1.0); |
| 1224 __ B(&power_loop_entry); |
| 1225 |
| 1226 __ Bind(&power_loop); |
| 1227 __ Fmul(scratch1_double, scratch1_double, scratch1_double); |
| 1228 __ Lsr(exponent_abs, exponent_abs, 1); |
| 1229 __ Cbz(exponent_abs, &power_loop_exit); |
| 1230 |
| 1231 __ Bind(&power_loop_entry); |
| 1232 __ Tbz(exponent_abs, 0, &power_loop); |
| 1233 __ Fmul(result_double, result_double, scratch1_double); |
| 1234 __ B(&power_loop); |
| 1235 |
| 1236 __ Bind(&power_loop_exit); |
| 1237 |
| 1238 // If the exponent was positive, result_double holds the result. |
| 1239 __ Tbz(exponent_integer, kXSignBit, &done); |
| 1240 |
| 1241 // The exponent was negative, so find the inverse. |
| 1242 __ Fmov(scratch0_double, 1.0); |
| 1243 __ Fdiv(result_double, scratch0_double, result_double); |
| 1244 // ECMA-262 only requires Math.pow to return an 'implementation-dependent |
| 1245 // approximation' of base^exponent. However, mjsunit/math-pow uses Math.pow |
| 1246 // to calculate the subnormal value 2^-1074. This method of calculating |
| 1247 // negative powers doesn't work because 2^1074 overflows to infinity. To |
| 1248 // catch this corner-case, we bail out if the result was 0. (This can only |
| 1249 // occur if the divisor is infinity or the base is zero.) |
| 1250 __ Fcmp(result_double, 0.0); |
| 1251 __ B(&done, ne); |
| 1252 |
| 1253 if (exponent_type_ == ON_STACK) { |
| 1254 // Bail out to runtime code. |
| 1255 __ Bind(&call_runtime); |
| 1256 // Put the arguments back on the stack. |
| 1257 __ Push(base_tagged, exponent_tagged); |
| 1258 __ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1); |
| 1259 |
| 1260 // Return. |
| 1261 __ Bind(&done); |
| 1262 __ AllocateHeapNumber(result_tagged, &call_runtime, scratch0, scratch1); |
| 1263 __ Str(result_double, |
| 1264 FieldMemOperand(result_tagged, HeapNumber::kValueOffset)); |
| 1265 ASSERT(result_tagged.is(x0)); |
| 1266 __ IncrementCounter( |
| 1267 masm->isolate()->counters()->math_pow(), 1, scratch0, scratch1); |
| 1268 __ Ret(); |
| 1269 } else { |
| 1270 AllowExternalCallThatCantCauseGC scope(masm); |
| 1271 __ Mov(saved_lr, lr); |
| 1272 __ Fmov(base_double, base_double_copy); |
| 1273 __ Scvtf(exponent_double, exponent_integer); |
| 1274 __ CallCFunction( |
| 1275 ExternalReference::power_double_double_function(masm->isolate()), |
| 1276 0, 2); |
| 1277 __ Mov(lr, saved_lr); |
| 1278 __ Bind(&done); |
| 1279 __ IncrementCounter( |
| 1280 masm->isolate()->counters()->math_pow(), 1, scratch0, scratch1); |
| 1281 __ Ret(); |
| 1282 } |
| 1283 } |
| 1284 |
| 1285 |
| 1286 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) { |
| 1287 // It is important that the following stubs are generated in this order |
| 1288 // because pregenerated stubs can only call other pregenerated stubs. |
| 1289 // RecordWriteStub uses StoreBufferOverflowStub, which in turn uses |
| 1290 // CEntryStub. |
| 1291 CEntryStub::GenerateAheadOfTime(isolate); |
| 1292 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate); |
| 1293 StubFailureTrampolineStub::GenerateAheadOfTime(isolate); |
| 1294 ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate); |
| 1295 CreateAllocationSiteStub::GenerateAheadOfTime(isolate); |
| 1296 BinaryOpICStub::GenerateAheadOfTime(isolate); |
| 1297 BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate); |
| 1298 } |
| 1299 |
| 1300 |
| 1301 void CodeStub::GenerateFPStubs(Isolate* isolate) { |
| 1302 // Floating-point code doesn't get special handling in A64, so there's |
| 1303 // nothing to do here. |
| 1304 USE(isolate); |
| 1305 } |
| 1306 |
| 1307 |
| 1308 static void JumpIfOOM(MacroAssembler* masm, |
| 1309 Register value, |
| 1310 Register scratch, |
| 1311 Label* oom_label) { |
| 1312 STATIC_ASSERT(Failure::OUT_OF_MEMORY_EXCEPTION == 3); |
| 1313 STATIC_ASSERT(kFailureTag == 3); |
| 1314 __ And(scratch, value, 0xf); |
| 1315 __ Cmp(scratch, 0xf); |
| 1316 __ B(eq, oom_label); |
| 1317 } |
| 1318 |
| 1319 |
| 1320 bool CEntryStub::NeedsImmovableCode() { |
| 1321 // CEntryStub stores the return address on the stack before calling into |
| 1322 // C++ code. In some cases, the VM accesses this address, but it is not used |
| 1323 // when the C++ code returns to the stub because LR holds the return address |
| 1324 // in AAPCS64. If the stub is moved (perhaps during a GC), we could end up |
| 1325 // returning to dead code. |
| 1326 // TODO(jbramley): Whilst this is the only analysis that makes sense, I can't |
| 1327 // find any comment to confirm this, and I don't hit any crashes whatever |
| 1328 // this function returns. The anaylsis should be properly confirmed. |
| 1329 return true; |
| 1330 } |
| 1331 |
| 1332 |
| 1333 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) { |
| 1334 CEntryStub stub(1, kDontSaveFPRegs); |
| 1335 stub.GetCode(isolate); |
| 1336 CEntryStub stub_fp(1, kSaveFPRegs); |
| 1337 stub_fp.GetCode(isolate); |
| 1338 } |
| 1339 |
| 1340 |
| 1341 void CEntryStub::GenerateCore(MacroAssembler* masm, |
| 1342 Label* throw_normal, |
| 1343 Label* throw_termination, |
| 1344 Label* throw_out_of_memory, |
| 1345 bool do_gc, |
| 1346 bool always_allocate) { |
| 1347 // x0 : Result parameter for PerformGC, if do_gc is true. |
| 1348 // x21 : argv |
| 1349 // x22 : argc |
| 1350 // x23 : target |
| 1351 // |
| 1352 // The stack (on entry) holds the arguments and the receiver, with the |
| 1353 // receiver at the highest address: |
| 1354 // |
| 1355 // argv[8]: receiver |
| 1356 // argv -> argv[0]: arg[argc-2] |
| 1357 // ... ... |
| 1358 // argv[...]: arg[1] |
| 1359 // argv[...]: arg[0] |
| 1360 // |
| 1361 // Immediately below (after) this is the exit frame, as constructed by |
| 1362 // EnterExitFrame: |
| 1363 // fp[8]: CallerPC (lr) |
| 1364 // fp -> fp[0]: CallerFP (old fp) |
| 1365 // fp[-8]: Space reserved for SPOffset. |
| 1366 // fp[-16]: CodeObject() |
| 1367 // csp[...]: Saved doubles, if saved_doubles is true. |
| 1368 // csp[32]: Alignment padding, if necessary. |
| 1369 // csp[24]: Preserved x23 (used for target). |
| 1370 // csp[16]: Preserved x22 (used for argc). |
| 1371 // csp[8]: Preserved x21 (used for argv). |
| 1372 // csp -> csp[0]: Space reserved for the return address. |
| 1373 // |
| 1374 // After a successful call, the exit frame, preserved registers (x21-x23) and |
| 1375 // the arguments (including the receiver) are dropped or popped as |
| 1376 // appropriate. The stub then returns. |
| 1377 // |
| 1378 // After an unsuccessful call, the exit frame and suchlike are left |
| 1379 // untouched, and the stub either throws an exception by jumping to one of |
| 1380 // the provided throw_ labels, or it falls through. The failure details are |
| 1381 // passed through in x0. |
| 1382 ASSERT(csp.Is(__ StackPointer())); |
| 1383 |
| 1384 Isolate* isolate = masm->isolate(); |
| 1385 |
| 1386 const Register& argv = x21; |
| 1387 const Register& argc = x22; |
| 1388 const Register& target = x23; |
| 1389 |
| 1390 if (do_gc) { |
| 1391 // Call Runtime::PerformGC, passing x0 (the result parameter for |
| 1392 // PerformGC) and x1 (the isolate). |
| 1393 __ Mov(x1, Operand(ExternalReference::isolate_address(masm->isolate()))); |
| 1394 __ CallCFunction( |
| 1395 ExternalReference::perform_gc_function(isolate), 2, 0); |
| 1396 } |
| 1397 |
| 1398 ExternalReference scope_depth = |
| 1399 ExternalReference::heap_always_allocate_scope_depth(isolate); |
| 1400 if (always_allocate) { |
| 1401 __ Mov(x10, Operand(scope_depth)); |
| 1402 __ Ldr(x11, MemOperand(x10)); |
| 1403 __ Add(x11, x11, 1); |
| 1404 __ Str(x11, MemOperand(x10)); |
| 1405 } |
| 1406 |
| 1407 // Prepare AAPCS64 arguments to pass to the builtin. |
| 1408 __ Mov(x0, argc); |
| 1409 __ Mov(x1, argv); |
| 1410 __ Mov(x2, Operand(ExternalReference::isolate_address(isolate))); |
| 1411 |
| 1412 // Store the return address on the stack, in the space previously allocated |
| 1413 // by EnterExitFrame. The return address is queried by |
| 1414 // ExitFrame::GetStateForFramePointer. |
| 1415 Label return_location; |
| 1416 __ Adr(x12, &return_location); |
| 1417 __ Poke(x12, 0); |
| 1418 if (__ emit_debug_code()) { |
| 1419 // Verify that the slot below fp[kSPOffset]-8 points to the return location |
| 1420 // (currently in x12). |
| 1421 Register temp = masm->Tmp1(); |
| 1422 __ Ldr(temp, MemOperand(fp, ExitFrameConstants::kSPOffset)); |
| 1423 __ Ldr(temp, MemOperand(temp, -static_cast<int64_t>(kXRegSizeInBytes))); |
| 1424 __ Cmp(temp, x12); |
| 1425 __ Check(eq, kReturnAddressNotFoundInFrame); |
| 1426 } |
| 1427 |
| 1428 // Call the builtin. |
| 1429 __ Blr(target); |
| 1430 __ Bind(&return_location); |
| 1431 const Register& result = x0; |
| 1432 |
| 1433 if (always_allocate) { |
| 1434 __ Mov(x10, Operand(scope_depth)); |
| 1435 __ Ldr(x11, MemOperand(x10)); |
| 1436 __ Sub(x11, x11, 1); |
| 1437 __ Str(x11, MemOperand(x10)); |
| 1438 } |
| 1439 |
| 1440 // x0 result The return code from the call. |
| 1441 // x21 argv |
| 1442 // x22 argc |
| 1443 // x23 target |
| 1444 // |
| 1445 // If all of the result bits matching kFailureTagMask are '1', the result is |
| 1446 // a failure. Otherwise, it's an ordinary tagged object and the call was a |
| 1447 // success. |
| 1448 Label failure; |
| 1449 __ And(x10, result, kFailureTagMask); |
| 1450 __ Cmp(x10, kFailureTagMask); |
| 1451 __ B(&failure, eq); |
| 1452 |
| 1453 // The call succeeded, so unwind the stack and return. |
| 1454 |
| 1455 // Restore callee-saved registers x21-x23. |
| 1456 __ Mov(x11, argc); |
| 1457 |
| 1458 __ Peek(argv, 1 * kPointerSize); |
| 1459 __ Peek(argc, 2 * kPointerSize); |
| 1460 __ Peek(target, 3 * kPointerSize); |
| 1461 |
| 1462 __ LeaveExitFrame(save_doubles_, x10, true); |
| 1463 ASSERT(jssp.Is(__ StackPointer())); |
| 1464 // Pop or drop the remaining stack slots and return from the stub. |
| 1465 // jssp[24]: Arguments array (of size argc), including receiver. |
| 1466 // jssp[16]: Preserved x23 (used for target). |
| 1467 // jssp[8]: Preserved x22 (used for argc). |
| 1468 // jssp[0]: Preserved x21 (used for argv). |
| 1469 __ Drop(x11); |
| 1470 __ Ret(); |
| 1471 |
| 1472 // The stack pointer is still csp if we aren't returning, and the frame |
| 1473 // hasn't changed (except for the return address). |
| 1474 __ SetStackPointer(csp); |
| 1475 |
| 1476 __ Bind(&failure); |
| 1477 // The call failed, so check if we need to throw an exception, and fall |
| 1478 // through (to retry) otherwise. |
| 1479 |
| 1480 Label retry; |
| 1481 // x0 result The return code from the call, including the failure |
| 1482 // code and details. |
| 1483 // x21 argv |
| 1484 // x22 argc |
| 1485 // x23 target |
| 1486 // Refer to the Failure class for details of the bit layout. |
| 1487 STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0); |
| 1488 __ Tst(result, kFailureTypeTagMask << kFailureTagSize); |
| 1489 __ B(eq, &retry); // RETRY_AFTER_GC |
| 1490 |
| 1491 // Special handling of out-of-memory exceptions: Pass the failure result, |
| 1492 // rather than the exception descriptor. |
| 1493 JumpIfOOM(masm, result, x10, throw_out_of_memory); |
| 1494 |
| 1495 // Retrieve the pending exception. |
| 1496 const Register& exception = result; |
| 1497 const Register& exception_address = x11; |
| 1498 __ Mov(exception_address, |
| 1499 Operand(ExternalReference(Isolate::kPendingExceptionAddress, |
| 1500 isolate))); |
| 1501 __ Ldr(exception, MemOperand(exception_address)); |
| 1502 |
| 1503 // See if we just retrieved an OOM exception. |
| 1504 JumpIfOOM(masm, exception, x10, throw_out_of_memory); |
| 1505 |
| 1506 // Clear the pending exception. |
| 1507 __ Mov(x10, Operand(isolate->factory()->the_hole_value())); |
| 1508 __ Str(x10, MemOperand(exception_address)); |
| 1509 |
| 1510 // x0 exception The exception descriptor. |
| 1511 // x21 argv |
| 1512 // x22 argc |
| 1513 // x23 target |
| 1514 |
| 1515 // Special handling of termination exceptions, which are uncatchable by |
| 1516 // JavaScript code. |
| 1517 __ Cmp(exception, Operand(isolate->factory()->termination_exception())); |
| 1518 __ B(eq, throw_termination); |
| 1519 |
| 1520 // Handle normal exception. |
| 1521 __ B(throw_normal); |
| 1522 |
| 1523 __ Bind(&retry); |
| 1524 // The result (x0) is passed through as the next PerformGC parameter. |
| 1525 } |
| 1526 |
| 1527 |
| 1528 void CEntryStub::Generate(MacroAssembler* masm) { |
| 1529 // The Abort mechanism relies on CallRuntime, which in turn relies on |
| 1530 // CEntryStub, so until this stub has been generated, we have to use a |
| 1531 // fall-back Abort mechanism. |
| 1532 // |
| 1533 // Note that this stub must be generated before any use of Abort. |
| 1534 MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm); |
| 1535 |
| 1536 ASM_LOCATION("CEntryStub::Generate entry"); |
| 1537 ProfileEntryHookStub::MaybeCallEntryHook(masm); |
| 1538 |
| 1539 // Register parameters: |
| 1540 // x0: argc (including receiver, untagged) |
| 1541 // x1: target |
| 1542 // |
| 1543 // The stack on entry holds the arguments and the receiver, with the receiver |
| 1544 // at the highest address: |
| 1545 // |
| 1546 // jssp]argc-1]: receiver |
| 1547 // jssp[argc-2]: arg[argc-2] |
| 1548 // ... ... |
| 1549 // jssp[1]: arg[1] |
| 1550 // jssp[0]: arg[0] |
| 1551 // |
| 1552 // The arguments are in reverse order, so that arg[argc-2] is actually the |
| 1553 // first argument to the target function and arg[0] is the last. |
| 1554 ASSERT(jssp.Is(__ StackPointer())); |
| 1555 const Register& argc_input = x0; |
| 1556 const Register& target_input = x1; |
| 1557 |
| 1558 // Calculate argv, argc and the target address, and store them in |
| 1559 // callee-saved registers so we can retry the call without having to reload |
| 1560 // these arguments. |
| 1561 // TODO(jbramley): If the first call attempt succeeds in the common case (as |
| 1562 // it should), then we might be better off putting these parameters directly |
| 1563 // into their argument registers, rather than using callee-saved registers and |
| 1564 // preserving them on the stack. |
| 1565 const Register& argv = x21; |
| 1566 const Register& argc = x22; |
| 1567 const Register& target = x23; |
| 1568 |
| 1569 // Derive argv from the stack pointer so that it points to the first argument |
| 1570 // (arg[argc-2]), or just below the receiver in case there are no arguments. |
| 1571 // - Adjust for the arg[] array. |
| 1572 Register temp_argv = x11; |
| 1573 __ Add(temp_argv, jssp, Operand(x0, LSL, kPointerSizeLog2)); |
| 1574 // - Adjust for the receiver. |
| 1575 __ Sub(temp_argv, temp_argv, 1 * kPointerSize); |
| 1576 |
| 1577 // Enter the exit frame. Reserve three slots to preserve x21-x23 callee-saved |
| 1578 // registers. |
| 1579 FrameScope scope(masm, StackFrame::MANUAL); |
| 1580 __ EnterExitFrame(save_doubles_, x10, 3); |
| 1581 ASSERT(csp.Is(__ StackPointer())); |
| 1582 |
| 1583 // Poke callee-saved registers into reserved space. |
| 1584 __ Poke(argv, 1 * kPointerSize); |
| 1585 __ Poke(argc, 2 * kPointerSize); |
| 1586 __ Poke(target, 3 * kPointerSize); |
| 1587 |
| 1588 // We normally only keep tagged values in callee-saved registers, as they |
| 1589 // could be pushed onto the stack by called stubs and functions, and on the |
| 1590 // stack they can confuse the GC. However, we're only calling C functions |
| 1591 // which can push arbitrary data onto the stack anyway, and so the GC won't |
| 1592 // examine that part of the stack. |
| 1593 __ Mov(argc, argc_input); |
| 1594 __ Mov(target, target_input); |
| 1595 __ Mov(argv, temp_argv); |
| 1596 |
| 1597 Label throw_normal; |
| 1598 Label throw_termination; |
| 1599 Label throw_out_of_memory; |
| 1600 |
| 1601 // Call the runtime function. |
| 1602 GenerateCore(masm, |
| 1603 &throw_normal, |
| 1604 &throw_termination, |
| 1605 &throw_out_of_memory, |
| 1606 false, |
| 1607 false); |
| 1608 |
| 1609 // If successful, the previous GenerateCore will have returned to the |
| 1610 // calling code. Otherwise, we fall through into the following. |
| 1611 |
| 1612 // Do space-specific GC and retry runtime call. |
| 1613 GenerateCore(masm, |
| 1614 &throw_normal, |
| 1615 &throw_termination, |
| 1616 &throw_out_of_memory, |
| 1617 true, |
| 1618 false); |
| 1619 |
| 1620 // Do full GC and retry runtime call one final time. |
| 1621 __ Mov(x0, reinterpret_cast<uint64_t>(Failure::InternalError())); |
| 1622 GenerateCore(masm, |
| 1623 &throw_normal, |
| 1624 &throw_termination, |
| 1625 &throw_out_of_memory, |
| 1626 true, |
| 1627 true); |
| 1628 |
| 1629 // We didn't execute a return case, so the stack frame hasn't been updated |
| 1630 // (except for the return address slot). However, we don't need to initialize |
| 1631 // jssp because the throw method will immediately overwrite it when it |
| 1632 // unwinds the stack. |
| 1633 if (__ emit_debug_code()) { |
| 1634 __ Mov(jssp, kDebugZapValue); |
| 1635 } |
| 1636 __ SetStackPointer(jssp); |
| 1637 |
| 1638 // Throw exceptions. |
| 1639 // If we throw an exception, we can end up re-entering CEntryStub before we |
| 1640 // pop the exit frame, so need to ensure that x21-x23 contain GC-safe values |
| 1641 // here. |
| 1642 __ Bind(&throw_out_of_memory); |
| 1643 ASM_LOCATION("Throw out of memory"); |
| 1644 __ Mov(argv, 0); |
| 1645 __ Mov(argc, 0); |
| 1646 __ Mov(target, 0); |
| 1647 // Set external caught exception to false. |
| 1648 Isolate* isolate = masm->isolate(); |
| 1649 __ Mov(x2, Operand(ExternalReference(Isolate::kExternalCaughtExceptionAddress, |
| 1650 isolate))); |
| 1651 __ Str(xzr, MemOperand(x2)); |
| 1652 |
| 1653 // Set pending exception and x0 to out of memory exception. |
| 1654 Label already_have_failure; |
| 1655 JumpIfOOM(masm, x0, x10, &already_have_failure); |
| 1656 Failure* out_of_memory = Failure::OutOfMemoryException(0x1); |
| 1657 __ Mov(x0, Operand(reinterpret_cast<uint64_t>(out_of_memory))); |
| 1658 __ Bind(&already_have_failure); |
| 1659 __ Mov(x2, Operand(ExternalReference(Isolate::kPendingExceptionAddress, |
| 1660 isolate))); |
| 1661 __ Str(x0, MemOperand(x2)); |
| 1662 // Fall through to the next label. |
| 1663 |
| 1664 __ Bind(&throw_termination); |
| 1665 ASM_LOCATION("Throw termination"); |
| 1666 __ Mov(argv, 0); |
| 1667 __ Mov(argc, 0); |
| 1668 __ Mov(target, 0); |
| 1669 __ ThrowUncatchable(x0, x10, x11, x12, x13); |
| 1670 |
| 1671 __ Bind(&throw_normal); |
| 1672 ASM_LOCATION("Throw normal"); |
| 1673 __ Mov(argv, 0); |
| 1674 __ Mov(argc, 0); |
| 1675 __ Mov(target, 0); |
| 1676 __ Throw(x0, x10, x11, x12, x13); |
| 1677 } |
| 1678 |
| 1679 |
| 1680 // This is the entry point from C++. 5 arguments are provided in x0-x4. |
| 1681 // See use of the CALL_GENERATED_CODE macro for example in src/execution.cc. |
| 1682 // Input: |
| 1683 // x0: code entry. |
| 1684 // x1: function. |
| 1685 // x2: receiver. |
| 1686 // x3: argc. |
| 1687 // x4: argv. |
| 1688 // Output: |
| 1689 // x0: result. |
| 1690 void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) { |
| 1691 ASSERT(jssp.Is(__ StackPointer())); |
| 1692 Register code_entry = x0; |
| 1693 |
| 1694 // Enable instruction instrumentation. This only works on the simulator, and |
| 1695 // will have no effect on the model or real hardware. |
| 1696 __ EnableInstrumentation(); |
| 1697 |
| 1698 Label invoke, handler_entry, exit; |
| 1699 |
| 1700 // Push callee-saved registers and synchronize the system stack pointer (csp) |
| 1701 // and the JavaScript stack pointer (jssp). |
| 1702 // |
| 1703 // We must not write to jssp until after the PushCalleeSavedRegisters() |
| 1704 // call, since jssp is itself a callee-saved register. |
| 1705 __ SetStackPointer(csp); |
| 1706 __ PushCalleeSavedRegisters(); |
| 1707 __ Mov(jssp, csp); |
| 1708 __ SetStackPointer(jssp); |
| 1709 |
| 1710 ProfileEntryHookStub::MaybeCallEntryHook(masm); |
| 1711 |
| 1712 // Build an entry frame (see layout below). |
| 1713 Isolate* isolate = masm->isolate(); |
| 1714 |
| 1715 // Build an entry frame. |
| 1716 int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY; |
| 1717 int64_t bad_frame_pointer = -1L; // Bad frame pointer to fail if it is used. |
| 1718 __ Mov(x13, bad_frame_pointer); |
| 1719 __ Mov(x12, Operand(Smi::FromInt(marker))); |
| 1720 __ Mov(x11, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate))); |
| 1721 __ Ldr(x10, MemOperand(x11)); |
| 1722 |
| 1723 // TODO(all): Pushing the marker twice seems unnecessary. |
| 1724 // In this case perhaps we could push xzr in the slot for the context |
| 1725 // (see MAsm::EnterFrame). |
| 1726 __ Push(x13, x12, x12, x10); |
| 1727 // Set up fp. |
| 1728 __ Sub(fp, jssp, EntryFrameConstants::kCallerFPOffset); |
| 1729 |
| 1730 // Push the JS entry frame marker. Also set js_entry_sp if this is the |
| 1731 // outermost JS call. |
| 1732 Label non_outermost_js, done; |
| 1733 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate); |
| 1734 __ Mov(x10, Operand(ExternalReference(js_entry_sp))); |
| 1735 __ Ldr(x11, MemOperand(x10)); |
| 1736 __ Cbnz(x11, &non_outermost_js); |
| 1737 __ Str(fp, MemOperand(x10)); |
| 1738 __ Mov(x12, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME))); |
| 1739 __ Push(x12); |
| 1740 __ B(&done); |
| 1741 __ Bind(&non_outermost_js); |
| 1742 // We spare one instruction by pushing xzr since the marker is 0. |
| 1743 ASSERT(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME) == NULL); |
| 1744 __ Push(xzr); |
| 1745 __ Bind(&done); |
| 1746 |
| 1747 // The frame set up looks like this: |
| 1748 // jssp[0] : JS entry frame marker. |
| 1749 // jssp[1] : C entry FP. |
| 1750 // jssp[2] : stack frame marker. |
| 1751 // jssp[3] : stack frmae marker. |
| 1752 // jssp[4] : bad frame pointer 0xfff...ff <- fp points here. |
| 1753 |
| 1754 |
| 1755 // Jump to a faked try block that does the invoke, with a faked catch |
| 1756 // block that sets the pending exception. |
| 1757 __ B(&invoke); |
| 1758 |
| 1759 // Prevent the constant pool from being emitted between the record of the |
| 1760 // handler_entry position and the first instruction of the sequence here. |
| 1761 // There is no risk because Assembler::Emit() emits the instruction before |
| 1762 // checking for constant pool emission, but we do not want to depend on |
| 1763 // that. |
| 1764 { |
| 1765 Assembler::BlockConstPoolScope block_const_pool(masm); |
| 1766 __ bind(&handler_entry); |
| 1767 handler_offset_ = handler_entry.pos(); |
| 1768 // Caught exception: Store result (exception) in the pending exception |
| 1769 // field in the JSEnv and return a failure sentinel. Coming in here the |
| 1770 // fp will be invalid because the PushTryHandler below sets it to 0 to |
| 1771 // signal the existence of the JSEntry frame. |
| 1772 // TODO(jbramley): Do this in the Assembler. |
| 1773 __ Mov(x10, Operand(ExternalReference(Isolate::kPendingExceptionAddress, |
| 1774 isolate))); |
| 1775 } |
| 1776 __ Str(code_entry, MemOperand(x10)); |
| 1777 __ Mov(x0, Operand(reinterpret_cast<int64_t>(Failure::Exception()))); |
| 1778 __ B(&exit); |
| 1779 |
| 1780 // Invoke: Link this frame into the handler chain. There's only one |
