| Index: src/a64/code-stubs-a64.cc
|
| diff --git a/src/a64/code-stubs-a64.cc b/src/a64/code-stubs-a64.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..269b97f41c17fe8d4107bceb1fbaf832977aabeb
|
| --- /dev/null
|
| +++ b/src/a64/code-stubs-a64.cc
|
| @@ -0,0 +1,5721 @@
|
| +// Copyright 2013 the V8 project authors. All rights reserved.
|
| +// Redistribution and use in source and binary forms, with or without
|
| +// modification, are permitted provided that the following conditions are
|
| +// met:
|
| +//
|
| +// * Redistributions of source code must retain the above copyright
|
| +// notice, this list of conditions and the following disclaimer.
|
| +// * Redistributions in binary form must reproduce the above
|
| +// copyright notice, this list of conditions and the following
|
| +// disclaimer in the documentation and/or other materials provided
|
| +// with the distribution.
|
| +// * Neither the name of Google Inc. nor the names of its
|
| +// contributors may be used to endorse or promote products derived
|
| +// from this software without specific prior written permission.
|
| +//
|
| +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
| +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
| +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
| +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
| +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
| +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
| +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
| +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
| +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| +
|
| +#include "v8.h"
|
| +
|
| +#if V8_TARGET_ARCH_A64
|
| +
|
| +#include "bootstrapper.h"
|
| +#include "code-stubs.h"
|
| +#include "regexp-macro-assembler.h"
|
| +#include "stub-cache.h"
|
| +
|
| +namespace v8 {
|
| +namespace internal {
|
| +
|
| +
|
| +void FastNewClosureStub::InitializeInterfaceDescriptor(
|
| + Isolate* isolate,
|
| + CodeStubInterfaceDescriptor* descriptor) {
|
| + // x2: function info
|
| + static Register registers[] = { x2 };
|
| + descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
|
| + descriptor->register_params_ = registers;
|
| + descriptor->deoptimization_handler_ =
|
| + Runtime::FunctionForId(Runtime::kNewClosureFromStubFailure)->entry;
|
| +}
|
| +
|
| +
|
| +void FastNewContextStub::InitializeInterfaceDescriptor(
|
| + Isolate* isolate,
|
| + CodeStubInterfaceDescriptor* descriptor) {
|
| + // x1: function
|
| + static Register registers[] = { x1 };
|
| + descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
|
| + descriptor->register_params_ = registers;
|
| + descriptor->deoptimization_handler_ = NULL;
|
| +}
|
| +
|
| +
|
| +void ToNumberStub::InitializeInterfaceDescriptor(
|
| + Isolate* isolate,
|
| + CodeStubInterfaceDescriptor* descriptor) {
|
| + // x0: value
|
| + static Register registers[] = { x0 };
|
| + descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
|
| + descriptor->register_params_ = registers;
|
| + descriptor->deoptimization_handler_ = NULL;
|
| +}
|
| +
|
| +
|
| +void NumberToStringStub::InitializeInterfaceDescriptor(
|
| + Isolate* isolate,
|
| + CodeStubInterfaceDescriptor* descriptor) {
|
| + // x0: value
|
| + static Register registers[] = { x0 };
|
| + descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
|
| + descriptor->register_params_ = registers;
|
| + descriptor->deoptimization_handler_ =
|
| + Runtime::FunctionForId(Runtime::kNumberToString)->entry;
|
| +}
|
| +
|
| +
|
| +void FastCloneShallowArrayStub::InitializeInterfaceDescriptor(
|
| + Isolate* isolate,
|
| + CodeStubInterfaceDescriptor* descriptor) {
|
| + // x3: array literals array
|
| + // x2: array literal index
|
| + // x1: constant elements
|
| + static Register registers[] = { x3, x2, x1 };
|
| + descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
|
| + descriptor->register_params_ = registers;
|
| + descriptor->deoptimization_handler_ =
|
| + Runtime::FunctionForId(Runtime::kCreateArrayLiteralStubBailout)->entry;
|
| +}
|
| +
|
| +
|
| +void FastCloneShallowObjectStub::InitializeInterfaceDescriptor(
|
| + Isolate* isolate,
|
| + CodeStubInterfaceDescriptor* descriptor) {
|
| + // x3: object literals array
|
| + // x2: object literal index
|
| + // x1: constant properties
|
| + // x0: object literal flags
|
| + static Register registers[] = { x3, x2, x1, x0 };
|
| + descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
|
| + descriptor->register_params_ = registers;
|
| + descriptor->deoptimization_handler_ =
|
| + Runtime::FunctionForId(Runtime::kCreateObjectLiteral)->entry;
|
| +}
|
| +
|
| +
|
| +void CreateAllocationSiteStub::InitializeInterfaceDescriptor(
|
| + Isolate* isolate,
|
| + CodeStubInterfaceDescriptor* descriptor) {
|
| + // x2: feedback vector
|
| + // x3: call feedback slot
|
| + static Register registers[] = { x2, x3 };
|
| + descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
|
| + descriptor->register_params_ = registers;
|
| + descriptor->deoptimization_handler_ = NULL;
|
| +}
|
| +
|
| +
|
| +void KeyedLoadFastElementStub::InitializeInterfaceDescriptor(
|
| + Isolate* isolate,
|
| + CodeStubInterfaceDescriptor* descriptor) {
|
| + // x1: receiver
|
| + // x0: key
|
| + static Register registers[] = { x1, x0 };
|
| + descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
|
| + descriptor->register_params_ = registers;
|
| + descriptor->deoptimization_handler_ =
|
| + FUNCTION_ADDR(KeyedLoadIC_MissFromStubFailure);
|
| +}
|
| +
|
| +
|
| +void KeyedLoadDictionaryElementStub::InitializeInterfaceDescriptor(
|
| + Isolate* isolate,
|
| + CodeStubInterfaceDescriptor* descriptor) {
|
| + // x1: receiver
|
| + // x0: key
|
| + static Register registers[] = { x1, x0 };
|
| + descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
|
| + descriptor->register_params_ = registers;
|
| + descriptor->deoptimization_handler_ =
|
| + FUNCTION_ADDR(KeyedLoadIC_MissFromStubFailure);
|
| +}
|
| +
|
| +
|
| +void RegExpConstructResultStub::InitializeInterfaceDescriptor(
|
| + Isolate* isolate,
|
| + CodeStubInterfaceDescriptor* descriptor) {
|
| + // x2: length
|
| + // x1: index (of last match)
|
| + // x0: string
|
| + static Register registers[] = { x2, x1, x0 };
|
| + descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
|
| + descriptor->register_params_ = registers;
|
| + descriptor->deoptimization_handler_ =
|
| + Runtime::FunctionForId(Runtime::kRegExpConstructResult)->entry;
|
| +}
|
| +
|
| +
|
| +void LoadFieldStub::InitializeInterfaceDescriptor(
|
| + Isolate* isolate,
|
| + CodeStubInterfaceDescriptor* descriptor) {
|
| + // x0: receiver
|
| + static Register registers[] = { x0 };
|
| + descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
|
| + descriptor->register_params_ = registers;
|
| + descriptor->deoptimization_handler_ = NULL;
|
| +}
|
| +
|
| +
|
| +void KeyedLoadFieldStub::InitializeInterfaceDescriptor(
|
| + Isolate* isolate,
|
| + CodeStubInterfaceDescriptor* descriptor) {
|
| + // x1: receiver
|
| + static Register registers[] = { x1 };
|
| + descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
|
| + descriptor->register_params_ = registers;
|
| + descriptor->deoptimization_handler_ = NULL;
|
| +}
|
| +
|
| +
|
| +void KeyedStoreFastElementStub::InitializeInterfaceDescriptor(
|
| + Isolate* isolate,
|
| + CodeStubInterfaceDescriptor* descriptor) {
|
| + // x2: receiver
|
| + // x1: key
|
| + // x0: value
|
| + static Register registers[] = { x2, x1, x0 };
|
| + descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
|
| + descriptor->register_params_ = registers;
|
| + descriptor->deoptimization_handler_ =
|
| + FUNCTION_ADDR(KeyedStoreIC_MissFromStubFailure);
|
| +}
|
| +
|
| +
|
| +void TransitionElementsKindStub::InitializeInterfaceDescriptor(
|
| + Isolate* isolate,
|
| + CodeStubInterfaceDescriptor* descriptor) {
|
| + // x0: value (js_array)
|
| + // x1: to_map
|
| + static Register registers[] = { x0, x1 };
|
| + descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
|
| + descriptor->register_params_ = registers;
|
| + Address entry =
|
| + Runtime::FunctionForId(Runtime::kTransitionElementsKind)->entry;
|
| + descriptor->deoptimization_handler_ = FUNCTION_ADDR(entry);
|
| +}
|
| +
|
| +
|
| +void CompareNilICStub::InitializeInterfaceDescriptor(
|
| + Isolate* isolate,
|
| + CodeStubInterfaceDescriptor* descriptor) {
|
| + // x0: value to compare
|
| + static Register registers[] = { x0 };
|
| + descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
|
| + descriptor->register_params_ = registers;
|
| + descriptor->deoptimization_handler_ =
|
| + FUNCTION_ADDR(CompareNilIC_Miss);
|
| + descriptor->SetMissHandler(
|
| + ExternalReference(IC_Utility(IC::kCompareNilIC_Miss), isolate));
|
| +}
|
| +
|
| +
|
| +static void InitializeArrayConstructorDescriptor(
|
| + Isolate* isolate,
|
| + CodeStubInterfaceDescriptor* descriptor,
|
| + int constant_stack_parameter_count) {
|
| + // x1: function
|
| + // x2: allocation site with elements kind
|
| + // x0: number of arguments to the constructor function
|
| + static Register registers_variable_args[] = { x1, x2, x0 };
|
| + static Register registers_no_args[] = { x1, x2 };
|
| +
|
| + if (constant_stack_parameter_count == 0) {
|
| + descriptor->register_param_count_ =
|
| + sizeof(registers_no_args) / sizeof(registers_no_args[0]);
|
| + descriptor->register_params_ = registers_no_args;
|
| + } else {
|
| + // stack param count needs (constructor pointer, and single argument)
|
| + descriptor->handler_arguments_mode_ = PASS_ARGUMENTS;
|
| + descriptor->stack_parameter_count_ = x0;
|
| + descriptor->register_param_count_ =
|
| + sizeof(registers_variable_args) / sizeof(registers_variable_args[0]);
|
| + descriptor->register_params_ = registers_variable_args;
|
| + }
|
| +
|
| + descriptor->hint_stack_parameter_count_ = constant_stack_parameter_count;
|
| + descriptor->function_mode_ = JS_FUNCTION_STUB_MODE;
|
| + descriptor->deoptimization_handler_ =
|
| + Runtime::FunctionForId(Runtime::kArrayConstructor)->entry;
|
| +}
|
| +
|
| +
|
| +void ArrayNoArgumentConstructorStub::InitializeInterfaceDescriptor(
|
| + Isolate* isolate,
|
| + CodeStubInterfaceDescriptor* descriptor) {
|
| + InitializeArrayConstructorDescriptor(isolate, descriptor, 0);
|
| +}
|
| +
|
| +
|
| +void ArraySingleArgumentConstructorStub::InitializeInterfaceDescriptor(
|
| + Isolate* isolate,
|
| + CodeStubInterfaceDescriptor* descriptor) {
|
| + InitializeArrayConstructorDescriptor(isolate, descriptor, 1);
|
| +}
|
| +
|
| +
|
| +void ArrayNArgumentsConstructorStub::InitializeInterfaceDescriptor(
|
| + Isolate* isolate,
|
| + CodeStubInterfaceDescriptor* descriptor) {
|
| + InitializeArrayConstructorDescriptor(isolate, descriptor, -1);
|
| +}
|
| +
|
| +
|
| +static void InitializeInternalArrayConstructorDescriptor(
|
| + Isolate* isolate,
|
| + CodeStubInterfaceDescriptor* descriptor,
|
| + int constant_stack_parameter_count) {
|
| + // x1: constructor function
|
| + // x0: number of arguments to the constructor function
|
| + static Register registers_variable_args[] = { x1, x0 };
|
| + static Register registers_no_args[] = { x1 };
|
| +
|
| + if (constant_stack_parameter_count == 0) {
|
| + descriptor->register_param_count_ =
|
| + sizeof(registers_no_args) / sizeof(registers_no_args[0]);
|
| + descriptor->register_params_ = registers_no_args;
|
| + } else {
|
| + // stack param count needs (constructor pointer, and single argument)
|
| + descriptor->handler_arguments_mode_ = PASS_ARGUMENTS;
|
| + descriptor->stack_parameter_count_ = x0;
|
| + descriptor->register_param_count_ =
|
| + sizeof(registers_variable_args) / sizeof(registers_variable_args[0]);
|
| + descriptor->register_params_ = registers_variable_args;
|
| + }
|
| +
|
| + descriptor->hint_stack_parameter_count_ = constant_stack_parameter_count;
|
| + descriptor->function_mode_ = JS_FUNCTION_STUB_MODE;
|
| + descriptor->deoptimization_handler_ =
|
| + Runtime::FunctionForId(Runtime::kInternalArrayConstructor)->entry;
|
| +}
|
| +
|
| +
|
| +void InternalArrayNoArgumentConstructorStub::InitializeInterfaceDescriptor(
|
| + Isolate* isolate,
|
| + CodeStubInterfaceDescriptor* descriptor) {
|
| + InitializeInternalArrayConstructorDescriptor(isolate, descriptor, 0);
|
| +}
|
| +
|
| +
|
| +void InternalArraySingleArgumentConstructorStub::InitializeInterfaceDescriptor(
|
| + Isolate* isolate,
|
| + CodeStubInterfaceDescriptor* descriptor) {
|
| + InitializeInternalArrayConstructorDescriptor(isolate, descriptor, 1);
|
| +}
|
| +
|
| +
|
| +void InternalArrayNArgumentsConstructorStub::InitializeInterfaceDescriptor(
|
| + Isolate* isolate,
|
| + CodeStubInterfaceDescriptor* descriptor) {
|
| + InitializeInternalArrayConstructorDescriptor(isolate, descriptor, -1);
|
| +}
|
| +
|
| +
|
| +void ToBooleanStub::InitializeInterfaceDescriptor(
|
| + Isolate* isolate,
|
| + CodeStubInterfaceDescriptor* descriptor) {
|
| + // x0: value
|
| + static Register registers[] = { x0 };
|
| + descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
|
| + descriptor->register_params_ = registers;
|
| + descriptor->deoptimization_handler_ = FUNCTION_ADDR(ToBooleanIC_Miss);
|
| + descriptor->SetMissHandler(
|
| + ExternalReference(IC_Utility(IC::kToBooleanIC_Miss), isolate));
|
| +}
|
| +
|
| +
|
| +void StoreGlobalStub::InitializeInterfaceDescriptor(
|
| + Isolate* isolate,
|
| + CodeStubInterfaceDescriptor* descriptor) {
|
| + // x1: receiver
|
| + // x2: key (unused)
|
| + // x0: value
|
| + static Register registers[] = { x1, x2, x0 };
|
| + descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
|
| + descriptor->register_params_ = registers;
|
| + descriptor->deoptimization_handler_ =
|
| + FUNCTION_ADDR(StoreIC_MissFromStubFailure);
|
| +}
|
| +
|
| +
|
| +void ElementsTransitionAndStoreStub::InitializeInterfaceDescriptor(
|
| + Isolate* isolate,
|
| + CodeStubInterfaceDescriptor* descriptor) {
|
| + // x0: value
|
| + // x3: target map
|
| + // x1: key
|
| + // x2: receiver
|
| + static Register registers[] = { x0, x3, x1, x2 };
|
| + descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
|
| + descriptor->register_params_ = registers;
|
| + descriptor->deoptimization_handler_ =
|
| + FUNCTION_ADDR(ElementsTransitionAndStoreIC_Miss);
|
| +}
|
| +
|
| +
|
| +void BinaryOpICStub::InitializeInterfaceDescriptor(
|
| + Isolate* isolate,
|
| + CodeStubInterfaceDescriptor* descriptor) {
|
| + // x1: left operand
|
| + // x0: right operand
|
| + static Register registers[] = { x1, x0 };
|
| + descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
|
| + descriptor->register_params_ = registers;
|
| + descriptor->deoptimization_handler_ = FUNCTION_ADDR(BinaryOpIC_Miss);
|
| + descriptor->SetMissHandler(
|
| + ExternalReference(IC_Utility(IC::kBinaryOpIC_Miss), isolate));
|
| +}
|
| +
|
| +
|
| +void BinaryOpWithAllocationSiteStub::InitializeInterfaceDescriptor(
|
| + Isolate* isolate,
|
| + CodeStubInterfaceDescriptor* descriptor) {
|
| + // x2: allocation site
|
| + // x1: left operand
|
| + // x0: right operand
|
| + static Register registers[] = { x2, x1, x0 };
|
| + descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
|
| + descriptor->register_params_ = registers;
|
| + descriptor->deoptimization_handler_ =
|
| + FUNCTION_ADDR(BinaryOpIC_MissWithAllocationSite);
|
| +}
|
| +
|
| +
|
| +void StringAddStub::InitializeInterfaceDescriptor(
|
| + Isolate* isolate,
|
| + CodeStubInterfaceDescriptor* descriptor) {
|
| + // x1: left operand
|
| + // x0: right operand
|
| + static Register registers[] = { x1, x0 };
|
| + descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
|
| + descriptor->register_params_ = registers;
|
| + descriptor->deoptimization_handler_ =
|
| + Runtime::FunctionForId(Runtime::kStringAdd)->entry;
|
| +}
|
| +
|
| +
|
| +void CallDescriptors::InitializeForIsolate(Isolate* isolate) {
|
| + static PlatformCallInterfaceDescriptor default_descriptor =
|
| + PlatformCallInterfaceDescriptor(CAN_INLINE_TARGET_ADDRESS);
|
| +
|
| + static PlatformCallInterfaceDescriptor noInlineDescriptor =
|
| + PlatformCallInterfaceDescriptor(NEVER_INLINE_TARGET_ADDRESS);
|
| +
|
| + {
|
| + CallInterfaceDescriptor* descriptor =
|
| + isolate->call_descriptor(Isolate::ArgumentAdaptorCall);
|
| + static Register registers[] = { x1, // JSFunction
|
| + cp, // context
|
| + x0, // actual number of arguments
|
| + x2, // expected number of arguments
|
| + };
|
| + static Representation representations[] = {
|
| + Representation::Tagged(), // JSFunction
|
| + Representation::Tagged(), // context
|
| + Representation::Integer32(), // actual number of arguments
|
| + Representation::Integer32(), // expected number of arguments
|
| + };
|
| + descriptor->register_param_count_ = 4;
|
| + descriptor->register_params_ = registers;
|
| + descriptor->param_representations_ = representations;
|
| + descriptor->platform_specific_descriptor_ = &default_descriptor;
|
| + }
|
| + {
|
| + CallInterfaceDescriptor* descriptor =
|
| + isolate->call_descriptor(Isolate::KeyedCall);
|
| + static Register registers[] = { cp, // context
|
| + x2, // key
|
| + };
|
| + static Representation representations[] = {
|
| + Representation::Tagged(), // context
|
| + Representation::Tagged(), // key
|
| + };
|
| + descriptor->register_param_count_ = 2;
|
| + descriptor->register_params_ = registers;
|
| + descriptor->param_representations_ = representations;
|
| + descriptor->platform_specific_descriptor_ = &noInlineDescriptor;
|
| + }
|
| + {
|
| + CallInterfaceDescriptor* descriptor =
|
| + isolate->call_descriptor(Isolate::NamedCall);
|
| + static Register registers[] = { cp, // context
|
| + x2, // name
|
| + };
|
| + static Representation representations[] = {
|
| + Representation::Tagged(), // context
|
| + Representation::Tagged(), // name
|
| + };
|
| + descriptor->register_param_count_ = 2;
|
| + descriptor->register_params_ = registers;
|
| + descriptor->param_representations_ = representations;
|
| + descriptor->platform_specific_descriptor_ = &noInlineDescriptor;
|
| + }
|
| + {
|
| + CallInterfaceDescriptor* descriptor =
|
| + isolate->call_descriptor(Isolate::CallHandler);
|
| + static Register registers[] = { cp, // context
|
| + x0, // receiver
|
| + };
|
| + static Representation representations[] = {
|
| + Representation::Tagged(), // context
|
| + Representation::Tagged(), // receiver
|
| + };
|
| + descriptor->register_param_count_ = 2;
|
| + descriptor->register_params_ = registers;
|
| + descriptor->param_representations_ = representations;
|
| + descriptor->platform_specific_descriptor_ = &default_descriptor;
|
| + }
|
| + {
|
| + CallInterfaceDescriptor* descriptor =
|
| + isolate->call_descriptor(Isolate::ApiFunctionCall);
|
| + static Register registers[] = { x0, // callee
|
| + x4, // call_data
|
| + x2, // holder
|
| + x1, // api_function_address
|
| + cp, // context
|
| + };
|
| + static Representation representations[] = {
|
| + Representation::Tagged(), // callee
|
| + Representation::Tagged(), // call_data
|
| + Representation::Tagged(), // holder
|
| + Representation::External(), // api_function_address
|
| + Representation::Tagged(), // context
|
| + };
|
| + descriptor->register_param_count_ = 5;
|
| + descriptor->register_params_ = registers;
|
| + descriptor->param_representations_ = representations;
|
| + descriptor->platform_specific_descriptor_ = &default_descriptor;
|
| + }
|
| +}
|
| +
|
| +
|
| +#define __ ACCESS_MASM(masm)
|
| +
|
| +
|
| +void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm) {
|
| + // Update the static counter each time a new code stub is generated.