| 1781 // handler block in this code object, so its index is 0. |
| 1782 __ Bind(&invoke); |
| 1783 __ PushTryHandler(StackHandler::JS_ENTRY, 0); |
| 1784 // If an exception not caught by another handler occurs, this handler |
| 1785 // returns control to the code after the B(&invoke) above, which |
| 1786 // restores all callee-saved registers (including cp and fp) to their |
| 1787 // saved values before returning a failure to C. |
| 1788 |
| 1789 // Clear any pending exceptions. |
| 1790 __ Mov(x10, Operand(isolate->factory()->the_hole_value())); |
| 1791 __ Mov(x11, Operand(ExternalReference(Isolate::kPendingExceptionAddress, |
| 1792 isolate))); |
| 1793 __ Str(x10, MemOperand(x11)); |
| 1794 |
| 1795 // Invoke the function by calling through the JS entry trampoline builtin. |
| 1796 // Notice that we cannot store a reference to the trampoline code directly in |
| 1797 // this stub, because runtime stubs are not traversed when doing GC. |
| 1798 |
| 1799 // Expected registers by Builtins::JSEntryTrampoline |
| 1800 // x0: code entry. |
| 1801 // x1: function. |
| 1802 // x2: receiver. |
| 1803 // x3: argc. |
| 1804 // x4: argv. |
| 1805 // TODO(jbramley): The latest ARM code checks is_construct and conditionally |
| 1806 // uses construct_entry. We probably need to do the same here. |
| 1807 ExternalReference entry(is_construct ? Builtins::kJSConstructEntryTrampoline |
| 1808 : Builtins::kJSEntryTrampoline, |
| 1809 isolate); |
| 1810 __ Mov(x10, Operand(entry)); |
| 1811 |
| 1812 // Call the JSEntryTrampoline. |
| 1813 __ Ldr(x11, MemOperand(x10)); // Dereference the address. |
| 1814 __ Add(x12, x11, Code::kHeaderSize - kHeapObjectTag); |
| 1815 __ Blr(x12); |
| 1816 |
| 1817 // Unlink this frame from the handler chain. |
| 1818 __ PopTryHandler(); |
| 1819 |
| 1820 |
| 1821 __ Bind(&exit); |
| 1822 // x0 holds the result. |
| 1823 // The stack pointer points to the top of the entry frame pushed on entry from |
| 1824 // C++ (at the beginning of this stub): |
| 1825 // jssp[0] : JS entry frame marker. |
| 1826 // jssp[1] : C entry FP. |
| 1827 // jssp[2] : stack frame marker. |
| 1828 // jssp[3] : stack frmae marker. |
| 1829 // jssp[4] : bad frame pointer 0xfff...ff <- fp points here. |
| 1830 |
| 1831 // Check if the current stack frame is marked as the outermost JS frame. |
| 1832 Label non_outermost_js_2; |
| 1833 __ Pop(x10); |
| 1834 __ Cmp(x10, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME))); |
| 1835 __ B(ne, &non_outermost_js_2); |
| 1836 __ Mov(x11, Operand(ExternalReference(js_entry_sp))); |
| 1837 __ Str(xzr, MemOperand(x11)); |
| 1838 __ Bind(&non_outermost_js_2); |
| 1839 |
| 1840 // Restore the top frame descriptors from the stack. |
| 1841 __ Pop(x10); |
| 1842 __ Mov(x11, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate))); |
| 1843 __ Str(x10, MemOperand(x11)); |
| 1844 |
| 1845 // Reset the stack to the callee saved registers. |
| 1846 __ Drop(-EntryFrameConstants::kCallerFPOffset, kByteSizeInBytes); |
| 1847 // Restore the callee-saved registers and return. |
| 1848 ASSERT(jssp.Is(__ StackPointer())); |
| 1849 __ Mov(csp, jssp); |
| 1850 __ SetStackPointer(csp); |
| 1851 __ PopCalleeSavedRegisters(); |
| 1852 // After this point, we must not modify jssp because it is a callee-saved |
| 1853 // register which we have just restored. |
| 1854 __ Ret(); |
| 1855 } |
| 1856 |
| 1857 |
| 1858 void FunctionPrototypeStub::Generate(MacroAssembler* masm) { |
| 1859 Label miss; |
| 1860 Register receiver; |
| 1861 if (kind() == Code::KEYED_LOAD_IC) { |
| 1862 // ----------- S t a t e ------------- |
| 1863 // -- lr : return address |
| 1864 // -- x1 : receiver |
| 1865 // -- x0 : key |
| 1866 // ----------------------------------- |
| 1867 Register key = x0; |
| 1868 receiver = x1; |
| 1869 __ Cmp(key, Operand(masm->isolate()->factory()->prototype_string())); |
| 1870 __ B(ne, &miss); |
| 1871 } else { |
| 1872 ASSERT(kind() == Code::LOAD_IC); |
| 1873 // ----------- S t a t e ------------- |
| 1874 // -- lr : return address |
| 1875 // -- x2 : name |
| 1876 // -- x0 : receiver |
| 1877 // -- sp[0] : receiver |
| 1878 // ----------------------------------- |
| 1879 receiver = x0; |
| 1880 } |
| 1881 |
| 1882 StubCompiler::GenerateLoadFunctionPrototype(masm, receiver, x10, x11, &miss); |
| 1883 |
| 1884 __ Bind(&miss); |
| 1885 StubCompiler::TailCallBuiltin(masm, |
| 1886 BaseLoadStoreStubCompiler::MissBuiltin(kind())); |
| 1887 } |
| 1888 |
| 1889 |
| 1890 void StringLengthStub::Generate(MacroAssembler* masm) { |
| 1891 Label miss; |
| 1892 Register receiver; |
| 1893 if (kind() == Code::KEYED_LOAD_IC) { |
| 1894 // ----------- S t a t e ------------- |
| 1895 // -- lr : return address |
| 1896 // -- x1 : receiver |
| 1897 // -- x0 : key |
| 1898 // ----------------------------------- |
| 1899 Register key = x0; |
| 1900 receiver = x1; |
| 1901 __ Cmp(key, Operand(masm->isolate()->factory()->length_string())); |
| 1902 __ B(ne, &miss); |
| 1903 } else { |
| 1904 ASSERT(kind() == Code::LOAD_IC); |
| 1905 // ----------- S t a t e ------------- |
| 1906 // -- lr : return address |
| 1907 // -- x2 : name |
| 1908 // -- x0 : receiver |
| 1909 // -- sp[0] : receiver |
| 1910 // ----------------------------------- |
| 1911 receiver = x0; |
| 1912 } |
| 1913 |
| 1914 StubCompiler::GenerateLoadStringLength(masm, receiver, x10, x11, &miss); |
| 1915 |
| 1916 __ Bind(&miss); |
| 1917 StubCompiler::TailCallBuiltin(masm, |
| 1918 BaseLoadStoreStubCompiler::MissBuiltin(kind())); |
| 1919 } |
| 1920 |
| 1921 |
| 1922 void StoreArrayLengthStub::Generate(MacroAssembler* masm) { |
| 1923 ASM_LOCATION("StoreArrayLengthStub::Generate"); |
| 1924 // This accepts as a receiver anything JSArray::SetElementsLength accepts |
| 1925 // (currently anything except for external arrays which means anything with |
| 1926 // elements of FixedArray type). Value must be a number, but only smis are |
| 1927 // accepted as the most common case. |
| 1928 Label miss; |
| 1929 |
| 1930 Register receiver; |
| 1931 Register value; |
| 1932 if (kind() == Code::KEYED_STORE_IC) { |
| 1933 // ----------- S t a t e ------------- |
| 1934 // -- lr : return address |
| 1935 // -- x2 : receiver |
| 1936 // -- x1 : key |
| 1937 // -- x0 : value |
| 1938 // ----------------------------------- |
| 1939 Register key = x1; |
| 1940 receiver = x2; |
| 1941 value = x0; |
| 1942 __ Cmp(key, Operand(masm->isolate()->factory()->length_string())); |
| 1943 __ B(ne, &miss); |
| 1944 } else { |
| 1945 ASSERT(kind() == Code::STORE_IC); |
| 1946 // ----------- S t a t e ------------- |
| 1947 // -- lr : return address |
| 1948 // -- x2 : key |
| 1949 // -- x1 : receiver |
| 1950 // -- x0 : value |
| 1951 // ----------------------------------- |
| 1952 receiver = x1; |
| 1953 value = x0; |
| 1954 } |
| 1955 |
| 1956 // Check that the receiver isn't a smi. |
| 1957 __ JumpIfSmi(receiver, &miss); |
| 1958 |
| 1959 // Check that the object is a JS array. |
| 1960 __ CompareObjectType(receiver, x10, x11, JS_ARRAY_TYPE); |
| 1961 __ B(ne, &miss); |
| 1962 |
| 1963 // Check that elements are FixedArray. |
| 1964 // We rely on StoreIC_ArrayLength below to deal with all types of |
| 1965 // fast elements (including COW). |
| 1966 __ Ldr(x10, FieldMemOperand(receiver, JSArray::kElementsOffset)); |
| 1967 __ CompareObjectType(x10, x11, x12, FIXED_ARRAY_TYPE); |
| 1968 __ B(ne, &miss); |
| 1969 |
| 1970 // Check that the array has fast properties, otherwise the length |
| 1971 // property might have been redefined. |
| 1972 __ Ldr(x10, FieldMemOperand(receiver, JSArray::kPropertiesOffset)); |
| 1973 __ Ldr(x10, FieldMemOperand(x10, FixedArray::kMapOffset)); |
| 1974 __ CompareRoot(x10, Heap::kHashTableMapRootIndex); |
| 1975 __ B(eq, &miss); |
| 1976 |
| 1977 // Check that value is a smi. |
| 1978 __ JumpIfNotSmi(value, &miss); |
| 1979 |
| 1980 // Prepare tail call to StoreIC_ArrayLength. |
| 1981 __ Push(receiver, value); |
| 1982 |
| 1983 ExternalReference ref = |
| 1984 ExternalReference(IC_Utility(IC::kStoreIC_ArrayLength), masm->isolate()); |
| 1985 __ TailCallExternalReference(ref, 2, 1); |
| 1986 |
| 1987 __ Bind(&miss); |
| 1988 StubCompiler::TailCallBuiltin(masm, |
| 1989 BaseLoadStoreStubCompiler::MissBuiltin(kind())); |
| 1990 } |
| 1991 |
| 1992 |
| 1993 void InstanceofStub::Generate(MacroAssembler* masm) { |
| 1994 // Stack on entry: |
| 1995 // jssp[0]: function. |
| 1996 // jssp[8]: object. |
| 1997 // |
| 1998 // Returns result in x0. Zero indicates instanceof, smi 1 indicates not |
| 1999 // instanceof. |
| 2000 |
| 2001 Register result = x0; |
| 2002 Register function = right(); |
| 2003 Register object = left(); |
| 2004 Register scratch1 = x6; |
| 2005 Register scratch2 = x7; |
| 2006 Register res_true = x8; |
| 2007 Register res_false = x9; |
| 2008 // Only used if there was an inline map check site. (See |
| 2009 // LCodeGen::DoInstanceOfKnownGlobal().) |
| 2010 Register map_check_site = x4; |
| 2011 // Delta for the instructions generated between the inline map check and the |
| 2012 // instruction setting the result. |
| 2013 const int32_t kDeltaToLoadBoolResult = 4 * kInstructionSize; |
| 2014 |
| 2015 Label not_js_object, slow; |
| 2016 |
| 2017 if (!HasArgsInRegisters()) { |
| 2018 __ Pop(function, object); |
| 2019 } |
| 2020 |
| 2021 if (ReturnTrueFalseObject()) { |
| 2022 __ LoadTrueFalseRoots(res_true, res_false); |
| 2023 } else { |
| 2024 // This is counter-intuitive, but correct. |
| 2025 __ Mov(res_true, Operand(Smi::FromInt(0))); |
| 2026 __ Mov(res_false, Operand(Smi::FromInt(1))); |
| 2027 } |
| 2028 |
| 2029 // Check that the left hand side is a JS object and load its map as a side |
| 2030 // effect. |
| 2031 Register map = x12; |
| 2032 __ JumpIfSmi(object, ¬_js_object); |
| 2033 __ IsObjectJSObjectType(object, map, scratch2, ¬_js_object); |
| 2034 |
| 2035 // If there is a call site cache, don't look in the global cache, but do the |
| 2036 // real lookup and update the call site cache. |
| 2037 if (!HasCallSiteInlineCheck()) { |
| 2038 Label miss; |
| 2039 __ JumpIfNotRoot(function, Heap::kInstanceofCacheFunctionRootIndex, &miss); |
| 2040 __ JumpIfNotRoot(map, Heap::kInstanceofCacheMapRootIndex, &miss); |
| 2041 __ LoadRoot(result, Heap::kInstanceofCacheAnswerRootIndex); |
| 2042 __ Ret(); |
| 2043 __ Bind(&miss); |
| 2044 } |
| 2045 |
| 2046 // Get the prototype of the function. |
| 2047 Register prototype = x13; |
| 2048 __ TryGetFunctionPrototype(function, prototype, scratch2, &slow, |
| 2049 MacroAssembler::kMissOnBoundFunction); |
| 2050 |
| 2051 // Check that the function prototype is a JS object. |
| 2052 __ JumpIfSmi(prototype, &slow); |
| 2053 __ IsObjectJSObjectType(prototype, scratch1, scratch2, &slow); |
| 2054 |
| 2055 // Update the global instanceof or call site inlined cache with the current |
| 2056 // map and function. The cached answer will be set when it is known below. |
| 2057 if (HasCallSiteInlineCheck()) { |
| 2058 // Patch the (relocated) inlined map check. |
| 2059 __ GetRelocatedValueLocation(map_check_site, scratch1); |
| 2060 // We have a cell, so need another level of dereferencing. |
| 2061 __ Ldr(scratch1, MemOperand(scratch1)); |
| 2062 __ Str(map, FieldMemOperand(scratch1, Cell::kValueOffset)); |
| 2063 } else { |
| 2064 __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex); |
| 2065 __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex); |
| 2066 } |
| 2067 |
| 2068 Label return_true, return_result; |
| 2069 { |
| 2070 // Loop through the prototype chain looking for the function prototype. |
| 2071 Register chain_map = x1; |
| 2072 Register chain_prototype = x14; |
| 2073 Register null_value = x15; |
| 2074 Label loop; |
| 2075 __ Ldr(chain_prototype, FieldMemOperand(map, Map::kPrototypeOffset)); |
| 2076 __ LoadRoot(null_value, Heap::kNullValueRootIndex); |
| 2077 // Speculatively set a result. |
| 2078 __ Mov(result, res_false); |
| 2079 |
| 2080 __ Bind(&loop); |
| 2081 |
| 2082 // If the chain prototype is the object prototype, return true. |
| 2083 __ Cmp(chain_prototype, prototype); |
| 2084 __ B(eq, &return_true); |
| 2085 |
| 2086 // If the chain prototype is null, we've reached the end of the chain, so |
| 2087 // return false. |
| 2088 __ Cmp(chain_prototype, null_value); |
| 2089 __ B(eq, &return_result); |
| 2090 |
| 2091 // Otherwise, load the next prototype in the chain, and loop. |
| 2092 __ Ldr(chain_map, FieldMemOperand(chain_prototype, HeapObject::kMapOffset)); |
| 2093 __ Ldr(chain_prototype, FieldMemOperand(chain_map, Map::kPrototypeOffset)); |
| 2094 __ B(&loop); |
| 2095 } |
| 2096 |
| 2097 // Return sequence when no arguments are on the stack. |
| 2098 // We cannot fall through to here. |
| 2099 __ Bind(&return_true); |
| 2100 __ Mov(result, res_true); |
| 2101 __ Bind(&return_result); |
| 2102 if (HasCallSiteInlineCheck()) { |
| 2103 ASSERT(ReturnTrueFalseObject()); |
| 2104 __ Add(map_check_site, map_check_site, kDeltaToLoadBoolResult); |
| 2105 __ GetRelocatedValueLocation(map_check_site, scratch2); |
| 2106 __ Str(result, MemOperand(scratch2)); |
| 2107 } else { |
| 2108 __ StoreRoot(result, Heap::kInstanceofCacheAnswerRootIndex); |
| 2109 } |
| 2110 __ Ret(); |
| 2111 |
| 2112 Label object_not_null, object_not_null_or_smi; |
| 2113 |
| 2114 __ Bind(¬_js_object); |
| 2115 Register object_type = x14; |
| 2116 // x0 result result return register (uninit) |
| 2117 // x10 function pointer to function |
| 2118 // x11 object pointer to object |
| 2119 // x14 object_type type of object (uninit) |
| 2120 |
| 2121 // Before null, smi and string checks, check that the rhs is a function. |
| 2122 // For a non-function rhs, an exception must be thrown. |
| 2123 __ JumpIfSmi(function, &slow); |
| 2124 __ JumpIfNotObjectType( |
| 2125 function, scratch1, object_type, JS_FUNCTION_TYPE, &slow); |
| 2126 |
| 2127 __ Mov(result, res_false); |
| 2128 |
| 2129 // Null is not instance of anything. |
| 2130 __ Cmp(object_type, Operand(masm->isolate()->factory()->null_value())); |
| 2131 __ B(ne, &object_not_null); |
| 2132 __ Ret(); |
| 2133 |
| 2134 __ Bind(&object_not_null); |
| 2135 // Smi values are not instances of anything. |
| 2136 __ JumpIfNotSmi(object, &object_not_null_or_smi); |
| 2137 __ Ret(); |
| 2138 |
| 2139 __ Bind(&object_not_null_or_smi); |
| 2140 // String values are not instances of anything. |
| 2141 __ IsObjectJSStringType(object, scratch2, &slow); |
| 2142 __ Ret(); |
| 2143 |
| 2144 // Slow-case. Tail call builtin. |
| 2145 __ Bind(&slow); |
| 2146 { |
| 2147 FrameScope scope(masm, StackFrame::INTERNAL); |
| 2148 // Arguments have either been passed into registers or have been previously |
| 2149 // popped. We need to push them before calling builtin. |
| 2150 __ Push(object, function); |
| 2151 __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION); |
| 2152 } |
| 2153 if (ReturnTrueFalseObject()) { |
| 2154 // Reload true/false because they were clobbered in the builtin call. |
| 2155 __ LoadTrueFalseRoots(res_true, res_false); |
| 2156 __ Cmp(result, 0); |
| 2157 __ Csel(result, res_true, res_false, eq); |
| 2158 } |
| 2159 __ Ret(); |
| 2160 } |
| 2161 |
| 2162 |
| 2163 Register InstanceofStub::left() { |
| 2164 // Object to check (instanceof lhs). |
| 2165 return x11; |
| 2166 } |
| 2167 |
| 2168 |
| 2169 Register InstanceofStub::right() { |
| 2170 // Constructor function (instanceof rhs). |
| 2171 return x10; |
| 2172 } |
| 2173 |
| 2174 |
| 2175 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { |
| 2176 Register arg_count = x0; |
| 2177 Register key = x1; |
| 2178 |
| 2179 // The displacement is the offset of the last parameter (if any) relative |
| 2180 // to the frame pointer. |
| 2181 static const int kDisplacement = |
| 2182 StandardFrameConstants::kCallerSPOffset - kPointerSize; |
| 2183 |
| 2184 // Check that the key is a smi. |
| 2185 Label slow; |
| 2186 __ JumpIfNotSmi(key, &slow); |
| 2187 |
| 2188 // Check if the calling frame is an arguments adaptor frame. |
| 2189 Register local_fp = x11; |
| 2190 Register caller_fp = x11; |
| 2191 Register caller_ctx = x12; |
| 2192 Label skip_adaptor; |
| 2193 __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| 2194 __ Ldr(caller_ctx, MemOperand(caller_fp, |
| 2195 StandardFrameConstants::kContextOffset)); |
| 2196 __ Cmp(caller_ctx, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| 2197 __ Csel(local_fp, fp, caller_fp, ne); |
| 2198 __ B(ne, &skip_adaptor); |
| 2199 |
| 2200 // Load the actual arguments limit found in the arguments adaptor frame. |
| 2201 __ Ldr(arg_count, MemOperand(caller_fp, |
| 2202 ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| 2203 __ Bind(&skip_adaptor); |
| 2204 |
| 2205 // Check index against formal parameters count limit. Use unsigned comparison |
| 2206 // to get negative check for free: branch if key < 0 or key >= arg_count. |
| 2207 __ Cmp(key, arg_count); |
| 2208 __ B(hs, &slow); |
| 2209 |
| 2210 // Read the argument from the stack and return it. |
| 2211 __ Sub(x10, arg_count, key); |
| 2212 __ Add(x10, local_fp, Operand::UntagSmiAndScale(x10, kPointerSizeLog2)); |
| 2213 __ Ldr(x0, MemOperand(x10, kDisplacement)); |
| 2214 __ Ret(); |
| 2215 |
| 2216 // Slow case: handle non-smi or out-of-bounds access to arguments by calling |
| 2217 // the runtime system. |
| 2218 __ Bind(&slow); |
| 2219 __ Push(key); |
| 2220 __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1); |
| 2221 } |
| 2222 |
| 2223 |
| 2224 void ArgumentsAccessStub::GenerateNewNonStrictSlow(MacroAssembler* masm) { |
| 2225 // Stack layout on entry. |
| 2226 // jssp[0]: number of parameters (tagged) |
| 2227 // jssp[8]: address of receiver argument |
| 2228 // jssp[16]: function |
| 2229 |
| 2230 // Check if the calling frame is an arguments adaptor frame. |
| 2231 Label runtime; |
| 2232 Register caller_fp = x10; |
| 2233 __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| 2234 // Load and untag the context. |
| 2235 STATIC_ASSERT((kSmiShift / kBitsPerByte) == 4); |
| 2236 __ Ldr(w11, MemOperand(caller_fp, StandardFrameConstants::kContextOffset + |
| 2237 (kSmiShift / kBitsPerByte))); |
| 2238 __ Cmp(w11, StackFrame::ARGUMENTS_ADAPTOR); |
| 2239 __ B(ne, &runtime); |
| 2240 |
| 2241 // Patch the arguments.length and parameters pointer in the current frame. |
| 2242 __ Ldr(x11, MemOperand(caller_fp, |
| 2243 ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| 2244 __ Poke(x11, 0 * kXRegSizeInBytes); |
| 2245 __ Add(x10, caller_fp, Operand::UntagSmiAndScale(x11, kPointerSizeLog2)); |
| 2246 __ Add(x10, x10, Operand(StandardFrameConstants::kCallerSPOffset)); |
| 2247 __ Poke(x10, 1 * kXRegSizeInBytes); |
| 2248 |
| 2249 __ Bind(&runtime); |
| 2250 __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1); |
| 2251 } |
| 2252 |
| 2253 |
| 2254 void ArgumentsAccessStub::GenerateNewNonStrictFast(MacroAssembler* masm) { |
| 2255 // Stack layout on entry. |
| 2256 // jssp[0]: number of parameters (tagged) |
| 2257 // jssp[8]: address of receiver argument |
| 2258 // jssp[16]: function |
| 2259 // |
| 2260 // Returns pointer to result object in x0. |
| 2261 |
| 2262 // Note: arg_count_smi is an alias of param_count_smi. |
| 2263 Register arg_count_smi = x3; |
| 2264 Register param_count_smi = x3; |
| 2265 Register param_count = x7; |
| 2266 Register recv_arg = x14; |
| 2267 Register function = x4; |
| 2268 __ Pop(param_count_smi, recv_arg, function); |
| 2269 __ SmiUntag(param_count, param_count_smi); |
| 2270 |
| 2271 // Check if the calling frame is an arguments adaptor frame. |
| 2272 Register caller_fp = x11; |
| 2273 Register caller_ctx = x12; |
| 2274 Label runtime; |
| 2275 Label adaptor_frame, try_allocate; |
| 2276 __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| 2277 __ Ldr(caller_ctx, MemOperand(caller_fp, |
| 2278 StandardFrameConstants::kContextOffset)); |
| 2279 __ Cmp(caller_ctx, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| 2280 __ B(eq, &adaptor_frame); |
| 2281 |
| 2282 // No adaptor, parameter count = argument count. |
| 2283 |
| 2284 // x1 mapped_params number of mapped params, min(params, args) (uninit) |
| 2285 // x2 arg_count number of function arguments (uninit) |
| 2286 // x3 arg_count_smi number of function arguments (smi) |
| 2287 // x4 function function pointer |
| 2288 // x7 param_count number of function parameters |
| 2289 // x11 caller_fp caller's frame pointer |
| 2290 // x14 recv_arg pointer to receiver arguments |
| 2291 |
| 2292 Register arg_count = x2; |
| 2293 __ Mov(arg_count, param_count); |
| 2294 __ B(&try_allocate); |
| 2295 |
| 2296 // We have an adaptor frame. Patch the parameters pointer. |
| 2297 __ Bind(&adaptor_frame); |
| 2298 __ Ldr(arg_count_smi, |
| 2299 MemOperand(caller_fp, |
| 2300 ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| 2301 __ SmiUntag(arg_count, arg_count_smi); |
| 2302 __ Add(x10, caller_fp, Operand(arg_count, LSL, kPointerSizeLog2)); |
| 2303 __ Add(recv_arg, x10, StandardFrameConstants::kCallerSPOffset); |
| 2304 |
| 2305 // Compute the mapped parameter count = min(param_count, arg_count) |
| 2306 Register mapped_params = x1; |
| 2307 __ Cmp(param_count, arg_count); |
| 2308 __ Csel(mapped_params, param_count, arg_count, lt); |
| 2309 |
| 2310 __ Bind(&try_allocate); |
| 2311 |
| 2312 // x0 alloc_obj pointer to allocated objects: param map, backing |
| 2313 // store, arguments (uninit) |
| 2314 // x1 mapped_params number of mapped parameters, min(params, args) |
| 2315 // x2 arg_count number of function arguments |
| 2316 // x3 arg_count_smi number of function arguments (smi) |
| 2317 // x4 function function pointer |
| 2318 // x7 param_count number of function parameters |
| 2319 // x10 size size of objects to allocate (uninit) |
| 2320 // x14 recv_arg pointer to receiver arguments |
| 2321 |
| 2322 // Compute the size of backing store, parameter map, and arguments object. |
| 2323 // 1. Parameter map, has two extra words containing context and backing |
| 2324 // store. |
| 2325 const int kParameterMapHeaderSize = |
| 2326 FixedArray::kHeaderSize + 2 * kPointerSize; |
| 2327 |
| 2328 // Calculate the parameter map size, assuming it exists. |
| 2329 Register size = x10; |
| 2330 __ Mov(size, Operand(mapped_params, LSL, kPointerSizeLog2)); |
| 2331 __ Add(size, size, kParameterMapHeaderSize); |
| 2332 |
| 2333 // If there are no mapped parameters, set the running size total to zero. |
| 2334 // Otherwise, use the parameter map size calculated earlier. |
| 2335 __ Cmp(mapped_params, 0); |
| 2336 __ CzeroX(size, eq); |
| 2337 |
| 2338 // 2. Add the size of the backing store and arguments object. |
| 2339 __ Add(size, size, Operand(arg_count, LSL, kPointerSizeLog2)); |
| 2340 __ Add(size, size, FixedArray::kHeaderSize + Heap::kArgumentsObjectSize); |
| 2341 |
| 2342 // Do the allocation of all three objects in one go. Assign this to x0, as it |
| 2343 // will be returned to the caller. |
| 2344 Register alloc_obj = x0; |
| 2345 __ Allocate(size, alloc_obj, x11, x12, &runtime, TAG_OBJECT); |
| 2346 |
| 2347 // Get the arguments boilerplate from the current (global) context. |
| 2348 |
| 2349 // x0 alloc_obj pointer to allocated objects (param map, backing |
| 2350 // store, arguments) |