|
| + Isolate* isolate = masm->isolate();
|
| + isolate->counters()->code_stubs()->Increment();
|
| +
|
| + CodeStubInterfaceDescriptor* descriptor = GetInterfaceDescriptor(isolate);
|
| + int param_count = descriptor->register_param_count_;
|
| + {
|
| + // Call the runtime system in a fresh internal frame.
|
| + FrameScope scope(masm, StackFrame::INTERNAL);
|
| + ASSERT((descriptor->register_param_count_ == 0) ||
|
| + x0.Is(descriptor->register_params_[param_count - 1]));
|
| + // Push arguments
|
| + // TODO(jbramley): Try to push these in blocks.
|
| + for (int i = 0; i < param_count; ++i) {
|
| + __ Push(descriptor->register_params_[i]);
|
| + }
|
| + ExternalReference miss = descriptor->miss_handler();
|
| + __ CallExternalReference(miss, descriptor->register_param_count_);
|
| + }
|
| +
|
| + __ Ret();
|
| +}
|
| +
|
| +
|
| +// See call site for description.
|
| +static void EmitIdenticalObjectComparison(MacroAssembler* masm,
|
| + Register left,
|
| + Register right,
|
| + Register scratch,
|
| + FPRegister double_scratch,
|
| + Label* slow,
|
| + Condition cond) {
|
| + ASSERT(!AreAliased(left, right, scratch));
|
| + Label not_identical, return_equal, heap_number;
|
| + Register result = x0;
|
| +
|
| + __ Cmp(right, left);
|
| + __ B(ne, ¬_identical);
|
| +
|
| + // Test for NaN. Sadly, we can't just compare to factory::nan_value(),
|
| + // so we do the second best thing - test it ourselves.
|
| + // They are both equal and they are not both Smis so both of them are not
|
| + // Smis. If it's not a heap number, then return equal.
|
| + if ((cond == lt) || (cond == gt)) {
|
| + __ JumpIfObjectType(right, scratch, scratch, FIRST_SPEC_OBJECT_TYPE, slow,
|
| + ge);
|
| + } else {
|
| + Register right_type = scratch;
|
| + __ JumpIfObjectType(right, right_type, right_type, HEAP_NUMBER_TYPE,
|
| + &heap_number);
|
| + // Comparing JS objects with <=, >= is complicated.
|
| + if (cond != eq) {
|
| + __ Cmp(right_type, FIRST_SPEC_OBJECT_TYPE);
|
| + __ B(ge, slow);
|
| + // Normally here we fall through to return_equal, but undefined is
|
| + // special: (undefined == undefined) == true, but
|
| + // (undefined <= undefined) == false! See ECMAScript 11.8.5.
|
| + if ((cond == le) || (cond == ge)) {
|
| + __ Cmp(right_type, ODDBALL_TYPE);
|
| + __ B(ne, &return_equal);
|
| + __ JumpIfNotRoot(right, Heap::kUndefinedValueRootIndex, &return_equal);
|
| + if (cond == le) {
|
| + // undefined <= undefined should fail.
|
| + __ Mov(result, GREATER);
|
| + } else {
|
| + // undefined >= undefined should fail.
|
| + __ Mov(result, LESS);
|
| + }
|
| + __ Ret();
|
| + }
|
| + }
|
| + }
|
| +
|
| + __ Bind(&return_equal);
|
| + if (cond == lt) {
|
| + __ Mov(result, GREATER); // Things aren't less than themselves.
|
| + } else if (cond == gt) {
|
| + __ Mov(result, LESS); // Things aren't greater than themselves.
|
| + } else {
|
| + __ Mov(result, EQUAL); // Things are <=, >=, ==, === themselves.
|
| + }
|
| + __ Ret();
|
| +
|
| + // Cases lt and gt have been handled earlier, and case ne is never seen, as
|
| + // it is handled in the parser (see Parser::ParseBinaryExpression). We are
|
| + // only concerned with cases ge, le and eq here.
|
| + if ((cond != lt) && (cond != gt)) {
|
| + ASSERT((cond == ge) || (cond == le) || (cond == eq));
|
| + __ Bind(&heap_number);
|
| + // Left and right are identical pointers to a heap number object. Return
|
| + // non-equal if the heap number is a NaN, and equal otherwise. Comparing
|
| + // the number to itself will set the overflow flag iff the number is NaN.
|
| + __ Ldr(double_scratch, FieldMemOperand(right, HeapNumber::kValueOffset));
|
| + __ Fcmp(double_scratch, double_scratch);
|
| + __ B(vc, &return_equal); // Not NaN, so treat as normal heap number.
|
| +
|
| + if (cond == le) {
|
| + __ Mov(result, GREATER);
|
| + } else {
|
| + __ Mov(result, LESS);
|
| + }
|
| + __ Ret();
|
| + }
|
| +
|
| + // No fall through here.
|
| + if (FLAG_debug_code) {
|
| + __ Unreachable();
|
| + }
|
| +
|
| + __ Bind(¬_identical);
|
| +}
|
| +
|
| +
|
| +// See call site for description.
|
| +static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
|
| + Register left,
|
| + Register right,
|
| + Register left_type,
|
| + Register right_type,
|
| + Register scratch) {
|
| + ASSERT(!AreAliased(left, right, left_type, right_type, scratch));
|
| +
|
| + if (masm->emit_debug_code()) {
|
| + // We assume that the arguments are not identical.
|
| + __ Cmp(left, right);
|
| + __ Assert(ne, kExpectedNonIdenticalObjects);
|
| + }
|
| +
|
| + // If either operand is a JS object or an oddball value, then they are not
|
| + // equal since their pointers are different.
|
| + // There is no test for undetectability in strict equality.
|
| + STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
|
| + Label right_non_object;
|
| +
|
| + __ Cmp(right_type, FIRST_SPEC_OBJECT_TYPE);
|
| + __ B(lt, &right_non_object);
|
| +
|
| + // Return non-zero - x0 already contains a non-zero pointer.
|
| + ASSERT(left.is(x0) || right.is(x0));
|
| + Label return_not_equal;
|
| + __ Bind(&return_not_equal);
|
| + __ Ret();
|
| +
|
| + __ Bind(&right_non_object);
|
| +
|
| + // Check for oddballs: true, false, null, undefined.
|
| + __ Cmp(right_type, ODDBALL_TYPE);
|
| +
|
| + // If right is not ODDBALL, test left. Otherwise, set eq condition.
|
| + __ Ccmp(left_type, ODDBALL_TYPE, ZFlag, ne);
|
| +
|
| + // If right or left is not ODDBALL, test left >= FIRST_SPEC_OBJECT_TYPE.
|
| + // Otherwise, right or left is ODDBALL, so set a ge condition.
|
| + __ Ccmp(left_type, FIRST_SPEC_OBJECT_TYPE, NVFlag, ne);
|
| +
|
| + __ B(ge, &return_not_equal);
|
| +
|
| + // Internalized strings are unique, so they can only be equal if they are the
|
| + // same object. We have already tested that case, so if left and right are
|
| + // both internalized strings, they cannot be equal.
|
| + STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0));
|
| + __ Orr(scratch, left_type, right_type);
|
| + __ TestAndBranchIfAllClear(
|
| + scratch, kIsNotStringMask | kIsNotInternalizedMask, &return_not_equal);
|
| +}
|
| +
|
| +
|
| +// See call site for description.
|
| +static void EmitSmiNonsmiComparison(MacroAssembler* masm,
|
| + Register left,
|
| + Register right,
|
| + FPRegister left_d,
|
| + FPRegister right_d,
|
| + Register scratch,
|
| + Label* slow,
|
| + bool strict) {
|
| + ASSERT(!AreAliased(left, right, scratch));
|
| + ASSERT(!AreAliased(left_d, right_d));
|
| + ASSERT((left.is(x0) && right.is(x1)) ||
|
| + (right.is(x0) && left.is(x1)));
|
| + Register result = x0;
|
| +
|
| + Label right_is_smi, done;
|
| + __ JumpIfSmi(right, &right_is_smi);
|
| +
|
| + // Left is the smi. Check whether right is a heap number.
|
| + if (strict) {
|
| + // If right is not a number and left is a smi, then strict equality cannot
|
| + // succeed. Return non-equal.
|
| + Label is_heap_number;
|
| + __ JumpIfObjectType(right, scratch, scratch, HEAP_NUMBER_TYPE,
|
| + &is_heap_number);
|
| + // Register right is a non-zero pointer, which is a valid NOT_EQUAL result.
|
| + if (!right.is(result)) {
|
| + __ Mov(result, NOT_EQUAL);
|
| + }
|
| + __ Ret();
|
| + __ Bind(&is_heap_number);
|
| + } else {
|
| + // Smi compared non-strictly with a non-smi, non-heap-number. Call the
|
| + // runtime.
|
| + __ JumpIfNotObjectType(right, scratch, scratch, HEAP_NUMBER_TYPE, slow);
|
| + }
|
| +
|
| + // Left is the smi. Right is a heap number. Load right value into right_d, and
|
| + // convert left smi into double in left_d.
|
| + __ Ldr(right_d, FieldMemOperand(right, HeapNumber::kValueOffset));
|
| + __ SmiUntagToDouble(left_d, left);
|
| + __ B(&done);
|
| +
|
| + __ Bind(&right_is_smi);
|
| + // Right is a smi. Check whether the non-smi left is a heap number.
|
| + if (strict) {
|
| + // If left is not a number and right is a smi then strict equality cannot
|
| + // succeed. Return non-equal.
|
| + Label is_heap_number;
|
| + __ JumpIfObjectType(left, scratch, scratch, HEAP_NUMBER_TYPE,
|
| + &is_heap_number);
|
| + // Register left is a non-zero pointer, which is a valid NOT_EQUAL result.
|
| + if (!left.is(result)) {
|
| + __ Mov(result, NOT_EQUAL);
|
| + }
|
| + __ Ret();
|
| + __ Bind(&is_heap_number);
|
| + } else {
|
| + // Smi compared non-strictly with a non-smi, non-heap-number. Call the
|
| + // runtime.
|
| + __ JumpIfNotObjectType(left, scratch, scratch, HEAP_NUMBER_TYPE, slow);
|
| + }
|
| +
|
| + // Right is the smi. Left is a heap number. Load left value into left_d, and
|
| + // convert right smi into double in right_d.
|
| + __ Ldr(left_d, FieldMemOperand(left, HeapNumber::kValueOffset));
|
| + __ SmiUntagToDouble(right_d, right);
|
| +
|
| + // Fall through to both_loaded_as_doubles.
|
| + __ Bind(&done);
|
| +}
|
| +
|
| +
|
| +// Fast negative check for internalized-to-internalized equality.
|
| +// See call site for description.
|
| +static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
|
| + Register left,
|
| + Register right,
|
| + Register left_map,
|
| + Register right_map,
|
| + Register left_type,
|
| + Register right_type,
|
| + Label* possible_strings,
|
| + Label* not_both_strings) {
|
| + ASSERT(!AreAliased(left, right, left_map, right_map, left_type, right_type));
|
| + Register result = x0;
|
| +
|
| + Label object_test;
|
| + STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0));
|
| + // TODO(all): reexamine this branch sequence for optimisation wrt branch
|
| + // prediction.
|
| + __ Tbnz(right_type, MaskToBit(kIsNotStringMask), &object_test);
|
| + __ Tbnz(right_type, MaskToBit(kIsNotInternalizedMask), possible_strings);
|
| + __ Tbnz(left_type, MaskToBit(kIsNotStringMask), not_both_strings);
|
| + __ Tbnz(left_type, MaskToBit(kIsNotInternalizedMask), possible_strings);
|
| +
|
| + // Both are internalized. We already checked that they weren't the same
|
| + // pointer, so they are not equal.
|
| + __ Mov(result, NOT_EQUAL);
|
| + __ Ret();
|
| +
|
| + __ Bind(&object_test);
|
| +
|
| + __ Cmp(right_type, FIRST_SPEC_OBJECT_TYPE);
|
| +
|
| + // If right >= FIRST_SPEC_OBJECT_TYPE, test left.
|
| + // Otherwise, right < FIRST_SPEC_OBJECT_TYPE, so set lt condition.
|
| + __ Ccmp(left_type, FIRST_SPEC_OBJECT_TYPE, NFlag, ge);
|
| +
|
| + __ B(lt, not_both_strings);
|
| +
|
| + // If both objects are undetectable, they are equal. Otherwise, they are not
|
| + // equal, since they are different objects and an object is not equal to
|
| + // undefined.
|
| +
|
| + // Returning here, so we can corrupt right_type and left_type.