| 2351 // x1 mapped_params number of mapped parameters, min(params, args) |
| 2352 // x2 arg_count number of function arguments |
| 2353 // x3 arg_count_smi number of function arguments (smi) |
| 2354 // x4 function function pointer |
| 2355 // x7 param_count number of function parameters |
| 2356 // x11 args_offset offset to args (or aliased args) boilerplate (uninit) |
| 2357 // x14 recv_arg pointer to receiver arguments |
| 2358 |
| 2359 Register global_object = x10; |
| 2360 Register global_ctx = x10; |
| 2361 Register args_offset = x11; |
| 2362 Register aliased_args_offset = x10; |
| 2363 __ Ldr(global_object, GlobalObjectMemOperand()); |
| 2364 __ Ldr(global_ctx, FieldMemOperand(global_object, |
| 2365 GlobalObject::kNativeContextOffset)); |
| 2366 |
| 2367 __ Ldr(args_offset, ContextMemOperand(global_ctx, |
| 2368 Context::ARGUMENTS_BOILERPLATE_INDEX)); |
| 2369 __ Ldr(aliased_args_offset, |
| 2370 ContextMemOperand(global_ctx, |
| 2371 Context::ALIASED_ARGUMENTS_BOILERPLATE_INDEX)); |
| 2372 __ Cmp(mapped_params, 0); |
| 2373 __ CmovX(args_offset, aliased_args_offset, ne); |
| 2374 |
| 2375 // Copy the JS object part. |
| 2376 __ CopyFields(alloc_obj, args_offset, CPURegList(x10, x12, x13), |
| 2377 JSObject::kHeaderSize / kPointerSize); |
| 2378 |
| 2379 // Set up the callee in-object property. |
| 2380 STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1); |
| 2381 const int kCalleeOffset = JSObject::kHeaderSize + |
| 2382 Heap::kArgumentsCalleeIndex * kPointerSize; |
| 2383 __ Str(function, FieldMemOperand(alloc_obj, kCalleeOffset)); |
| 2384 |
| 2385 // Use the length and set that as an in-object property. |
| 2386 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); |
| 2387 const int kLengthOffset = JSObject::kHeaderSize + |
| 2388 Heap::kArgumentsLengthIndex * kPointerSize; |
| 2389 __ Str(arg_count_smi, FieldMemOperand(alloc_obj, kLengthOffset)); |
| 2390 |
| 2391 // Set up the elements pointer in the allocated arguments object. |
| 2392 // If we allocated a parameter map, "elements" will point there, otherwise |
| 2393 // it will point to the backing store. |
| 2394 |
| 2395 // x0 alloc_obj pointer to allocated objects (param map, backing |
| 2396 // store, arguments) |
| 2397 // x1 mapped_params number of mapped parameters, min(params, args) |
| 2398 // x2 arg_count number of function arguments |
| 2399 // x3 arg_count_smi number of function arguments (smi) |
| 2400 // x4 function function pointer |
| 2401 // x5 elements pointer to parameter map or backing store (uninit) |
| 2402 // x6 backing_store pointer to backing store (uninit) |
| 2403 // x7 param_count number of function parameters |
| 2404 // x14 recv_arg pointer to receiver arguments |
| 2405 |
| 2406 Register elements = x5; |
| 2407 __ Add(elements, alloc_obj, Heap::kArgumentsObjectSize); |
| 2408 __ Str(elements, FieldMemOperand(alloc_obj, JSObject::kElementsOffset)); |
| 2409 |
| 2410 // Initialize parameter map. If there are no mapped arguments, we're done. |
| 2411 Label skip_parameter_map; |
| 2412 __ Cmp(mapped_params, 0); |
| 2413 // Set up backing store address, because it is needed later for filling in |
| 2414 // the unmapped arguments. |
| 2415 Register backing_store = x6; |
| 2416 __ CmovX(backing_store, elements, eq); |
| 2417 __ B(eq, &skip_parameter_map); |
| 2418 |
| 2419 __ LoadRoot(x10, Heap::kNonStrictArgumentsElementsMapRootIndex); |
| 2420 __ Str(x10, FieldMemOperand(elements, FixedArray::kMapOffset)); |
| 2421 __ Add(x10, mapped_params, 2); |
| 2422 __ SmiTag(x10); |
| 2423 __ Str(x10, FieldMemOperand(elements, FixedArray::kLengthOffset)); |
| 2424 __ Str(cp, FieldMemOperand(elements, |
| 2425 FixedArray::kHeaderSize + 0 * kPointerSize)); |
| 2426 __ Add(x10, elements, Operand(mapped_params, LSL, kPointerSizeLog2)); |
| 2427 __ Add(x10, x10, kParameterMapHeaderSize); |
| 2428 __ Str(x10, FieldMemOperand(elements, |
| 2429 FixedArray::kHeaderSize + 1 * kPointerSize)); |
| 2430 |
| 2431 // Copy the parameter slots and the holes in the arguments. |
| 2432 // We need to fill in mapped_parameter_count slots. Then index the context, |
| 2433 // where parameters are stored in reverse order, at: |
| 2434 // |
| 2435 // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS + parameter_count - 1 |
| 2436 // |
| 2437 // The mapped parameter thus needs to get indices: |
| 2438 // |
| 2439 // MIN_CONTEXT_SLOTS + parameter_count - 1 .. |
| 2440 // MIN_CONTEXT_SLOTS + parameter_count - mapped_parameter_count |
| 2441 // |
| 2442 // We loop from right to left. |
| 2443 |
| 2444 // x0 alloc_obj pointer to allocated objects (param map, backing |
| 2445 // store, arguments) |
| 2446 // x1 mapped_params number of mapped parameters, min(params, args) |
| 2447 // x2 arg_count number of function arguments |
| 2448 // x3 arg_count_smi number of function arguments (smi) |
| 2449 // x4 function function pointer |
| 2450 // x5 elements pointer to parameter map or backing store (uninit) |
| 2451 // x6 backing_store pointer to backing store (uninit) |
| 2452 // x7 param_count number of function parameters |
| 2453 // x11 loop_count parameter loop counter (uninit) |
| 2454 // x12 index parameter index (smi, uninit) |
| 2455 // x13 the_hole hole value (uninit) |
| 2456 // x14 recv_arg pointer to receiver arguments |
| 2457 |
| 2458 Register loop_count = x11; |
| 2459 Register index = x12; |
| 2460 Register the_hole = x13; |
| 2461 Label parameters_loop, parameters_test; |
| 2462 __ Mov(loop_count, mapped_params); |
| 2463 __ Add(index, param_count, Context::MIN_CONTEXT_SLOTS); |
| 2464 __ Sub(index, index, mapped_params); |
| 2465 __ SmiTag(index); |
| 2466 __ LoadRoot(the_hole, Heap::kTheHoleValueRootIndex); |
| 2467 __ Add(backing_store, elements, Operand(loop_count, LSL, kPointerSizeLog2)); |
| 2468 __ Add(backing_store, backing_store, kParameterMapHeaderSize); |
| 2469 |
| 2470 __ B(¶meters_test); |
| 2471 |
| 2472 __ Bind(¶meters_loop); |
| 2473 __ Sub(loop_count, loop_count, 1); |
| 2474 __ Mov(x10, Operand(loop_count, LSL, kPointerSizeLog2)); |
| 2475 __ Add(x10, x10, kParameterMapHeaderSize - kHeapObjectTag); |
| 2476 __ Str(index, MemOperand(elements, x10)); |
| 2477 __ Sub(x10, x10, kParameterMapHeaderSize - FixedArray::kHeaderSize); |
| 2478 __ Str(the_hole, MemOperand(backing_store, x10)); |
| 2479 __ Add(index, index, Operand(Smi::FromInt(1))); |
| 2480 __ Bind(¶meters_test); |
| 2481 __ Cbnz(loop_count, ¶meters_loop); |
| 2482 |
| 2483 __ Bind(&skip_parameter_map); |
| 2484 // Copy arguments header and remaining slots (if there are any.) |
| 2485 __ LoadRoot(x10, Heap::kFixedArrayMapRootIndex); |
| 2486 __ Str(x10, FieldMemOperand(backing_store, FixedArray::kMapOffset)); |
| 2487 __ Str(arg_count_smi, FieldMemOperand(backing_store, |
| 2488 FixedArray::kLengthOffset)); |
| 2489 |
| 2490 // x0 alloc_obj pointer to allocated objects (param map, backing |
| 2491 // store, arguments) |
| 2492 // x1 mapped_params number of mapped parameters, min(params, args) |
| 2493 // x2 arg_count number of function arguments |
| 2494 // x4 function function pointer |
| 2495 // x3 arg_count_smi number of function arguments (smi) |
| 2496 // x6 backing_store pointer to backing store (uninit) |
| 2497 // x14 recv_arg pointer to receiver arguments |
| 2498 |
| 2499 Label arguments_loop, arguments_test; |
| 2500 __ Mov(x10, mapped_params); |
| 2501 __ Sub(recv_arg, recv_arg, Operand(x10, LSL, kPointerSizeLog2)); |
| 2502 __ B(&arguments_test); |
| 2503 |
| 2504 __ Bind(&arguments_loop); |
| 2505 __ Sub(recv_arg, recv_arg, kPointerSize); |
| 2506 __ Ldr(x11, MemOperand(recv_arg)); |
| 2507 __ Add(x12, backing_store, Operand(x10, LSL, kPointerSizeLog2)); |
| 2508 __ Str(x11, FieldMemOperand(x12, FixedArray::kHeaderSize)); |
| 2509 __ Add(x10, x10, 1); |
| 2510 |
| 2511 __ Bind(&arguments_test); |
| 2512 __ Cmp(x10, arg_count); |
| 2513 __ B(lt, &arguments_loop); |
| 2514 |
| 2515 __ Ret(); |
| 2516 |
| 2517 // Do the runtime call to allocate the arguments object. |
| 2518 __ Bind(&runtime); |
| 2519 __ Push(function, recv_arg, arg_count_smi); |
| 2520 __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1); |
| 2521 } |
| 2522 |
| 2523 |
| 2524 void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) { |
| 2525 // Stack layout on entry. |
| 2526 // jssp[0]: number of parameters (tagged) |
| 2527 // jssp[8]: address of receiver argument |
| 2528 // jssp[16]: function |
| 2529 // |
| 2530 // Returns pointer to result object in x0. |
| 2531 |
| 2532 // Get the stub arguments from the frame, and make an untagged copy of the |
| 2533 // parameter count. |
| 2534 Register param_count_smi = x1; |
| 2535 Register params = x2; |
| 2536 Register function = x3; |
| 2537 Register param_count = x13; |
| 2538 __ Pop(param_count_smi, params, function); |
| 2539 __ SmiUntag(param_count, param_count_smi); |
| 2540 |
| 2541 // Test if arguments adaptor needed. |
| 2542 Register caller_fp = x11; |
| 2543 Register caller_ctx = x12; |
| 2544 Label try_allocate, runtime; |
| 2545 __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| 2546 __ Ldr(caller_ctx, MemOperand(caller_fp, |
| 2547 StandardFrameConstants::kContextOffset)); |
| 2548 __ Cmp(caller_ctx, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| 2549 __ B(ne, &try_allocate); |
| 2550 |
| 2551 // x1 param_count_smi number of parameters passed to function (smi) |
| 2552 // x2 params pointer to parameters |
| 2553 // x3 function function pointer |
| 2554 // x11 caller_fp caller's frame pointer |
| 2555 // x13 param_count number of parameters passed to function |
| 2556 |
| 2557 // Patch the argument length and parameters pointer. |
| 2558 __ Ldr(param_count_smi, |
| 2559 MemOperand(caller_fp, |
| 2560 ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| 2561 __ SmiUntag(param_count, param_count_smi); |
| 2562 __ Add(x10, caller_fp, Operand(param_count, LSL, kPointerSizeLog2)); |
| 2563 __ Add(params, x10, StandardFrameConstants::kCallerSPOffset); |
| 2564 |
| 2565 // Try the new space allocation. Start out with computing the size of the |
| 2566 // arguments object and the elements array in words. |
| 2567 Register size = x10; |
| 2568 __ Bind(&try_allocate); |
| 2569 __ Add(size, param_count, FixedArray::kHeaderSize / kPointerSize); |
| 2570 __ Cmp(param_count, 0); |
| 2571 __ CzeroX(size, eq); |
| 2572 __ Add(size, size, Heap::kArgumentsObjectSizeStrict / kPointerSize); |
| 2573 |
| 2574 // Do the allocation of both objects in one go. Assign this to x0, as it will |
| 2575 // be returned to the caller. |
| 2576 Register alloc_obj = x0; |
| 2577 __ Allocate(size, alloc_obj, x11, x12, &runtime, |
| 2578 static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS)); |
| 2579 |
| 2580 // Get the arguments boilerplate from the current (native) context. |
| 2581 Register global_object = x10; |
| 2582 Register global_ctx = x10; |
| 2583 Register args_offset = x4; |
| 2584 __ Ldr(global_object, GlobalObjectMemOperand()); |
| 2585 __ Ldr(global_ctx, FieldMemOperand(global_object, |
| 2586 GlobalObject::kNativeContextOffset)); |
| 2587 __ Ldr(args_offset, |
| 2588 ContextMemOperand(global_ctx, |
| 2589 Context::STRICT_MODE_ARGUMENTS_BOILERPLATE_INDEX)); |
| 2590 |
| 2591 // x0 alloc_obj pointer to allocated objects: parameter array and |
| 2592 // arguments object |
| 2593 // x1 param_count_smi number of parameters passed to function (smi) |
| 2594 // x2 params pointer to parameters |
| 2595 // x3 function function pointer |
| 2596 // x4 args_offset offset to arguments boilerplate |
| 2597 // x13 param_count number of parameters passed to function |
| 2598 |
| 2599 // Copy the JS object part. |
| 2600 __ CopyFields(alloc_obj, args_offset, CPURegList(x5, x6, x7), |
| 2601 JSObject::kHeaderSize / kPointerSize); |
| 2602 |
| 2603 // Set the smi-tagged length as an in-object property. |
| 2604 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); |
| 2605 const int kLengthOffset = JSObject::kHeaderSize + |
| 2606 Heap::kArgumentsLengthIndex * kPointerSize; |
| 2607 __ Str(param_count_smi, FieldMemOperand(alloc_obj, kLengthOffset)); |
| 2608 |
| 2609 // If there are no actual arguments, we're done. |
| 2610 Label done; |
| 2611 __ Cbz(param_count, &done); |
| 2612 |
| 2613 // Set up the elements pointer in the allocated arguments object and |
| 2614 // initialize the header in the elements fixed array. |
| 2615 Register elements = x5; |
| 2616 __ Add(elements, alloc_obj, Heap::kArgumentsObjectSizeStrict); |
| 2617 __ Str(elements, FieldMemOperand(alloc_obj, JSObject::kElementsOffset)); |
| 2618 __ LoadRoot(x10, Heap::kFixedArrayMapRootIndex); |
| 2619 __ Str(x10, FieldMemOperand(elements, FixedArray::kMapOffset)); |
| 2620 __ Str(param_count_smi, FieldMemOperand(elements, FixedArray::kLengthOffset)); |
| 2621 |
| 2622 // x0 alloc_obj pointer to allocated objects: parameter array and |
| 2623 // arguments object |
| 2624 // x1 param_count_smi number of parameters passed to function (smi) |
| 2625 // x2 params pointer to parameters |
| 2626 // x3 function function pointer |
| 2627 // x4 array pointer to array slot (uninit) |
| 2628 // x5 elements pointer to elements array of alloc_obj |
| 2629 // x13 param_count number of parameters passed to function |
| 2630 |
| 2631 // Copy the fixed array slots. |
| 2632 Label loop; |
| 2633 Register array = x4; |
| 2634 // Set up pointer to first array slot. |
| 2635 __ Add(array, elements, FixedArray::kHeaderSize - kHeapObjectTag); |
| 2636 |
| 2637 __ Bind(&loop); |
| 2638 // Pre-decrement the parameters pointer by kPointerSize on each iteration. |
| 2639 // Pre-decrement in order to skip receiver. |
| 2640 __ Ldr(x10, MemOperand(params, -kPointerSize, PreIndex)); |
| 2641 // Post-increment elements by kPointerSize on each iteration. |
| 2642 __ Str(x10, MemOperand(array, kPointerSize, PostIndex)); |
| 2643 __ Sub(param_count, param_count, 1); |
| 2644 __ Cbnz(param_count, &loop); |
| 2645 |
| 2646 // Return from stub. |
| 2647 __ Bind(&done); |
| 2648 __ Ret(); |
| 2649 |
| 2650 // Do the runtime call to allocate the arguments object. |
| 2651 __ Bind(&runtime); |
| 2652 __ Push(function, params, param_count_smi); |
| 2653 __ TailCallRuntime(Runtime::kNewStrictArgumentsFast, 3, 1); |
| 2654 } |
| 2655 |
| 2656 |
| 2657 void RegExpExecStub::Generate(MacroAssembler* masm) { |
| 2658 #ifdef V8_INTERPRETED_REGEXP |
| 2659 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
| 2660 #else // V8_INTERPRETED_REGEXP |
| 2661 |
| 2662 // Stack frame on entry. |
| 2663 // jssp[0]: last_match_info (expected JSArray) |
| 2664 // jssp[8]: previous index |
| 2665 // jssp[16]: subject string |
| 2666 // jssp[24]: JSRegExp object |
| 2667 Label runtime; |
| 2668 |
| 2669 // Use of registers for this function. |
| 2670 |
| 2671 // Variable registers: |
| 2672 // x10-x13 used as scratch registers |
| 2673 // w0 string_type type of subject string |
| 2674 // x2 jsstring_length subject string length |
| 2675 // x3 jsregexp_object JSRegExp object |
| 2676 // w4 string_encoding ASCII or UC16 |
| 2677 // w5 sliced_string_offset if the string is a SlicedString |
| 2678 // offset to the underlying string |
| 2679 // w6 string_representation groups attributes of the string: |
| 2680 // - is a string |
| 2681 // - type of the string |
| 2682 // - is a short external string |
| 2683 Register string_type = w0; |
| 2684 Register jsstring_length = x2; |
| 2685 Register jsregexp_object = x3; |
| 2686 Register string_encoding = w4; |
| 2687 Register sliced_string_offset = w5; |
| 2688 Register string_representation = w6; |
| 2689 |
| 2690 // These are in callee save registers and will be preserved by the call |
| 2691 // to the native RegExp code, as this code is called using the normal |
| 2692 // C calling convention. When calling directly from generated code the |
| 2693 // native RegExp code will not do a GC and therefore the content of |
| 2694 // these registers are safe to use after the call. |
| 2695 |
| 2696 // x19 subject subject string |
| 2697 // x20 regexp_data RegExp data (FixedArray) |
| 2698 // x21 last_match_info_elements info relative to the last match |
| 2699 // (FixedArray) |
| 2700 // x22 code_object generated regexp code |
| 2701 Register subject = x19; |
| 2702 Register regexp_data = x20; |
| 2703 Register last_match_info_elements = x21; |
| 2704 Register code_object = x22; |
| 2705 |
| 2706 // TODO(jbramley): Is it necessary to preserve these? I don't think ARM does. |
| 2707 CPURegList used_callee_saved_registers(subject, |
| 2708 regexp_data, |
| 2709 last_match_info_elements, |
| 2710 code_object); |
| 2711 __ PushCPURegList(used_callee_saved_registers); |
| 2712 |
| 2713 // Stack frame. |
| 2714 // jssp[0] : x19 |
| 2715 // jssp[8] : x20 |
| 2716 // jssp[16]: x21 |
| 2717 // jssp[24]: x22 |
| 2718 // jssp[32]: last_match_info (JSArray) |
| 2719 // jssp[40]: previous index |
| 2720 // jssp[48]: subject string |
| 2721 // jssp[56]: JSRegExp object |
| 2722 |
| 2723 const int kLastMatchInfoOffset = 4 * kPointerSize; |
| 2724 const int kPreviousIndexOffset = 5 * kPointerSize; |
| 2725 const int kSubjectOffset = 6 * kPointerSize; |
| 2726 const int kJSRegExpOffset = 7 * kPointerSize; |
| 2727 |
| 2728 // Ensure that a RegExp stack is allocated. |
| 2729 Isolate* isolate = masm->isolate(); |
| 2730 ExternalReference address_of_regexp_stack_memory_address = |
| 2731 ExternalReference::address_of_regexp_stack_memory_address(isolate); |
| 2732 ExternalReference address_of_regexp_stack_memory_size = |
| 2733 ExternalReference::address_of_regexp_stack_memory_size(isolate); |
| 2734 __ Mov(x10, Operand(address_of_regexp_stack_memory_size)); |
| 2735 __ Ldr(x10, MemOperand(x10)); |
| 2736 __ Cbz(x10, &runtime); |
| 2737 |
| 2738 // Check that the first argument is a JSRegExp object. |
| 2739 ASSERT(jssp.Is(__ StackPointer())); |
| 2740 __ Peek(jsregexp_object, kJSRegExpOffset); |
| 2741 __ JumpIfSmi(jsregexp_object, &runtime); |
| 2742 __ JumpIfNotObjectType(jsregexp_object, x10, x10, JS_REGEXP_TYPE, &runtime); |
| 2743 |
| 2744 // Check that the RegExp has been compiled (data contains a fixed array). |
| 2745 __ Ldr(regexp_data, FieldMemOperand(jsregexp_object, JSRegExp::kDataOffset)); |
| 2746 if (FLAG_debug_code) { |
| 2747 STATIC_ASSERT(kSmiTag == 0); |
| 2748 __ Tst(regexp_data, kSmiTagMask); |
| 2749 __ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected); |
| 2750 __ CompareObjectType(regexp_data, x10, x10, FIXED_ARRAY_TYPE); |
| 2751 __ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected); |
| 2752 } |
| 2753 |
| 2754 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. |
| 2755 __ Ldr(x10, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset)); |
| 2756 __ Cmp(x10, Operand(Smi::FromInt(JSRegExp::IRREGEXP))); |
| 2757 __ B(ne, &runtime); |
| 2758 |
| 2759 // Check that the number of captures fit in the static offsets vector buffer. |
| 2760 // We have always at least one capture for the whole match, plus additional |
| 2761 // ones due to capturing parentheses. A capture takes 2 registers. |
| 2762 // The number of capture registers then is (number_of_captures + 1) * 2. |
| 2763 __ Ldrsw(x10, |
| 2764 UntagSmiFieldMemOperand(regexp_data, |
| 2765 JSRegExp::kIrregexpCaptureCountOffset)); |
| 2766 // Check (number_of_captures + 1) * 2 <= offsets vector size |
| 2767 // number_of_captures * 2 <= offsets vector size - 2 |
| 2768 STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2); |
| 2769 __ Add(x10, x10, x10); |
| 2770 __ Cmp(x10, Isolate::kJSRegexpStaticOffsetsVectorSize - 2); |
| 2771 __ B(hi, &runtime); |
| 2772 |
| 2773 // Initialize offset for possibly sliced string. |
| 2774 __ Mov(sliced_string_offset, 0); |
| 2775 |
| 2776 ASSERT(jssp.Is(__ StackPointer())); |
| 2777 __ Peek(subject, kSubjectOffset); |
| 2778 __ JumpIfSmi(subject, &runtime); |
| 2779 |
| 2780 __ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset)); |
| 2781 __ Ldrb(string_type, FieldMemOperand(x10, Map::kInstanceTypeOffset)); |
| 2782 |
| 2783 __ Ldr(jsstring_length, FieldMemOperand(subject, String::kLengthOffset)); |
| 2784 |
| 2785 // Handle subject string according to its encoding and representation: |
| 2786 // (1) Sequential string? If yes, go to (5). |
| 2787 // (2) Anything but sequential or cons? If yes, go to (6). |
| 2788 // (3) Cons string. If the string is flat, replace subject with first string. |
| 2789 // Otherwise bailout. |
| 2790 // (4) Is subject external? If yes, go to (7). |
| 2791 // (5) Sequential string. Load regexp code according to encoding. |
| 2792 // (E) Carry on. |
| 2793 /// [...] |
| 2794 |
| 2795 // Deferred code at the end of the stub: |
| 2796 // (6) Not a long external string? If yes, go to (8). |
| 2797 // (7) External string. Make it, offset-wise, look like a sequential string. |
| 2798 // Go to (5). |
| 2799 // (8) Short external string or not a string? If yes, bail out to runtime. |
| 2800 // (9) Sliced string. Replace subject with parent. Go to (4). |
| 2801 |
| 2802 Label check_underlying; // (4) |
| 2803 Label seq_string; // (5) |
| 2804 Label not_seq_nor_cons; // (6) |
| 2805 Label external_string; // (7) |
| 2806 Label not_long_external; // (8) |
| 2807 |
| 2808 // (1) Sequential string? If yes, go to (5). |
| 2809 __ And(string_representation, |
| 2810 string_type, |
| 2811 kIsNotStringMask | |
| 2812 kStringRepresentationMask | |
| 2813 kShortExternalStringMask); |
| 2814 // We depend on the fact that Strings of type |
| 2815 // SeqString and not ShortExternalString are defined |
| 2816 // by the following pattern: |
| 2817 // string_type: 0XX0 XX00 |
| 2818 // ^ ^ ^^ |
| 2819 // | | || |
| 2820 // | | is a SeqString |
| 2821 // | is not a short external String |
| 2822 // is a String |
| 2823 STATIC_ASSERT((kStringTag | kSeqStringTag) == 0); |
| 2824 STATIC_ASSERT(kShortExternalStringTag != 0); |
| 2825 __ Cbz(string_representation, &seq_string); // Go to (5). |
| 2826 |
| 2827 // (2) Anything but sequential or cons? If yes, go to (6). |
| 2828 STATIC_ASSERT(kConsStringTag < kExternalStringTag); |
| 2829 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag); |
| 2830 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag); |
| 2831 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag); |
| 2832 __ Cmp(string_representation, kExternalStringTag); |
| 2833 __ B(ge, ¬_seq_nor_cons); // Go to (6). |
| 2834 |
| 2835 // (3) Cons string. Check that it's flat. |
| 2836 __ Ldr(x10, FieldMemOperand(subject, ConsString::kSecondOffset)); |
| 2837 __ JumpIfNotRoot(x10, Heap::kempty_stringRootIndex, &runtime); |
| 2838 // Replace subject with first string. |
| 2839 __ Ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset)); |
| 2840 |
| 2841 // (4) Is subject external? If yes, go to (7). |
| 2842 __ Bind(&check_underlying); |
| 2843 // Reload the string type. |
| 2844 __ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset)); |
| 2845 __ Ldrb(string_type, FieldMemOperand(x10, Map::kInstanceTypeOffset)); |
| 2846 STATIC_ASSERT(kSeqStringTag == 0); |
| 2847 // The underlying external string is never a short external string. |
| 2848 STATIC_CHECK(ExternalString::kMaxShortLength < ConsString::kMinLength); |