|
| + Register right_bitfield = right_type;
|
| + Register left_bitfield = left_type;
|
| + __ Ldrb(right_bitfield, FieldMemOperand(right_map, Map::kBitFieldOffset));
|
| + __ Ldrb(left_bitfield, FieldMemOperand(left_map, Map::kBitFieldOffset));
|
| + __ And(result, right_bitfield, left_bitfield);
|
| + __ And(result, result, 1 << Map::kIsUndetectable);
|
| + __ Eor(result, result, 1 << Map::kIsUndetectable);
|
| + __ Ret();
|
| +}
|
| +
|
| +
|
| +static void ICCompareStub_CheckInputType(MacroAssembler* masm,
|
| + Register input,
|
| + Register scratch,
|
| + CompareIC::State expected,
|
| + Label* fail) {
|
| + Label ok;
|
| + if (expected == CompareIC::SMI) {
|
| + __ JumpIfNotSmi(input, fail);
|
| + } else if (expected == CompareIC::NUMBER) {
|
| + __ JumpIfSmi(input, &ok);
|
| + __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail,
|
| + DONT_DO_SMI_CHECK);
|
| + }
|
| + // We could be strict about internalized/non-internalized here, but as long as
|
| + // hydrogen doesn't care, the stub doesn't have to care either.
|
| + __ Bind(&ok);
|
| +}
|
| +
|
| +
|
| +void ICCompareStub::GenerateGeneric(MacroAssembler* masm) {
|
| + Register lhs = x1;
|
| + Register rhs = x0;
|
| + Register result = x0;
|
| + Condition cond = GetCondition();
|
| +
|
| + Label miss;
|
| + ICCompareStub_CheckInputType(masm, lhs, x2, left_, &miss);
|
| + ICCompareStub_CheckInputType(masm, rhs, x3, right_, &miss);
|
| +
|
| + Label slow; // Call builtin.
|
| + Label not_smis, both_loaded_as_doubles;
|
| + Label not_two_smis, smi_done;
|
| + __ JumpIfEitherNotSmi(lhs, rhs, ¬_two_smis);
|
| + __ SmiUntag(lhs);
|
| + __ Sub(result, lhs, Operand::UntagSmi(rhs));
|
| + __ Ret();
|
| +
|
| + __ Bind(¬_two_smis);
|
| +
|
| + // NOTICE! This code is only reached after a smi-fast-case check, so it is
|
| + // certain that at least one operand isn't a smi.
|
| +
|
| + // Handle the case where the objects are identical. Either returns the answer
|
| + // or goes to slow. Only falls through if the objects were not identical.
|
| + EmitIdenticalObjectComparison(masm, lhs, rhs, x10, d0, &slow, cond);
|
| +
|
| + // If either is a smi (we know that at least one is not a smi), then they can
|
| + // only be strictly equal if the other is a HeapNumber.
|
| + __ JumpIfBothNotSmi(lhs, rhs, ¬_smis);
|
| +
|
| + // Exactly one operand is a smi. EmitSmiNonsmiComparison generates code that
|
| + // can:
|
| + // 1) Return the answer.
|
| + // 2) Branch to the slow case.
|
| + // 3) Fall through to both_loaded_as_doubles.
|
| + // In case 3, we have found out that we were dealing with a number-number
|
| + // comparison. The double values of the numbers have been loaded, right into
|
| + // rhs_d, left into lhs_d.
|
| + FPRegister rhs_d = d0;
|
| + FPRegister lhs_d = d1;
|
| + EmitSmiNonsmiComparison(masm, lhs, rhs, lhs_d, rhs_d, x10, &slow, strict());
|
| +
|
| + __ Bind(&both_loaded_as_doubles);
|
| + // The arguments have been converted to doubles and stored in rhs_d and
|
| + // lhs_d.
|
| + Label nan;
|
| + __ Fcmp(lhs_d, rhs_d);
|
| + __ B(vs, &nan); // Overflow flag set if either is NaN.
|
| + STATIC_ASSERT((LESS == -1) && (EQUAL == 0) && (GREATER == 1));
|
| + __ Cset(result, gt); // gt => 1, otherwise (lt, eq) => 0 (EQUAL).
|
| + __ Csinv(result, result, xzr, ge); // lt => -1, gt => 1, eq => 0.
|
| + __ Ret();
|
| +
|
| + __ Bind(&nan);
|
| + // Left and/or right is a NaN. Load the result register with whatever makes
|
| + // the comparison fail, since comparisons with NaN always fail (except ne,
|
| + // which is filtered out at a higher level.)
|
| + ASSERT(cond != ne);
|
| + if ((cond == lt) || (cond == le)) {
|
| + __ Mov(result, GREATER);
|
| + } else {
|
| + __ Mov(result, LESS);
|
| + }
|
| + __ Ret();
|
| +
|
| + __ Bind(¬_smis);
|
| + // At this point we know we are dealing with two different objects, and
|
| + // neither of them is a smi. The objects are in rhs_ and lhs_.
|
| +
|
| + // Load the maps and types of the objects.
|
| + Register rhs_map = x10;
|
| + Register rhs_type = x11;
|
| + Register lhs_map = x12;
|
| + Register lhs_type = x13;
|
| + __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset));
|
| + __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset));
|
| + __ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset));
|
| + __ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset));
|
| +
|
| + if (strict()) {
|
| + // This emits a non-equal return sequence for some object types, or falls
|
| + // through if it was not lucky.
|
| + EmitStrictTwoHeapObjectCompare(masm, lhs, rhs, lhs_type, rhs_type, x14);
|
| + }
|
| +
|
| + Label check_for_internalized_strings;
|
| + Label flat_string_check;
|
| + // Check for heap number comparison. Branch to earlier double comparison code
|
| + // if they are heap numbers, otherwise, branch to internalized string check.
|
| + __ Cmp(rhs_type, HEAP_NUMBER_TYPE);
|
| + __ B(ne, &check_for_internalized_strings);
|
| + __ Cmp(lhs_map, rhs_map);
|
| +
|
| + // If maps aren't equal, lhs_ and rhs_ are not heap numbers. Branch to flat
|
| + // string check.
|
| + __ B(ne, &flat_string_check);
|
| +
|
| + // Both lhs_ and rhs_ are heap numbers. Load them and branch to the double
|
| + // comparison code.
|
| + __ Ldr(lhs_d, FieldMemOperand(lhs, HeapNumber::kValueOffset));
|
| + __ Ldr(rhs_d, FieldMemOperand(rhs, HeapNumber::kValueOffset));
|
| + __ B(&both_loaded_as_doubles);
|
| +
|
| + __ Bind(&check_for_internalized_strings);
|
| + // In the strict case, the EmitStrictTwoHeapObjectCompare already took care
|
| + // of internalized strings.
|
| + if ((cond == eq) && !strict()) {
|
| + // Returns an answer for two internalized strings or two detectable objects.
|
| + // Otherwise branches to the string case or not both strings case.
|
| + EmitCheckForInternalizedStringsOrObjects(masm, lhs, rhs, lhs_map, rhs_map,
|
| + lhs_type, rhs_type,
|
| + &flat_string_check, &slow);
|
| + }
|
| +
|
| + // Check for both being sequential ASCII strings, and inline if that is the
|
| + // case.
|
| + __ Bind(&flat_string_check);
|
| + __ JumpIfBothInstanceTypesAreNotSequentialAscii(lhs_type, rhs_type, x14,
|
| + x15, &slow);
|
| +
|
| + Isolate* isolate = masm->isolate();
|
| + __ IncrementCounter(isolate->counters()->string_compare_native(), 1, x10,
|
| + x11);
|
| + if (cond == eq) {
|
| + StringCompareStub::GenerateFlatAsciiStringEquals(masm, lhs, rhs,
|
| + x10, x11, x12);
|
| + } else {
|
| + StringCompareStub::GenerateCompareFlatAsciiStrings(masm, lhs, rhs,
|
| + x10, x11, x12, x13);
|
| + }
|
| +
|
| + // Never fall through to here.
|
| + if (FLAG_debug_code) {
|
| + __ Unreachable();
|
| + }
|
| +
|
| + __ Bind(&slow);
|
| +
|
| + __ Push(lhs, rhs);
|
| + // Figure out which native to call and setup the arguments.
|
| + Builtins::JavaScript native;
|
| + if (cond == eq) {
|
| + native = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
|
| + } else {
|
| + native = Builtins::COMPARE;
|
| + int ncr; // NaN compare result
|
| + if ((cond == lt) || (cond == le)) {
|
| + ncr = GREATER;
|
| + } else {
|
| + ASSERT((cond == gt) || (cond == ge)); // remaining cases
|
| + ncr = LESS;
|
| + }
|
| + __ Mov(x10, Operand(Smi::FromInt(ncr)));
|
| + __ Push(x10);
|
| + }
|
| +
|
| + // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
|
| + // tagged as a small integer.
|
| + __ InvokeBuiltin(native, JUMP_FUNCTION);
|
| +
|
| + __ Bind(&miss);
|
| + GenerateMiss(masm);
|
| +}
|
| +
|
| +
|
| +void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
|
| + // Preserve caller-saved registers x0-x7 and x10-x15. We don't care if x8, x9,
|
| + // ip0 and ip1 are corrupted by the call into C.
|
| + CPURegList saved_regs = kCallerSaved;
|
| + saved_regs.Remove(ip0);
|
| + saved_regs.Remove(ip1);
|
| + saved_regs.Remove(x8);
|
| + saved_regs.Remove(x9);
|
| +
|
| + // We don't allow a GC during a store buffer overflow so there is no need to
|
| + // store the registers in any particular way, but we do have to store and
|
| + // restore them.
|
| + __ PushCPURegList(saved_regs);
|
| + if (save_doubles_ == kSaveFPRegs) {
|
| + __ PushCPURegList(kCallerSavedFP);
|
| + }
|
| +
|
| + AllowExternalCallThatCantCauseGC scope(masm);
|
| + __ Mov(x0, Operand(ExternalReference::isolate_address(masm->isolate())));
|
| + __ CallCFunction(
|
| + ExternalReference::store_buffer_overflow_function(masm->isolate()),
|
| + 1, 0);
|
| +
|
| + if (save_doubles_ == kSaveFPRegs) {
|
| + __ PopCPURegList(kCallerSavedFP);
|
| + }
|
| + __ PopCPURegList(saved_regs);
|
| + __ Ret();
|
| +}
|
| +
|
| +
|
| +void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
|
| + Isolate* isolate) {
|
| + StoreBufferOverflowStub stub1(kDontSaveFPRegs);
|
| + stub1.GetCode(isolate);
|
| + StoreBufferOverflowStub stub2(kSaveFPRegs);
|
| + stub2.GetCode(isolate);
|
| +}
|
| +
|
| +
|
| +void MathPowStub::Generate(MacroAssembler* masm) {
|
| + // Stack on entry:
|
| + // jssp[0]: Exponent (as a tagged value).
|
| + // jssp[1]: Base (as a tagged value).
|
| + //
|
| + // The (tagged) result will be returned in x0, as a heap number.
|
| +
|
| + Register result_tagged = x0;
|
| + Register base_tagged = x10;
|
| + Register exponent_tagged = x11;
|
| + Register exponent_integer = x12;
|
| + Register scratch1 = x14;
|
| + Register scratch0 = x15;
|
| + Register saved_lr = x19;
|
| + FPRegister result_double = d0;
|
| + FPRegister base_double = d0;
|
| + FPRegister exponent_double = d1;
|
| + FPRegister base_double_copy = d2;
|
| + FPRegister scratch1_double = d6;
|
| + FPRegister scratch0_double = d7;
|
| +
|
| + // A fast-path for integer exponents.
|
| + Label exponent_is_smi, exponent_is_integer;
|
| + // Bail out to runtime.
|
| + Label call_runtime;
|
| + // Allocate a heap number for the result, and return it.
|
| + Label done;
|
| +
|
| + // Unpack the inputs.
|
| + if (exponent_type_ == ON_STACK) {
|
| + Label base_is_smi;
|
| + Label unpack_exponent;
|
| +
|
| + __ Pop(exponent_tagged, base_tagged);
|
| +
|
| + __ JumpIfSmi(base_tagged, &base_is_smi);
|
| + __ JumpIfNotHeapNumber(base_tagged, &call_runtime);
|
| + // base_tagged is a heap number, so load its double value.
|
| + __ Ldr(base_double, FieldMemOperand(base_tagged, HeapNumber::kValueOffset));
|
| + __ B(&unpack_exponent);
|
| + __ Bind(&base_is_smi);
|
| + // base_tagged is a SMI, so untag it and convert it to a double.
|
| + __ SmiUntagToDouble(base_double, base_tagged);
|
| +
|
| + __ Bind(&unpack_exponent);
|
| + // x10 base_tagged The tagged base (input).
|
| + // x11 exponent_tagged The tagged exponent (input).
|
| + // d1 base_double The base as a double.
|
| + __ JumpIfSmi(exponent_tagged, &exponent_is_smi);
|
| + __ JumpIfNotHeapNumber(exponent_tagged, &call_runtime);
|
| + // exponent_tagged is a heap number, so load its double value.
|
| + __ Ldr(exponent_double,
|
| + FieldMemOperand(exponent_tagged, HeapNumber::kValueOffset));
|
| + } else if (exponent_type_ == TAGGED) {
|
| + __ JumpIfSmi(exponent_tagged, &exponent_is_smi);
|
| + __ Ldr(exponent_double,
|
| + FieldMemOperand(exponent_tagged, HeapNumber::kValueOffset));
|
| + }
|
| +
|
| + // Handle double (heap number) exponents.
|
| + if (exponent_type_ != INTEGER) {
|
| + // Detect integer exponents stored as doubles and handle those in the
|
| + // integer fast-path.
|
| + __ TryConvertDoubleToInt64(exponent_integer, exponent_double,
|
| + scratch0_double, &exponent_is_integer);
|
| +
|
| + if (exponent_type_ == ON_STACK) {
|
| + FPRegister half_double = d3;
|
| + FPRegister minus_half_double = d4;
|
| + FPRegister zero_double = d5;
|
| + // Detect square root case. Crankshaft detects constant +/-0.5 at compile
|
| + // time and uses DoMathPowHalf instead. We then skip this check for
|
| + // non-constant cases of +/-0.5 as these hardly occur.
|
| +
|
| + __ Fmov(minus_half_double, -0.5);
|
| + __ Fmov(half_double, 0.5);
|
| + __ Fcmp(minus_half_double, exponent_double);
|
| + __ Fccmp(half_double, exponent_double, NZFlag, ne);
|
| + // Condition flags at this point:
|
| + // 0.5; nZCv // Identified by eq && pl
|
| + // -0.5: NZcv // Identified by eq && mi
|
| + // other: ?z?? // Identified by ne
|
| + __ B(ne, &call_runtime);
|
| +
|
| + // The exponent is 0.5 or -0.5.
|
| +
|
| + // Given that exponent is known to be either 0.5 or -0.5, the following
|
| + // special cases could apply (according to ECMA-262 15.8.2.13):
|
| + //
|
| + // base.isNaN(): The result is NaN.
|
| + // (base == +INFINITY) || (base == -INFINITY)
|
| + // exponent == 0.5: The result is +INFINITY.
|
| + // exponent == -0.5: The result is +0.
|
| + // (base == +0) || (base == -0)
|
| + // exponent == 0.5: The result is +0.
|
| + // exponent == -0.5: The result is +INFINITY.
|
| + // (base < 0) && base.isFinite(): The result is NaN.
|
| + //
|
| + // Fsqrt (and Fdiv for the -0.5 case) can handle all of those except
|
| + // where base is -INFINITY or -0.
|
| +
|
| + // Add +0 to base. This has no effect other than turning -0 into +0.
|
| + __ Fmov(zero_double, 0.0);
|
| + __ Fadd(base_double, base_double, zero_double);
|
| + // The operation -0+0 results in +0 in all cases except where the
|
| + // FPCR rounding mode is 'round towards minus infinity' (RM). The
|
| + // A64 simulator does not currently simulate FPCR (where the rounding
|
| + // mode is set), so test the operation with some debug code.
|
| + if (masm->emit_debug_code()) {
|
| + Register temp = masm->Tmp1();
|
| + // d5 zero_double The value +0.0 as a double.
|
| + __ Fneg(scratch0_double, zero_double);
|
| + // Verify that we correctly generated +0.0 and -0.0.
|
| + // bits(+0.0) = 0x0000000000000000
|
| + // bits(-0.0) = 0x8000000000000000
|
| + __ Fmov(temp, zero_double);
|
| + __ CheckRegisterIsClear(temp, kCouldNotGenerateZero);
|
| + __ Fmov(temp, scratch0_double);
|
| + __ Eor(temp, temp, kDSignMask);
|
| + __ CheckRegisterIsClear(temp, kCouldNotGenerateNegativeZero);
|
| + // Check that -0.0 + 0.0 == +0.0.
|
| + __ Fadd(scratch0_double, scratch0_double, zero_double);
|
| + __ Fmov(temp, scratch0_double);
|
| + __ CheckRegisterIsClear(temp, kExpectedPositiveZero);
|
| + }
|
| +
|
| + // If base is -INFINITY, make it +INFINITY.
|
| + // * Calculate base - base: All infinities will become NaNs since both
|
| + // -INFINITY+INFINITY and +INFINITY-INFINITY are NaN in A64.
|
| + // * If the result is NaN, calculate abs(base).
|
| + __ Fsub(scratch0_double, base_double, base_double);
|
| + __ Fcmp(scratch0_double, 0.0);
|
| + __ Fabs(scratch1_double, base_double);
|
| + __ Fcsel(base_double, scratch1_double, base_double, vs);
|
| +
|
| + // Calculate the square root of base.
|
| + __ Fsqrt(result_double, base_double);
|
| + __ Fcmp(exponent_double, 0.0);
|
| + __ B(ge, &done); // Finish now for exponents of 0.5.
|
| + // Find the inverse for exponents of -0.5.
|
| + __ Fmov(scratch0_double, 1.0);
|
| + __ Fdiv(result_double, scratch0_double, result_double);
|
| + __ B(&done);
|
| + }
|
| +
|
| + {
|
| + AllowExternalCallThatCantCauseGC scope(masm);
|
| + __ Mov(saved_lr, lr);
|
| + __ CallCFunction(
|
| + ExternalReference::power_double_double_function(masm->isolate()),
|
| + 0, 2);
|
| + __ Mov(lr, saved_lr);
|
| + __ B(&done);
|
| + }
|
| +
|
| + // Handle SMI exponents.
|
| + __ Bind(&exponent_is_smi);
|
| + // x10 base_tagged The tagged base (input).
|
| + // x11 exponent_tagged The tagged exponent (input).
|
| + // d1 base_double The base as a double.
|
| + __ SmiUntag(exponent_integer, exponent_tagged);
|
| + }
|
| +
|
| + __ Bind(&exponent_is_integer);
|
| + // x10 base_tagged The tagged base (input).
|
| + // x11 exponent_tagged The tagged exponent (input).
|
| + // x12 exponent_integer The exponent as an integer.
|
| + // d1 base_double The base as a double.
|
| +
|
| + // Find abs(exponent). For negative exponents, we can find the inverse later.
|
| + Register exponent_abs = x13;
|
| + __ Cmp(exponent_integer, 0);
|
| + __ Cneg(exponent_abs, exponent_integer, mi);
|
| + // x13 exponent_abs The value of abs(exponent_integer).
|
| +
|
| + // Repeatedly multiply to calculate the power.
|
| + // result = 1.0;
|
| + // For each bit n (exponent_integer{n}) {
|
| + // if (exponent_integer{n}) {
|
| + // result *= base;
|
| + // }
|
| + // base *= base;
|
| + // if (remaining bits in exponent_integer are all zero) {
|
| + // break;
|
| + // }
|
| + // }
|
| + Label power_loop, power_loop_entry, power_loop_exit;
|
| + __ Fmov(scratch1_double, base_double);
|
| + __ Fmov(base_double_copy, base_double);
|
| + __ Fmov(result_double, 1.0);
|
| + __ B(&power_loop_entry);
|
| +
|
| + __ Bind(&power_loop);
|
| + __ Fmul(scratch1_double, scratch1_double, scratch1_double);
|
| + __ Lsr(exponent_abs, exponent_abs, 1);
|
| + __ Cbz(exponent_abs, &power_loop_exit);
|
| +
|
| + __ Bind(&power_loop_entry);
|
| + __ Tbz(exponent_abs, 0, &power_loop);
|
| + __ Fmul(result_double, result_double, scratch1_double);
|
| + __ B(&power_loop);
|
| +
|
| + __ Bind(&power_loop_exit);
|
| +
|
| + // If the exponent was positive, result_double holds the result.
|
| + __ Tbz(exponent_integer, kXSignBit, &done);
|
| +
|
| + // The exponent was negative, so find the inverse.
|
| + __ Fmov(scratch0_double, 1.0);
|
| + __ Fdiv(result_double, scratch0_double, result_double);
|
| + // ECMA-262 only requires Math.pow to return an 'implementation-dependent
|
| + // approximation' of base^exponent. However, mjsunit/math-pow uses Math.pow
|
| + // to calculate the subnormal value 2^-1074. This method of calculating
|
| + // negative powers doesn't work because 2^1074 overflows to infinity. To
|
| + // catch this corner-case, we bail out if the result was 0. (This can only
|
| + // occur if the divisor is infinity or the base is zero.)
|
| + __ Fcmp(result_double, 0.0);
|
| + __ B(&done, ne);
|
| +
|
| + if (exponent_type_ == ON_STACK) {
|
| + // Bail out to runtime code.
|
| + __ Bind(&call_runtime);
|
| + // Put the arguments back on the stack.
|
| + __ Push(base_tagged, exponent_tagged);
|
| + __ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1);
|
| +
|
| + // Return.
|
| + __ Bind(&done);
|
| + __ AllocateHeapNumber(result_tagged, &call_runtime, scratch0, scratch1);
|
| + __ Str(result_double,
|
| + FieldMemOperand(result_tagged, HeapNumber::kValueOffset));
|
| + ASSERT(result_tagged.is(x0));
|
| + __ IncrementCounter(
|
| + masm->isolate()->counters()->math_pow(), 1, scratch0, scratch1);
|
| + __ Ret();
|
| + } else {
|
| + AllowExternalCallThatCantCauseGC scope(masm);
|
| + __ Mov(saved_lr, lr);
|
| + __ Fmov(base_double, base_double_copy);
|
| + __ Scvtf(exponent_double, exponent_integer);
|
| + __ CallCFunction(
|
| + ExternalReference::power_double_double_function(masm->isolate()),
|
| + 0, 2);
|
| + __ Mov(lr, saved_lr);
|
| + __ Bind(&done);
|
| + __ IncrementCounter(
|
| + masm->isolate()->counters()->math_pow(), 1, scratch0, scratch1);
|
| + __ Ret();
|
| + }
|
| +}
|
| +
|
| +
|
| +void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
|
| + // It is important that the following stubs are generated in this order
|
| + // because pregenerated stubs can only call other pregenerated stubs.
|
| + // RecordWriteStub uses StoreBufferOverflowStub, which in turn uses
|
| + // CEntryStub.
|
| + CEntryStub::GenerateAheadOfTime(isolate);
|
| + StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
|
| + StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
|
| + ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
|
| + CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
|
| + BinaryOpICStub::GenerateAheadOfTime(isolate);
|
| + BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
|
| +}
|
| +
|
| +
|
| +void CodeStub::GenerateFPStubs(Isolate* isolate) {
|
| + // Floating-point code doesn't get special handling in A64, so there's
|
| + // nothing to do here.
|
| + USE(isolate);
|
| +}
|
| +
|
| +
|
| +static void JumpIfOOM(MacroAssembler* masm,
|
| + Register value,
|
| + Register scratch,
|
| + Label* oom_label) {
|
| + STATIC_ASSERT(Failure::OUT_OF_MEMORY_EXCEPTION == 3);
|
| + STATIC_ASSERT(kFailureTag == 3);
|
| + __ And(scratch, value, 0xf);
|
| + __ Cmp(scratch, 0xf);
|
| + __ B(eq, oom_label);
|
| +}
|
| +
|
| +
|
| +bool CEntryStub::NeedsImmovableCode() {
|
| + // CEntryStub stores the return address on the stack before calling into
|
| + // C++ code. In some cases, the VM accesses this address, but it is not used
|
| + // when the C++ code returns to the stub because LR holds the return address
|
| + // in AAPCS64. If the stub is moved (perhaps during a GC), we could end up
|
| + // returning to dead code.
|
| + // TODO(jbramley): Whilst this is the only analysis that makes sense, I can't
|
| + // find any comment to confirm this, and I don't hit any crashes whatever
|
| + // this function returns. The anaylsis should be properly confirmed.
|
| + return true;
|
| +}
|
| +
|
| +
|
| +void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
|
| + CEntryStub stub(1, kDontSaveFPRegs);
|
| + stub.GetCode(isolate);
|
| + CEntryStub stub_fp(1, kSaveFPRegs);
|
| + stub_fp.GetCode(isolate);
|
| +}
|
| +
|
| +
|
| +void CEntryStub::GenerateCore(MacroAssembler* masm,
|
| + Label* throw_normal,
|
| + Label* throw_termination,
|
| + Label* throw_out_of_memory,
|
| + bool do_gc,
|
| + bool always_allocate) {
|
| + // x0 : Result parameter for PerformGC, if do_gc is true.
|
| + // x21 : argv
|
| + // x22 : argc
|
| + // x23 : target
|
| + //
|
| + // The stack (on entry) holds the arguments and the receiver, with the
|
| + // receiver at the highest address:
|
| + //
|
| + // argv[8]: receiver
|
| + // argv -> argv[0]: arg[argc-2]
|
| + // ... ...
|
| + // argv[...]: arg[1]
|
| + // argv[...]: arg[0]
|
| + //
|
| + // Immediately below (after) this is the exit frame, as constructed by
|
| + // EnterExitFrame:
|
| + // fp[8]: CallerPC (lr)
|
| + // fp -> fp[0]: CallerFP (old fp)
|
| + // fp[-8]: Space reserved for SPOffset.
|
| + // fp[-16]: CodeObject()
|
| + // csp[...]: Saved doubles, if saved_doubles is true.
|
| + // csp[32]: Alignment padding, if necessary.
|
| + // csp[24]: Preserved x23 (used for target).
|
| + // csp[16]: Preserved x22 (used for argc).
|
| + // csp[8]: Preserved x21 (used for argv).
|
| + // csp -> csp[0]: Space reserved for the return address.
|
| + //
|
| + // After a successful call, the exit frame, preserved registers (x21-x23) and
|
| + // the arguments (including the receiver) are dropped or popped as
|
| + // appropriate. The stub then returns.
|
| + //
|
| + // After an unsuccessful call, the exit frame and suchlike are left
|
| + // untouched, and the stub either throws an exception by jumping to one of
|
| + // the provided throw_ labels, or it falls through. The failure details are
|
| + // passed through in x0.
|
| + ASSERT(csp.Is(__ StackPointer()));
|
| +
|
| + Isolate* isolate = masm->isolate();
|
| +
|
| + const Register& argv = x21;
|
| + const Register& argc = x22;
|
| + const Register& target = x23;
|
| +
|
| + if (do_gc) {
|
| + // Call Runtime::PerformGC, passing x0 (the result parameter for
|
| + // PerformGC) and x1 (the isolate).
|
| + __ Mov(x1, Operand(ExternalReference::isolate_address(masm->isolate())));
|
| + __ CallCFunction(
|
| + ExternalReference::perform_gc_function(isolate), 2, 0);
|
| + }
|
| +
|
| + ExternalReference scope_depth =
|
| + ExternalReference::heap_always_allocate_scope_depth(isolate);
|
| + if (always_allocate) {
|
| + __ Mov(x10, Operand(scope_depth));
|
| + __ Ldr(x11, MemOperand(x10));
|
| + __ Add(x11, x11, 1);
|
| + __ Str(x11, MemOperand(x10));
|
| + }
|
| +
|
| + // Prepare AAPCS64 arguments to pass to the builtin.
|
| + __ Mov(x0, argc);
|
| + __ Mov(x1, argv);
|
| + __ Mov(x2, Operand(ExternalReference::isolate_address(isolate)));
|
| +
|
| + // Store the return address on the stack, in the space previously allocated
|
| + // by EnterExitFrame. The return address is queried by
|
| + // ExitFrame::GetStateForFramePointer.
|
| + Label return_location;
|
| + __ Adr(x12, &return_location);
|
| + __ Poke(x12, 0);
|
| + if (__ emit_debug_code()) {
|
| + // Verify that the slot below fp[kSPOffset]-8 points to the return location
|
| + // (currently in x12).
|
| + Register temp = masm->Tmp1();
|
| + __ Ldr(temp, MemOperand(fp, ExitFrameConstants::kSPOffset));
|
| + __ Ldr(temp, MemOperand(temp, -static_cast<int64_t>(kXRegSizeInBytes)));
|
| + __ Cmp(temp, x12);
|
| + __ Check(eq, kReturnAddressNotFoundInFrame);
|
| + }
|
| +
|
| + // Call the builtin.
|
| + __ Blr(target);
|
| + __ Bind(&return_location);
|
| + const Register& result = x0;
|
| +
|
| + if (always_allocate) {
|
| + __ Mov(x10, Operand(scope_depth));
|
| + __ Ldr(x11, MemOperand(x10));
|
| + __ Sub(x11, x11, 1);
|
| + __ Str(x11, MemOperand(x10));
|
| + }
|
| +
|
| + // x0 result The return code from the call.
|
| + // x21 argv
|
| + // x22 argc
|
| + // x23 target
|
| + //
|
| + // If all of the result bits matching kFailureTagMask are '1', the result is
|
| + // a failure. Otherwise, it's an ordinary tagged object and the call was a
|
| + // success.
|
| + Label failure;
|
| + __ And(x10, result, kFailureTagMask);
|
| + __ Cmp(x10, kFailureTagMask);
|
| + __ B(&failure, eq);
|
| +
|
| + // The call succeeded, so unwind the stack and return.
|
| +
|
| + // Restore callee-saved registers x21-x23.
|
| + __ Mov(x11, argc);
|
| +
|
| + __ Peek(argv, 1 * kPointerSize);
|
| + __ Peek(argc, 2 * kPointerSize);
|
| + __ Peek(target, 3 * kPointerSize);
|
| +
|
| + __ LeaveExitFrame(save_doubles_, x10, true);
|
| + ASSERT(jssp.Is(__ StackPointer()));
|
| + // Pop or drop the remaining stack slots and return from the stub.
|
| + // jssp[24]: Arguments array (of size argc), including receiver.
|
| + // jssp[16]: Preserved x23 (used for target).
|
| + // jssp[8]: Preserved x22 (used for argc).
|
| + // jssp[0]: Preserved x21 (used for argv).
|
| + __ Drop(x11);
|
| + __ Ret();
|
| +
|
| + // The stack pointer is still csp if we aren't returning, and the frame
|
| + // hasn't changed (except for the return address).
|
| + __ SetStackPointer(csp);
|
| +
|
| + __ Bind(&failure);
|
| + // The call failed, so check if we need to throw an exception, and fall
|
| + // through (to retry) otherwise.
|
| +
|
| + Label retry;
|
| + // x0 result The return code from the call, including the failure
|
| + // code and details.
|
| + // x21 argv
|
| + // x22 argc
|
| + // x23 target
|
| + // Refer to the Failure class for details of the bit layout.
|
| + STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0);
|
| + __ Tst(result, kFailureTypeTagMask << kFailureTagSize);
|
| + __ B(eq, &retry); // RETRY_AFTER_GC
|
| +
|
| + // Special handling of out-of-memory exceptions: Pass the failure result,
|
| + // rather than the exception descriptor.
|
| + JumpIfOOM(masm, result, x10, throw_out_of_memory);
|
| +
|
| + // Retrieve the pending exception.
|
| + const Register& exception = result;
|
| + const Register& exception_address = x11;
|
| + __ Mov(exception_address,
|
| + Operand(ExternalReference(Isolate::kPendingExceptionAddress,
|
| + isolate)));
|
| + __ Ldr(exception, MemOperand(exception_address));
|
| +
|
| + // See if we just retrieved an OOM exception.
|
| + JumpIfOOM(masm, exception, x10, throw_out_of_memory);
|
| +
|
| + // Clear the pending exception.
|
| + __ Mov(x10, Operand(isolate->factory()->the_hole_value()));
|
| + __ Str(x10, MemOperand(exception_address));
|
| +
|
| + // x0 exception The exception descriptor.
|
| + // x21 argv
|
| + // x22 argc
|
| + // x23 target
|
| +
|
| + // Special handling of termination exceptions, which are uncatchable by
|
| + // JavaScript code.
|
| + __ Cmp(exception, Operand(isolate->factory()->termination_exception()));
|
| + __ B(eq, throw_termination);
|
| +
|
| + // Handle normal exception.
|
| + __ B(throw_normal);
|
| +
|
| + __ Bind(&retry);
|
| + // The result (x0) is passed through as the next PerformGC parameter.
|
| +}
|
| +
|
| +
|
| +void CEntryStub::Generate(MacroAssembler* masm) {
|
| + // The Abort mechanism relies on CallRuntime, which in turn relies on
|
| + // CEntryStub, so until this stub has been generated, we have to use a
|
| + // fall-back Abort mechanism.
|
| + //
|
| + // Note that this stub must be generated before any use of Abort.
|
| + MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm);
|
| +
|
| + ASM_LOCATION("CEntryStub::Generate entry");
|
| + ProfileEntryHookStub::MaybeCallEntryHook(masm);
|
| +
|
| + // Register parameters:
|
| + // x0: argc (including receiver, untagged)
|
| + // x1: target
|
| + //
|
| + // The stack on entry holds the arguments and the receiver, with the receiver
|
| + // at the highest address:
|
| + //
|
| + // jssp]argc-1]: receiver
|
| + // jssp[argc-2]: arg[argc-2]
|
| + // ... ...
|
| + // jssp[1]: arg[1]
|
| + // jssp[0]: arg[0]
|
| + //
|
| + // The arguments are in reverse order, so that arg[argc-2] is actually the
|
| + // first argument to the target function and arg[0] is the last.
|
| + ASSERT(jssp.Is(__ StackPointer()));
|
| + const Register& argc_input = x0;
|
| + const Register& target_input = x1;
|
| +
|
| + // Calculate argv, argc and the target address, and store them in
|
| + // callee-saved registers so we can retry the call without having to reload
|
| + // these arguments.
|
| + // TODO(jbramley): If the first call attempt succeeds in the common case (as
|
| + // it should), then we might be better off putting these parameters directly
|
| + // into their argument registers, rather than using callee-saved registers and
|
| + // preserving them on the stack.
|
| + const Register& argv = x21;
|
| + const Register& argc = x22;
|
| + const Register& target = x23;
|
| +
|
| + // Derive argv from the stack pointer so that it points to the first argument
|
| + // (arg[argc-2]), or just below the receiver in case there are no arguments.
|
| + // - Adjust for the arg[] array.
|
| + Register temp_argv = x11;
|
| + __ Add(temp_argv, jssp, Operand(x0, LSL, kPointerSizeLog2));
|
| + // - Adjust for the receiver.