| 2849 STATIC_CHECK(ExternalString::kMaxShortLength < SlicedString::kMinLength); |
| 2850 __ TestAndBranchIfAnySet(string_type.X(), |
| 2851 kStringRepresentationMask, |
| 2852 &external_string); // Go to (7). |
| 2853 |
| 2854 // (5) Sequential string. Load regexp code according to encoding. |
| 2855 __ Bind(&seq_string); |
| 2856 |
| 2857 // Check that the third argument is a positive smi less than the subject |
| 2858 // string length. A negative value will be greater (unsigned comparison). |
| 2859 ASSERT(jssp.Is(__ StackPointer())); |
| 2860 __ Peek(x10, kPreviousIndexOffset); |
| 2861 __ JumpIfNotSmi(x10, &runtime); |
| 2862 __ Cmp(jsstring_length, x10); |
| 2863 __ B(ls, &runtime); |
| 2864 |
| 2865 // Argument 2 (x1): We need to load argument 2 (the previous index) into x1 |
| 2866 // before entering the exit frame. |
| 2867 __ SmiUntag(x1, x10); |
| 2868 |
| 2869 // The third bit determines the string encoding in string_type. |
| 2870 STATIC_ASSERT(kOneByteStringTag == 0x04); |
| 2871 STATIC_ASSERT(kTwoByteStringTag == 0x00); |
| 2872 STATIC_ASSERT(kStringEncodingMask == 0x04); |
| 2873 |
| 2874 // Find the code object based on the assumptions above. |
| 2875 // kDataAsciiCodeOffset and kDataUC16CodeOffset are adjacent, adds an offset |
| 2876 // of kPointerSize to reach the latter. |
| 2877 ASSERT_EQ(JSRegExp::kDataAsciiCodeOffset + kPointerSize, |
| 2878 JSRegExp::kDataUC16CodeOffset); |
| 2879 __ Mov(x10, kPointerSize); |
| 2880 // We will need the encoding later: ASCII = 0x04 |
| 2881 // UC16 = 0x00 |
| 2882 __ Ands(string_encoding, string_type, kStringEncodingMask); |
| 2883 __ CzeroX(x10, ne); |
| 2884 __ Add(x10, regexp_data, x10); |
| 2885 __ Ldr(code_object, FieldMemOperand(x10, JSRegExp::kDataAsciiCodeOffset)); |
| 2886 |
| 2887 // (E) Carry on. String handling is done. |
| 2888 |
| 2889 // Check that the irregexp code has been generated for the actual string |
| 2890 // encoding. If it has, the field contains a code object otherwise it contains |
| 2891 // a smi (code flushing support). |
| 2892 __ JumpIfSmi(code_object, &runtime); |
| 2893 |
| 2894 // All checks done. Now push arguments for native regexp code. |
| 2895 __ IncrementCounter(isolate->counters()->regexp_entry_native(), 1, |
| 2896 x10, |
| 2897 x11); |
| 2898 |
| 2899 // Isolates: note we add an additional parameter here (isolate pointer). |
| 2900 __ EnterExitFrame(false, x10, 1); |
| 2901 ASSERT(csp.Is(__ StackPointer())); |
| 2902 |
| 2903 // We have 9 arguments to pass to the regexp code, therefore we have to pass |
| 2904 // one on the stack and the rest as registers. |
| 2905 |
| 2906 // Note that the placement of the argument on the stack isn't standard |
| 2907 // AAPCS64: |
| 2908 // csp[0]: Space for the return address placed by DirectCEntryStub. |
| 2909 // csp[8]: Argument 9, the current isolate address. |
| 2910 |
| 2911 __ Mov(x10, Operand(ExternalReference::isolate_address(isolate))); |
| 2912 __ Poke(x10, kPointerSize); |
| 2913 |
| 2914 Register length = w11; |
| 2915 Register previous_index_in_bytes = w12; |
| 2916 Register start = x13; |
| 2917 |
| 2918 // Load start of the subject string. |
| 2919 __ Add(start, subject, SeqString::kHeaderSize - kHeapObjectTag); |
| 2920 // Load the length from the original subject string from the previous stack |
| 2921 // frame. Therefore we have to use fp, which points exactly to two pointer |
| 2922 // sizes below the previous sp. (Because creating a new stack frame pushes |
| 2923 // the previous fp onto the stack and decrements sp by 2 * kPointerSize.) |
| 2924 __ Ldr(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize)); |
| 2925 __ Ldr(length, UntagSmiFieldMemOperand(subject, String::kLengthOffset)); |
| 2926 |
| 2927 // Handle UC16 encoding, two bytes make one character. |
| 2928 // string_encoding: if ASCII: 0x04 |
| 2929 // if UC16: 0x00 |
| 2930 STATIC_ASSERT(kStringEncodingMask == 0x04); |
| 2931 __ Ubfx(string_encoding, string_encoding, 2, 1); |
| 2932 __ Eor(string_encoding, string_encoding, 1); |
| 2933 // string_encoding: if ASCII: 0 |
| 2934 // if UC16: 1 |
| 2935 |
| 2936 // Convert string positions from characters to bytes. |
| 2937 // Previous index is in x1. |
| 2938 __ Lsl(previous_index_in_bytes, w1, string_encoding); |
| 2939 __ Lsl(length, length, string_encoding); |
| 2940 __ Lsl(sliced_string_offset, sliced_string_offset, string_encoding); |
| 2941 |
| 2942 // Argument 1 (x0): Subject string. |
| 2943 __ Mov(x0, subject); |
| 2944 |
| 2945 // Argument 2 (x1): Previous index, already there. |
| 2946 |
| 2947 // Argument 3 (x2): Get the start of input. |
| 2948 // Start of input = start of string + previous index + substring offset |
| 2949 // (0 if the string |
| 2950 // is not sliced). |
| 2951 __ Add(w10, previous_index_in_bytes, sliced_string_offset); |
| 2952 __ Add(x2, start, Operand(w10, UXTW)); |
| 2953 |
| 2954 // Argument 4 (x3): |
| 2955 // End of input = start of input + (length of input - previous index) |
| 2956 __ Sub(w10, length, previous_index_in_bytes); |
| 2957 __ Add(x3, x2, Operand(w10, UXTW)); |
| 2958 |
| 2959 // Argument 5 (x4): static offsets vector buffer. |
| 2960 __ Mov(x4, |
| 2961 Operand(ExternalReference::address_of_static_offsets_vector(isolate))); |
| 2962 |
| 2963 // Argument 6 (x5): Set the number of capture registers to zero to force |
| 2964 // global regexps to behave as non-global. This stub is not used for global |
| 2965 // regexps. |
| 2966 __ Mov(x5, 0); |
| 2967 |
| 2968 // Argument 7 (x6): Start (high end) of backtracking stack memory area. |
| 2969 __ Mov(x10, Operand(address_of_regexp_stack_memory_address)); |
| 2970 __ Ldr(x10, MemOperand(x10)); |
| 2971 __ Mov(x11, Operand(address_of_regexp_stack_memory_size)); |
| 2972 __ Ldr(x11, MemOperand(x11)); |
| 2973 __ Add(x6, x10, x11); |
| 2974 |
| 2975 // Argument 8 (x7): Indicate that this is a direct call from JavaScript. |
| 2976 __ Mov(x7, 1); |
| 2977 |
| 2978 // Locate the code entry and call it. |
| 2979 __ Add(code_object, code_object, Code::kHeaderSize - kHeapObjectTag); |
| 2980 DirectCEntryStub stub; |
| 2981 stub.GenerateCall(masm, code_object); |
| 2982 |
| 2983 __ LeaveExitFrame(false, x10, true); |
| 2984 |
| 2985 // The generated regexp code returns an int32 in w0. |
| 2986 Label failure, exception; |
| 2987 __ CompareAndBranch(w0, NativeRegExpMacroAssembler::FAILURE, eq, &failure); |
| 2988 __ CompareAndBranch(w0, |
| 2989 NativeRegExpMacroAssembler::EXCEPTION, |
| 2990 eq, |
| 2991 &exception); |
| 2992 __ CompareAndBranch(w0, NativeRegExpMacroAssembler::RETRY, eq, &runtime); |
| 2993 |
| 2994 // Success: process the result from the native regexp code. |
| 2995 Register number_of_capture_registers = x12; |
| 2996 |
| 2997 // Calculate number of capture registers (number_of_captures + 1) * 2 |
| 2998 // and store it in the last match info. |
| 2999 __ Ldrsw(x10, |
| 3000 UntagSmiFieldMemOperand(regexp_data, |
| 3001 JSRegExp::kIrregexpCaptureCountOffset)); |
| 3002 __ Add(x10, x10, x10); |
| 3003 __ Add(number_of_capture_registers, x10, 2); |
| 3004 |
| 3005 // Check that the fourth object is a JSArray object. |
| 3006 ASSERT(jssp.Is(__ StackPointer())); |
| 3007 __ Peek(x10, kLastMatchInfoOffset); |
| 3008 __ JumpIfSmi(x10, &runtime); |
| 3009 __ JumpIfNotObjectType(x10, x11, x11, JS_ARRAY_TYPE, &runtime); |
| 3010 |
| 3011 // Check that the JSArray is the fast case. |
| 3012 __ Ldr(last_match_info_elements, |
| 3013 FieldMemOperand(x10, JSArray::kElementsOffset)); |
| 3014 __ Ldr(x10, |
| 3015 FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset)); |
| 3016 __ JumpIfNotRoot(x10, Heap::kFixedArrayMapRootIndex, &runtime); |
| 3017 |
| 3018 // Check that the last match info has space for the capture registers and the |
| 3019 // additional information (overhead). |
| 3020 // (number_of_captures + 1) * 2 + overhead <= last match info size |
| 3021 // (number_of_captures * 2) + 2 + overhead <= last match info size |
| 3022 // number_of_capture_registers + overhead <= last match info size |
| 3023 __ Ldrsw(x10, |
| 3024 UntagSmiFieldMemOperand(last_match_info_elements, |
| 3025 FixedArray::kLengthOffset)); |
| 3026 __ Add(x11, number_of_capture_registers, RegExpImpl::kLastMatchOverhead); |
| 3027 __ Cmp(x11, x10); |
| 3028 __ B(gt, &runtime); |
| 3029 |
| 3030 // Store the capture count. |
| 3031 __ SmiTag(x10, number_of_capture_registers); |
| 3032 __ Str(x10, |
| 3033 FieldMemOperand(last_match_info_elements, |
| 3034 RegExpImpl::kLastCaptureCountOffset)); |
| 3035 // Store last subject and last input. |
| 3036 __ Str(subject, |
| 3037 FieldMemOperand(last_match_info_elements, |
| 3038 RegExpImpl::kLastSubjectOffset)); |
| 3039 // Use x10 as the subject string in order to only need |
| 3040 // one RecordWriteStub. |
| 3041 __ Mov(x10, subject); |
| 3042 __ RecordWriteField(last_match_info_elements, |
| 3043 RegExpImpl::kLastSubjectOffset, |
| 3044 x10, |
| 3045 x11, |
| 3046 kLRHasNotBeenSaved, |
| 3047 kDontSaveFPRegs); |
| 3048 __ Str(subject, |
| 3049 FieldMemOperand(last_match_info_elements, |
| 3050 RegExpImpl::kLastInputOffset)); |
| 3051 __ Mov(x10, subject); |
| 3052 __ RecordWriteField(last_match_info_elements, |
| 3053 RegExpImpl::kLastInputOffset, |
| 3054 x10, |
| 3055 x11, |
| 3056 kLRHasNotBeenSaved, |
| 3057 kDontSaveFPRegs); |
| 3058 |
| 3059 Register last_match_offsets = x13; |
| 3060 Register offsets_vector_index = x14; |
| 3061 Register current_offset = x15; |
| 3062 |
| 3063 // Get the static offsets vector filled by the native regexp code |
| 3064 // and fill the last match info. |
| 3065 ExternalReference address_of_static_offsets_vector = |
| 3066 ExternalReference::address_of_static_offsets_vector(isolate); |
| 3067 __ Mov(offsets_vector_index, Operand(address_of_static_offsets_vector)); |
| 3068 |
| 3069 Label next_capture, done; |
| 3070 // Capture register counter starts from number of capture registers and |
| 3071 // iterates down to zero (inclusive). |
| 3072 __ Add(last_match_offsets, |
| 3073 last_match_info_elements, |
| 3074 RegExpImpl::kFirstCaptureOffset - kHeapObjectTag); |
| 3075 __ Bind(&next_capture); |
| 3076 __ Subs(number_of_capture_registers, number_of_capture_registers, 2); |
| 3077 __ B(mi, &done); |
| 3078 // Read two 32 bit values from the static offsets vector buffer into |
| 3079 // an X register |
| 3080 __ Ldr(current_offset, |
| 3081 MemOperand(offsets_vector_index, kWRegSizeInBytes * 2, PostIndex)); |
| 3082 // Store the smi values in the last match info. |
| 3083 __ SmiTag(x10, current_offset); |
| 3084 // Clearing the 32 bottom bits gives us a Smi. |
| 3085 STATIC_ASSERT(kSmiShift == 32); |
| 3086 __ And(x11, current_offset, ~kWRegMask); |
| 3087 __ Stp(x10, |
| 3088 x11, |
| 3089 MemOperand(last_match_offsets, kXRegSizeInBytes * 2, PostIndex)); |
| 3090 __ B(&next_capture); |
| 3091 __ Bind(&done); |
| 3092 |
| 3093 // Return last match info. |
| 3094 __ Peek(x0, kLastMatchInfoOffset); |
| 3095 __ PopCPURegList(used_callee_saved_registers); |
| 3096 // Drop the 4 arguments of the stub from the stack. |
| 3097 __ Drop(4); |
| 3098 __ Ret(); |
| 3099 |
| 3100 __ Bind(&exception); |
| 3101 Register exception_value = x0; |
| 3102 // A stack overflow (on the backtrack stack) may have occured |
| 3103 // in the RegExp code but no exception has been created yet. |
| 3104 // If there is no pending exception, handle that in the runtime system. |
| 3105 __ Mov(x10, Operand(isolate->factory()->the_hole_value())); |
| 3106 __ Mov(x11, |
| 3107 Operand(ExternalReference(Isolate::kPendingExceptionAddress, |
| 3108 isolate))); |
| 3109 __ Ldr(exception_value, MemOperand(x11)); |
| 3110 __ Cmp(x10, exception_value); |
| 3111 __ B(eq, &runtime); |
| 3112 |
| 3113 __ Str(x10, MemOperand(x11)); // Clear pending exception. |
| 3114 |
| 3115 // Check if the exception is a termination. If so, throw as uncatchable. |
| 3116 Label termination_exception; |
| 3117 __ JumpIfRoot(exception_value, |
| 3118 Heap::kTerminationExceptionRootIndex, |
| 3119 &termination_exception); |
| 3120 |
| 3121 __ Throw(exception_value, x10, x11, x12, x13); |
| 3122 |
| 3123 __ Bind(&termination_exception); |
| 3124 __ ThrowUncatchable(exception_value, x10, x11, x12, x13); |
| 3125 |
| 3126 __ Bind(&failure); |
| 3127 __ Mov(x0, Operand(masm->isolate()->factory()->null_value())); |
| 3128 __ PopCPURegList(used_callee_saved_registers); |
| 3129 // Drop the 4 arguments of the stub from the stack. |
| 3130 __ Drop(4); |
| 3131 __ Ret(); |
| 3132 |
| 3133 __ Bind(&runtime); |
| 3134 __ PopCPURegList(used_callee_saved_registers); |
| 3135 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
| 3136 |
| 3137 // Deferred code for string handling. |
| 3138 // (6) Not a long external string? If yes, go to (8). |
| 3139 __ Bind(¬_seq_nor_cons); |
| 3140 // Compare flags are still set. |
| 3141 __ B(ne, ¬_long_external); // Go to (8). |
| 3142 |
| 3143 // (7) External string. Make it, offset-wise, look like a sequential string. |
| 3144 __ Bind(&external_string); |
| 3145 if (masm->emit_debug_code()) { |
| 3146 // Assert that we do not have a cons or slice (indirect strings) here. |
| 3147 // Sequential strings have already been ruled out. |
| 3148 __ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset)); |
| 3149 __ Ldrb(x10, FieldMemOperand(x10, Map::kInstanceTypeOffset)); |
| 3150 __ Tst(x10, kIsIndirectStringMask); |
| 3151 __ Check(eq, kExternalStringExpectedButNotFound); |
| 3152 __ And(x10, x10, kStringRepresentationMask); |
| 3153 __ Cmp(x10, 0); |
| 3154 __ Check(ne, kExternalStringExpectedButNotFound); |
| 3155 } |
| 3156 __ Ldr(subject, |
| 3157 FieldMemOperand(subject, ExternalString::kResourceDataOffset)); |
| 3158 // Move the pointer so that offset-wise, it looks like a sequential string. |
| 3159 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); |
| 3160 __ Sub(subject, subject, SeqTwoByteString::kHeaderSize - kHeapObjectTag); |
| 3161 __ B(&seq_string); // Go to (5). |
| 3162 |
| 3163 // (8) If this is a short external string or not a string, bail out to |
| 3164 // runtime. |
| 3165 __ Bind(¬_long_external); |
| 3166 STATIC_ASSERT(kShortExternalStringTag != 0); |
| 3167 __ TestAndBranchIfAnySet(string_representation, |
| 3168 kShortExternalStringMask | kIsNotStringMask, |
| 3169 &runtime); |
| 3170 |
| 3171 // (9) Sliced string. Replace subject with parent. |
| 3172 __ Ldr(sliced_string_offset, |
| 3173 UntagSmiFieldMemOperand(subject, SlicedString::kOffsetOffset)); |
| 3174 __ Ldr(subject, FieldMemOperand(subject, SlicedString::kParentOffset)); |
| 3175 __ B(&check_underlying); // Go to (4). |
| 3176 #endif |
| 3177 } |
| 3178 |
| 3179 |
| 3180 // TODO(jbramley): Don't use static registers here, but take them as arguments. |
| 3181 static void GenerateRecordCallTarget(MacroAssembler* masm) { |
| 3182 ASM_LOCATION("GenerateRecordCallTarget"); |
| 3183 // Cache the called function in a feedback vector slot. Cache states are |
| 3184 // uninitialized, monomorphic (indicated by a JSFunction), and megamorphic. |
| 3185 // x0 : number of arguments to the construct function |
| 3186 // x1 : the function to call |
| 3187 // x2 : feedback vector |
| 3188 // x3 : slot in feedback vector (smi) |
| 3189 Label initialize, done, miss, megamorphic, not_array_function; |
| 3190 |
| 3191 ASSERT_EQ(*TypeFeedbackInfo::MegamorphicSentinel(masm->isolate()), |
| 3192 masm->isolate()->heap()->undefined_value()); |
| 3193 ASSERT_EQ(*TypeFeedbackInfo::UninitializedSentinel(masm->isolate()), |
| 3194 masm->isolate()->heap()->the_hole_value()); |
| 3195 |
| 3196 // Load the cache state. |
| 3197 __ Add(x4, x2, Operand::UntagSmiAndScale(x3, kPointerSizeLog2)); |
| 3198 __ Ldr(x4, FieldMemOperand(x4, FixedArray::kHeaderSize)); |
| 3199 |
| 3200 // A monomorphic cache hit or an already megamorphic state: invoke the |
| 3201 // function without changing the state. |
| 3202 __ Cmp(x4, x1); |
| 3203 __ B(eq, &done); |
| 3204 |
| 3205 // If we came here, we need to see if we are the array function. |
| 3206 // If we didn't have a matching function, and we didn't find the megamorph |
| 3207 // sentinel, then we have in the slot either some other function or an |
| 3208 // AllocationSite. Do a map check on the object in ecx. |
| 3209 __ Ldr(x5, FieldMemOperand(x4, AllocationSite::kMapOffset)); |
| 3210 __ JumpIfNotRoot(x5, Heap::kAllocationSiteMapRootIndex, &miss); |
| 3211 |
| 3212 // Make sure the function is the Array() function |
| 3213 __ LoadArrayFunction(x4); |
| 3214 __ Cmp(x1, x4); |
| 3215 __ B(ne, &megamorphic); |
| 3216 __ B(&done); |
| 3217 |
| 3218 __ Bind(&miss); |
| 3219 |
| 3220 // A monomorphic miss (i.e, here the cache is not uninitialized) goes |
| 3221 // megamorphic. |
| 3222 __ JumpIfRoot(x4, Heap::kTheHoleValueRootIndex, &initialize); |
| 3223 // MegamorphicSentinel is an immortal immovable object (undefined) so no |
| 3224 // write-barrier is needed. |
| 3225 __ Bind(&megamorphic); |
| 3226 __ Add(x4, x2, Operand::UntagSmiAndScale(x3, kPointerSizeLog2)); |
| 3227 __ LoadRoot(x10, Heap::kUndefinedValueRootIndex); |
| 3228 __ Str(x10, FieldMemOperand(x4, FixedArray::kHeaderSize)); |
| 3229 __ B(&done); |
| 3230 |
| 3231 // An uninitialized cache is patched with the function or sentinel to |
| 3232 // indicate the ElementsKind if function is the Array constructor. |
| 3233 __ Bind(&initialize); |
| 3234 // Make sure the function is the Array() function |
| 3235 __ LoadArrayFunction(x4); |
| 3236 __ Cmp(x1, x4); |
| 3237 __ B(ne, ¬_array_function); |
| 3238 |
| 3239 // The target function is the Array constructor, |
| 3240 // Create an AllocationSite if we don't already have it, store it in the slot. |
| 3241 { |
| 3242 FrameScope scope(masm, StackFrame::INTERNAL); |
| 3243 CreateAllocationSiteStub create_stub; |
| 3244 |
| 3245 // Arguments register must be smi-tagged to call out. |
| 3246 __ SmiTag(x0); |
| 3247 __ Push(x0, x1, x2, x3); |
| 3248 |
| 3249 __ CallStub(&create_stub); |
| 3250 |
| 3251 __ Pop(x3, x2, x1, x0); |
| 3252 __ SmiUntag(x0); |
| 3253 } |
| 3254 __ B(&done); |
| 3255 |
| 3256 __ Bind(¬_array_function); |
| 3257 // An uninitialized cache is patched with the function. |
| 3258 |
| 3259 __ Add(x4, x2, Operand::UntagSmiAndScale(x3, kPointerSizeLog2)); |
| 3260 // TODO(all): Does the value need to be left in x4? If not, FieldMemOperand |
| 3261 // could be used to avoid this add. |
| 3262 __ Add(x4, x4, FixedArray::kHeaderSize - kHeapObjectTag); |
| 3263 __ Str(x1, MemOperand(x4, 0)); |
| 3264 |
| 3265 __ Push(x4, x2, x1); |
| 3266 __ RecordWrite(x2, x4, x1, kLRHasNotBeenSaved, kDontSaveFPRegs, |
| 3267 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); |
| 3268 __ Pop(x1, x2, x4); |
| 3269 |
| 3270 // TODO(all): Are x4, x2 and x1 outputs? This isn't clear. |
| 3271 |
| 3272 __ Bind(&done); |
| 3273 } |
| 3274 |
| 3275 |
| 3276 void CallFunctionStub::Generate(MacroAssembler* masm) { |
| 3277 ASM_LOCATION("CallFunctionStub::Generate"); |
| 3278 // x1 function the function to call |
| 3279 // x2 : feedback vector |
| 3280 // x3 : slot in feedback vector (smi) (if x2 is not undefined) |
| 3281 Register function = x1; |
| 3282 Register cache_cell = x2; |
| 3283 Register slot = x3; |
| 3284 Register type = x4; |
| 3285 Label slow, non_function, wrap, cont; |
| 3286 |
| 3287 // TODO(jbramley): This function has a lot of unnamed registers. Name them, |
| 3288 // and tidy things up a bit. |
| 3289 |
| 3290 if (NeedsChecks()) { |
| 3291 // Check that the function is really a JavaScript function. |
| 3292 __ JumpIfSmi(function, &non_function); |
| 3293 |
| 3294 // Goto slow case if we do not have a function. |
| 3295 __ JumpIfNotObjectType(function, x10, type, JS_FUNCTION_TYPE, &slow); |
| 3296 |
| 3297 if (RecordCallTarget()) { |
| 3298 GenerateRecordCallTarget(masm); |
| 3299 } |
| 3300 } |
| 3301 |
| 3302 // Fast-case: Invoke the function now. |
| 3303 // x1 function pushed function |
| 3304 ParameterCount actual(argc_); |
| 3305 |
| 3306 if (CallAsMethod()) { |
| 3307 if (NeedsChecks()) { |
| 3308 // Do not transform the receiver for strict mode functions. |
| 3309 __ Ldr(x3, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset)); |
| 3310 __ Ldr(w4, FieldMemOperand(x3, SharedFunctionInfo::kCompilerHintsOffset)); |
| 3311 __ Tbnz(w4, SharedFunctionInfo::kStrictModeFunction, &cont); |
| 3312 |
| 3313 // Do not transform the receiver for native (Compilerhints already in x3). |
| 3314 __ Tbnz(w4, SharedFunctionInfo::kNative, &cont); |
| 3315 } |
| 3316 |
| 3317 // Compute the receiver in non-strict mode. |
| 3318 __ Peek(x3, argc_ * kPointerSize); |
| 3319 |
| 3320 if (NeedsChecks()) { |
| 3321 __ JumpIfSmi(x3, &wrap); |
| 3322 __ JumpIfObjectType(x3, x10, type, FIRST_SPEC_OBJECT_TYPE, &wrap, lt); |
| 3323 } else { |
| 3324 __ B(&wrap); |
| 3325 } |
| 3326 |
| 3327 __ Bind(&cont); |
| 3328 } |
| 3329 __ InvokeFunction(function, |
| 3330 actual, |
| 3331 JUMP_FUNCTION, |
| 3332 NullCallWrapper()); |
| 3333 |
| 3334 if (NeedsChecks()) { |
| 3335 // Slow-case: Non-function called. |
| 3336 __ Bind(&slow); |
| 3337 if (RecordCallTarget()) { |
| 3338 // If there is a call target cache, mark it megamorphic in the |
| 3339 // non-function case. MegamorphicSentinel is an immortal immovable object |
| 3340 // (undefined) so no write barrier is needed. |
| 3341 ASSERT_EQ(*TypeFeedbackInfo::MegamorphicSentinel(masm->isolate()), |
| 3342 masm->isolate()->heap()->undefined_value()); |
| 3343 __ Add(x12, cache_cell, Operand::UntagSmiAndScale(slot, |
| 3344 kPointerSizeLog2)); |
| 3345 __ LoadRoot(x11, Heap::kUndefinedValueRootIndex); |
| 3346 __ Str(x11, FieldMemOperand(x12, FixedArray::kHeaderSize)); |
| 3347 } |
| 3348 // Check for function proxy. |
| 3349 // x10 : function type. |
| 3350 __ CompareAndBranch(type, JS_FUNCTION_PROXY_TYPE, ne, &non_function); |
| 3351 __ Push(function); // put proxy as additional argument |
| 3352 __ Mov(x0, argc_ + 1); |
| 3353 __ Mov(x2, 0); |
| 3354 __ GetBuiltinFunction(x1, Builtins::CALL_FUNCTION_PROXY); |
| 3355 { |
| 3356 Handle<Code> adaptor = |
| 3357 masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(); |
| 3358 __ Jump(adaptor, RelocInfo::CODE_TARGET); |
| 3359 } |
| 3360 |
| 3361 // CALL_NON_FUNCTION expects the non-function callee as receiver (instead |
| 3362 // of the original receiver from the call site). |
| 3363 __ Bind(&non_function); |
| 3364 __ Poke(function, argc_ * kXRegSizeInBytes); |
| 3365 __ Mov(x0, argc_); // Set up the number of arguments. |
| 3366 __ Mov(x2, 0); |
| 3367 __ GetBuiltinFunction(function, Builtins::CALL_NON_FUNCTION); |
| 3368 __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), |
| 3369 RelocInfo::CODE_TARGET); |
| 3370 } |
| 3371 |
| 3372 if (CallAsMethod()) { |
| 3373 __ Bind(&wrap); |
| 3374 // Wrap the receiver and patch it back onto the stack. |
| 3375 { FrameScope frame_scope(masm, StackFrame::INTERNAL); |
| 3376 __ Push(x1, x3); |
| 3377 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); |
| 3378 __ Pop(x1); |
| 3379 } |
| 3380 __ Poke(x0, argc_ * kPointerSize); |
| 3381 __ B(&cont); |
| 3382 } |
| 3383 } |
| 3384 |
| 3385 |
| 3386 void CallConstructStub::Generate(MacroAssembler* masm) { |