|
| + __ Sub(temp_argv, temp_argv, 1 * kPointerSize);
|
| +
|
| + // Enter the exit frame. Reserve three slots to preserve x21-x23 callee-saved
|
| + // registers.
|
| + FrameScope scope(masm, StackFrame::MANUAL);
|
| + __ EnterExitFrame(save_doubles_, x10, 3);
|
| + ASSERT(csp.Is(__ StackPointer()));
|
| +
|
| + // Poke callee-saved registers into reserved space.
|
| + __ Poke(argv, 1 * kPointerSize);
|
| + __ Poke(argc, 2 * kPointerSize);
|
| + __ Poke(target, 3 * kPointerSize);
|
| +
|
| + // We normally only keep tagged values in callee-saved registers, as they
|
| + // could be pushed onto the stack by called stubs and functions, and on the
|
| + // stack they can confuse the GC. However, we're only calling C functions
|
| + // which can push arbitrary data onto the stack anyway, and so the GC won't
|
| + // examine that part of the stack.
|
| + __ Mov(argc, argc_input);
|
| + __ Mov(target, target_input);
|
| + __ Mov(argv, temp_argv);
|
| +
|
| + Label throw_normal;
|
| + Label throw_termination;
|
| + Label throw_out_of_memory;
|
| +
|
| + // Call the runtime function.
|
| + GenerateCore(masm,
|
| + &throw_normal,
|
| + &throw_termination,
|
| + &throw_out_of_memory,
|
| + false,
|
| + false);
|
| +
|
| + // If successful, the previous GenerateCore will have returned to the
|
| + // calling code. Otherwise, we fall through into the following.
|
| +
|
| + // Do space-specific GC and retry runtime call.
|
| + GenerateCore(masm,
|
| + &throw_normal,
|
| + &throw_termination,
|
| + &throw_out_of_memory,
|
| + true,
|
| + false);
|
| +
|
| + // Do full GC and retry runtime call one final time.
|
| + __ Mov(x0, reinterpret_cast<uint64_t>(Failure::InternalError()));
|
| + GenerateCore(masm,
|
| + &throw_normal,
|
| + &throw_termination,
|
| + &throw_out_of_memory,
|
| + true,
|
| + true);
|
| +
|
| + // We didn't execute a return case, so the stack frame hasn't been updated
|
| + // (except for the return address slot). However, we don't need to initialize
|
| + // jssp because the throw method will immediately overwrite it when it
|
| + // unwinds the stack.
|
| + if (__ emit_debug_code()) {
|
| + __ Mov(jssp, kDebugZapValue);
|
| + }
|
| + __ SetStackPointer(jssp);
|
| +
|
| + // Throw exceptions.
|
| + // If we throw an exception, we can end up re-entering CEntryStub before we
|
| + // pop the exit frame, so need to ensure that x21-x23 contain GC-safe values
|
| + // here.
|
| + __ Bind(&throw_out_of_memory);
|
| + ASM_LOCATION("Throw out of memory");
|
| + __ Mov(argv, 0);
|
| + __ Mov(argc, 0);
|
| + __ Mov(target, 0);
|
| + // Set external caught exception to false.
|
| + Isolate* isolate = masm->isolate();
|
| + __ Mov(x2, Operand(ExternalReference(Isolate::kExternalCaughtExceptionAddress,
|
| + isolate)));
|
| + __ Str(xzr, MemOperand(x2));
|
| +
|
| + // Set pending exception and x0 to out of memory exception.
|
| + Label already_have_failure;
|
| + JumpIfOOM(masm, x0, x10, &already_have_failure);
|
| + Failure* out_of_memory = Failure::OutOfMemoryException(0x1);
|
| + __ Mov(x0, Operand(reinterpret_cast<uint64_t>(out_of_memory)));
|
| + __ Bind(&already_have_failure);
|
| + __ Mov(x2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
|
| + isolate)));
|
| + __ Str(x0, MemOperand(x2));
|
| + // Fall through to the next label.
|
| +
|
| + __ Bind(&throw_termination);
|
| + ASM_LOCATION("Throw termination");
|
| + __ Mov(argv, 0);
|
| + __ Mov(argc, 0);
|
| + __ Mov(target, 0);
|
| + __ ThrowUncatchable(x0, x10, x11, x12, x13);
|
| +
|
| + __ Bind(&throw_normal);
|
| + ASM_LOCATION("Throw normal");
|
| + __ Mov(argv, 0);
|
| + __ Mov(argc, 0);
|
| + __ Mov(target, 0);
|
| + __ Throw(x0, x10, x11, x12, x13);
|
| +}
|
| +
|
| +
|
| +// This is the entry point from C++. 5 arguments are provided in x0-x4.
|
| +// See use of the CALL_GENERATED_CODE macro for example in src/execution.cc.
|
| +// Input:
|
| +// x0: code entry.
|
| +// x1: function.
|
| +// x2: receiver.
|
| +// x3: argc.
|
| +// x4: argv.
|
| +// Output:
|
| +// x0: result.
|
| +void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
|
| + ASSERT(jssp.Is(__ StackPointer()));
|
| + Register code_entry = x0;
|
| +
|
| + // Enable instruction instrumentation. This only works on the simulator, and
|
| + // will have no effect on the model or real hardware.
|
| + __ EnableInstrumentation();
|
| +
|
| + Label invoke, handler_entry, exit;
|
| +
|
| + // Push callee-saved registers and synchronize the system stack pointer (csp)
|
| + // and the JavaScript stack pointer (jssp).
|
| + //
|
| + // We must not write to jssp until after the PushCalleeSavedRegisters()
|
| + // call, since jssp is itself a callee-saved register.
|
| + __ SetStackPointer(csp);
|
| + __ PushCalleeSavedRegisters();
|
| + __ Mov(jssp, csp);
|
| + __ SetStackPointer(jssp);
|
| +
|
| + ProfileEntryHookStub::MaybeCallEntryHook(masm);
|
| +
|
| + // Build an entry frame (see layout below).
|
| + Isolate* isolate = masm->isolate();
|
| +
|
| + // Build an entry frame.
|
| + int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
|
| + int64_t bad_frame_pointer = -1L; // Bad frame pointer to fail if it is used.
|
| + __ Mov(x13, bad_frame_pointer);
|
| + __ Mov(x12, Operand(Smi::FromInt(marker)));
|
| + __ Mov(x11, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate)));
|
| + __ Ldr(x10, MemOperand(x11));
|
| +
|
| + // TODO(all): Pushing the marker twice seems unnecessary.
|
| + // In this case perhaps we could push xzr in the slot for the context
|
| + // (see MAsm::EnterFrame).
|
| + __ Push(x13, x12, x12, x10);
|
| + // Set up fp.
|
| + __ Sub(fp, jssp, EntryFrameConstants::kCallerFPOffset);
|
| +
|
| + // Push the JS entry frame marker. Also set js_entry_sp if this is the
|
| + // outermost JS call.
|
| + Label non_outermost_js, done;
|
| + ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate);
|
| + __ Mov(x10, Operand(ExternalReference(js_entry_sp)));
|
| + __ Ldr(x11, MemOperand(x10));
|
| + __ Cbnz(x11, &non_outermost_js);
|
| + __ Str(fp, MemOperand(x10));
|
| + __ Mov(x12, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
|
| + __ Push(x12);
|
| + __ B(&done);
|
| + __ Bind(&non_outermost_js);
|
| + // We spare one instruction by pushing xzr since the marker is 0.
|
| + ASSERT(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME) == NULL);
|
| + __ Push(xzr);
|
| + __ Bind(&done);
|
| +
|
| + // The frame set up looks like this:
|
| + // jssp[0] : JS entry frame marker.
|
| + // jssp[1] : C entry FP.
|
| + // jssp[2] : stack frame marker.
|
| + // jssp[3] : stack frmae marker.
|
| + // jssp[4] : bad frame pointer 0xfff...ff <- fp points here.
|
| +
|
| +
|
| + // Jump to a faked try block that does the invoke, with a faked catch
|
| + // block that sets the pending exception.
|
| + __ B(&invoke);
|
| +
|
| + // Prevent the constant pool from being emitted between the record of the
|
| + // handler_entry position and the first instruction of the sequence here.
|
| + // There is no risk because Assembler::Emit() emits the instruction before
|
| + // checking for constant pool emission, but we do not want to depend on
|
| + // that.
|
| + {
|
| + Assembler::BlockConstPoolScope block_const_pool(masm);
|
| + __ bind(&handler_entry);
|
| + handler_offset_ = handler_entry.pos();
|
| + // Caught exception: Store result (exception) in the pending exception
|
| + // field in the JSEnv and return a failure sentinel. Coming in here the
|
| + // fp will be invalid because the PushTryHandler below sets it to 0 to
|
| + // signal the existence of the JSEntry frame.
|
| + // TODO(jbramley): Do this in the Assembler.
|
| + __ Mov(x10, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
|
| + isolate)));
|
| + }
|
| + __ Str(code_entry, MemOperand(x10));
|
| + __ Mov(x0, Operand(reinterpret_cast<int64_t>(Failure::Exception())));
|
| + __ B(&exit);
|
| +
|
| + // Invoke: Link this frame into the handler chain. There's only one
|
| + // handler block in this code object, so its index is 0.
|
| + __ Bind(&invoke);
|
| + __ PushTryHandler(StackHandler::JS_ENTRY, 0);
|
| + // If an exception not caught by another handler occurs, this handler
|
| + // returns control to the code after the B(&invoke) above, which
|
| + // restores all callee-saved registers (including cp and fp) to their
|
| + // saved values before returning a failure to C.
|
| +
|
| + // Clear any pending exceptions.
|
| + __ Mov(x10, Operand(isolate->factory()->the_hole_value()));
|
| + __ Mov(x11, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
|
| + isolate)));
|
| + __ Str(x10, MemOperand(x11));
|
| +
|
| + // Invoke the function by calling through the JS entry trampoline builtin.
|
| + // Notice that we cannot store a reference to the trampoline code directly in
|
| + // this stub, because runtime stubs are not traversed when doing GC.
|
| +
|
| + // Expected registers by Builtins::JSEntryTrampoline
|
| + // x0: code entry.
|
| + // x1: function.
|
| + // x2: receiver.
|
| + // x3: argc.
|
| + // x4: argv.
|
| + // TODO(jbramley): The latest ARM code checks is_construct and conditionally
|
| + // uses construct_entry. We probably need to do the same here.
|
| + ExternalReference entry(is_construct ? Builtins::kJSConstructEntryTrampoline
|
| + : Builtins::kJSEntryTrampoline,
|
| + isolate);
|
| + __ Mov(x10, Operand(entry));
|
| +
|
| + // Call the JSEntryTrampoline.
|
| + __ Ldr(x11, MemOperand(x10)); // Dereference the address.
|
| + __ Add(x12, x11, Code::kHeaderSize - kHeapObjectTag);
|
| + __ Blr(x12);
|
| +
|
| + // Unlink this frame from the handler chain.
|
| + __ PopTryHandler();
|
| +
|
| +
|
| + __ Bind(&exit);
|
| + // x0 holds the result.
|
| + // The stack pointer points to the top of the entry frame pushed on entry from
|
| + // C++ (at the beginning of this stub):
|
| + // jssp[0] : JS entry frame marker.
|
| + // jssp[1] : C entry FP.
|
| + // jssp[2] : stack frame marker.
|
| + // jssp[3] : stack frmae marker.
|
| + // jssp[4] : bad frame pointer 0xfff...ff <- fp points here.
|
| +
|
| + // Check if the current stack frame is marked as the outermost JS frame.
|
| + Label non_outermost_js_2;
|
| + __ Pop(x10);
|
| + __ Cmp(x10, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
|
| + __ B(ne, &non_outermost_js_2);
|
| + __ Mov(x11, Operand(ExternalReference(js_entry_sp)));
|
| + __ Str(xzr, MemOperand(x11));
|
| + __ Bind(&non_outermost_js_2);
|
| +
|
| + // Restore the top frame descriptors from the stack.
|
| + __ Pop(x10);
|
| + __ Mov(x11, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate)));
|
| + __ Str(x10, MemOperand(x11));
|
| +
|
| + // Reset the stack to the callee saved registers.
|
| + __ Drop(-EntryFrameConstants::kCallerFPOffset, kByteSizeInBytes);
|
| + // Restore the callee-saved registers and return.
|
| + ASSERT(jssp.Is(__ StackPointer()));
|
| + __ Mov(csp, jssp);
|
| + __ SetStackPointer(csp);
|
| + __ PopCalleeSavedRegisters();
|
| + // After this point, we must not modify jssp because it is a callee-saved
|
| + // register which we have just restored.
|
| + __ Ret();
|
| +}
|
| +
|
| +
|
| +void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
|
| + Label miss;
|
| + Register receiver;
|
| + if (kind() == Code::KEYED_LOAD_IC) {
|
| + // ----------- S t a t e -------------
|
| + // -- lr : return address
|
| + // -- x1 : receiver
|
| + // -- x0 : key
|
| + // -----------------------------------
|
| + Register key = x0;
|
| + receiver = x1;
|
| + __ Cmp(key, Operand(masm->isolate()->factory()->prototype_string()));
|
| + __ B(ne, &miss);
|
| + } else {
|
| + ASSERT(kind() == Code::LOAD_IC);
|
| + // ----------- S t a t e -------------
|
| + // -- lr : return address
|
| + // -- x2 : name
|
| + // -- x0 : receiver
|
| + // -- sp[0] : receiver
|
| + // -----------------------------------
|
| + receiver = x0;
|
| + }
|
| +
|
| + StubCompiler::GenerateLoadFunctionPrototype(masm, receiver, x10, x11, &miss);
|
| +
|
| + __ Bind(&miss);
|
| + StubCompiler::TailCallBuiltin(masm,
|
| + BaseLoadStoreStubCompiler::MissBuiltin(kind()));
|
| +}
|
| +
|
| +
|
| +void StringLengthStub::Generate(MacroAssembler* masm) {
|
| + Label miss;
|
| + Register receiver;
|
| + if (kind() == Code::KEYED_LOAD_IC) {
|
| + // ----------- S t a t e -------------
|
| + // -- lr : return address
|
| + // -- x1 : receiver
|
| + // -- x0 : key
|
| + // -----------------------------------
|
| + Register key = x0;
|
| + receiver = x1;
|
| + __ Cmp(key, Operand(masm->isolate()->factory()->length_string()));
|
| + __ B(ne, &miss);
|
| + } else {
|
| + ASSERT(kind() == Code::LOAD_IC);
|
| + // ----------- S t a t e -------------
|
| + // -- lr : return address
|
| + // -- x2 : name
|
| + // -- x0 : receiver
|
| + // -- sp[0] : receiver
|
| + // -----------------------------------
|
| + receiver = x0;
|
| + }
|
| +
|
| + StubCompiler::GenerateLoadStringLength(masm, receiver, x10, x11, &miss);
|
| +
|
| + __ Bind(&miss);
|
| + StubCompiler::TailCallBuiltin(masm,
|
| + BaseLoadStoreStubCompiler::MissBuiltin(kind()));
|
| +}
|
| +
|
| +
|
| +void StoreArrayLengthStub::Generate(MacroAssembler* masm) {
|
| + ASM_LOCATION("StoreArrayLengthStub::Generate");
|
| + // This accepts as a receiver anything JSArray::SetElementsLength accepts
|
| + // (currently anything except for external arrays which means anything with
|
| + // elements of FixedArray type). Value must be a number, but only smis are
|
| + // accepted as the most common case.
|
| + Label miss;
|
| +
|
| + Register receiver;
|
| + Register value;
|
| + if (kind() == Code::KEYED_STORE_IC) {
|
| + // ----------- S t a t e -------------
|
| + // -- lr : return address
|
| + // -- x2 : receiver
|
| + // -- x1 : key
|
| + // -- x0 : value
|
| + // -----------------------------------
|
| + Register key = x1;
|
| + receiver = x2;
|
| + value = x0;
|
| + __ Cmp(key, Operand(masm->isolate()->factory()->length_string()));
|
| + __ B(ne, &miss);
|
| + } else {
|
| + ASSERT(kind() == Code::STORE_IC);
|
| + // ----------- S t a t e -------------
|
| + // -- lr : return address
|
| + // -- x2 : key
|
| + // -- x1 : receiver
|
| + // -- x0 : value
|
| + // -----------------------------------
|
| + receiver = x1;
|
| + value = x0;
|
| + }
|
| +
|
| + // Check that the receiver isn't a smi.
|
| + __ JumpIfSmi(receiver, &miss);
|
| +
|
| + // Check that the object is a JS array.
|
| + __ CompareObjectType(receiver, x10, x11, JS_ARRAY_TYPE);
|
| + __ B(ne, &miss);
|
| +
|
| + // Check that elements are FixedArray.
|
| + // We rely on StoreIC_ArrayLength below to deal with all types of
|
| + // fast elements (including COW).
|
| + __ Ldr(x10, FieldMemOperand(receiver, JSArray::kElementsOffset));
|
| + __ CompareObjectType(x10, x11, x12, FIXED_ARRAY_TYPE);
|
| + __ B(ne, &miss);
|
| +
|
| + // Check that the array has fast properties, otherwise the length
|
| + // property might have been redefined.
|
| + __ Ldr(x10, FieldMemOperand(receiver, JSArray::kPropertiesOffset));
|
| + __ Ldr(x10, FieldMemOperand(x10, FixedArray::kMapOffset));
|
| + __ CompareRoot(x10, Heap::kHashTableMapRootIndex);
|
| + __ B(eq, &miss);
|
| +
|
| + // Check that value is a smi.
|
| + __ JumpIfNotSmi(value, &miss);
|
| +
|
| + // Prepare tail call to StoreIC_ArrayLength.
|
| + __ Push(receiver, value);
|
| +
|
| + ExternalReference ref =
|
| + ExternalReference(IC_Utility(IC::kStoreIC_ArrayLength), masm->isolate());
|
| + __ TailCallExternalReference(ref, 2, 1);
|
| +
|
| + __ Bind(&miss);
|
| + StubCompiler::TailCallBuiltin(masm,
|
| + BaseLoadStoreStubCompiler::MissBuiltin(kind()));
|
| +}
|
| +
|
| +
|
| +void InstanceofStub::Generate(MacroAssembler* masm) {
|
| + // Stack on entry:
|
| + // jssp[0]: function.
|
| + // jssp[8]: object.
|
| + //
|
| + // Returns result in x0. Zero indicates instanceof, smi 1 indicates not
|
| + // instanceof.
|
| +
|
| + Register result = x0;
|
| + Register function = right();
|
| + Register object = left();
|
| + Register scratch1 = x6;
|
| + Register scratch2 = x7;
|
| + Register res_true = x8;
|
| + Register res_false = x9;
|
| + // Only used if there was an inline map check site. (See
|
| + // LCodeGen::DoInstanceOfKnownGlobal().)
|
| + Register map_check_site = x4;
|
| + // Delta for the instructions generated between the inline map check and the
|
| + // instruction setting the result.
|
| + const int32_t kDeltaToLoadBoolResult = 4 * kInstructionSize;
|
| +
|
| + Label not_js_object, slow;
|
| +
|
| + if (!HasArgsInRegisters()) {
|
| + __ Pop(function, object);
|
| + }
|
| +
|
| + if (ReturnTrueFalseObject()) {
|
| + __ LoadTrueFalseRoots(res_true, res_false);
|
| + } else {
|
| + // This is counter-intuitive, but correct.
|
| + __ Mov(res_true, Operand(Smi::FromInt(0)));
|
| + __ Mov(res_false, Operand(Smi::FromInt(1)));
|
| + }
|
| +
|
| + // Check that the left hand side is a JS object and load its map as a side
|
| + // effect.
|
| + Register map = x12;
|
| + __ JumpIfSmi(object, ¬_js_object);
|
| + __ IsObjectJSObjectType(object, map, scratch2, ¬_js_object);
|
| +
|
| + // If there is a call site cache, don't look in the global cache, but do the
|
| + // real lookup and update the call site cache.
|
| + if (!HasCallSiteInlineCheck()) {
|
| + Label miss;
|
| + __ JumpIfNotRoot(function, Heap::kInstanceofCacheFunctionRootIndex, &miss);
|
| + __ JumpIfNotRoot(map, Heap::kInstanceofCacheMapRootIndex, &miss);
|
| + __ LoadRoot(result, Heap::kInstanceofCacheAnswerRootIndex);
|
| + __ Ret();
|
| + __ Bind(&miss);
|
| + }
|
| +
|
| + // Get the prototype of the function.
|
| + Register prototype = x13;
|
| + __ TryGetFunctionPrototype(function, prototype, scratch2, &slow,
|
| + MacroAssembler::kMissOnBoundFunction);
|
| +
|
| + // Check that the function prototype is a JS object.
|
| + __ JumpIfSmi(prototype, &slow);
|
| + __ IsObjectJSObjectType(prototype, scratch1, scratch2, &slow);
|
| +
|
| + // Update the global instanceof or call site inlined cache with the current
|
| + // map and function. The cached answer will be set when it is known below.
|
| + if (HasCallSiteInlineCheck()) {
|
| + // Patch the (relocated) inlined map check.
|
| + __ GetRelocatedValueLocation(map_check_site, scratch1);
|
| + // We have a cell, so need another level of dereferencing.
|
| + __ Ldr(scratch1, MemOperand(scratch1));
|
| + __ Str(map, FieldMemOperand(scratch1, Cell::kValueOffset));
|
| + } else {
|
| + __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
|
| + __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex);
|
| + }
|
| +
|
| + Label return_true, return_result;
|
| + {
|
| + // Loop through the prototype chain looking for the function prototype.
|
| + Register chain_map = x1;
|
| + Register chain_prototype = x14;
|
| + Register null_value = x15;
|
| + Label loop;
|
| + __ Ldr(chain_prototype, FieldMemOperand(map, Map::kPrototypeOffset));
|
| + __ LoadRoot(null_value, Heap::kNullValueRootIndex);
|
| + // Speculatively set a result.
|
| + __ Mov(result, res_false);
|
| +
|
| + __ Bind(&loop);
|
| +
|
| + // If the chain prototype is the object prototype, return true.
|
| + __ Cmp(chain_prototype, prototype);
|
| + __ B(eq, &return_true);
|
| +
|
| + // If the chain prototype is null, we've reached the end of the chain, so
|
| + // return false.
|
| + __ Cmp(chain_prototype, null_value);
|
| + __ B(eq, &return_result);
|
| +
|
| + // Otherwise, load the next prototype in the chain, and loop.
|
| + __ Ldr(chain_map, FieldMemOperand(chain_prototype, HeapObject::kMapOffset));
|
| + __ Ldr(chain_prototype, FieldMemOperand(chain_map, Map::kPrototypeOffset));
|
| + __ B(&loop);
|
| + }
|
| +
|
| + // Return sequence when no arguments are on the stack.
|
| + // We cannot fall through to here.
|
| + __ Bind(&return_true);
|
| + __ Mov(result, res_true);
|
| + __ Bind(&return_result);
|
| + if (HasCallSiteInlineCheck()) {
|
| + ASSERT(ReturnTrueFalseObject());
|
| + __ Add(map_check_site, map_check_site, kDeltaToLoadBoolResult);
|
| + __ GetRelocatedValueLocation(map_check_site, scratch2);
|
| + __ Str(result, MemOperand(scratch2));
|
| + } else {
|
| + __ StoreRoot(result, Heap::kInstanceofCacheAnswerRootIndex);
|
| + }
|
| + __ Ret();
|
| +
|
| + Label object_not_null, object_not_null_or_smi;
|
| +
|
| + __ Bind(¬_js_object);
|
| + Register object_type = x14;
|
| + // x0 result result return register (uninit)
|
| + // x10 function pointer to function
|
| + // x11 object pointer to object
|
| + // x14 object_type type of object (uninit)
|
| +
|
| + // Before null, smi and string checks, check that the rhs is a function.
|
| + // For a non-function rhs, an exception must be thrown.
|
| + __ JumpIfSmi(function, &slow);
|
| + __ JumpIfNotObjectType(
|
| + function, scratch1, object_type, JS_FUNCTION_TYPE, &slow);
|
| +
|
| + __ Mov(result, res_false);
|
| +
|
| + // Null is not instance of anything.
|
| + __ Cmp(object_type, Operand(masm->isolate()->factory()->null_value()));
|
| + __ B(ne, &object_not_null);
|
| + __ Ret();
|
| +
|
| + __ Bind(&object_not_null);
|
| + // Smi values are not instances of anything.
|
| + __ JumpIfNotSmi(object, &object_not_null_or_smi);
|
| + __ Ret();
|
| +
|
| + __ Bind(&object_not_null_or_smi);
|
| + // String values are not instances of anything.
|
| + __ IsObjectJSStringType(object, scratch2, &slow);
|
| + __ Ret();
|
| +
|
| + // Slow-case. Tail call builtin.
|
| + __ Bind(&slow);
|
| + {
|
| + FrameScope scope(masm, StackFrame::INTERNAL);
|
| + // Arguments have either been passed into registers or have been previously
|
| + // popped. We need to push them before calling builtin.
|
| + __ Push(object, function);
|
| + __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
|
| + }
|
| + if (ReturnTrueFalseObject()) {
|
| + // Reload true/false because they were clobbered in the builtin call.
|
| + __ LoadTrueFalseRoots(res_true, res_false);
|
| + __ Cmp(result, 0);
|
| + __ Csel(result, res_true, res_false, eq);
|
| + }
|
| + __ Ret();
|
| +}
|
| +
|
| +
|
| +Register InstanceofStub::left() {
|
| + // Object to check (instanceof lhs).
|
| + return x11;
|
| +}
|
| +
|
| +
|
| +Register InstanceofStub::right() {
|
| + // Constructor function (instanceof rhs).
|
| + return x10;
|
| +}
|
| +
|
| +
|
| +void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
|
| + Register arg_count = x0;
|
| + Register key = x1;
|
| +
|
| + // The displacement is the offset of the last parameter (if any) relative
|
| + // to the frame pointer.
|
| + static const int kDisplacement =
|
| + StandardFrameConstants::kCallerSPOffset - kPointerSize;
|
| +
|
| + // Check that the key is a smi.
|
| + Label slow;
|
| + __ JumpIfNotSmi(key, &slow);
|
| +
|
| + // Check if the calling frame is an arguments adaptor frame.
|
| + Register local_fp = x11;
|
| + Register caller_fp = x11;
|
| + Register caller_ctx = x12;
|
| + Label skip_adaptor;
|
| + __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
|
| + __ Ldr(caller_ctx, MemOperand(caller_fp,
|
| + StandardFrameConstants::kContextOffset));
|
| + __ Cmp(caller_ctx, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
|
| + __ Csel(local_fp, fp, caller_fp, ne);
|
| + __ B(ne, &skip_adaptor);
|
| +
|
| + // Load the actual arguments limit found in the arguments adaptor frame.
|
| + __ Ldr(arg_count, MemOperand(caller_fp,
|
| + ArgumentsAdaptorFrameConstants::kLengthOffset));
|
| + __ Bind(&skip_adaptor);
|
| +
|
| + // Check index against formal parameters count limit. Use unsigned comparison
|
| + // to get negative check for free: branch if key < 0 or key >= arg_count.
|
| + __ Cmp(key, arg_count);
|
| + __ B(hs, &slow);
|
| +
|
| + // Read the argument from the stack and return it.
|
| + __ Sub(x10, arg_count, key);
|
| + __ Add(x10, local_fp, Operand::UntagSmiAndScale(x10, kPointerSizeLog2));
|
| + __ Ldr(x0, MemOperand(x10, kDisplacement));
|
| + __ Ret();
|
| +
|
| + // Slow case: handle non-smi or out-of-bounds access to arguments by calling
|
| + // the runtime system.
|
| + __ Bind(&slow);
|
| + __ Push(key);
|
| + __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
|
| +}
|
| +
|
| +
|
| +void ArgumentsAccessStub::GenerateNewNonStrictSlow(MacroAssembler* masm) {
|
| + // Stack layout on entry.
|
| + // jssp[0]: number of parameters (tagged)
|
| + // jssp[8]: address of receiver argument
|
| + // jssp[16]: function
|
| +
|
| + // Check if the calling frame is an arguments adaptor frame.
|
| + Label runtime;
|
| + Register caller_fp = x10;
|
| + __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
|
| + // Load and untag the context.
|
| + STATIC_ASSERT((kSmiShift / kBitsPerByte) == 4);
|
| + __ Ldr(w11, MemOperand(caller_fp, StandardFrameConstants::kContextOffset +
|
| + (kSmiShift / kBitsPerByte)));
|
| + __ Cmp(w11, StackFrame::ARGUMENTS_ADAPTOR);
|
| + __ B(ne, &runtime);
|
| +
|
| + // Patch the arguments.length and parameters pointer in the current frame.
|
| + __ Ldr(x11, MemOperand(caller_fp,
|
| + ArgumentsAdaptorFrameConstants::kLengthOffset));
|
| + __ Poke(x11, 0 * kXRegSizeInBytes);
|
| + __ Add(x10, caller_fp, Operand::UntagSmiAndScale(x11, kPointerSizeLog2));
|
| + __ Add(x10, x10, Operand(StandardFrameConstants::kCallerSPOffset));
|
| + __ Poke(x10, 1 * kXRegSizeInBytes);
|
| +
|
| + __ Bind(&runtime);
|
| + __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
|
| +}
|
| +
|
| +
|
| +void ArgumentsAccessStub::GenerateNewNonStrictFast(MacroAssembler* masm) {
|
| + // Stack layout on entry.
|
| + // jssp[0]: number of parameters (tagged)
|
| + // jssp[8]: address of receiver argument
|
| + // jssp[16]: function
|
| + //
|
| + // Returns pointer to result object in x0.
|
| +
|
| + // Note: arg_count_smi is an alias of param_count_smi.
|
| + Register arg_count_smi = x3;
|
| + Register param_count_smi = x3;
|
| + Register param_count = x7;
|
| + Register recv_arg = x14;
|
| + Register function = x4;
|
| + __ Pop(param_count_smi, recv_arg, function);
|
| + __ SmiUntag(param_count, param_count_smi);
|
| +
|
| + // Check if the calling frame is an arguments adaptor frame.
|
| + Register caller_fp = x11;
|
| + Register caller_ctx = x12;
|
| + Label runtime;
|
| + Label adaptor_frame, try_allocate;
|
| + __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
|
| + __ Ldr(caller_ctx, MemOperand(caller_fp,
|
| + StandardFrameConstants::kContextOffset));
|
| + __ Cmp(caller_ctx, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
|
| + __ B(eq, &adaptor_frame);
|
| +
|
| + // No adaptor, parameter count = argument count.
|
| +
|
| + // x1 mapped_params number of mapped params, min(params, args) (uninit)
|
| + // x2 arg_count number of function arguments (uninit)
|
| + // x3 arg_count_smi number of function arguments (smi)
|
| + // x4 function function pointer
|
| + // x7 param_count number of function parameters
|
| + // x11 caller_fp caller's frame pointer
|
| + // x14 recv_arg pointer to receiver arguments
|
| +
|
| + Register arg_count = x2;
|
| + __ Mov(arg_count, param_count);
|
| + __ B(&try_allocate);
|
| +
|
| + // We have an adaptor frame. Patch the parameters pointer.
|
| + __ Bind(&adaptor_frame);
|
| + __ Ldr(arg_count_smi,
|
| + MemOperand(caller_fp,
|
| + ArgumentsAdaptorFrameConstants::kLengthOffset));
|
| + __ SmiUntag(arg_count, arg_count_smi);
|
| + __ Add(x10, caller_fp, Operand(arg_count, LSL, kPointerSizeLog2));
|
| + __ Add(recv_arg, x10, StandardFrameConstants::kCallerSPOffset);
|
| +
|
| + // Compute the mapped parameter count = min(param_count, arg_count)
|
| + Register mapped_params = x1;
|
| + __ Cmp(param_count, arg_count);
|
| + __ Csel(mapped_params, param_count, arg_count, lt);
|
| +
|
| + __ Bind(&try_allocate);
|
| +
|
| + // x0 alloc_obj pointer to allocated objects: param map, backing
|
| + // store, arguments (uninit)
|
| + // x1 mapped_params number of mapped parameters, min(params, args)
|
| + // x2 arg_count number of function arguments
|
| + // x3 arg_count_smi number of function arguments (smi)
|
| + // x4 function function pointer
|
| + // x7 param_count number of function parameters
|
| + // x10 size size of objects to allocate (uninit)
|
| + // x14 recv_arg pointer to receiver arguments
|
| +
|
| + // Compute the size of backing store, parameter map, and arguments object.
|
| + // 1. Parameter map, has two extra words containing context and backing
|
| + // store.
|
| + const int kParameterMapHeaderSize =
|
| + FixedArray::kHeaderSize + 2 * kPointerSize;
|
| +
|
| + // Calculate the parameter map size, assuming it exists.
|
| + Register size = x10;
|
| + __ Mov(size, Operand(mapped_params, LSL, kPointerSizeLog2));
|
| + __ Add(size, size, kParameterMapHeaderSize);
|
| +
|
| + // If there are no mapped parameters, set the running size total to zero.
|
| + // Otherwise, use the parameter map size calculated earlier.
|
| + __ Cmp(mapped_params, 0);
|
| + __ CzeroX(size, eq);
|
| +
|
| + // 2. Add the size of the backing store and arguments object.
|
| + __ Add(size, size, Operand(arg_count, LSL, kPointerSizeLog2));
|
| + __ Add(size, size, FixedArray::kHeaderSize + Heap::kArgumentsObjectSize);
|
| +
|
| + // Do the allocation of all three objects in one go. Assign this to x0, as it
|
| + // will be returned to the caller.
|
| + Register alloc_obj = x0;
|
| + __ Allocate(size, alloc_obj, x11, x12, &runtime, TAG_OBJECT);
|
| +
|
| + // Get the arguments boilerplate from the current (global) context.
|
| +
|
| + // x0 alloc_obj pointer to allocated objects (param map, backing
|
| + // store, arguments)
|
| + // x1 mapped_params number of mapped parameters, min(params, args)
|
| + // x2 arg_count number of function arguments
|
| + // x3 arg_count_smi number of function arguments (smi)
|
| + // x4 function function pointer
|
| + // x7 param_count number of function parameters
|
| + // x11 args_offset offset to args (or aliased args) boilerplate (uninit)
|
| + // x14 recv_arg pointer to receiver arguments
|
| +
|
| + Register global_object = x10;
|
| + Register global_ctx = x10;
|
| + Register args_offset = x11;
|
| + Register aliased_args_offset = x10;
|
| + __ Ldr(global_object, GlobalObjectMemOperand());
|
| + __ Ldr(global_ctx, FieldMemOperand(global_object,
|
| + GlobalObject::kNativeContextOffset));
|
| +
|
| + __ Ldr(args_offset, ContextMemOperand(global_ctx,
|
| + Context::ARGUMENTS_BOILERPLATE_INDEX));
|
| + __ Ldr(aliased_args_offset,
|
| + ContextMemOperand(global_ctx,
|
| + Context::ALIASED_ARGUMENTS_BOILERPLATE_INDEX));
|
| + __ Cmp(mapped_params, 0);
|
| + __ CmovX(args_offset, aliased_args_offset, ne);
|
| +
|
| + // Copy the JS object part.