| 3387 ASM_LOCATION("CallConstructStub::Generate"); |
| 3388 // x0 : number of arguments |
| 3389 // x1 : the function to call |
| 3390 // x2 : feedback vector |
| 3391 // x3 : slot in feedback vector (smi) (if r2 is not undefined) |
| 3392 Register function = x1; |
| 3393 Label slow, non_function_call; |
| 3394 |
| 3395 // Check that the function is not a smi. |
| 3396 __ JumpIfSmi(function, &non_function_call); |
| 3397 // Check that the function is a JSFunction. |
| 3398 Register object_type = x10; |
| 3399 __ JumpIfNotObjectType(function, object_type, object_type, JS_FUNCTION_TYPE, |
| 3400 &slow); |
| 3401 |
| 3402 if (RecordCallTarget()) { |
| 3403 GenerateRecordCallTarget(masm); |
| 3404 } |
| 3405 |
| 3406 // Jump to the function-specific construct stub. |
| 3407 Register jump_reg = x4; |
| 3408 Register shared_func_info = jump_reg; |
| 3409 Register cons_stub = jump_reg; |
| 3410 Register cons_stub_code = jump_reg; |
| 3411 __ Ldr(shared_func_info, |
| 3412 FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset)); |
| 3413 __ Ldr(cons_stub, |
| 3414 FieldMemOperand(shared_func_info, |
| 3415 SharedFunctionInfo::kConstructStubOffset)); |
| 3416 __ Add(cons_stub_code, cons_stub, Code::kHeaderSize - kHeapObjectTag); |
| 3417 __ Br(cons_stub_code); |
| 3418 |
| 3419 Label do_call; |
| 3420 __ Bind(&slow); |
| 3421 __ Cmp(object_type, JS_FUNCTION_PROXY_TYPE); |
| 3422 __ B(ne, &non_function_call); |
| 3423 __ GetBuiltinFunction(x1, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR); |
| 3424 __ B(&do_call); |
| 3425 |
| 3426 __ Bind(&non_function_call); |
| 3427 __ GetBuiltinFunction(x1, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR); |
| 3428 |
| 3429 __ Bind(&do_call); |
| 3430 // Set expected number of arguments to zero (not changing x0). |
| 3431 __ Mov(x2, 0); |
| 3432 __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), |
| 3433 RelocInfo::CODE_TARGET); |
| 3434 } |
| 3435 |
| 3436 |
| 3437 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { |
| 3438 // If the receiver is a smi trigger the non-string case. |
| 3439 __ JumpIfSmi(object_, receiver_not_string_); |
| 3440 |
| 3441 // Fetch the instance type of the receiver into result register. |
| 3442 __ Ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); |
| 3443 __ Ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); |
| 3444 |
| 3445 // If the receiver is not a string trigger the non-string case. |
| 3446 __ TestAndBranchIfAnySet(result_, kIsNotStringMask, receiver_not_string_); |
| 3447 |
| 3448 // If the index is non-smi trigger the non-smi case. |
| 3449 __ JumpIfNotSmi(index_, &index_not_smi_); |
| 3450 |
| 3451 __ Bind(&got_smi_index_); |
| 3452 // Check for index out of range. |
| 3453 __ Ldrsw(result_, UntagSmiFieldMemOperand(object_, String::kLengthOffset)); |
| 3454 __ Cmp(result_, Operand::UntagSmi(index_)); |
| 3455 __ B(ls, index_out_of_range_); |
| 3456 |
| 3457 __ SmiUntag(index_); |
| 3458 |
| 3459 StringCharLoadGenerator::Generate(masm, |
| 3460 object_, |
| 3461 index_, |
| 3462 result_, |
| 3463 &call_runtime_); |
| 3464 __ SmiTag(result_); |
| 3465 __ Bind(&exit_); |
| 3466 } |
| 3467 |
| 3468 |
| 3469 void StringCharCodeAtGenerator::GenerateSlow( |
| 3470 MacroAssembler* masm, |
| 3471 const RuntimeCallHelper& call_helper) { |
| 3472 __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase); |
| 3473 |
| 3474 __ Bind(&index_not_smi_); |
| 3475 // If index is a heap number, try converting it to an integer. |
| 3476 __ CheckMap(index_, |
| 3477 result_, |
| 3478 Heap::kHeapNumberMapRootIndex, |
| 3479 index_not_number_, |
| 3480 DONT_DO_SMI_CHECK); |
| 3481 call_helper.BeforeCall(masm); |
| 3482 // Save object_ on the stack and pass index_ as argument for runtime call. |
| 3483 __ Push(object_, index_); |
| 3484 if (index_flags_ == STRING_INDEX_IS_NUMBER) { |
| 3485 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1); |
| 3486 } else { |
| 3487 ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX); |
| 3488 // NumberToSmi discards numbers that are not exact integers. |
| 3489 __ CallRuntime(Runtime::kNumberToSmi, 1); |
| 3490 } |
| 3491 // Save the conversion result before the pop instructions below |
| 3492 // have a chance to overwrite it. |
| 3493 __ Mov(index_, x0); |
| 3494 __ Pop(object_); |
| 3495 // Reload the instance type. |
| 3496 __ Ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); |
| 3497 __ Ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); |
| 3498 call_helper.AfterCall(masm); |
| 3499 |
| 3500 // If index is still not a smi, it must be out of range. |
| 3501 __ JumpIfNotSmi(index_, index_out_of_range_); |
| 3502 // Otherwise, return to the fast path. |
| 3503 __ B(&got_smi_index_); |
| 3504 |
| 3505 // Call runtime. We get here when the receiver is a string and the |
| 3506 // index is a number, but the code of getting the actual character |
| 3507 // is too complex (e.g., when the string needs to be flattened). |
| 3508 __ Bind(&call_runtime_); |
| 3509 call_helper.BeforeCall(masm); |
| 3510 __ SmiTag(index_); |
| 3511 __ Push(object_, index_); |
| 3512 __ CallRuntime(Runtime::kStringCharCodeAt, 2); |
| 3513 __ Mov(result_, x0); |
| 3514 call_helper.AfterCall(masm); |
| 3515 __ B(&exit_); |
| 3516 |
| 3517 __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase); |
| 3518 } |
| 3519 |
| 3520 |
| 3521 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { |
| 3522 __ JumpIfNotSmi(code_, &slow_case_); |
| 3523 __ Cmp(code_, Operand(Smi::FromInt(String::kMaxOneByteCharCode))); |
| 3524 __ B(hi, &slow_case_); |
| 3525 |
| 3526 __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex); |
| 3527 // At this point code register contains smi tagged ASCII char code. |
| 3528 STATIC_ASSERT(kSmiShift > kPointerSizeLog2); |
| 3529 __ Add(result_, result_, Operand(code_, LSR, kSmiShift - kPointerSizeLog2)); |
| 3530 __ Ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize)); |
| 3531 __ JumpIfRoot(result_, Heap::kUndefinedValueRootIndex, &slow_case_); |
| 3532 __ Bind(&exit_); |
| 3533 } |
| 3534 |
| 3535 |
| 3536 void StringCharFromCodeGenerator::GenerateSlow( |
| 3537 MacroAssembler* masm, |
| 3538 const RuntimeCallHelper& call_helper) { |
| 3539 __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase); |
| 3540 |
| 3541 __ Bind(&slow_case_); |
| 3542 call_helper.BeforeCall(masm); |
| 3543 __ Push(code_); |
| 3544 __ CallRuntime(Runtime::kCharFromCode, 1); |
| 3545 __ Mov(result_, x0); |
| 3546 call_helper.AfterCall(masm); |
| 3547 __ B(&exit_); |
| 3548 |
| 3549 __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase); |
| 3550 } |
| 3551 |
| 3552 |
| 3553 void ICCompareStub::GenerateSmis(MacroAssembler* masm) { |
| 3554 // Inputs are in x0 (lhs) and x1 (rhs). |
| 3555 ASSERT(state_ == CompareIC::SMI); |
| 3556 ASM_LOCATION("ICCompareStub[Smis]"); |
| 3557 Label miss; |
| 3558 // Bail out (to 'miss') unless both x0 and x1 are smis. |
| 3559 __ JumpIfEitherNotSmi(x0, x1, &miss); |
| 3560 |
| 3561 // TODO(jbramley): Why do we only set the flags for EQ? |
| 3562 if (GetCondition() == eq) { |
| 3563 // For equality we do not care about the sign of the result. |
| 3564 __ Subs(x0, x0, x1); |
| 3565 } else { |
| 3566 // Untag before subtracting to avoid handling overflow. |
| 3567 __ SmiUntag(x1); |
| 3568 __ Sub(x0, x1, Operand::UntagSmi(x0)); |
| 3569 } |
| 3570 __ Ret(); |
| 3571 |
| 3572 __ Bind(&miss); |
| 3573 GenerateMiss(masm); |
| 3574 } |
| 3575 |
| 3576 |
| 3577 void ICCompareStub::GenerateNumbers(MacroAssembler* masm) { |
| 3578 ASSERT(state_ == CompareIC::NUMBER); |
| 3579 ASM_LOCATION("ICCompareStub[HeapNumbers]"); |
| 3580 |
| 3581 Label unordered, maybe_undefined1, maybe_undefined2; |
| 3582 Label miss, handle_lhs, values_in_d_regs; |
| 3583 Label untag_rhs, untag_lhs; |
| 3584 |
| 3585 Register result = x0; |
| 3586 Register rhs = x0; |
| 3587 Register lhs = x1; |
| 3588 FPRegister rhs_d = d0; |
| 3589 FPRegister lhs_d = d1; |
| 3590 |
| 3591 if (left_ == CompareIC::SMI) { |
| 3592 __ JumpIfNotSmi(lhs, &miss); |
| 3593 } |
| 3594 if (right_ == CompareIC::SMI) { |
| 3595 __ JumpIfNotSmi(rhs, &miss); |
| 3596 } |
| 3597 |
| 3598 __ SmiUntagToDouble(rhs_d, rhs, kSpeculativeUntag); |
| 3599 __ SmiUntagToDouble(lhs_d, lhs, kSpeculativeUntag); |
| 3600 |
| 3601 // Load rhs if it's a heap number. |
| 3602 __ JumpIfSmi(rhs, &handle_lhs); |
| 3603 __ CheckMap(rhs, x10, Heap::kHeapNumberMapRootIndex, &maybe_undefined1, |
| 3604 DONT_DO_SMI_CHECK); |
| 3605 __ Ldr(rhs_d, FieldMemOperand(rhs, HeapNumber::kValueOffset)); |
| 3606 |
| 3607 // Load lhs if it's a heap number. |
| 3608 __ Bind(&handle_lhs); |
| 3609 __ JumpIfSmi(lhs, &values_in_d_regs); |
| 3610 __ CheckMap(lhs, x10, Heap::kHeapNumberMapRootIndex, &maybe_undefined2, |
| 3611 DONT_DO_SMI_CHECK); |
| 3612 __ Ldr(lhs_d, FieldMemOperand(lhs, HeapNumber::kValueOffset)); |
| 3613 |
| 3614 __ Bind(&values_in_d_regs); |
| 3615 __ Fcmp(lhs_d, rhs_d); |
| 3616 __ B(vs, &unordered); // Overflow flag set if either is NaN. |
| 3617 STATIC_ASSERT((LESS == -1) && (EQUAL == 0) && (GREATER == 1)); |
| 3618 __ Cset(result, gt); // gt => 1, otherwise (lt, eq) => 0 (EQUAL). |
| 3619 __ Csinv(result, result, xzr, ge); // lt => -1, gt => 1, eq => 0. |
| 3620 __ Ret(); |
| 3621 |
| 3622 __ Bind(&unordered); |
| 3623 ICCompareStub stub(op_, CompareIC::GENERIC, CompareIC::GENERIC, |
| 3624 CompareIC::GENERIC); |
| 3625 __ Jump(stub.GetCode(masm->isolate()), RelocInfo::CODE_TARGET); |
| 3626 |
| 3627 __ Bind(&maybe_undefined1); |
| 3628 if (Token::IsOrderedRelationalCompareOp(op_)) { |
| 3629 __ JumpIfNotRoot(rhs, Heap::kUndefinedValueRootIndex, &miss); |
| 3630 __ JumpIfSmi(lhs, &unordered); |
| 3631 __ JumpIfNotObjectType(lhs, x10, x10, HEAP_NUMBER_TYPE, &maybe_undefined2); |
| 3632 __ B(&unordered); |
| 3633 } |
| 3634 |
| 3635 __ Bind(&maybe_undefined2); |
| 3636 if (Token::IsOrderedRelationalCompareOp(op_)) { |
| 3637 __ JumpIfRoot(lhs, Heap::kUndefinedValueRootIndex, &unordered); |
| 3638 } |
| 3639 |
| 3640 __ Bind(&miss); |
| 3641 GenerateMiss(masm); |
| 3642 } |
| 3643 |
| 3644 |
| 3645 void ICCompareStub::GenerateInternalizedStrings(MacroAssembler* masm) { |
| 3646 ASSERT(state_ == CompareIC::INTERNALIZED_STRING); |
| 3647 ASM_LOCATION("ICCompareStub[InternalizedStrings]"); |
| 3648 Label miss; |
| 3649 |
| 3650 Register result = x0; |
| 3651 Register rhs = x0; |
| 3652 Register lhs = x1; |
| 3653 |
| 3654 // Check that both operands are heap objects. |
| 3655 __ JumpIfEitherSmi(lhs, rhs, &miss); |
| 3656 |
| 3657 // Check that both operands are internalized strings. |
| 3658 Register rhs_map = x10; |
| 3659 Register lhs_map = x11; |
| 3660 Register rhs_type = x10; |
| 3661 Register lhs_type = x11; |
| 3662 __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset)); |
| 3663 __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset)); |
| 3664 __ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset)); |
| 3665 __ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset)); |
| 3666 |
| 3667 STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0)); |
| 3668 __ Orr(x12, lhs_type, rhs_type); |
| 3669 __ TestAndBranchIfAnySet( |
| 3670 x12, kIsNotStringMask | kIsNotInternalizedMask, &miss); |
| 3671 |
| 3672 // Internalized strings are compared by identity. |
| 3673 STATIC_ASSERT(EQUAL == 0); |
| 3674 __ Cmp(lhs, rhs); |
| 3675 __ Cset(result, ne); |
| 3676 __ Ret(); |
| 3677 |
| 3678 __ Bind(&miss); |
| 3679 GenerateMiss(masm); |
| 3680 } |
| 3681 |
| 3682 |
| 3683 void ICCompareStub::GenerateUniqueNames(MacroAssembler* masm) { |
| 3684 ASSERT(state_ == CompareIC::UNIQUE_NAME); |
| 3685 ASM_LOCATION("ICCompareStub[UniqueNames]"); |
| 3686 ASSERT(GetCondition() == eq); |
| 3687 Label miss; |
| 3688 |
| 3689 Register result = x0; |
| 3690 Register rhs = x0; |
| 3691 Register lhs = x1; |
| 3692 |
| 3693 Register lhs_instance_type = w2; |
| 3694 Register rhs_instance_type = w3; |
| 3695 |
| 3696 // Check that both operands are heap objects. |
| 3697 __ JumpIfEitherSmi(lhs, rhs, &miss); |
| 3698 |
| 3699 // Check that both operands are unique names. This leaves the instance |
| 3700 // types loaded in tmp1 and tmp2. |
| 3701 __ Ldr(x10, FieldMemOperand(lhs, HeapObject::kMapOffset)); |
| 3702 __ Ldr(x11, FieldMemOperand(rhs, HeapObject::kMapOffset)); |
| 3703 __ Ldrb(lhs_instance_type, FieldMemOperand(x10, Map::kInstanceTypeOffset)); |
| 3704 __ Ldrb(rhs_instance_type, FieldMemOperand(x11, Map::kInstanceTypeOffset)); |
| 3705 |
| 3706 // To avoid a miss, each instance type should be either SYMBOL_TYPE or it |
| 3707 // should have kInternalizedTag set. |
| 3708 __ JumpIfNotUniqueName(lhs_instance_type, &miss); |
| 3709 __ JumpIfNotUniqueName(rhs_instance_type, &miss); |
| 3710 |
| 3711 // Unique names are compared by identity. |
| 3712 STATIC_ASSERT(EQUAL == 0); |
| 3713 __ Cmp(lhs, rhs); |
| 3714 __ Cset(result, ne); |
| 3715 __ Ret(); |
| 3716 |
| 3717 __ Bind(&miss); |
| 3718 GenerateMiss(masm); |
| 3719 } |
| 3720 |
| 3721 |
| 3722 void ICCompareStub::GenerateStrings(MacroAssembler* masm) { |
| 3723 ASSERT(state_ == CompareIC::STRING); |
| 3724 ASM_LOCATION("ICCompareStub[Strings]"); |
| 3725 |
| 3726 Label miss; |
| 3727 |
| 3728 bool equality = Token::IsEqualityOp(op_); |
| 3729 |
| 3730 Register result = x0; |
| 3731 Register rhs = x0; |
| 3732 Register lhs = x1; |
| 3733 |
| 3734 // Check that both operands are heap objects. |
| 3735 __ JumpIfEitherSmi(rhs, lhs, &miss); |
| 3736 |
| 3737 // Check that both operands are strings. |
| 3738 Register rhs_map = x10; |
| 3739 Register lhs_map = x11; |
| 3740 Register rhs_type = x10; |
| 3741 Register lhs_type = x11; |
| 3742 __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset)); |
| 3743 __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset)); |
| 3744 __ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset)); |
| 3745 __ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset)); |
| 3746 STATIC_ASSERT(kNotStringTag != 0); |
| 3747 __ Orr(x12, lhs_type, rhs_type); |
| 3748 __ Tbnz(x12, MaskToBit(kIsNotStringMask), &miss); |
| 3749 |
| 3750 // Fast check for identical strings. |
| 3751 Label not_equal; |
| 3752 __ Cmp(lhs, rhs); |
| 3753 __ B(ne, ¬_equal); |
| 3754 __ Mov(result, EQUAL); |
| 3755 __ Ret(); |
| 3756 |
| 3757 __ Bind(¬_equal); |
| 3758 // Handle not identical strings |
| 3759 |
| 3760 // Check that both strings are internalized strings. If they are, we're done |
| 3761 // because we already know they are not identical. We know they are both |
| 3762 // strings. |
| 3763 if (equality) { |
| 3764 ASSERT(GetCondition() == eq); |
| 3765 STATIC_ASSERT(kInternalizedTag == 0); |
| 3766 Label not_internalized_strings; |
| 3767 __ Orr(x12, lhs_type, rhs_type); |
| 3768 __ TestAndBranchIfAnySet( |
| 3769 x12, kIsNotInternalizedMask, ¬_internalized_strings); |
| 3770 // Result is in rhs (x0), and not EQUAL, as rhs is not a smi. |
| 3771 __ Ret(); |
| 3772 __ Bind(¬_internalized_strings); |
| 3773 } |
| 3774 |
| 3775 // Check that both strings are sequential ASCII. |
| 3776 Label runtime; |
| 3777 __ JumpIfBothInstanceTypesAreNotSequentialAscii( |
| 3778 lhs_type, rhs_type, x12, x13, &runtime); |
| 3779 |
| 3780 // Compare flat ASCII strings. Returns when done. |
| 3781 if (equality) { |
| 3782 StringCompareStub::GenerateFlatAsciiStringEquals( |
| 3783 masm, lhs, rhs, x10, x11, x12); |
| 3784 } else { |
| 3785 StringCompareStub::GenerateCompareFlatAsciiStrings( |
| 3786 masm, lhs, rhs, x10, x11, x12, x13); |
| 3787 } |
| 3788 |
| 3789 // Handle more complex cases in runtime. |
| 3790 __ Bind(&runtime); |
| 3791 __ Push(lhs, rhs); |
| 3792 if (equality) { |
| 3793 __ TailCallRuntime(Runtime::kStringEquals, 2, 1); |
| 3794 } else { |
| 3795 __ TailCallRuntime(Runtime::kStringCompare, 2, 1); |
| 3796 } |
| 3797 |
| 3798 __ Bind(&miss); |
| 3799 GenerateMiss(masm); |
| 3800 } |
| 3801 |
| 3802 |
| 3803 void ICCompareStub::GenerateObjects(MacroAssembler* masm) { |
| 3804 ASSERT(state_ == CompareIC::OBJECT); |
| 3805 ASM_LOCATION("ICCompareStub[Objects]"); |
| 3806 |
| 3807 Label miss; |
| 3808 |
| 3809 Register result = x0; |
| 3810 Register rhs = x0; |
| 3811 Register lhs = x1; |
| 3812 |
| 3813 __ JumpIfEitherSmi(rhs, lhs, &miss); |
| 3814 |
| 3815 __ JumpIfNotObjectType(rhs, x10, x10, JS_OBJECT_TYPE, &miss); |
| 3816 __ JumpIfNotObjectType(lhs, x10, x10, JS_OBJECT_TYPE, &miss); |
| 3817 |
| 3818 ASSERT(GetCondition() == eq); |
| 3819 __ Sub(result, rhs, lhs); |
| 3820 __ Ret(); |
| 3821 |
| 3822 __ Bind(&miss); |
| 3823 GenerateMiss(masm); |
| 3824 } |
| 3825 |
| 3826 |
| 3827 void ICCompareStub::GenerateKnownObjects(MacroAssembler* masm) { |
| 3828 ASM_LOCATION("ICCompareStub[KnownObjects]"); |
| 3829 |
| 3830 Label miss; |
| 3831 |
| 3832 Register result = x0; |
| 3833 Register rhs = x0; |
| 3834 Register lhs = x1; |
| 3835 |
| 3836 __ JumpIfEitherSmi(rhs, lhs, &miss); |
| 3837 |
| 3838 Register rhs_map = x10; |
| 3839 Register lhs_map = x11; |
| 3840 __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset)); |
| 3841 __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset)); |
| 3842 __ Cmp(rhs_map, Operand(known_map_)); |
| 3843 __ B(ne, &miss); |
| 3844 __ Cmp(lhs_map, Operand(known_map_)); |
| 3845 __ B(ne, &miss); |
| 3846 |
| 3847 __ Sub(result, rhs, lhs); |
| 3848 __ Ret(); |
| 3849 |
| 3850 __ Bind(&miss); |
| 3851 GenerateMiss(masm); |
| 3852 } |
| 3853 |
| 3854 |
| 3855 // This method handles the case where a compare stub had the wrong |
| 3856 // implementation. It calls a miss handler, which re-writes the stub. All other |
| 3857 // ICCompareStub::Generate* methods should fall back into this one if their |
| 3858 // operands were not the expected types. |
| 3859 void ICCompareStub::GenerateMiss(MacroAssembler* masm) { |
| 3860 ASM_LOCATION("ICCompareStub[Miss]"); |
| 3861 |
| 3862 Register stub_entry = x11; |
| 3863 { |
| 3864 ExternalReference miss = |
| 3865 ExternalReference(IC_Utility(IC::kCompareIC_Miss), masm->isolate()); |
| 3866 |
| 3867 FrameScope scope(masm, StackFrame::INTERNAL); |
| 3868 Register op = x10; |
| 3869 Register left = x1; |
| 3870 Register right = x0; |
| 3871 // Preserve some caller-saved registers. |
| 3872 __ Push(x1, x0, lr); |
| 3873 // Push the arguments. |
| 3874 __ Mov(op, Operand(Smi::FromInt(op_))); |
| 3875 __ Push(left, right, op); |
| 3876 |
| 3877 // Call the miss handler. This also pops the arguments. |
| 3878 __ CallExternalReference(miss, 3); |
| 3879 |
| 3880 // Compute the entry point of the rewritten stub. |
| 3881 __ Add(stub_entry, x0, Code::kHeaderSize - kHeapObjectTag); |
| 3882 // Restore caller-saved registers. |
| 3883 __ Pop(lr, x0, x1); |
| 3884 } |
| 3885 |
| 3886 // Tail-call to the new stub. |
| 3887 __ Jump(stub_entry); |
| 3888 } |
| 3889 |
| 3890 |
| 3891 void StringHelper::GenerateHashInit(MacroAssembler* masm, |
| 3892 Register hash, |
| 3893 Register character) { |
| 3894 ASSERT(!AreAliased(hash, character)); |
| 3895 |
| 3896 // hash = character + (character << 10); |
| 3897 __ LoadRoot(hash, Heap::kHashSeedRootIndex); |
| 3898 // Untag smi seed and add the character. |
| 3899 __ Add(hash, character, Operand(hash, LSR, kSmiShift)); |
| 3900 |
| 3901 // Compute hashes modulo 2^32 using a 32-bit W register. |
| 3902 Register hash_w = hash.W(); |
| 3903 |
| 3904 // hash += hash << 10; |
| 3905 __ Add(hash_w, hash_w, Operand(hash_w, LSL, 10)); |
| 3906 // hash ^= hash >> 6; |
| 3907 __ Eor(hash_w, hash_w, Operand(hash_w, LSR, 6)); |
| 3908 } |
| 3909 |
| 3910 |
| 3911 void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm, |
| 3912 Register hash, |
| 3913 Register character) { |
| 3914 ASSERT(!AreAliased(hash, character)); |
| 3915 |
| 3916 // hash += character; |
| 3917 __ Add(hash, hash, character); |
| 3918 |
| 3919 // Compute hashes modulo 2^32 using a 32-bit W register. |
| 3920 Register hash_w = hash.W(); |
| 3921 |
| 3922 // hash += hash << 10; |
| 3923 __ Add(hash_w, hash_w, Operand(hash_w, LSL, 10)); |
| 3924 // hash ^= hash >> 6; |
| 3925 __ Eor(hash_w, hash_w, Operand(hash_w, LSR, 6)); |
| 3926 } |
| 3927 |
| 3928 |
| 3929 void StringHelper::GenerateHashGetHash(MacroAssembler* masm, |
| 3930 Register hash, |
| 3931 Register scratch) { |
| 3932 // Compute hashes modulo 2^32 using a 32-bit W register. |
| 3933 Register hash_w = hash.W(); |
| 3934 Register scratch_w = scratch.W(); |
| 3935 ASSERT(!AreAliased(hash_w, scratch_w)); |
| 3936 |
| 3937 // hash += hash << 3; |
| 3938 __ Add(hash_w, hash_w, Operand(hash_w, LSL, 3)); |
| 3939 // hash ^= hash >> 11; |
| 3940 __ Eor(hash_w, hash_w, Operand(hash_w, LSR, 11)); |
| 3941 // hash += hash << 15; |
| 3942 __ Add(hash_w, hash_w, Operand(hash_w, LSL, 15)); |
| 3943 |
| 3944 __ Ands(hash_w, hash_w, String::kHashBitMask); |
| 3945 |
| 3946 // if (hash == 0) hash = 27; |
| 3947 __ Mov(scratch_w, StringHasher::kZeroHash); |
| 3948 __ Csel(hash_w, scratch_w, hash_w, eq); |
| 3949 } |
| 3950 |
| 3951 |
| 3952 void SubStringStub::Generate(MacroAssembler* masm) { |
| 3953 ASM_LOCATION("SubStringStub::Generate"); |
| 3954 Label runtime; |
| 3955 |
| 3956 // Stack frame on entry. |
| 3957 // lr: return address |
| 3958 // jssp[0]: substring "to" offset |
| 3959 // jssp[8]: substring "from" offset |
| 3960 // jssp[16]: pointer to string object |
| 3961 |
| 3962 // This stub is called from the native-call %_SubString(...), so |
| 3963 // nothing can be assumed about the arguments. It is tested that: |
| 3964 // "string" is a sequential string, |
| 3965 // both "from" and "to" are smis, and |
| 3966 // 0 <= from <= to <= string.length (in debug mode.) |
| 3967 // If any of these assumptions fail, we call the runtime system. |
| 3968 |
| 3969 static const int kToOffset = 0 * kPointerSize; |
| 3970 static const int kFromOffset = 1 * kPointerSize; |
| 3971 static const int kStringOffset = 2 * kPointerSize; |
| 3972 |
| 3973 Register to = x0; |
| 3974 Register from = x15; |
| 3975 Register input_string = x10; |
| 3976 Register input_length = x11; |
| 3977 Register input_type = x12; |
| 3978 Register result_string = x0; |
| 3979 Register result_length = x1; |
| 3980 Register temp = x3; |
| 3981 |
| 3982 __ Peek(to, kToOffset); |
| 3983 __ Peek(from, kFromOffset); |
| 3984 |
| 3985 // Check that both from and to are smis. If not, jump to runtime. |
| 3986 __ JumpIfEitherNotSmi(from, to, &runtime); |
| 3987 __ SmiUntag(from); |
| 3988 __ SmiUntag(to); |
| 3989 |
| 3990 // Calculate difference between from and to. If to < from, branch to runtime. |
| 3991 __ Subs(result_length, to, from); |
| 3992 __ B(mi, &runtime); |
| 3993 |
| 3994 // Check from is positive. |
| 3995 __ Tbnz(from, kWSignBit, &runtime); |
| 3996 |
| 3997 // Make sure first argument is a string. |
| 3998 __ Peek(input_string, kStringOffset); |
| 3999 __ JumpIfSmi(input_string, &runtime); |
| 4000 __ IsObjectJSStringType(input_string, input_type, &runtime); |
| 4001 |
| 4002 Label single_char; |
| 4003 __ Cmp(result_length, 1); |
| 4004 __ B(eq, &single_char); |
| 4005 |
| 4006 // Short-cut for the case of trivial substring. |
| 4007 Label return_x0; |
| 4008 __ Ldrsw(input_length, |
| 4009 UntagSmiFieldMemOperand(input_string, String::kLengthOffset)); |
| 4010 |
| 4011 __ Cmp(result_length, input_length); |
| 4012 __ CmovX(x0, input_string, eq); |
| 4013 // Return original string. |
| 4014 __ B(eq, &return_x0); |
| 4015 |
| 4016 // Longer than original string's length or negative: unsafe arguments. |
| 4017 __ B(hi, &runtime); |
| 4018 |
| 4019 // Shorter than original string's length: an actual substring. |
| 4020 |
| 4021 // x0 to substring end character offset |
| 4022 // x1 result_length length of substring result |
| 4023 // x10 input_string pointer to input string object |
| 4024 // x10 unpacked_string pointer to unpacked string object |
| 4025 // x11 input_length length of input string |
| 4026 // x12 input_type instance type of input string |
| 4027 // x15 from substring start character offset |
| 4028 |
| 4029 // Deal with different string types: update the index if necessary and put |
| 4030 // the underlying string into register unpacked_string. |
| 4031 Label underlying_unpacked, sliced_string, seq_or_external_string; |
| 4032 Label update_instance_type; |
| 4033 // If the string is not indirect, it can only be sequential or external. |
| 4034 STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag)); |
| 4035 STATIC_ASSERT(kIsIndirectStringMask != 0); |
| 4036 |
| 4037 // Test for string types, and branch/fall through to appropriate unpacking |
| 4038 // code. |
| 4039 __ Tst(input_type, kIsIndirectStringMask); |
| 4040 __ B(eq, &seq_or_external_string); |
| 4041 __ Tst(input_type, kSlicedNotConsMask); |
| 4042 __ B(ne, &sliced_string); |
| 4043 |
| 4044 Register unpacked_string = input_string; |
| 4045 |
| 4046 // Cons string. Check whether it is flat, then fetch first part. |
| 4047 __ Ldr(temp, FieldMemOperand(input_string, ConsString::kSecondOffset)); |
| 4048 __ JumpIfNotRoot(temp, Heap::kempty_stringRootIndex, &runtime); |
| 4049 __ Ldr(unpacked_string, |
| 4050 FieldMemOperand(input_string, ConsString::kFirstOffset)); |
| 4051 __ B(&update_instance_type); |
| 4052 |
| 4053 __ Bind(&sliced_string); |
| 4054 // Sliced string. Fetch parent and correct start index by offset. |
| 4055 __ Ldrsw(temp, |
| 4056 UntagSmiFieldMemOperand(input_string, SlicedString::kOffsetOffset)); |
| 4057 __ Add(from, from, temp); |
| 4058 __ Ldr(unpacked_string, |
| 4059 FieldMemOperand(input_string, SlicedString::kParentOffset)); |
| 4060 |
| 4061 __ Bind(&update_instance_type); |
| 4062 __ Ldr(temp, FieldMemOperand(unpacked_string, HeapObject::kMapOffset)); |
| 4063 __ Ldrb(input_type, FieldMemOperand(temp, Map::kInstanceTypeOffset)); |
| 4064 // TODO(all): This generates "b #+0x4". Can these be optimised out? |
| 4065 __ B(&underlying_unpacked); |
| 4066 |
| 4067 __ Bind(&seq_or_external_string); |
| 4068 // Sequential or external string. Registers unpacked_string and input_string |
| 4069 // alias, so there's nothing to do here. |
| 4070 |
| 4071 // x0 result_string pointer to result string object (uninit) |
| 4072 // x1 result_length length of substring result |
| 4073 // x10 unpacked_string pointer to unpacked string object |
| 4074 // x11 input_length length of input string |
| 4075 // x12 input_type instance type of input string |
| 4076 // x15 from substring start character offset |
| 4077 __ Bind(&underlying_unpacked); |
| 4078 |
| 4079 if (FLAG_string_slices) { |
| 4080 Label copy_routine; |
| 4081 __ Cmp(result_length, SlicedString::kMinLength); |
| 4082 // Short slice. Copy instead of slicing. |
| 4083 __ B(lt, ©_routine); |
| 4084 // Allocate new sliced string. At this point we do not reload the instance |
| 4085 // type including the string encoding because we simply rely on the info |
| 4086 // provided by the original string. It does not matter if the original |
| 4087 // string's encoding is wrong because we always have to recheck encoding of |
| 4088 // the newly created string's parent anyway due to externalized strings. |
| 4089 Label two_byte_slice, set_slice_header; |
| 4090 STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0); |
| 4091 STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0); |
| 4092 __ Tbz(input_type, MaskToBit(kStringEncodingMask), &two_byte_slice); |
| 4093 __ AllocateAsciiSlicedString(result_string, result_length, x3, x4, |
| 4094 &runtime); |
| 4095 __ B(&set_slice_header); |
| 4096 |
| 4097 __ Bind(&two_byte_slice); |
| 4098 __ AllocateTwoByteSlicedString(result_string, result_length, x3, x4, |
| 4099 &runtime); |
| 4100 |
| 4101 __ Bind(&set_slice_header); |
| 4102 __ SmiTag(from); |
| 4103 __ Str(from, FieldMemOperand(result_string, SlicedString::kOffsetOffset)); |
| 4104 __ Str(unpacked_string, |
| 4105 FieldMemOperand(result_string, SlicedString::kParentOffset)); |
| 4106 __ B(&return_x0); |
| 4107 |
| 4108 __ Bind(©_routine); |
| 4109 } |
| 4110 |
| 4111 // x0 result_string pointer to result string object (uninit) |
| 4112 // x1 result_length length of substring result |
| 4113 // x10 unpacked_string pointer to unpacked string object |
| 4114 // x11 input_length length of input string |
| 4115 // x12 input_type instance type of input string |
| 4116 // x13 unpacked_char0 pointer to first char of unpacked string (uninit) |
| 4117 // x13 substring_char0 pointer to first char of substring (uninit) |
| 4118 // x14 result_char0 pointer to first char of result (uninit) |
| 4119 // x15 from substring start character offset |
| 4120 Register unpacked_char0 = x13; |
| 4121 Register substring_char0 = x13; |
| 4122 Register result_char0 = x14; |
| 4123 Label two_byte_sequential, sequential_string, allocate_result; |
| 4124 STATIC_ASSERT(kExternalStringTag != 0); |
| 4125 STATIC_ASSERT(kSeqStringTag == 0); |
| 4126 |
| 4127 __ Tst(input_type, kExternalStringTag); |
| 4128 __ B(eq, &sequential_string); |
| 4129 |
| 4130 __ Tst(input_type, kShortExternalStringTag); |
| 4131 __ B(ne, &runtime); |
| 4132 __ Ldr(unpacked_char0, |
| 4133 FieldMemOperand(unpacked_string, ExternalString::kResourceDataOffset)); |
| 4134 // unpacked_char0 points to the first character of the underlying string. |
| 4135 __ B(&allocate_result); |
| 4136 |
| 4137 __ Bind(&sequential_string); |
| 4138 // Locate first character of underlying subject string. |
| 4139 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); |
| 4140 __ Add(unpacked_char0, unpacked_string, |
| 4141 SeqOneByteString::kHeaderSize - kHeapObjectTag); |
| 4142 |
| 4143 __ Bind(&allocate_result); |
| 4144 // Sequential ASCII string. Allocate the result. |
| 4145 STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0); |
| 4146 __ Tbz(input_type, MaskToBit(kStringEncodingMask), &two_byte_sequential); |
| 4147 |
| 4148 // Allocate and copy the resulting ASCII string. |
| 4149 __ AllocateAsciiString(result_string, result_length, x3, x4, x5, &runtime); |
| 4150 |
| 4151 // Locate first character of substring to copy. |
| 4152 __ Add(substring_char0, unpacked_char0, from); |
| 4153 |
| 4154 // Locate first character of result. |
| 4155 __ Add(result_char0, result_string, |
| 4156 SeqOneByteString::kHeaderSize - kHeapObjectTag); |
| 4157 |
| 4158 STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0); |
| 4159 __ CopyBytes(result_char0, substring_char0, result_length, x3, kCopyLong); |
| 4160 __ B(&return_x0); |
| 4161 |
| 4162 // Allocate and copy the resulting two-byte string. |
| 4163 __ Bind(&two_byte_sequential); |
| 4164 __ AllocateTwoByteString(result_string, result_length, x3, x4, x5, &runtime); |
| 4165 |
| 4166 // Locate first character of substring to copy. |
| 4167 __ Add(substring_char0, unpacked_char0, Operand(from, LSL, 1)); |
| 4168 |
| 4169 // Locate first character of result. |
| 4170 __ Add(result_char0, result_string, |
| 4171 SeqTwoByteString::kHeaderSize - kHeapObjectTag); |
| 4172 |
| 4173 STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); |
| 4174 __ Add(result_length, result_length, result_length); |
| 4175 __ CopyBytes(result_char0, substring_char0, result_length, x3, kCopyLong); |
| 4176 |
| 4177 __ Bind(&return_x0); |
| 4178 Counters* counters = masm->isolate()->counters(); |
| 4179 __ IncrementCounter(counters->sub_string_native(), 1, x3, x4); |
| 4180 __ Drop(3); |
| 4181 __ Ret(); |
| 4182 |
| 4183 __ Bind(&runtime); |
| 4184 __ TailCallRuntime(Runtime::kSubString, 3, 1); |
| 4185 |
| 4186 __ bind(&single_char); |
| 4187 // x1: result_length |
| 4188 // x10: input_string |
| 4189 // x12: input_type |
| 4190 // x15: from (untagged) |
| 4191 __ SmiTag(from); |
| 4192 StringCharAtGenerator generator( |
| 4193 input_string, from, result_length, x0, |
| 4194 &runtime, &runtime, &runtime, STRING_INDEX_IS_NUMBER); |
| 4195 generator.GenerateFast(masm); |
| 4196 // TODO(jbramley): Why doesn't this jump to return_x0? |
| 4197 __ Drop(3); |
| 4198 __ Ret(); |
| 4199 generator.SkipSlow(masm, &runtime); |
| 4200 } |
| 4201 |
| 4202 |
| 4203 void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm, |
| 4204 Register left, |
| 4205 Register right, |
| 4206 Register scratch1, |
| 4207 Register scratch2, |
| 4208 Register scratch3) { |
| 4209 ASSERT(!AreAliased(left, right, scratch1, scratch2, scratch3)); |
| 4210 Register result = x0; |
| 4211 Register left_length = scratch1; |
| 4212 Register right_length = scratch2; |
| 4213 |
| 4214 // Compare lengths. If lengths differ, strings can't be equal. Lengths are |
| 4215 // smis, and don't need to be untagged. |
| 4216 Label strings_not_equal, check_zero_length; |
| 4217 __ Ldr(left_length, FieldMemOperand(left, String::kLengthOffset)); |
| 4218 __ Ldr(right_length, FieldMemOperand(right, String::kLengthOffset)); |
| 4219 __ Cmp(left_length, right_length); |
| 4220 __ B(eq, &check_zero_length); |
| 4221 |
| 4222 __ Bind(&strings_not_equal); |
| 4223 __ Mov(result, Operand(Smi::FromInt(NOT_EQUAL))); |
| 4224 __ Ret(); |
| 4225 |
| 4226 // Check if the length is zero. If so, the strings must be equal (and empty.) |
| 4227 Label compare_chars; |
| 4228 __ Bind(&check_zero_length); |
| 4229 STATIC_ASSERT(kSmiTag == 0); |
| 4230 __ Cbnz(left_length, &compare_chars); |
| 4231 __ Mov(result, Operand(Smi::FromInt(EQUAL))); |
| 4232 __ Ret(); |
| 4233 |
| 4234 // Compare characters. Falls through if all characters are equal. |
| 4235 __ Bind(&compare_chars); |
| 4236 GenerateAsciiCharsCompareLoop(masm, left, right, left_length, scratch2, |
| 4237 scratch3, &strings_not_equal); |
| 4238 |
| 4239 // Characters in strings are equal. |
| 4240 __ Mov(result, Operand(Smi::FromInt(EQUAL))); |
| 4241 __ Ret(); |
| 4242 } |
| 4243 |
| 4244 |
| 4245 void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm, |
| 4246 Register left, |
| 4247 Register right, |
| 4248 Register scratch1, |
| 4249 Register scratch2, |
| 4250 Register scratch3, |
| 4251 Register scratch4) { |
| 4252 ASSERT(!AreAliased(left, right, scratch1, scratch2, scratch3, scratch4)); |
| 4253 Label result_not_equal, compare_lengths; |
| 4254 |
| 4255 // Find minimum length and length difference. |
| 4256 Register length_delta = scratch3; |
| 4257 __ Ldr(scratch1, FieldMemOperand(left, String::kLengthOffset)); |
| 4258 __ Ldr(scratch2, FieldMemOperand(right, String::kLengthOffset)); |
| 4259 __ Subs(length_delta, scratch1, scratch2); |
| 4260 |
| 4261 Register min_length = scratch1; |
| 4262 __ Csel(min_length, scratch2, scratch1, gt); |
| 4263 __ Cbz(min_length, &compare_lengths); |
| 4264 |
| 4265 // Compare loop. |
| 4266 GenerateAsciiCharsCompareLoop(masm, |
| 4267 left, right, min_length, scratch2, scratch4, |
| 4268 &result_not_equal); |
| 4269 |
| 4270 // Compare lengths - strings up to min-length are equal. |
| 4271 __ Bind(&compare_lengths); |
| 4272 |
| 4273 ASSERT(Smi::FromInt(EQUAL) == static_cast<Smi*>(0)); |
| 4274 |
| 4275 // Use length_delta as result if it's zero. |
| 4276 Register result = x0; |
| 4277 __ Subs(result, length_delta, 0); |
| 4278 |
| 4279 __ Bind(&result_not_equal); |
| 4280 Register greater = x10; |
| 4281 Register less = x11; |
| 4282 __ Mov(greater, Operand(Smi::FromInt(GREATER))); |
| 4283 __ Mov(less, Operand(Smi::FromInt(LESS))); |
| 4284 __ CmovX(result, greater, gt); |
| 4285 __ CmovX(result, less, lt); |
| 4286 __ Ret(); |
| 4287 } |
| 4288 |
| 4289 |
| 4290 void StringCompareStub::GenerateAsciiCharsCompareLoop( |
| 4291 MacroAssembler* masm, |
| 4292 Register left, |
| 4293 Register right, |
| 4294 Register length, |
| 4295 Register scratch1, |
| 4296 Register scratch2, |
| 4297 Label* chars_not_equal) { |
| 4298 ASSERT(!AreAliased(left, right, length, scratch1, scratch2)); |
| 4299 |
| 4300 // Change index to run from -length to -1 by adding length to string |
| 4301 // start. This means that loop ends when index reaches zero, which |
| 4302 // doesn't need an additional compare. |
| 4303 __ SmiUntag(length); |
| 4304 __ Add(scratch1, length, SeqOneByteString::kHeaderSize - kHeapObjectTag); |
| 4305 __ Add(left, left, scratch1); |
| 4306 __ Add(right, right, scratch1); |
| 4307 |
| 4308 Register index = length; |
| 4309 __ Neg(index, length); // index = -length; |
| 4310 |
| 4311 // Compare loop |
| 4312 Label loop; |
| 4313 __ Bind(&loop); |
| 4314 __ Ldrb(scratch1, MemOperand(left, index)); |
| 4315 __ Ldrb(scratch2, MemOperand(right, index)); |
| 4316 __ Cmp(scratch1, scratch2); |
| 4317 __ B(ne, chars_not_equal); |
| 4318 __ Add(index, index, 1); |
| 4319 __ Cbnz(index, &loop); |
| 4320 } |
| 4321 |
| 4322 |
| 4323 void StringCompareStub::Generate(MacroAssembler* masm) { |
| 4324 Label runtime; |
| 4325 |
| 4326 Counters* counters = masm->isolate()->counters(); |
| 4327 |
| 4328 // Stack frame on entry. |
| 4329 // sp[0]: right string |
| 4330 // sp[8]: left string |
| 4331 Register right = x10; |
| 4332 Register left = x11; |
| 4333 Register result = x0; |
| 4334 __ Pop(right, left); |
| 4335 |
| 4336 Label not_same; |
| 4337 __ Subs(result, right, left); |
| 4338 __ B(ne, ¬_same); |
| 4339 STATIC_ASSERT(EQUAL == 0); |
| 4340 __ IncrementCounter(counters->string_compare_native(), 1, x3, x4); |
| 4341 __ Ret(); |
| 4342 |
| 4343 __ Bind(¬_same); |
| 4344 |
| 4345 // Check that both objects are sequential ASCII strings. |
| 4346 __ JumpIfEitherIsNotSequentialAsciiStrings(left, right, x12, x13, &runtime); |
| 4347 |
| 4348 // Compare flat ASCII strings natively. Remove arguments from stack first, |
| 4349 // as this function will generate a return. |
| 4350 __ IncrementCounter(counters->string_compare_native(), 1, x3, x4); |
| 4351 GenerateCompareFlatAsciiStrings(masm, left, right, x12, x13, x14, x15); |
| 4352 |
| 4353 __ Bind(&runtime); |
| 4354 |
| 4355 // Push arguments back on to the stack. |
| 4356 // sp[0] = right string |
| 4357 // sp[8] = left string. |
| 4358 __ Push(left, right); |
| 4359 |
| 4360 // Call the runtime. |
| 4361 // Returns -1 (less), 0 (equal), or 1 (greater) tagged as a small integer. |
| 4362 __ TailCallRuntime(Runtime::kStringCompare, 2, 1); |
| 4363 } |
| 4364 |
| 4365 |
| 4366 void ArrayPushStub::Generate(MacroAssembler* masm) { |
| 4367 Register receiver = x0; |
| 4368 |
| 4369 int argc = arguments_count(); |
| 4370 |
| 4371 if (argc == 0) { |
| 4372 // Nothing to do, just return the length. |
| 4373 __ Ldr(x0, FieldMemOperand(receiver, JSArray::kLengthOffset)); |
| 4374 __ Drop(argc + 1); |
| 4375 __ Ret(); |
| 4376 return; |
| 4377 } |
| 4378 |
| 4379 Isolate* isolate = masm->isolate(); |
| 4380 |
| 4381 if (argc != 1) { |
| 4382 __ TailCallExternalReference( |
| 4383 ExternalReference(Builtins::c_ArrayPush, isolate), argc + 1, 1); |
| 4384 return; |
| 4385 } |
| 4386 |
| 4387 Label call_builtin, attempt_to_grow_elements, with_write_barrier; |
| 4388 |
| 4389 Register elements_length = x8; |
| 4390 Register length = x7; |
| 4391 Register elements = x6; |
| 4392 Register end_elements = x5; |
| 4393 Register value = x4; |
| 4394 // Get the elements array of the object. |
| 4395 __ Ldr(elements, FieldMemOperand(receiver, JSArray::kElementsOffset)); |
| 4396 |
| 4397 if (IsFastSmiOrObjectElementsKind(elements_kind())) { |
| 4398 // Check that the elements are in fast mode and writable. |
| 4399 __ CheckMap(elements, |
| 4400 x10, |
| 4401 Heap::kFixedArrayMapRootIndex, |
| 4402 &call_builtin, |
| 4403 DONT_DO_SMI_CHECK); |
| 4404 } |
| 4405 |
| 4406 // Get the array's length and calculate new length. |
| 4407 __ Ldr(length, FieldMemOperand(receiver, JSArray::kLengthOffset)); |
| 4408 STATIC_ASSERT(kSmiTag == 0); |
| 4409 __ Add(length, length, Operand(Smi::FromInt(argc))); |
| 4410 |
| 4411 // Check if we could survive without allocation. |
| 4412 __ Ldr(elements_length, |
| 4413 FieldMemOperand(elements, FixedArray::kLengthOffset)); |
| 4414 __ Cmp(length, elements_length); |
| 4415 |
| 4416 const int kEndElementsOffset = |
| 4417 FixedArray::kHeaderSize - kHeapObjectTag - argc * kPointerSize; |
| 4418 |
| 4419 if (IsFastSmiOrObjectElementsKind(elements_kind())) { |
| 4420 __ B(gt, &attempt_to_grow_elements); |
| 4421 |
| 4422 // Check if value is a smi. |
| 4423 __ Peek(value, (argc - 1) * kPointerSize); |
| 4424 __ JumpIfNotSmi(value, &with_write_barrier); |
| 4425 |
| 4426 // Store the value. |
| 4427 // We may need a register containing the address end_elements below, |
| 4428 // so write back the value in end_elements. |
| 4429 __ Add(end_elements, elements, |
| 4430 Operand::UntagSmiAndScale(length, kPointerSizeLog2)); |
| 4431 __ Str(value, MemOperand(end_elements, kEndElementsOffset, PreIndex)); |
| 4432 } else { |
| 4433 // TODO(all): ARM has a redundant cmp here. |
| 4434 __ B(gt, &call_builtin); |
| 4435 |
| 4436 __ Peek(value, (argc - 1) * kPointerSize); |
| 4437 __ StoreNumberToDoubleElements(value, length, elements, x10, d0, d1, |
| 4438 &call_builtin, argc * kDoubleSize); |
| 4439 } |
| 4440 |
| 4441 // Save new length. |
| 4442 __ Str(length, FieldMemOperand(receiver, JSArray::kLengthOffset)); |
| 4443 |
| 4444 // Return length. |
| 4445 __ Drop(argc + 1); |
| 4446 __ Mov(x0, length); |
| 4447 __ Ret(); |
| 4448 |
| 4449 if (IsFastDoubleElementsKind(elements_kind())) { |
| 4450 __ Bind(&call_builtin); |
| 4451 __ TailCallExternalReference( |
| 4452 ExternalReference(Builtins::c_ArrayPush, isolate), argc + 1, 1); |
| 4453 return; |
| 4454 } |
| 4455 |
| 4456 __ Bind(&with_write_barrier); |
| 4457 |
| 4458 if (IsFastSmiElementsKind(elements_kind())) { |
| 4459 if (FLAG_trace_elements_transitions) { |
| 4460 __ B(&call_builtin); |
| 4461 } |
| 4462 |
| 4463 __ Ldr(x10, FieldMemOperand(value, HeapObject::kMapOffset)); |
| 4464 __ JumpIfHeapNumber(x10, &call_builtin); |
| 4465 |
| 4466 ElementsKind target_kind = IsHoleyElementsKind(elements_kind()) |
| 4467 ? FAST_HOLEY_ELEMENTS : FAST_ELEMENTS; |
| 4468 __ Ldr(x10, GlobalObjectMemOperand()); |
| 4469 __ Ldr(x10, FieldMemOperand(x10, GlobalObject::kNativeContextOffset)); |
| 4470 __ Ldr(x10, ContextMemOperand(x10, Context::JS_ARRAY_MAPS_INDEX)); |
| 4471 const int header_size = FixedArrayBase::kHeaderSize; |
| 4472 // Verify that the object can be transitioned in place. |
| 4473 const int origin_offset = header_size + elements_kind() * kPointerSize; |
| 4474 __ ldr(x11, FieldMemOperand(receiver, origin_offset)); |
| 4475 __ ldr(x12, FieldMemOperand(x10, HeapObject::kMapOffset)); |
| 4476 __ cmp(x11, x12); |
| 4477 __ B(ne, &call_builtin); |
| 4478 |
| 4479 const int target_offset = header_size + target_kind * kPointerSize; |
| 4480 __ Ldr(x10, FieldMemOperand(x10, target_offset)); |
| 4481 __ Mov(x11, receiver); |
| 4482 ElementsTransitionGenerator::GenerateMapChangeElementsTransition( |
| 4483 masm, DONT_TRACK_ALLOCATION_SITE, NULL); |
| 4484 } |
| 4485 |
| 4486 // Save new length. |
| 4487 __ Str(length, FieldMemOperand(receiver, JSArray::kLengthOffset)); |
| 4488 |
| 4489 // Store the value. |
| 4490 // We may need a register containing the address end_elements below, |
| 4491 // so write back the value in end_elements. |
| 4492 __ Add(end_elements, elements, |
| 4493 Operand::UntagSmiAndScale(length, kPointerSizeLog2)); |
| 4494 __ Str(value, MemOperand(end_elements, kEndElementsOffset, PreIndex)); |
| 4495 |
| 4496 __ RecordWrite(elements, |
| 4497 end_elements, |
| 4498 value, |
| 4499 kLRHasNotBeenSaved, |
| 4500 kDontSaveFPRegs, |
| 4501 EMIT_REMEMBERED_SET, |
| 4502 OMIT_SMI_CHECK); |
| 4503 __ Drop(argc + 1); |
| 4504 __ Mov(x0, length); |
| 4505 __ Ret(); |
| 4506 |
| 4507 __ Bind(&attempt_to_grow_elements); |
| 4508 |
| 4509 if (!FLAG_inline_new) { |
| 4510 __ B(&call_builtin); |
| 4511 } |
| 4512 |
| 4513 Register argument = x2; |
| 4514 __ Peek(argument, (argc - 1) * kPointerSize); |
| 4515 // Growing elements that are SMI-only requires special handling in case |
| 4516 // the new element is non-Smi. For now, delegate to the builtin. |
| 4517 if (IsFastSmiElementsKind(elements_kind())) { |
| 4518 __ JumpIfNotSmi(argument, &call_builtin); |
| 4519 } |
| 4520 |
| 4521 // We could be lucky and the elements array could be at the top of new-space. |
| 4522 // In this case we can just grow it in place by moving the allocation pointer |
| 4523 // up. |
| 4524 ExternalReference new_space_allocation_top = |
| 4525 ExternalReference::new_space_allocation_top_address(isolate); |
| 4526 ExternalReference new_space_allocation_limit = |
| 4527 ExternalReference::new_space_allocation_limit_address(isolate); |
| 4528 |
| 4529 const int kAllocationDelta = 4; |
| 4530 ASSERT(kAllocationDelta >= argc); |
| 4531 Register allocation_top_addr = x5; |
| 4532 Register allocation_top = x9; |
| 4533 // Load top and check if it is the end of elements. |
| 4534 __ Add(end_elements, elements, |
| 4535 Operand::UntagSmiAndScale(length, kPointerSizeLog2)); |
| 4536 __ Add(end_elements, end_elements, kEndElementsOffset); |
| 4537 __ Mov(allocation_top_addr, Operand(new_space_allocation_top)); |
| 4538 __ Ldr(allocation_top, MemOperand(allocation_top_addr)); |
| 4539 __ Cmp(end_elements, allocation_top); |
| 4540 __ B(ne, &call_builtin); |
| 4541 |
| 4542 __ Mov(x10, Operand(new_space_allocation_limit)); |
| 4543 __ Ldr(x10, MemOperand(x10)); |
| 4544 __ Add(allocation_top, allocation_top, kAllocationDelta * kPointerSize); |
| 4545 __ Cmp(allocation_top, x10); |
| 4546 __ B(hi, &call_builtin); |
| 4547 |
| 4548 // We fit and could grow elements. |
| 4549 // Update new_space_allocation_top. |
| 4550 __ Str(allocation_top, MemOperand(allocation_top_addr)); |
| 4551 // Push the argument. |
| 4552 __ Str(argument, MemOperand(end_elements)); |
| 4553 // Fill the rest with holes. |
| 4554 __ LoadRoot(x10, Heap::kTheHoleValueRootIndex); |
| 4555 for (int i = 1; i < kAllocationDelta; i++) { |
| 4556 // TODO(all): Try to use stp here. |
| 4557 __ Str(x10, MemOperand(end_elements, i * kPointerSize)); |
| 4558 } |
| 4559 |
| 4560 // Update elements' and array's sizes. |
| 4561 __ Str(length, FieldMemOperand(receiver, JSArray::kLengthOffset)); |
| 4562 __ Add(elements_length, |
| 4563 elements_length, |
| 4564 Operand(Smi::FromInt(kAllocationDelta))); |
| 4565 __ Str(elements_length, |
| 4566 FieldMemOperand(elements, FixedArray::kLengthOffset)); |
| 4567 |
| 4568 // Elements are in new space, so write barrier is not required. |
| 4569 __ Drop(argc + 1); |
| 4570 __ Mov(x0, length); |
| 4571 __ Ret(); |
| 4572 |
| 4573 __ Bind(&call_builtin); |
| 4574 __ TailCallExternalReference( |
| 4575 ExternalReference(Builtins::c_ArrayPush, isolate), argc + 1, 1); |