|
| + __ CopyFields(alloc_obj, args_offset, CPURegList(x10, x12, x13),
|
| + JSObject::kHeaderSize / kPointerSize);
|
| +
|
| + // Set up the callee in-object property.
|
| + STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
|
| + const int kCalleeOffset = JSObject::kHeaderSize +
|
| + Heap::kArgumentsCalleeIndex * kPointerSize;
|
| + __ Str(function, FieldMemOperand(alloc_obj, kCalleeOffset));
|
| +
|
| + // Use the length and set that as an in-object property.
|
| + STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
|
| + const int kLengthOffset = JSObject::kHeaderSize +
|
| + Heap::kArgumentsLengthIndex * kPointerSize;
|
| + __ Str(arg_count_smi, FieldMemOperand(alloc_obj, kLengthOffset));
|
| +
|
| + // Set up the elements pointer in the allocated arguments object.
|
| + // If we allocated a parameter map, "elements" will point there, otherwise
|
| + // it will point to the backing store.
|
| +
|
| + // x0 alloc_obj pointer to allocated objects (param map, backing
|
| + // store, arguments)
|
| + // x1 mapped_params number of mapped parameters, min(params, args)
|
| + // x2 arg_count number of function arguments
|
| + // x3 arg_count_smi number of function arguments (smi)
|
| + // x4 function function pointer
|
| + // x5 elements pointer to parameter map or backing store (uninit)
|
| + // x6 backing_store pointer to backing store (uninit)
|
| + // x7 param_count number of function parameters
|
| + // x14 recv_arg pointer to receiver arguments
|
| +
|
| + Register elements = x5;
|
| + __ Add(elements, alloc_obj, Heap::kArgumentsObjectSize);
|
| + __ Str(elements, FieldMemOperand(alloc_obj, JSObject::kElementsOffset));
|
| +
|
| + // Initialize parameter map. If there are no mapped arguments, we're done.
|
| + Label skip_parameter_map;
|
| + __ Cmp(mapped_params, 0);
|
| + // Set up backing store address, because it is needed later for filling in
|
| + // the unmapped arguments.
|
| + Register backing_store = x6;
|
| + __ CmovX(backing_store, elements, eq);
|
| + __ B(eq, &skip_parameter_map);
|
| +
|
| + __ LoadRoot(x10, Heap::kNonStrictArgumentsElementsMapRootIndex);
|
| + __ Str(x10, FieldMemOperand(elements, FixedArray::kMapOffset));
|
| + __ Add(x10, mapped_params, 2);
|
| + __ SmiTag(x10);
|
| + __ Str(x10, FieldMemOperand(elements, FixedArray::kLengthOffset));
|
| + __ Str(cp, FieldMemOperand(elements,
|
| + FixedArray::kHeaderSize + 0 * kPointerSize));
|
| + __ Add(x10, elements, Operand(mapped_params, LSL, kPointerSizeLog2));
|
| + __ Add(x10, x10, kParameterMapHeaderSize);
|
| + __ Str(x10, FieldMemOperand(elements,
|
| + FixedArray::kHeaderSize + 1 * kPointerSize));
|
| +
|
| + // Copy the parameter slots and the holes in the arguments.
|
| + // We need to fill in mapped_parameter_count slots. Then index the context,
|
| + // where parameters are stored in reverse order, at:
|
| + //
|
| + // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS + parameter_count - 1
|
| + //
|
| + // The mapped parameter thus needs to get indices:
|
| + //
|
| + // MIN_CONTEXT_SLOTS + parameter_count - 1 ..
|
| + // MIN_CONTEXT_SLOTS + parameter_count - mapped_parameter_count
|
| + //
|
| + // We loop from right to left.
|
| +
|
| + // x0 alloc_obj pointer to allocated objects (param map, backing
|
| + // store, arguments)
|
| + // x1 mapped_params number of mapped parameters, min(params, args)
|
| + // x2 arg_count number of function arguments
|
| + // x3 arg_count_smi number of function arguments (smi)
|
| + // x4 function function pointer
|
| + // x5 elements pointer to parameter map or backing store (uninit)
|
| + // x6 backing_store pointer to backing store (uninit)
|
| + // x7 param_count number of function parameters
|
| + // x11 loop_count parameter loop counter (uninit)
|
| + // x12 index parameter index (smi, uninit)
|
| + // x13 the_hole hole value (uninit)
|
| + // x14 recv_arg pointer to receiver arguments
|
| +
|
| + Register loop_count = x11;
|
| + Register index = x12;
|
| + Register the_hole = x13;
|
| + Label parameters_loop, parameters_test;
|
| + __ Mov(loop_count, mapped_params);
|
| + __ Add(index, param_count, Context::MIN_CONTEXT_SLOTS);
|
| + __ Sub(index, index, mapped_params);
|
| + __ SmiTag(index);
|
| + __ LoadRoot(the_hole, Heap::kTheHoleValueRootIndex);
|
| + __ Add(backing_store, elements, Operand(loop_count, LSL, kPointerSizeLog2));
|
| + __ Add(backing_store, backing_store, kParameterMapHeaderSize);
|
| +
|
| + __ B(¶meters_test);
|
| +
|
| + __ Bind(¶meters_loop);
|
| + __ Sub(loop_count, loop_count, 1);
|
| + __ Mov(x10, Operand(loop_count, LSL, kPointerSizeLog2));
|
| + __ Add(x10, x10, kParameterMapHeaderSize - kHeapObjectTag);
|
| + __ Str(index, MemOperand(elements, x10));
|
| + __ Sub(x10, x10, kParameterMapHeaderSize - FixedArray::kHeaderSize);
|
| + __ Str(the_hole, MemOperand(backing_store, x10));
|
| + __ Add(index, index, Operand(Smi::FromInt(1)));
|
| + __ Bind(¶meters_test);
|
| + __ Cbnz(loop_count, ¶meters_loop);
|
| +
|
| + __ Bind(&skip_parameter_map);
|
| + // Copy arguments header and remaining slots (if there are any.)
|
| + __ LoadRoot(x10, Heap::kFixedArrayMapRootIndex);
|
| + __ Str(x10, FieldMemOperand(backing_store, FixedArray::kMapOffset));
|
| + __ Str(arg_count_smi, FieldMemOperand(backing_store,
|
| + FixedArray::kLengthOffset));
|
| +
|
| + // x0 alloc_obj pointer to allocated objects (param map, backing
|
| + // store, arguments)
|
| + // x1 mapped_params number of mapped parameters, min(params, args)
|
| + // x2 arg_count number of function arguments
|
| + // x4 function function pointer
|
| + // x3 arg_count_smi number of function arguments (smi)
|
| + // x6 backing_store pointer to backing store (uninit)
|
| + // x14 recv_arg pointer to receiver arguments
|
| +
|
| + Label arguments_loop, arguments_test;
|
| + __ Mov(x10, mapped_params);
|
| + __ Sub(recv_arg, recv_arg, Operand(x10, LSL, kPointerSizeLog2));
|
| + __ B(&arguments_test);
|
| +
|
| + __ Bind(&arguments_loop);
|
| + __ Sub(recv_arg, recv_arg, kPointerSize);
|
| + __ Ldr(x11, MemOperand(recv_arg));
|
| + __ Add(x12, backing_store, Operand(x10, LSL, kPointerSizeLog2));
|
| + __ Str(x11, FieldMemOperand(x12, FixedArray::kHeaderSize));
|
| + __ Add(x10, x10, 1);
|
| +
|
| + __ Bind(&arguments_test);
|
| + __ Cmp(x10, arg_count);
|
| + __ B(lt, &arguments_loop);
|
| +
|
| + __ Ret();
|
| +
|
| + // Do the runtime call to allocate the arguments object.
|
| + __ Bind(&runtime);
|
| + __ Push(function, recv_arg, arg_count_smi);
|
| + __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
|
| +}
|
| +
|
| +
|
| +void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
|
| + // Stack layout on entry.
|
| + // jssp[0]: number of parameters (tagged)
|
| + // jssp[8]: address of receiver argument
|
| + // jssp[16]: function
|
| + //
|
| + // Returns pointer to result object in x0.
|
| +
|
| + // Get the stub arguments from the frame, and make an untagged copy of the
|
| + // parameter count.
|
| + Register param_count_smi = x1;
|
| + Register params = x2;
|
| + Register function = x3;
|
| + Register param_count = x13;
|
| + __ Pop(param_count_smi, params, function);
|
| + __ SmiUntag(param_count, param_count_smi);
|
| +
|
| + // Test if arguments adaptor needed.
|
| + Register caller_fp = x11;
|
| + Register caller_ctx = x12;
|
| + Label try_allocate, runtime;
|
| + __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
|
| + __ Ldr(caller_ctx, MemOperand(caller_fp,
|
| + StandardFrameConstants::kContextOffset));
|
| + __ Cmp(caller_ctx, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
|
| + __ B(ne, &try_allocate);
|
| +
|
| + // x1 param_count_smi number of parameters passed to function (smi)
|
| + // x2 params pointer to parameters
|
| + // x3 function function pointer
|
| + // x11 caller_fp caller's frame pointer
|
| + // x13 param_count number of parameters passed to function
|
| +
|
| + // Patch the argument length and parameters pointer.
|
| + __ Ldr(param_count_smi,
|
| + MemOperand(caller_fp,
|
| + ArgumentsAdaptorFrameConstants::kLengthOffset));
|
| + __ SmiUntag(param_count, param_count_smi);
|
| + __ Add(x10, caller_fp, Operand(param_count, LSL, kPointerSizeLog2));
|
| + __ Add(params, x10, StandardFrameConstants::kCallerSPOffset);
|
| +
|
| + // Try the new space allocation. Start out with computing the size of the
|
| + // arguments object and the elements array in words.
|
| + Register size = x10;
|
| + __ Bind(&try_allocate);
|
| + __ Add(size, param_count, FixedArray::kHeaderSize / kPointerSize);
|
| + __ Cmp(param_count, 0);
|
| + __ CzeroX(size, eq);
|
| + __ Add(size, size, Heap::kArgumentsObjectSizeStrict / kPointerSize);
|
| +
|
| + // Do the allocation of both objects in one go. Assign this to x0, as it will
|
| + // be returned to the caller.
|
| + Register alloc_obj = x0;
|
| + __ Allocate(size, alloc_obj, x11, x12, &runtime,
|
| + static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
|
| +
|
| + // Get the arguments boilerplate from the current (native) context.
|
| + Register global_object = x10;
|
| + Register global_ctx = x10;
|
| + Register args_offset = x4;
|
| + __ Ldr(global_object, GlobalObjectMemOperand());
|
| + __ Ldr(global_ctx, FieldMemOperand(global_object,
|
| + GlobalObject::kNativeContextOffset));
|
| + __ Ldr(args_offset,
|
| + ContextMemOperand(global_ctx,
|
| + Context::STRICT_MODE_ARGUMENTS_BOILERPLATE_INDEX));
|
| +
|
| + // x0 alloc_obj pointer to allocated objects: parameter array and
|
| + // arguments object
|
| + // x1 param_count_smi number of parameters passed to function (smi)
|
| + // x2 params pointer to parameters
|
| + // x3 function function pointer
|
| + // x4 args_offset offset to arguments boilerplate
|
| + // x13 param_count number of parameters passed to function
|
| +
|
| + // Copy the JS object part.
|
| + __ CopyFields(alloc_obj, args_offset, CPURegList(x5, x6, x7),
|
| + JSObject::kHeaderSize / kPointerSize);
|
| +
|
| + // Set the smi-tagged length as an in-object property.
|
| + STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
|
| + const int kLengthOffset = JSObject::kHeaderSize +
|
| + Heap::kArgumentsLengthIndex * kPointerSize;
|
| + __ Str(param_count_smi, FieldMemOperand(alloc_obj, kLengthOffset));
|
| +
|
| + // If there are no actual arguments, we're done.
|
| + Label done;
|
| + __ Cbz(param_count, &done);
|
| +
|
| + // Set up the elements pointer in the allocated arguments object and
|
| + // initialize the header in the elements fixed array.
|
| + Register elements = x5;
|
| + __ Add(elements, alloc_obj, Heap::kArgumentsObjectSizeStrict);
|
| + __ Str(elements, FieldMemOperand(alloc_obj, JSObject::kElementsOffset));
|
| + __ LoadRoot(x10, Heap::kFixedArrayMapRootIndex);
|
| + __ Str(x10, FieldMemOperand(elements, FixedArray::kMapOffset));
|
| + __ Str(param_count_smi, FieldMemOperand(elements, FixedArray::kLengthOffset));
|
| +
|
| + // x0 alloc_obj pointer to allocated objects: parameter array and
|
| + // arguments object
|
| + // x1 param_count_smi number of parameters passed to function (smi)
|
| + // x2 params pointer to parameters
|
| + // x3 function function pointer
|
| + // x4 array pointer to array slot (uninit)
|
| + // x5 elements pointer to elements array of alloc_obj
|
| + // x13 param_count number of parameters passed to function
|
| +
|
| + // Copy the fixed array slots.
|
| + Label loop;
|
| + Register array = x4;
|
| + // Set up pointer to first array slot.
|
| + __ Add(array, elements, FixedArray::kHeaderSize - kHeapObjectTag);
|
| +
|
| + __ Bind(&loop);
|
| + // Pre-decrement the parameters pointer by kPointerSize on each iteration.
|
| + // Pre-decrement in order to skip receiver.
|
| + __ Ldr(x10, MemOperand(params, -kPointerSize, PreIndex));
|
| + // Post-increment elements by kPointerSize on each iteration.
|
| + __ Str(x10, MemOperand(array, kPointerSize, PostIndex));
|
| + __ Sub(param_count, param_count, 1);
|
| + __ Cbnz(param_count, &loop);
|
| +
|
| + // Return from stub.
|
| + __ Bind(&done);
|
| + __ Ret();
|
| +
|
| + // Do the runtime call to allocate the arguments object.
|
| + __ Bind(&runtime);
|
| + __ Push(function, params, param_count_smi);
|
| + __ TailCallRuntime(Runtime::kNewStrictArgumentsFast, 3, 1);
|
| +}
|
| +
|
| +
|
| +void RegExpExecStub::Generate(MacroAssembler* masm) {
|
| +#ifdef V8_INTERPRETED_REGEXP
|
| + __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
|
| +#else // V8_INTERPRETED_REGEXP
|
| +
|
| + // Stack frame on entry.
|
| + // jssp[0]: last_match_info (expected JSArray)
|
| + // jssp[8]: previous index
|
| + // jssp[16]: subject string
|
| + // jssp[24]: JSRegExp object
|
| + Label runtime;
|
| +
|
| + // Use of registers for this function.
|
| +
|
| + // Variable registers:
|
| + // x10-x13 used as scratch registers
|
| + // w0 string_type type of subject string
|
| + // x2 jsstring_length subject string length
|
| + // x3 jsregexp_object JSRegExp object
|
| + // w4 string_encoding ASCII or UC16
|
| + // w5 sliced_string_offset if the string is a SlicedString
|
| + // offset to the underlying string
|
| + // w6 string_representation groups attributes of the string:
|
| + // - is a string
|
| + // - type of the string
|
| + // - is a short external string
|
| + Register string_type = w0;
|
| + Register jsstring_length = x2;
|
| + Register jsregexp_object = x3;
|
| + Register string_encoding = w4;
|
| + Register sliced_string_offset = w5;
|
| + Register string_representation = w6;
|
| +
|
| + // These are in callee save registers and will be preserved by the call
|
| + // to the native RegExp code, as this code is called using the normal
|
| + // C calling convention. When calling directly from generated code the
|
| + // native RegExp code will not do a GC and therefore the content of
|
| + // these registers are safe to use after the call.
|
| +
|
| + // x19 subject subject string
|
| + // x20 regexp_data RegExp data (FixedArray)
|
| + // x21 last_match_info_elements info relative to the last match
|
| + // (FixedArray)
|
| + // x22 code_object generated regexp code
|
| + Register subject = x19;
|
| + Register regexp_data = x20;
|
| + Register last_match_info_elements = x21;
|
| + Register code_object = x22;
|
| +
|
| + // TODO(jbramley): Is it necessary to preserve these? I don't think ARM does.
|
| + CPURegList used_callee_saved_registers(subject,
|
| + regexp_data,
|
| + last_match_info_elements,
|
| + code_object);
|
| + __ PushCPURegList(used_callee_saved_registers);
|
| +
|
| + // Stack frame.
|
| + // jssp[0] : x19
|
| + // jssp[8] : x20
|
| + // jssp[16]: x21
|
| + // jssp[24]: x22
|
| + // jssp[32]: last_match_info (JSArray)
|
| + // jssp[40]: previous index
|
| + // jssp[48]: subject string
|
| + // jssp[56]: JSRegExp object
|
| +
|
| + const int kLastMatchInfoOffset = 4 * kPointerSize;
|
| + const int kPreviousIndexOffset = 5 * kPointerSize;
|
| + const int kSubjectOffset = 6 * kPointerSize;
|
| + const int kJSRegExpOffset = 7 * kPointerSize;
|
| +
|
| + // Ensure that a RegExp stack is allocated.