| 4576 } |
| 4577 |
| 4578 |
| 4579 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) { |
| 4580 // ----------- S t a t e ------------- |
| 4581 // -- x1 : left |
| 4582 // -- x0 : right |
| 4583 // -- lr : return address |
| 4584 // ----------------------------------- |
| 4585 Isolate* isolate = masm->isolate(); |
| 4586 |
| 4587 // Load x2 with the allocation site. We stick an undefined dummy value here |
| 4588 // and replace it with the real allocation site later when we instantiate this |
| 4589 // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate(). |
| 4590 __ LoadObject(x2, handle(isolate->heap()->undefined_value())); |
| 4591 |
| 4592 // Make sure that we actually patched the allocation site. |
| 4593 if (FLAG_debug_code) { |
| 4594 __ AssertNotSmi(x2, kExpectedAllocationSite); |
| 4595 __ Ldr(x10, FieldMemOperand(x2, HeapObject::kMapOffset)); |
| 4596 __ AssertRegisterIsRoot(x10, Heap::kAllocationSiteMapRootIndex, |
| 4597 kExpectedAllocationSite); |
| 4598 } |
| 4599 |
| 4600 // Tail call into the stub that handles binary operations with allocation |
| 4601 // sites. |
| 4602 BinaryOpWithAllocationSiteStub stub(state_); |
| 4603 __ TailCallStub(&stub); |
| 4604 } |
| 4605 |
| 4606 |
| 4607 bool CodeStub::CanUseFPRegisters() { |
| 4608 // FP registers always available on A64. |
| 4609 return true; |
| 4610 } |
| 4611 |
| 4612 |
| 4613 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) { |
| 4614 // We need some extra registers for this stub, they have been allocated |
| 4615 // but we need to save them before using them. |
| 4616 regs_.Save(masm); |
| 4617 |
| 4618 if (remembered_set_action_ == EMIT_REMEMBERED_SET) { |
| 4619 Label dont_need_remembered_set; |
| 4620 |
| 4621 Register value = regs_.scratch0(); |
| 4622 __ Ldr(value, MemOperand(regs_.address())); |
| 4623 __ JumpIfNotInNewSpace(value, &dont_need_remembered_set); |
| 4624 |
| 4625 __ CheckPageFlagSet(regs_.object(), |
| 4626 value, |
| 4627 1 << MemoryChunk::SCAN_ON_SCAVENGE, |
| 4628 &dont_need_remembered_set); |
| 4629 |
| 4630 // First notify the incremental marker if necessary, then update the |
| 4631 // remembered set. |
| 4632 CheckNeedsToInformIncrementalMarker( |
| 4633 masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode); |
| 4634 InformIncrementalMarker(masm, mode); |
| 4635 regs_.Restore(masm); // Restore the extra scratch registers we used. |
| 4636 __ RememberedSetHelper(object_, |
| 4637 address_, |
| 4638 value_, |
| 4639 save_fp_regs_mode_, |
| 4640 MacroAssembler::kReturnAtEnd); |
| 4641 |
| 4642 __ Bind(&dont_need_remembered_set); |
| 4643 } |
| 4644 |
| 4645 CheckNeedsToInformIncrementalMarker( |
| 4646 masm, kReturnOnNoNeedToInformIncrementalMarker, mode); |
| 4647 InformIncrementalMarker(masm, mode); |
| 4648 regs_.Restore(masm); // Restore the extra scratch registers we used. |
| 4649 __ Ret(); |
| 4650 } |
| 4651 |
| 4652 |
| 4653 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm, Mode mode) { |
| 4654 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode_); |
| 4655 Register address = |
| 4656 x0.Is(regs_.address()) ? regs_.scratch0() : regs_.address(); |
| 4657 ASSERT(!address.Is(regs_.object())); |
| 4658 ASSERT(!address.Is(x0)); |
| 4659 __ Mov(address, regs_.address()); |
| 4660 __ Mov(x0, regs_.object()); |
| 4661 __ Mov(x1, address); |
| 4662 __ Mov(x2, Operand(ExternalReference::isolate_address(masm->isolate()))); |
| 4663 |
| 4664 AllowExternalCallThatCantCauseGC scope(masm); |
| 4665 ExternalReference function = (mode == INCREMENTAL_COMPACTION) |
| 4666 ? ExternalReference::incremental_evacuation_record_write_function( |
| 4667 masm->isolate()) |
| 4668 : ExternalReference::incremental_marking_record_write_function( |
| 4669 masm->isolate()); |
| 4670 __ CallCFunction(function, 3, 0); |
| 4671 |
| 4672 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode_); |
| 4673 } |
| 4674 |
| 4675 |
| 4676 void RecordWriteStub::CheckNeedsToInformIncrementalMarker( |
| 4677 MacroAssembler* masm, |
| 4678 OnNoNeedToInformIncrementalMarker on_no_need, |
| 4679 Mode mode) { |
| 4680 Label on_black; |
| 4681 Label need_incremental; |
| 4682 Label need_incremental_pop_scratch; |
| 4683 |
| 4684 Register mem_chunk = regs_.scratch0(); |
| 4685 Register counter = regs_.scratch1(); |
| 4686 __ Bic(mem_chunk, regs_.object(), Page::kPageAlignmentMask); |
| 4687 __ Ldr(counter, |
| 4688 MemOperand(mem_chunk, MemoryChunk::kWriteBarrierCounterOffset)); |
| 4689 __ Subs(counter, counter, 1); |
| 4690 __ Str(counter, |
| 4691 MemOperand(mem_chunk, MemoryChunk::kWriteBarrierCounterOffset)); |
| 4692 __ B(mi, &need_incremental); |
| 4693 |
| 4694 // If the object is not black we don't have to inform the incremental marker. |
| 4695 __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black); |
| 4696 |
| 4697 regs_.Restore(masm); // Restore the extra scratch registers we used. |
| 4698 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { |
| 4699 __ RememberedSetHelper(object_, |
| 4700 address_, |
| 4701 value_, |
| 4702 save_fp_regs_mode_, |
| 4703 MacroAssembler::kReturnAtEnd); |
| 4704 } else { |
| 4705 __ Ret(); |
| 4706 } |
| 4707 |
| 4708 __ Bind(&on_black); |
| 4709 // Get the value from the slot. |
| 4710 Register value = regs_.scratch0(); |
| 4711 __ Ldr(value, MemOperand(regs_.address())); |
| 4712 |
| 4713 if (mode == INCREMENTAL_COMPACTION) { |
| 4714 Label ensure_not_white; |
| 4715 |
| 4716 __ CheckPageFlagClear(value, |
| 4717 regs_.scratch1(), |
| 4718 MemoryChunk::kEvacuationCandidateMask, |
| 4719 &ensure_not_white); |
| 4720 |
| 4721 __ CheckPageFlagClear(regs_.object(), |
| 4722 regs_.scratch1(), |
| 4723 MemoryChunk::kSkipEvacuationSlotsRecordingMask, |
| 4724 &need_incremental); |
| 4725 |
| 4726 __ Bind(&ensure_not_white); |
| 4727 } |
| 4728 |
| 4729 // We need extra registers for this, so we push the object and the address |
| 4730 // register temporarily. |
| 4731 __ Push(regs_.address(), regs_.object()); |
| 4732 __ EnsureNotWhite(value, |
| 4733 regs_.scratch1(), // Scratch. |
| 4734 regs_.object(), // Scratch. |
| 4735 regs_.address(), // Scratch. |
| 4736 regs_.scratch2(), // Scratch. |
| 4737 &need_incremental_pop_scratch); |
| 4738 __ Pop(regs_.object(), regs_.address()); |
| 4739 |
| 4740 regs_.Restore(masm); // Restore the extra scratch registers we used. |
| 4741 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { |
| 4742 __ RememberedSetHelper(object_, |
| 4743 address_, |
| 4744 value_, |
| 4745 save_fp_regs_mode_, |
| 4746 MacroAssembler::kReturnAtEnd); |
| 4747 } else { |
| 4748 __ Ret(); |
| 4749 } |
| 4750 |
| 4751 __ Bind(&need_incremental_pop_scratch); |
| 4752 __ Pop(regs_.object(), regs_.address()); |
| 4753 |
| 4754 __ Bind(&need_incremental); |
| 4755 // Fall through when we need to inform the incremental marker. |
| 4756 } |
| 4757 |
| 4758 |
| 4759 void RecordWriteStub::Generate(MacroAssembler* masm) { |
| 4760 Label skip_to_incremental_noncompacting; |
| 4761 Label skip_to_incremental_compacting; |
| 4762 |
| 4763 // We patch these two first instructions back and forth between a nop and |
| 4764 // real branch when we start and stop incremental heap marking. |
| 4765 // Initially the stub is expected to be in STORE_BUFFER_ONLY mode, so 2 nops |
| 4766 // are generated. |
| 4767 // See RecordWriteStub::Patch for details. |
| 4768 { |
| 4769 InstructionAccurateScope scope(masm, 2); |
| 4770 __ adr(xzr, &skip_to_incremental_noncompacting); |
| 4771 __ adr(xzr, &skip_to_incremental_compacting); |
| 4772 } |
| 4773 |
| 4774 if (remembered_set_action_ == EMIT_REMEMBERED_SET) { |
| 4775 __ RememberedSetHelper(object_, |
| 4776 address_, |
| 4777 value_, |
| 4778 save_fp_regs_mode_, |
| 4779 MacroAssembler::kReturnAtEnd); |
| 4780 } |
| 4781 __ Ret(); |
| 4782 |
| 4783 __ Bind(&skip_to_incremental_noncompacting); |
| 4784 GenerateIncremental(masm, INCREMENTAL); |
| 4785 |
| 4786 __ Bind(&skip_to_incremental_compacting); |
| 4787 GenerateIncremental(masm, INCREMENTAL_COMPACTION); |
| 4788 } |
| 4789 |
| 4790 |
| 4791 void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) { |
| 4792 // TODO(all): Possible optimisations in this function: |
| 4793 // 1. Merge CheckFastElements and CheckFastSmiElements, so that the map |
| 4794 // bitfield is loaded only once. |
| 4795 // 2. Refactor the Ldr/Add sequence at the start of fast_elements and |
| 4796 // smi_element. |
| 4797 |
| 4798 // x0 value element value to store |
| 4799 // x3 index_smi element index as smi |
| 4800 // sp[0] array_index_smi array literal index in function as smi |
| 4801 // sp[1] array array literal |
| 4802 |
| 4803 Register value = x0; |
| 4804 Register index_smi = x3; |
| 4805 |
| 4806 Register array = x1; |
| 4807 Register array_map = x2; |
| 4808 Register array_index_smi = x4; |
| 4809 __ PeekPair(array_index_smi, array, 0); |
| 4810 __ Ldr(array_map, FieldMemOperand(array, JSObject::kMapOffset)); |
| 4811 |
| 4812 Label double_elements, smi_element, fast_elements, slow_elements; |
| 4813 __ CheckFastElements(array_map, x10, &double_elements); |
| 4814 __ JumpIfSmi(value, &smi_element); |
| 4815 __ CheckFastSmiElements(array_map, x10, &fast_elements); |
| 4816 |
| 4817 // Store into the array literal requires an elements transition. Call into |
| 4818 // the runtime. |
| 4819 __ Bind(&slow_elements); |
| 4820 __ Push(array, index_smi, value); |
| 4821 __ Ldr(x10, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); |
| 4822 __ Ldr(x11, FieldMemOperand(x10, JSFunction::kLiteralsOffset)); |
| 4823 __ Push(x11, array_index_smi); |
| 4824 __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1); |
| 4825 |
| 4826 // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object. |
| 4827 __ Bind(&fast_elements); |
| 4828 __ Ldr(x10, FieldMemOperand(array, JSObject::kElementsOffset)); |
| 4829 __ Add(x11, x10, Operand::UntagSmiAndScale(index_smi, kPointerSizeLog2)); |
| 4830 __ Add(x11, x11, FixedArray::kHeaderSize - kHeapObjectTag); |
| 4831 __ Str(value, MemOperand(x11)); |
| 4832 // Update the write barrier for the array store. |
| 4833 __ RecordWrite(x10, x11, value, kLRHasNotBeenSaved, kDontSaveFPRegs, |
| 4834 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); |
| 4835 __ Ret(); |
| 4836 |
| 4837 // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS, |
| 4838 // and value is Smi. |
| 4839 __ Bind(&smi_element); |
| 4840 __ Ldr(x10, FieldMemOperand(array, JSObject::kElementsOffset)); |
| 4841 __ Add(x11, x10, Operand::UntagSmiAndScale(index_smi, kPointerSizeLog2)); |
| 4842 __ Str(value, FieldMemOperand(x11, FixedArray::kHeaderSize)); |
| 4843 __ Ret(); |
| 4844 |
| 4845 __ Bind(&double_elements); |
| 4846 __ Ldr(x10, FieldMemOperand(array, JSObject::kElementsOffset)); |
| 4847 __ StoreNumberToDoubleElements(value, index_smi, x10, x11, d0, d1, |
| 4848 &slow_elements); |
| 4849 __ Ret(); |
| 4850 } |
| 4851 |
| 4852 |
| 4853 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) { |
| 4854 // TODO(jbramley): The ARM code leaves the (shifted) offset in r1. Why? |
| 4855 CEntryStub ces(1, kSaveFPRegs); |
| 4856 __ Call(ces.GetCode(masm->isolate()), RelocInfo::CODE_TARGET); |
| 4857 int parameter_count_offset = |
| 4858 StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset; |
| 4859 __ Ldr(x1, MemOperand(fp, parameter_count_offset)); |
| 4860 if (function_mode_ == JS_FUNCTION_STUB_MODE) { |
| 4861 __ Add(x1, x1, 1); |
| 4862 } |
| 4863 masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE); |
| 4864 __ Drop(x1); |
| 4865 // Return to IC Miss stub, continuation still on stack. |
| 4866 __ Ret(); |
| 4867 } |
| 4868 |
| 4869 |
| 4870 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) { |
| 4871 if (masm->isolate()->function_entry_hook() != NULL) { |
| 4872 // TODO(all): This needs to be reliably consistent with |
| 4873 // kReturnAddressDistanceFromFunctionStart in ::Generate. |
| 4874 Assembler::BlockConstPoolScope no_const_pools(masm); |
| 4875 ProfileEntryHookStub stub; |
| 4876 __ Push(lr); |
| 4877 __ CallStub(&stub); |
| 4878 __ Pop(lr); |
| 4879 } |
| 4880 } |
| 4881 |
| 4882 |
| 4883 void ProfileEntryHookStub::Generate(MacroAssembler* masm) { |
| 4884 MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm); |
| 4885 // The entry hook is a "BumpSystemStackPointer" instruction (sub), followed by |
| 4886 // a "Push lr" instruction, followed by a call. |
| 4887 // TODO(jbramley): Verify that this call is always made with relocation. |
| 4888 static const int kReturnAddressDistanceFromFunctionStart = |
| 4889 Assembler::kCallSizeWithRelocation + (2 * kInstructionSize); |
| 4890 |
| 4891 // Save all kCallerSaved registers (including lr), since this can be called |
| 4892 // from anywhere. |
| 4893 // TODO(jbramley): What about FP registers? |
| 4894 __ PushCPURegList(kCallerSaved); |
| 4895 ASSERT(kCallerSaved.IncludesAliasOf(lr)); |
| 4896 const int kNumSavedRegs = kCallerSaved.Count(); |
| 4897 |
| 4898 // Compute the function's address as the first argument. |
| 4899 __ Sub(x0, lr, kReturnAddressDistanceFromFunctionStart); |
| 4900 |
| 4901 #if V8_HOST_ARCH_A64 |
| 4902 uintptr_t entry_hook = |
| 4903 reinterpret_cast<uintptr_t>(masm->isolate()->function_entry_hook()); |
| 4904 __ Mov(x10, entry_hook); |
| 4905 #else |
| 4906 // Under the simulator we need to indirect the entry hook through a trampoline |
| 4907 // function at a known address. |
| 4908 ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline)); |
| 4909 __ Mov(x10, Operand(ExternalReference(&dispatcher, |
| 4910 ExternalReference::BUILTIN_CALL, |
| 4911 masm->isolate()))); |
| 4912 // It additionally takes an isolate as a third parameter |
| 4913 __ Mov(x2, Operand(ExternalReference::isolate_address(masm->isolate()))); |
| 4914 #endif |
| 4915 |
| 4916 // The caller's return address is above the saved temporaries. |
| 4917 // Grab its location for the second argument to the hook. |
| 4918 __ Add(x1, __ StackPointer(), kNumSavedRegs * kPointerSize); |
| 4919 |
| 4920 { |
| 4921 // Create a dummy frame, as CallCFunction requires this. |
| 4922 FrameScope frame(masm, StackFrame::MANUAL); |
| 4923 __ CallCFunction(x10, 2, 0); |
| 4924 } |
| 4925 |
| 4926 __ PopCPURegList(kCallerSaved); |
| 4927 __ Ret(); |
| 4928 } |
| 4929 |
| 4930 |
| 4931 void DirectCEntryStub::Generate(MacroAssembler* masm) { |
| 4932 // When calling into C++ code the stack pointer must be csp. |
| 4933 // Therefore this code must use csp for peek/poke operations when the |
| 4934 // stub is generated. When the stub is called |
| 4935 // (via DirectCEntryStub::GenerateCall), the caller must setup an ExitFrame |
| 4936 // and configure the stack pointer *before* doing the call. |
| 4937 const Register old_stack_pointer = __ StackPointer(); |
| 4938 __ SetStackPointer(csp); |
| 4939 |
| 4940 // Put return address on the stack (accessible to GC through exit frame pc). |
| 4941 __ Poke(lr, 0); |
| 4942 // Call the C++ function. |
| 4943 __ Blr(x10); |
| 4944 // Return to calling code. |
| 4945 __ Peek(lr, 0); |
| 4946 __ Ret(); |
| 4947 |
| 4948 __ SetStackPointer(old_stack_pointer); |
| 4949 } |
| 4950 |
| 4951 void DirectCEntryStub::GenerateCall(MacroAssembler* masm, |
| 4952 Register target) { |
| 4953 // Make sure the caller configured the stack pointer (see comment in |
| 4954 // DirectCEntryStub::Generate). |
| 4955 ASSERT(csp.Is(__ StackPointer())); |
| 4956 |
| 4957 intptr_t code = |
| 4958 reinterpret_cast<intptr_t>(GetCode(masm->isolate()).location()); |
| 4959 __ Mov(lr, Operand(code, RelocInfo::CODE_TARGET)); |
| 4960 __ Mov(x10, target); |
| 4961 // Branch to the stub. |
| 4962 __ Blr(lr); |
| 4963 } |
| 4964 |
| 4965 |
| 4966 // Probe the name dictionary in the 'elements' register. |
| 4967 // Jump to the 'done' label if a property with the given name is found. |
| 4968 // Jump to the 'miss' label otherwise. |
| 4969 // |
| 4970 // If lookup was successful 'scratch2' will be equal to elements + 4 * index. |
| 4971 // 'elements' and 'name' registers are preserved on miss. |
| 4972 void NameDictionaryLookupStub::GeneratePositiveLookup( |
| 4973 MacroAssembler* masm, |
| 4974 Label* miss, |
| 4975 Label* done, |
| 4976 Register elements, |
| 4977 Register name, |
| 4978 Register scratch1, |
| 4979 Register scratch2) { |
| 4980 ASSERT(!AreAliased(elements, name, scratch1, scratch2)); |
| 4981 |
| 4982 // Assert that name contains a string. |
| 4983 __ AssertName(name); |
| 4984 |
| 4985 // Compute the capacity mask. |
| 4986 __ Ldrsw(scratch1, UntagSmiFieldMemOperand(elements, kCapacityOffset)); |
| 4987 __ Sub(scratch1, scratch1, 1); |
| 4988 |
| 4989 // Generate an unrolled loop that performs a few probes before giving up. |
| 4990 for (int i = 0; i < kInlinedProbes; i++) { |
| 4991 // Compute the masked index: (hash + i + i * i) & mask. |
| 4992 __ Ldr(scratch2, FieldMemOperand(name, Name::kHashFieldOffset)); |
| 4993 if (i > 0) { |
| 4994 // Add the probe offset (i + i * i) left shifted to avoid right shifting |
| 4995 // the hash in a separate instruction. The value hash + i + i * i is right |
| 4996 // shifted in the following and instruction. |
| 4997 ASSERT(NameDictionary::GetProbeOffset(i) < |
| 4998 1 << (32 - Name::kHashFieldOffset)); |
| 4999 __ Add(scratch2, scratch2, Operand( |
| 5000 NameDictionary::GetProbeOffset(i) << Name::kHashShift)); |
| 5001 } |
| 5002 __ And(scratch2, scratch1, Operand(scratch2, LSR, Name::kHashShift)); |
| 5003 |
| 5004 // Scale the index by multiplying by the element size. |
| 5005 ASSERT(NameDictionary::kEntrySize == 3); |
| 5006 __ Add(scratch2, scratch2, Operand(scratch2, LSL, 1)); |
| 5007 |
| 5008 // Check if the key is identical to the name. |
| 5009 __ Add(scratch2, elements, Operand(scratch2, LSL, kPointerSizeLog2)); |
| 5010 // TODO(jbramley): We need another scratch here, but some callers can't |
| 5011 // provide a scratch3 so we have to use Tmp1(). We should find a clean way |
| 5012 // to make it unavailable to the MacroAssembler for a short time. |
| 5013 __ Ldr(__ Tmp1(), FieldMemOperand(scratch2, kElementsStartOffset)); |
| 5014 __ Cmp(name, __ Tmp1()); |
| 5015 __ B(eq, done); |
| 5016 } |
| 5017 |
| 5018 // The inlined probes didn't find the entry. |
| 5019 // Call the complete stub to scan the whole dictionary. |
| 5020 |
| 5021 CPURegList spill_list(CPURegister::kRegister, kXRegSize, 0, 6); |
| 5022 spill_list.Combine(lr); |
| 5023 spill_list.Remove(scratch1); |
| 5024 spill_list.Remove(scratch2); |
| 5025 |
| 5026 __ PushCPURegList(spill_list); |
| 5027 |
| 5028 if (name.is(x0)) { |
| 5029 ASSERT(!elements.is(x1)); |
| 5030 __ Mov(x1, name); |
| 5031 __ Mov(x0, elements); |
| 5032 } else { |
| 5033 __ Mov(x0, elements); |
| 5034 __ Mov(x1, name); |
| 5035 } |
| 5036 |
| 5037 Label not_found; |
| 5038 NameDictionaryLookupStub stub(POSITIVE_LOOKUP); |
| 5039 __ CallStub(&stub); |
| 5040 __ Cbz(x0, ¬_found); |
| 5041 __ Mov(scratch2, x2); // Move entry index into scratch2. |
| 5042 __ PopCPURegList(spill_list); |
| 5043 __ B(done); |
| 5044 |
| 5045 __ Bind(¬_found); |
| 5046 __ PopCPURegList(spill_list); |
| 5047 __ B(miss); |
| 5048 } |
| 5049 |
| 5050 |
| 5051 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm, |
| 5052 Label* miss, |
| 5053 Label* done, |
| 5054 Register receiver, |
| 5055 Register properties, |
| 5056 Handle<Name> name, |
| 5057 Register scratch0) { |
| 5058 ASSERT(!AreAliased(receiver, properties, scratch0)); |
| 5059 ASSERT(name->IsUniqueName()); |
| 5060 // If names of slots in range from 1 to kProbes - 1 for the hash value are |
| 5061 // not equal to the name and kProbes-th slot is not used (its name is the |
| 5062 // undefined value), it guarantees the hash table doesn't contain the |
| 5063 // property. It's true even if some slots represent deleted properties |
| 5064 // (their names are the hole value). |
| 5065 for (int i = 0; i < kInlinedProbes; i++) { |
| 5066 // scratch0 points to properties hash. |
| 5067 // Compute the masked index: (hash + i + i * i) & mask. |
| 5068 Register index = scratch0; |
| 5069 // Capacity is smi 2^n. |
| 5070 __ Ldrsw(index, UntagSmiFieldMemOperand(properties, kCapacityOffset)); |
| 5071 __ Sub(index, index, 1); |
| 5072 __ And(index, index, name->Hash() + NameDictionary::GetProbeOffset(i)); |
| 5073 |
| 5074 // Scale the index by multiplying by the entry size. |
| 5075 ASSERT(NameDictionary::kEntrySize == 3); |
| 5076 __ Add(index, index, Operand(index, LSL, 1)); // index *= 3. |
| 5077 |
| 5078 Register entity_name = scratch0; |
| 5079 // Having undefined at this place means the name is not contained. |
| 5080 Register tmp = index; |
| 5081 __ Add(tmp, properties, Operand(index, LSL, kPointerSizeLog2)); |
| 5082 __ Ldr(entity_name, FieldMemOperand(tmp, kElementsStartOffset)); |
| 5083 |
| 5084 __ JumpIfRoot(entity_name, Heap::kUndefinedValueRootIndex, done); |
| 5085 |
| 5086 // Stop if found the property. |
| 5087 __ Cmp(entity_name, Operand(name)); |
| 5088 __ B(eq, miss); |
| 5089 |
| 5090 Label good; |
| 5091 __ JumpIfRoot(entity_name, Heap::kTheHoleValueRootIndex, &good); |
| 5092 |
| 5093 // Check if the entry name is not a unique name. |
| 5094 __ Ldr(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset)); |
| 5095 __ Ldrb(entity_name, |
| 5096 FieldMemOperand(entity_name, Map::kInstanceTypeOffset)); |
| 5097 __ JumpIfNotUniqueName(entity_name, miss); |
| 5098 __ Bind(&good); |
| 5099 } |
| 5100 |
| 5101 CPURegList spill_list(CPURegister::kRegister, kXRegSize, 0, 6); |
| 5102 spill_list.Combine(lr); |
| 5103 spill_list.Remove(scratch0); // Scratch registers don't need to be preserved. |
| 5104 |
| 5105 __ PushCPURegList(spill_list); |
| 5106 |
| 5107 __ Ldr(x0, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); |
| 5108 __ Mov(x1, Operand(name)); |
| 5109 NameDictionaryLookupStub stub(NEGATIVE_LOOKUP); |
| 5110 __ CallStub(&stub); |
| 5111 // Move stub return value to scratch0. Note that scratch0 is not included in |
| 5112 // spill_list and won't be clobbered by PopCPURegList. |
| 5113 __ Mov(scratch0, x0); |
| 5114 __ PopCPURegList(spill_list); |
| 5115 |
| 5116 __ Cbz(scratch0, done); |
| 5117 __ B(miss); |
| 5118 } |
| 5119 |
| 5120 |
| 5121 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) { |
| 5122 // This stub overrides SometimesSetsUpAFrame() to return false. That means |
| 5123 // we cannot call anything that could cause a GC from this stub. |
| 5124 // |
| 5125 // Arguments are in x0 and x1: |
| 5126 // x0: property dictionary. |
| 5127 // x1: the name of the property we are looking for. |
| 5128 // |
| 5129 // Return value is in x0 and is zero if lookup failed, non zero otherwise. |
| 5130 // If the lookup is successful, x2 will contains the index of the entry. |
| 5131 |
| 5132 Register result = x0; |
| 5133 Register dictionary = x0; |
| 5134 Register key = x1; |
| 5135 Register index = x2; |
| 5136 Register mask = x3; |
| 5137 Register hash = x4; |
| 5138 Register undefined = x5; |
| 5139 Register entry_key = x6; |
| 5140 |
| 5141 Label in_dictionary, maybe_in_dictionary, not_in_dictionary; |
| 5142 |
| 5143 __ Ldrsw(mask, UntagSmiFieldMemOperand(dictionary, kCapacityOffset)); |
| 5144 __ Sub(mask, mask, 1); |
| 5145 |
| 5146 __ Ldr(hash, FieldMemOperand(key, Name::kHashFieldOffset)); |
| 5147 __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex); |
| 5148 |
| 5149 for (int i = kInlinedProbes; i < kTotalProbes; i++) { |
| 5150 // Compute the masked index: (hash + i + i * i) & mask. |
| 5151 // Capacity is smi 2^n. |
| 5152 if (i > 0) { |
| 5153 // Add the probe offset (i + i * i) left shifted to avoid right shifting |
| 5154 // the hash in a separate instruction. The value hash + i + i * i is right |
| 5155 // shifted in the following and instruction. |
| 5156 ASSERT(NameDictionary::GetProbeOffset(i) < |
| 5157 1 << (32 - Name::kHashFieldOffset)); |
| 5158 __ Add(index, hash, |
| 5159 NameDictionary::GetProbeOffset(i) << Name::kHashShift); |
| 5160 } else { |
| 5161 __ Mov(index, hash); |
| 5162 } |
| 5163 __ And(index, mask, Operand(index, LSR, Name::kHashShift)); |
| 5164 |
| 5165 // Scale the index by multiplying by the entry size. |
| 5166 ASSERT(NameDictionary::kEntrySize == 3); |
| 5167 __ Add(index, index, Operand(index, LSL, 1)); // index *= 3. |
| 5168 |
| 5169 __ Add(index, dictionary, Operand(index, LSL, kPointerSizeLog2)); |
| 5170 __ Ldr(entry_key, FieldMemOperand(index, kElementsStartOffset)); |
| 5171 |
| 5172 // Having undefined at this place means the name is not contained. |
| 5173 __ Cmp(entry_key, undefined); |
| 5174 __ B(eq, ¬_in_dictionary); |
| 5175 |
| 5176 // Stop if found the property. |
| 5177 __ Cmp(entry_key, key); |
| 5178 __ B(eq, &in_dictionary); |
| 5179 |
| 5180 if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) { |
| 5181 // Check if the entry name is not a unique name. |
| 5182 __ Ldr(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset)); |
| 5183 __ Ldrb(entry_key, FieldMemOperand(entry_key, Map::kInstanceTypeOffset)); |
| 5184 __ JumpIfNotUniqueName(entry_key, &maybe_in_dictionary); |
| 5185 } |
| 5186 } |
| 5187 |
| 5188 __ Bind(&maybe_in_dictionary); |
| 5189 // If we are doing negative lookup then probing failure should be |
| 5190 // treated as a lookup success. For positive lookup, probing failure |
| 5191 // should be treated as lookup failure. |
| 5192 if (mode_ == POSITIVE_LOOKUP) { |
| 5193 __ Mov(result, 0); |
| 5194 __ Ret(); |
| 5195 } |
| 5196 |
| 5197 __ Bind(&in_dictionary); |
| 5198 __ Mov(result, 1); |
| 5199 __ Ret(); |
| 5200 |
| 5201 __ Bind(¬_in_dictionary); |
| 5202 __ Mov(result, 0); |
| 5203 __ Ret(); |
| 5204 } |
| 5205 |
| 5206 |
| 5207 template<class T> |
| 5208 static void CreateArrayDispatch(MacroAssembler* masm, |
| 5209 AllocationSiteOverrideMode mode) { |
| 5210 ASM_LOCATION("CreateArrayDispatch"); |
| 5211 if (mode == DISABLE_ALLOCATION_SITES) { |
| 5212 T stub(GetInitialFastElementsKind(), mode); |
| 5213 __ TailCallStub(&stub); |
| 5214 |
| 5215 } else if (mode == DONT_OVERRIDE) { |
| 5216 Register kind = x3; |
| 5217 int last_index = |
| 5218 GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND); |
| 5219 for (int i = 0; i <= last_index; ++i) { |
| 5220 Label next; |
| 5221 ElementsKind candidate_kind = GetFastElementsKindFromSequenceIndex(i); |
| 5222 // TODO(jbramley): Is this the best way to handle this? Can we make the |
| 5223 // tail calls conditional, rather than hopping over each one? |
| 5224 __ CompareAndBranch(kind, candidate_kind, ne, &next); |
| 5225 T stub(candidate_kind); |
| 5226 __ TailCallStub(&stub); |
| 5227 __ Bind(&next); |
| 5228 } |
| 5229 |
| 5230 // If we reached this point there is a problem. |
| 5231 __ Abort(kUnexpectedElementsKindInArrayConstructor); |
| 5232 |
| 5233 } else { |
| 5234 UNREACHABLE(); |
| 5235 } |
| 5236 } |
| 5237 |
| 5238 |
| 5239 // TODO(jbramley): If this needs to be a special case, make it a proper template |
| 5240 // specialization, and not a separate function. |
| 5241 static void CreateArrayDispatchOneArgument(MacroAssembler* masm, |
| 5242 AllocationSiteOverrideMode mode) { |
| 5243 ASM_LOCATION("CreateArrayDispatchOneArgument"); |
| 5244 // x0 - argc |
| 5245 // x1 - constructor? |
| 5246 // x2 - allocation site (if mode != DISABLE_ALLOCATION_SITES) |
| 5247 // x3 - kind (if mode != DISABLE_ALLOCATION_SITES) |
| 5248 // sp[0] - last argument |
| 5249 |
| 5250 Register allocation_site = x2; |
| 5251 Register kind = x3; |
| 5252 |
| 5253 Label normal_sequence; |
| 5254 if (mode == DONT_OVERRIDE) { |
| 5255 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); |
| 5256 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); |
| 5257 STATIC_ASSERT(FAST_ELEMENTS == 2); |
| 5258 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); |
| 5259 STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4); |
| 5260 STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5); |
| 5261 |
| 5262 // Is the low bit set? If so, the array is holey. |
| 5263 __ Tbnz(kind, 0, &normal_sequence); |
| 5264 } |
| 5265 |
| 5266 // Look at the last argument. |
| 5267 // TODO(jbramley): What does a 0 argument represent? |
| 5268 __ Peek(x10, 0); |
| 5269 __ Cbz(x10, &normal_sequence); |
| 5270 |
| 5271 if (mode == DISABLE_ALLOCATION_SITES) { |
| 5272 ElementsKind initial = GetInitialFastElementsKind(); |
| 5273 ElementsKind holey_initial = GetHoleyElementsKind(initial); |
| 5274 |
| 5275 ArraySingleArgumentConstructorStub stub_holey(holey_initial, |
| 5276 DISABLE_ALLOCATION_SITES); |
| 5277 __ TailCallStub(&stub_holey); |
| 5278 |
| 5279 __ Bind(&normal_sequence); |
| 5280 ArraySingleArgumentConstructorStub stub(initial, |
| 5281 DISABLE_ALLOCATION_SITES); |
| 5282 __ TailCallStub(&stub); |
| 5283 } else if (mode == DONT_OVERRIDE) { |
| 5284 // We are going to create a holey array, but our kind is non-holey. |
| 5285 // Fix kind and retry (only if we have an allocation site in the slot). |
| 5286 __ Orr(kind, kind, 1); |
| 5287 |
| 5288 if (FLAG_debug_code) { |
| 5289 __ Ldr(x10, FieldMemOperand(allocation_site, 0)); |
| 5290 __ JumpIfNotRoot(x10, Heap::kAllocationSiteMapRootIndex, |
| 5291 &normal_sequence); |
| 5292 __ Assert(eq, kExpectedAllocationSite); |
| 5293 } |
| 5294 |
| 5295 // Save the resulting elements kind in type info. We can't just store 'kind' |
| 5296 // in the AllocationSite::transition_info field because elements kind is |
| 5297 // restricted to a portion of the field; upper bits need to be left alone. |
| 5298 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); |
| 5299 __ Ldr(x11, FieldMemOperand(allocation_site, |
| 5300 AllocationSite::kTransitionInfoOffset)); |
| 5301 __ Add(x11, x11, Operand(Smi::FromInt(kFastElementsKindPackedToHoley))); |
| 5302 __ Str(x11, FieldMemOperand(allocation_site, |
| 5303 AllocationSite::kTransitionInfoOffset)); |
| 5304 |
| 5305 __ Bind(&normal_sequence); |
| 5306 int last_index = |
| 5307 GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND); |
| 5308 for (int i = 0; i <= last_index; ++i) { |
| 5309 Label next; |
| 5310 ElementsKind candidate_kind = GetFastElementsKindFromSequenceIndex(i); |
| 5311 // TODO(jbramley): Is this the best way to handle this? Can we make the |
| 5312 // tail calls conditional, rather than hopping over each one? |
| 5313 __ CompareAndBranch(kind, candidate_kind, ne, &next); |
| 5314 ArraySingleArgumentConstructorStub stub(candidate_kind); |
| 5315 __ TailCallStub(&stub); |
| 5316 __ Bind(&next); |
| 5317 } |
| 5318 |
| 5319 // If we reached this point there is a problem. |
| 5320 __ Abort(kUnexpectedElementsKindInArrayConstructor); |
| 5321 } else { |
| 5322 UNREACHABLE(); |
| 5323 } |
| 5324 } |
| 5325 |
| 5326 |
| 5327 template<class T> |
| 5328 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) { |
| 5329 int to_index = GetSequenceIndexFromFastElementsKind( |
| 5330 TERMINAL_FAST_ELEMENTS_KIND); |
| 5331 for (int i = 0; i <= to_index; ++i) { |
| 5332 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); |
| 5333 T stub(kind); |
| 5334 stub.GetCode(isolate); |
| 5335 if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) { |
| 5336 T stub1(kind, DISABLE_ALLOCATION_SITES); |
| 5337 stub1.GetCode(isolate); |
| 5338 } |
| 5339 } |
| 5340 } |
| 5341 |
| 5342 |
| 5343 void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) { |
| 5344 ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>( |
| 5345 isolate); |
| 5346 ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>( |
| 5347 isolate); |
| 5348 ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>( |
| 5349 isolate); |
| 5350 } |
| 5351 |
| 5352 |
| 5353 void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime( |
| 5354 Isolate* isolate) { |
| 5355 ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS }; |
| 5356 for (int i = 0; i < 2; i++) { |
| 5357 // For internal arrays we only need a few things |
| 5358 InternalArrayNoArgumentConstructorStub stubh1(kinds[i]); |
| 5359 stubh1.GetCode(isolate); |
| 5360 InternalArraySingleArgumentConstructorStub stubh2(kinds[i]); |
| 5361 stubh2.GetCode(isolate); |
| 5362 InternalArrayNArgumentsConstructorStub stubh3(kinds[i]); |
| 5363 stubh3.GetCode(isolate); |
| 5364 } |
| 5365 } |
| 5366 |
| 5367 |
| 5368 void ArrayConstructorStub::GenerateDispatchToArrayStub( |
| 5369 MacroAssembler* masm, |
| 5370 AllocationSiteOverrideMode mode) { |
| 5371 Register argc = x0; |
| 5372 if (argument_count_ == ANY) { |
| 5373 Label zero_case, n_case; |
| 5374 __ Cbz(argc, &zero_case); |
| 5375 __ Cmp(argc, 1); |
| 5376 __ B(ne, &n_case); |
| 5377 |
| 5378 // One argument. |
| 5379 CreateArrayDispatchOneArgument(masm, mode); |
| 5380 |
| 5381 __ Bind(&zero_case); |
| 5382 // No arguments. |
| 5383 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode); |
| 5384 |
| 5385 __ Bind(&n_case); |
| 5386 // N arguments. |
| 5387 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode); |
| 5388 |
| 5389 } else if (argument_count_ == NONE) { |
| 5390 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode); |
| 5391 } else if (argument_count_ == ONE) { |
| 5392 CreateArrayDispatchOneArgument(masm, mode); |
| 5393 } else if (argument_count_ == MORE_THAN_ONE) { |
| 5394 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode); |
| 5395 } else { |
| 5396 UNREACHABLE(); |
| 5397 } |
| 5398 } |
| 5399 |
| 5400 |
| 5401 void ArrayConstructorStub::Generate(MacroAssembler* masm) { |
| 5402 ASM_LOCATION("ArrayConstructorStub::Generate"); |
| 5403 // ----------- S t a t e ------------- |
| 5404 // -- x0 : argc (only if argument_count_ == ANY) |
| 5405 // -- x1 : constructor |
| 5406 // -- x2 : feedback vector (fixed array or undefined) |
| 5407 // -- x3 : slot index (if x2 is fixed array) |
| 5408 // -- sp[0] : return address |
| 5409 // -- sp[4] : last argument |
| 5410 // ----------------------------------- |
| 5411 Register constructor = x1; |
| 5412 Register feedback_vector = x2; |
| 5413 Register slot_index = x3; |
| 5414 |
| 5415 if (FLAG_debug_code) { |
| 5416 // The array construct code is only set for the global and natives |
| 5417 // builtin Array functions which always have maps. |
| 5418 |
| 5419 Label unexpected_map, map_ok; |
| 5420 // Initial map for the builtin Array function should be a map. |
| 5421 __ Ldr(x10, FieldMemOperand(constructor, |
| 5422 JSFunction::kPrototypeOrInitialMapOffset)); |
| 5423 // Will both indicate a NULL and a Smi. |
| 5424 __ JumpIfSmi(x10, &unexpected_map); |
| 5425 __ JumpIfObjectType(x10, x10, x11, MAP_TYPE, &map_ok); |
| 5426 __ Bind(&unexpected_map); |
| 5427 __ Abort(kUnexpectedInitialMapForArrayFunction); |
| 5428 __ Bind(&map_ok); |
| 5429 |
| 5430 // In feedback_vector, we expect either undefined or a valid fixed array. |
| 5431 Label okay_here; |
| 5432 Handle<Map> fixed_array_map = masm->isolate()->factory()->fixed_array_map(); |
| 5433 __ JumpIfRoot(feedback_vector, Heap::kUndefinedValueRootIndex, &okay_here); |
| 5434 __ Ldr(x10, FieldMemOperand(feedback_vector, FixedArray::kMapOffset)); |
| 5435 __ Cmp(x10, Operand(fixed_array_map)); |
| 5436 __ Assert(eq, kExpectedFixedArrayInFeedbackVector); |
| 5437 |
| 5438 // slot_index should be a smi if we don't have undefined in feedback_vector. |
| 5439 __ AssertSmi(slot_index); |
| 5440 |
| 5441 __ Bind(&okay_here); |
| 5442 } |
| 5443 |
| 5444 Register allocation_site = x2; // Overwrites feedback_vector. |
| 5445 Register kind = x3; |
| 5446 Label no_info; |
| 5447 // Get the elements kind and case on that. |
| 5448 __ JumpIfRoot(feedback_vector, Heap::kUndefinedValueRootIndex, &no_info); |
| 5449 __ Add(feedback_vector, feedback_vector, |
| 5450 Operand::UntagSmiAndScale(slot_index, kPointerSizeLog2)); |
| 5451 __ Ldr(allocation_site, FieldMemOperand(feedback_vector, |
| 5452 FixedArray::kHeaderSize)); |
| 5453 |
| 5454 // If the feedback vector is undefined, or contains anything other than an |
| 5455 // AllocationSite, call an array constructor that doesn't use AllocationSites. |
| 5456 __ Ldr(x10, FieldMemOperand(allocation_site, AllocationSite::kMapOffset)); |
| 5457 __ JumpIfNotRoot(x10, Heap::kAllocationSiteMapRootIndex, &no_info); |
| 5458 |
| 5459 __ Ldrsw(kind, |
| 5460 UntagSmiFieldMemOperand(allocation_site, |
| 5461 AllocationSite::kTransitionInfoOffset)); |
| 5462 __ And(kind, kind, AllocationSite::ElementsKindBits::kMask); |
| 5463 GenerateDispatchToArrayStub(masm, DONT_OVERRIDE); |
| 5464 |
| 5465 __ Bind(&no_info); |
| 5466 GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES); |
| 5467 } |
| 5468 |
| 5469 |
| 5470 void InternalArrayConstructorStub::GenerateCase( |
| 5471 MacroAssembler* masm, ElementsKind kind) { |
| 5472 Label zero_case, n_case; |
| 5473 Register argc = x0; |
| 5474 |
| 5475 __ Cbz(argc, &zero_case); |
| 5476 __ CompareAndBranch(argc, 1, ne, &n_case); |
| 5477 |
| 5478 // One argument. |
| 5479 if (IsFastPackedElementsKind(kind)) { |
| 5480 Label packed_case; |
| 5481 |
| 5482 // We might need to create a holey array; look at the first argument. |
| 5483 __ Peek(x10, 0); |
| 5484 __ Cbz(x10, &packed_case); |
| 5485 |
| 5486 InternalArraySingleArgumentConstructorStub |
| 5487 stub1_holey(GetHoleyElementsKind(kind)); |
| 5488 __ TailCallStub(&stub1_holey); |
| 5489 |
| 5490 __ Bind(&packed_case); |
| 5491 } |
| 5492 InternalArraySingleArgumentConstructorStub stub1(kind); |
| 5493 __ TailCallStub(&stub1); |
| 5494 |
| 5495 __ Bind(&zero_case); |
| 5496 // No arguments. |
| 5497 InternalArrayNoArgumentConstructorStub stub0(kind); |
| 5498 __ TailCallStub(&stub0); |
| 5499 |
| 5500 __ Bind(&n_case); |
| 5501 // N arguments. |
| 5502 InternalArrayNArgumentsConstructorStub stubN(kind); |
| 5503 __ TailCallStub(&stubN); |
| 5504 } |
| 5505 |
| 5506 |
| 5507 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) { |
| 5508 // ----------- S t a t e ------------- |
| 5509 // -- x0 : argc |
| 5510 // -- x1 : constructor |
| 5511 // -- sp[0] : return address |
| 5512 // -- sp[4] : last argument |
| 5513 // ----------------------------------- |
| 5514 Handle<Object> undefined_sentinel( |
| 5515 masm->isolate()->heap()->undefined_value(), masm->isolate()); |
| 5516 |
| 5517 Register constructor = x1; |
| 5518 |
| 5519 if (FLAG_debug_code) { |
| 5520 // The array construct code is only set for the global and natives |
| 5521 // builtin Array functions which always have maps. |
| 5522 |
| 5523 Label unexpected_map, map_ok; |
| 5524 // Initial map for the builtin Array function should be a map. |
| 5525 __ Ldr(x10, FieldMemOperand(constructor, |
| 5526 JSFunction::kPrototypeOrInitialMapOffset)); |
| 5527 // Will both indicate a NULL and a Smi. |
| 5528 __ JumpIfSmi(x10, &unexpected_map); |
| 5529 __ JumpIfObjectType(x10, x10, x11, MAP_TYPE, &map_ok); |
| 5530 __ Bind(&unexpected_map); |
| 5531 __ Abort(kUnexpectedInitialMapForArrayFunction); |
| 5532 __ Bind(&map_ok); |
| 5533 } |
| 5534 |
| 5535 Register kind = w3; |
| 5536 // Figure out the right elements kind |
| 5537 __ Ldr(x10, FieldMemOperand(constructor, |
| 5538 JSFunction::kPrototypeOrInitialMapOffset)); |
| 5539 |
| 5540 // TODO(jbramley): Add a helper function to read elements kind from an |
| 5541 // existing map. |
| 5542 // Load the map's "bit field 2" into result. |
| 5543 __ Ldr(kind, FieldMemOperand(x10, Map::kBitField2Offset)); |
| 5544 // Retrieve elements_kind from bit field 2. |
| 5545 __ Ubfx(kind, kind, Map::kElementsKindShift, Map::kElementsKindBitCount); |
| 5546 |
| 5547 if (FLAG_debug_code) { |
| 5548 Label done; |
| 5549 __ Cmp(x3, FAST_ELEMENTS); |
| 5550 __ Ccmp(x3, FAST_HOLEY_ELEMENTS, ZFlag, ne); |
| 5551 __ Assert(eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray); |
| 5552 } |
| 5553 |
| 5554 Label fast_elements_case; |
| 5555 __ CompareAndBranch(kind, FAST_ELEMENTS, eq, &fast_elements_case); |
| 5556 GenerateCase(masm, FAST_HOLEY_ELEMENTS); |
| 5557 |
| 5558 __ Bind(&fast_elements_case); |
| 5559 GenerateCase(masm, FAST_ELEMENTS); |
| 5560 } |
| 5561 |
| 5562 |
| 5563 void CallApiFunctionStub::Generate(MacroAssembler* masm) { |
| 5564 // ----------- S t a t e ------------- |
| 5565 // -- x0 : callee |
| 5566 // -- x4 : call_data |
| 5567 // -- x2 : holder |
| 5568 // -- x1 : api_function_address |
| 5569 // -- cp : context |
| 5570 // -- |
| 5571 // -- sp[0] : last argument |
| 5572 // -- ... |
| 5573 // -- sp[(argc - 1) * 8] : first argument |
| 5574 // -- sp[argc * 8] : receiver |
| 5575 // ----------------------------------- |
| 5576 |
| 5577 Register callee = x0; |
| 5578 Register call_data = x4; |
| 5579 Register holder = x2; |
| 5580 Register api_function_address = x1; |
| 5581 Register context = cp; |
| 5582 |
| 5583 int argc = ArgumentBits::decode(bit_field_); |
| 5584 bool restore_context = RestoreContextBits::decode(bit_field_); |
| 5585 bool call_data_undefined = CallDataUndefinedBits::decode(bit_field_); |
| 5586 |
| 5587 typedef FunctionCallbackArguments FCA; |
| 5588 |
| 5589 STATIC_ASSERT(FCA::kContextSaveIndex == 6); |
| 5590 STATIC_ASSERT(FCA::kCalleeIndex == 5); |
| 5591 STATIC_ASSERT(FCA::kDataIndex == 4); |
| 5592 STATIC_ASSERT(FCA::kReturnValueOffset == 3); |
| 5593 STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2); |
| 5594 STATIC_ASSERT(FCA::kIsolateIndex == 1); |
| 5595 STATIC_ASSERT(FCA::kHolderIndex == 0); |
| 5596 STATIC_ASSERT(FCA::kArgsLength == 7); |
| 5597 |
| 5598 Isolate* isolate = masm->isolate(); |
| 5599 |
| 5600 // FunctionCallbackArguments: context, callee and call data. |
| 5601 __ Push(context, callee, call_data); |
| 5602 |
| 5603 // Load context from callee |
| 5604 __ Ldr(context, FieldMemOperand(callee, JSFunction::kContextOffset)); |
| 5605 |
| 5606 if (!call_data_undefined) { |
| 5607 __ LoadRoot(call_data, Heap::kUndefinedValueRootIndex); |
| 5608 } |
| 5609 Register isolate_reg = x5; |
| 5610 __ Mov(isolate_reg, Operand(ExternalReference::isolate_address(isolate))); |
| 5611 |
| 5612 // FunctionCallbackArguments: |
| 5613 // return value, return value default, isolate, holder. |
| 5614 __ Push(call_data, call_data, isolate_reg, holder); |
| 5615 |
| 5616 // Prepare arguments. |
| 5617 Register args = x6; |
| 5618 __ Mov(args, masm->StackPointer()); |
| 5619 |
| 5620 // Allocate the v8::Arguments structure in the arguments' space, since it's |
| 5621 // not controlled by GC. |
| 5622 const int kApiStackSpace = 4; |
| 5623 |
| 5624 // Allocate space for CallApiFunctionAndReturn can store some scratch |
| 5625 // registeres on the stack. |
| 5626 const int kCallApiFunctionSpillSpace = 4; |
| 5627 |
| 5628 FrameScope frame_scope(masm, StackFrame::MANUAL); |
| 5629 __ EnterExitFrame(false, x10, kApiStackSpace + kCallApiFunctionSpillSpace); |
| 5630 |
| 5631 // TODO(all): Optimize this with stp and suchlike. |
| 5632 ASSERT(!AreAliased(x0, api_function_address)); |
| 5633 // x0 = FunctionCallbackInfo& |
| 5634 // Arguments is after the return address. |
| 5635 __ Add(x0, masm->StackPointer(), 1 * kPointerSize); |
| 5636 // FunctionCallbackInfo::implicit_args_ |
| 5637 __ Str(args, MemOperand(x0, 0 * kPointerSize)); |
| 5638 // FunctionCallbackInfo::values_ |
| 5639 __ Add(x10, args, Operand((FCA::kArgsLength - 1 + argc) * kPointerSize)); |
| 5640 __ Str(x10, MemOperand(x0, 1 * kPointerSize)); |
| 5641 // FunctionCallbackInfo::length_ = argc |
| 5642 __ Mov(x10, argc); |
| 5643 __ Str(x10, MemOperand(x0, 2 * kPointerSize)); |
| 5644 // FunctionCallbackInfo::is_construct_call = 0 |
| 5645 __ Str(xzr, MemOperand(x0, 3 * kPointerSize)); |
| 5646 |
| 5647 const int kStackUnwindSpace = argc + FCA::kArgsLength + 1; |
| 5648 Address thunk_address = FUNCTION_ADDR(&InvokeFunctionCallback); |
| 5649 ExternalReference::Type thunk_type = ExternalReference::PROFILING_API_CALL; |
| 5650 ApiFunction thunk_fun(thunk_address); |
| 5651 ExternalReference thunk_ref = ExternalReference(&thunk_fun, thunk_type, |
| 5652 masm->isolate()); |
| 5653 |
| 5654 AllowExternalCallThatCantCauseGC scope(masm); |
| 5655 MemOperand context_restore_operand( |
| 5656 fp, (2 + FCA::kContextSaveIndex) * kPointerSize); |
| 5657 MemOperand return_value_operand(fp, |
| 5658 (2 + FCA::kReturnValueOffset) * kPointerSize); |
| 5659 |
| 5660 const int spill_offset = 1 + kApiStackSpace; |
| 5661 __ CallApiFunctionAndReturn(api_function_address, |
| 5662 thunk_ref, |
| 5663 kStackUnwindSpace, |
| 5664 spill_offset, |
| 5665 return_value_operand, |
| 5666 restore_context ? |
| 5667 &context_restore_operand : NULL); |
| 5668 } |
| 5669 |
| 5670 |
| 5671 void CallApiGetterStub::Generate(MacroAssembler* masm) { |
| 5672 // ----------- S t a t e ------------- |
| 5673 // -- sp[0] : name |
| 5674 // -- sp[8 - kArgsLength*8] : PropertyCallbackArguments object |
| 5675 // -- ... |
| 5676 // -- x2 : api_function_address |
| 5677 // ----------------------------------- |
| 5678 |
| 5679 Register api_function_address = x2; |
| 5680 |
| 5681 __ Mov(x0, masm->StackPointer()); // x0 = Handle<Name> |
| 5682 __ Add(x1, x0, 1 * kPointerSize); // x1 = PCA |
| 5683 |
| 5684 const int kApiStackSpace = 1; |
| 5685 |
| 5686 // Allocate space for CallApiFunctionAndReturn can store some scratch |
| 5687 // registeres on the stack. |
| 5688 const int kCallApiFunctionSpillSpace = 4; |
| 5689 |
| 5690 FrameScope frame_scope(masm, StackFrame::MANUAL); |
| 5691 __ EnterExitFrame(false, x10, kApiStackSpace + kCallApiFunctionSpillSpace); |
| 5692 |
| 5693 // Create PropertyAccessorInfo instance on the stack above the exit frame with |
| 5694 // x1 (internal::Object** args_) as the data. |
| 5695 __ Poke(x1, 1 * kPointerSize); |
| 5696 __ Add(x1, masm->StackPointer(), 1 * kPointerSize); // x1 = AccessorInfo& |
| 5697 |
| 5698 const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1; |
| 5699 |
| 5700 Address thunk_address = FUNCTION_ADDR(&InvokeAccessorGetterCallback); |
| 5701 ExternalReference::Type thunk_type = |
| 5702 ExternalReference::PROFILING_GETTER_CALL; |
| 5703 ApiFunction thunk_fun(thunk_address); |
| 5704 ExternalReference thunk_ref = ExternalReference(&thunk_fun, thunk_type, |
| 5705 masm->isolate()); |
| 5706 |
| 5707 const int spill_offset = 1 + kApiStackSpace; |
| 5708 __ CallApiFunctionAndReturn(api_function_address, |
| 5709 thunk_ref, |
| 5710 kStackUnwindSpace, |
| 5711 spill_offset, |
| 5712 MemOperand(fp, 6 * kPointerSize), |
| 5713 NULL); |
| 5714 } |
| 5715 |
| 5716 |
| 5717 #undef __ |
| 5718 |
| 5719 } } // namespace v8::internal |
| 5720 |
| 5721 #endif // V8_TARGET_ARCH_A64 |
OLD | NEW |