|
| + Isolate* isolate = masm->isolate();
|
| + ExternalReference address_of_regexp_stack_memory_address =
|
| + ExternalReference::address_of_regexp_stack_memory_address(isolate);
|
| + ExternalReference address_of_regexp_stack_memory_size =
|
| + ExternalReference::address_of_regexp_stack_memory_size(isolate);
|
| + __ Mov(x10, Operand(address_of_regexp_stack_memory_size));
|
| + __ Ldr(x10, MemOperand(x10));
|
| + __ Cbz(x10, &runtime);
|
| +
|
| + // Check that the first argument is a JSRegExp object.
|
| + ASSERT(jssp.Is(__ StackPointer()));
|
| + __ Peek(jsregexp_object, kJSRegExpOffset);
|
| + __ JumpIfSmi(jsregexp_object, &runtime);
|
| + __ JumpIfNotObjectType(jsregexp_object, x10, x10, JS_REGEXP_TYPE, &runtime);
|
| +
|
| + // Check that the RegExp has been compiled (data contains a fixed array).
|
| + __ Ldr(regexp_data, FieldMemOperand(jsregexp_object, JSRegExp::kDataOffset));
|
| + if (FLAG_debug_code) {
|
| + STATIC_ASSERT(kSmiTag == 0);
|
| + __ Tst(regexp_data, kSmiTagMask);
|
| + __ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected);
|
| + __ CompareObjectType(regexp_data, x10, x10, FIXED_ARRAY_TYPE);
|
| + __ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected);
|
| + }
|
| +
|
| + // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
|
| + __ Ldr(x10, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
|
| + __ Cmp(x10, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
|
| + __ B(ne, &runtime);
|
| +
|
| + // Check that the number of captures fit in the static offsets vector buffer.
|
| + // We have always at least one capture for the whole match, plus additional
|
| + // ones due to capturing parentheses. A capture takes 2 registers.
|
| + // The number of capture registers then is (number_of_captures + 1) * 2.
|
| + __ Ldrsw(x10,
|
| + UntagSmiFieldMemOperand(regexp_data,
|
| + JSRegExp::kIrregexpCaptureCountOffset));
|
| + // Check (number_of_captures + 1) * 2 <= offsets vector size
|
| + // number_of_captures * 2 <= offsets vector size - 2
|
| + STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
|
| + __ Add(x10, x10, x10);
|
| + __ Cmp(x10, Isolate::kJSRegexpStaticOffsetsVectorSize - 2);
|
| + __ B(hi, &runtime);
|
| +
|
| + // Initialize offset for possibly sliced string.
|
| + __ Mov(sliced_string_offset, 0);
|
| +
|
| + ASSERT(jssp.Is(__ StackPointer()));
|
| + __ Peek(subject, kSubjectOffset);
|
| + __ JumpIfSmi(subject, &runtime);
|
| +
|
| + __ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset));
|
| + __ Ldrb(string_type, FieldMemOperand(x10, Map::kInstanceTypeOffset));
|
| +
|
| + __ Ldr(jsstring_length, FieldMemOperand(subject, String::kLengthOffset));
|
| +
|
| + // Handle subject string according to its encoding and representation:
|
| + // (1) Sequential string? If yes, go to (5).
|
| + // (2) Anything but sequential or cons? If yes, go to (6).
|
| + // (3) Cons string. If the string is flat, replace subject with first string.
|
| + // Otherwise bailout.
|
| + // (4) Is subject external? If yes, go to (7).
|
| + // (5) Sequential string. Load regexp code according to encoding.
|
| + // (E) Carry on.
|
| + /// [...]
|
| +
|
| + // Deferred code at the end of the stub:
|
| + // (6) Not a long external string? If yes, go to (8).
|
| + // (7) External string. Make it, offset-wise, look like a sequential string.
|
| + // Go to (5).
|
| + // (8) Short external string or not a string? If yes, bail out to runtime.
|
| + // (9) Sliced string. Replace subject with parent. Go to (4).
|
| +
|
| + Label check_underlying; // (4)
|
| + Label seq_string; // (5)
|
| + Label not_seq_nor_cons; // (6)
|
| + Label external_string; // (7)
|
| + Label not_long_external; // (8)
|
| +
|
| + // (1) Sequential string? If yes, go to (5).
|
| + __ And(string_representation,
|
| + string_type,
|
| + kIsNotStringMask |
|
| + kStringRepresentationMask |
|
| + kShortExternalStringMask);
|
| + // We depend on the fact that Strings of type
|
| + // SeqString and not ShortExternalString are defined
|
| + // by the following pattern:
|
| + // string_type: 0XX0 XX00
|
| + // ^ ^ ^^
|
| + // | | ||
|
| + // | | is a SeqString
|
| + // | is not a short external String
|
| + // is a String
|
| + STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
|
| + STATIC_ASSERT(kShortExternalStringTag != 0);
|
| + __ Cbz(string_representation, &seq_string); // Go to (5).
|
| +
|
| + // (2) Anything but sequential or cons? If yes, go to (6).
|
| + STATIC_ASSERT(kConsStringTag < kExternalStringTag);
|
| + STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
|
| + STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
|
| + STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
|
| + __ Cmp(string_representation, kExternalStringTag);
|
| + __ B(ge, ¬_seq_nor_cons); // Go to (6).
|
| +
|
| + // (3) Cons string. Check that it's flat.
|
| + __ Ldr(x10, FieldMemOperand(subject, ConsString::kSecondOffset));
|
| + __ JumpIfNotRoot(x10, Heap::kempty_stringRootIndex, &runtime);
|
| + // Replace subject with first string.
|
| + __ Ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
|
| +
|
| + // (4) Is subject external? If yes, go to (7).
|
| + __ Bind(&check_underlying);
|
| + // Reload the string type.
|
| + __ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset));
|
| + __ Ldrb(string_type, FieldMemOperand(x10, Map::kInstanceTypeOffset));
|
| + STATIC_ASSERT(kSeqStringTag == 0);
|
| + // The underlying external string is never a short external string.
|
| + STATIC_CHECK(ExternalString::kMaxShortLength < ConsString::kMinLength);
|
| + STATIC_CHECK(ExternalString::kMaxShortLength < SlicedString::kMinLength);
|
| + __ TestAndBranchIfAnySet(string_type.X(),
|
| + kStringRepresentationMask,
|
| + &external_string); // Go to (7).
|
| +
|
| + // (5) Sequential string. Load regexp code according to encoding.
|
| + __ Bind(&seq_string);
|
| +
|
| + // Check that the third argument is a positive smi less than the subject
|
| + // string length. A negative value will be greater (unsigned comparison).
|
| + ASSERT(jssp.Is(__ StackPointer()));
|
| + __ Peek(x10, kPreviousIndexOffset);
|
| + __ JumpIfNotSmi(x10, &runtime);
|
| + __ Cmp(jsstring_length, x10);
|
| + __ B(ls, &runtime);
|
| +
|
| + // Argument 2 (x1): We need to load argument 2 (the previous index) into x1
|
| + // before entering the exit frame.
|
| + __ SmiUntag(x1, x10);
|
| +
|
| + // The third bit determines the string encoding in string_type.
|
| + STATIC_ASSERT(kOneByteStringTag == 0x04);
|
| + STATIC_ASSERT(kTwoByteStringTag == 0x00);
|
| + STATIC_ASSERT(kStringEncodingMask == 0x04);
|
| +
|
| + // Find the code object based on the assumptions above.
|
| + // kDataAsciiCodeOffset and kDataUC16CodeOffset are adjacent, adds an offset
|
| + // of kPointerSize to reach the latter.
|
| + ASSERT_EQ(JSRegExp::kDataAsciiCodeOffset + kPointerSize,
|
| + JSRegExp::kDataUC16CodeOffset);
|
| + __ Mov(x10, kPointerSize);
|
| + // We will need the encoding later: ASCII = 0x04
|
| + // UC16 = 0x00
|
| + __ Ands(string_encoding, string_type, kStringEncodingMask);
|
| + __ CzeroX(x10, ne);
|
| + __ Add(x10, regexp_data, x10);
|
| + __ Ldr(code_object, FieldMemOperand(x10, JSRegExp::kDataAsciiCodeOffset));
|
| +
|
| + // (E) Carry on. String handling is done.
|
| +
|
| + // Check that the irregexp code has been generated for the actual string
|
| + // encoding. If it has, the field contains a code object otherwise it contains
|
| + // a smi (code flushing support).
|
| + __ JumpIfSmi(code_object, &runtime);
|
| +
|
| + // All checks done. Now push arguments for native regexp code.
|
| + __ IncrementCounter(isolate->counters()->regexp_entry_native(), 1,
|
| + x10,
|
| + x11);
|
| +
|
| + // Isolates: note we add an additional parameter here (isolate pointer).
|
| + __ EnterExitFrame(false, x10, 1);
|
| + ASSERT(csp.Is(__ StackPointer()));
|
| +
|
| + // We have 9 arguments to pass to the regexp code, therefore we have to pass
|
| + // one on the stack and the rest as registers.
|
| +
|
| + // Note that the placement of the argument on the stack isn't standard
|
| + // AAPCS64:
|
| + // csp[0]: Space for the return address placed by DirectCEntryStub.
|
| + // csp[8]: Argument 9, the current isolate address.
|
| +
|
| + __ Mov(x10, Operand(ExternalReference::isolate_address(isolate)));
|
| + __ Poke(x10, kPointerSize);
|
| +
|
| + Register length = w11;
|
| + Register previous_index_in_bytes = w12;
|
| + Register start = x13;
|
| +
|
| + // Load start of the subject string.
|
| + __ Add(start, subject, SeqString::kHeaderSize - kHeapObjectTag);
|
| + // Load the length from the original subject string from the previous stack
|
| + // frame. Therefore we have to use fp, which points exactly to two pointer
|
| + // sizes below the previous sp. (Because creating a new stack frame pushes
|
| + // the previous fp onto the stack and decrements sp by 2 * kPointerSize.)
|
| + __ Ldr(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
|
| + __ Ldr(length, UntagSmiFieldMemOperand(subject, String::kLengthOffset));
|
| +
|
| + // Handle UC16 encoding, two bytes make one character.
|
| + // string_encoding: if ASCII: 0x04
|
| + // if UC16: 0x00
|
| + STATIC_ASSERT(kStringEncodingMask == 0x04);
|
| + __ Ubfx(string_encoding, string_encoding, 2, 1);
|
| + __ Eor(string_encoding, string_encoding, 1);
|
| + // string_encoding: if ASCII: 0
|
| + // if UC16: 1
|
| +
|
| + // Convert string positions from characters to bytes.
|
| + // Previous index is in x1.
|
| + __ Lsl(previous_index_in_bytes, w1, string_encoding);
|
| + __ Lsl(length, length, string_encoding);
|
| + __ Lsl(sliced_string_offset, sliced_string_offset, string_encoding);
|
| +
|
| + // Argument 1 (x0): Subject string.
|
| + __ Mov(x0, subject);
|
| +
|
| + // Argument 2 (x1): Previous index, already there.
|
| +
|
| + // Argument 3 (x2): Get the start of input.
|
| + // Start of input = start of string + previous index + substring offset
|
| + // (0 if the string
|
| + // is not sliced).
|
| + __ Add(w10, previous_index_in_bytes, sliced_string_offset);
|
| + __ Add(x2, start, Operand(w10, UXTW));
|
| +
|
| + // Argument 4 (x3):
|
| + // End of input = start of input + (length of input - previous index)
|
| + __ Sub(w10, length, previous_index_in_bytes);
|
| + __ Add(x3, x2, Operand(w10, UXTW));
|
| +
|
| + // Argument 5 (x4): static offsets vector buffer.
|
| + __ Mov(x4,
|
| + Operand(ExternalReference::address_of_static_offsets_vector(isolate)));
|
| +
|
| + // Argument 6 (x5): Set the number of capture registers to zero to force
|
| + // global regexps to behave as non-global. This stub is not used for global
|
| + // regexps.
|
| + __ Mov(x5, 0);
|
| +
|
| + // Argument 7 (x6): Start (high end) of backtracking stack memory area.
|
| + __ Mov(x10, Operand(address_of_regexp_stack_memory_address));
|
| + __ Ldr(x10, MemOperand(x10));
|
| + __ Mov(x11, Operand(address_of_regexp_stack_memory_size));
|
| + __ Ldr(x11, MemOperand(x11));
|
| + __ Add(x6, x10, x11);
|
| +
|
| + // Argument 8 (x7): Indicate that this is a direct call from JavaScript.
|
| + __ Mov(x7, 1);
|
| +
|
| + // Locate the code entry and call it.
|
| + __ Add(code_object, code_object, Code::kHeaderSize - kHeapObjectTag);
|
| + DirectCEntryStub stub;
|
| + stub.GenerateCall(masm, code_object);
|
| +
|
| + __ LeaveExitFrame(false, x10, true);
|
| +
|
| + // The generated regexp code returns an int32 in w0.
|
| + Label failure, exception;
|
| + __ CompareAndBranch(w0, NativeRegExpMacroAssembler::FAILURE, eq, &failure);
|
| + __ CompareAndBranch(w0,
|
| + NativeRegExpMacroAssembler::EXCEPTION,
|
| + eq,
|
| + &exception);
|
| + __ CompareAndBranch(w0, NativeRegExpMacroAssembler::RETRY, eq, &runtime);
|
| +
|
| + // Success: process the result from the native regexp code.
|
| + Register number_of_capture_registers = x12;
|
| +
|
| + // Calculate number of capture registers (number_of_captures + 1) * 2
|
| + // and store it in the last match info.
|
| + __ Ldrsw(x10,
|
| + UntagSmiFieldMemOperand(regexp_data,
|
| + JSRegExp::kIrregexpCaptureCountOffset));
|
| + __ Add(x10, x10, x10);
|
| + __ Add(number_of_capture_registers, x10, 2);
|
| +
|
| + // Check that the fourth object is a JSArray object.
|
| + ASSERT(jssp.Is(__ StackPointer()));
|
| + __ Peek(x10, kLastMatchInfoOffset);
|
| + __ JumpIfSmi(x10, &runtime);
|
| + __ JumpIfNotObjectType(x10, x11, x11, JS_ARRAY_TYPE, &runtime);
|
| +
|
| + // Check that the JSArray is the fast case.
|
| + __ Ldr(last_match_info_elements,
|
| + FieldMemOperand(x10, JSArray::kElementsOffset));
|
| + __ Ldr(x10,
|
| + FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
|
| + __ JumpIfNotRoot(x10, Heap::kFixedArrayMapRootIndex, &runtime);
|
| +
|
| + // Check that the last match info has space for the capture registers and the
|
| + // additional information (overhead).
|
| + // (number_of_captures + 1) * 2 + overhead <= last match info size
|
| + // (number_of_captures * 2) + 2 + overhead <= last match info size
|
| + // number_of_capture_registers + overhead <= last match info size
|
| + __ Ldrsw(x10,
|
| + UntagSmiFieldMemOperand(last_match_info_elements,
|
| + FixedArray::kLengthOffset));
|
| + __ Add(x11, number_of_capture_registers, RegExpImpl::kLastMatchOverhead);
|
| + __ Cmp(x11, x10);
|
| + __ B(gt, &runtime);
|
| +
|
| + // Store the capture count.
|
| + __ SmiTag(x10, number_of_capture_registers);
|
| + __ Str(x10,
|
| + FieldMemOperand(last_match_info_elements,
|
| + RegExpImpl::kLastCaptureCountOffset));
|
| + // Store last subject and last input.
|
| + __ Str(subject,
|
| + FieldMemOperand(last_match_info_elements,
|
| + RegExpImpl::kLastSubjectOffset));
|
| + // Use x10 as the subject string in order to only need
|
| + // one RecordWriteStub.
|
| + __ Mov(x10, subject);
|
| + __ RecordWriteField(last_match_info_elements,
|
| + RegExpImpl::kLastSubjectOffset,
|
| + x10,
|
| + x11,
|
| + kLRHasNotBeenSaved,
|
| + kDontSaveFPRegs);
|
| + __ Str(subject,
|
| + FieldMemOperand(last_match_info_elements,
|
| + RegExpImpl::kLastInputOffset));
|
| + __ Mov(x10, subject);
|
| + __ RecordWriteField(last_match_info_elements,
|
| + RegExpImpl::kLastInputOffset,
|
| + x10,
|
| + x11,
|
| + kLRHasNotBeenSaved,
|
| + kDontSaveFPRegs);
|
| +
|
| + Register last_match_offsets = x13;
|
| + Register offsets_vector_index = x14;
|
| + Register current_offset = x15;
|
| +
|
| + // Get the static offsets vector filled by the native regexp code
|
| + // and fill the last match info.
|
| + ExternalReference address_of_static_offsets_vector =
|
| + ExternalReference::address_of_static_offsets_vector(isolate);
|
| + __ Mov(offsets_vector_index, Operand(address_of_static_offsets_vector));
|
| +
|
| + Label next_capture, done;
|
| + // Capture register counter starts from number of capture registers and
|
| + // iterates down to zero (inclusive).
|
| + __ Add(last_match_offsets,
|
| + last_match_info_elements,
|
| + RegExpImpl::kFirstCaptureOffset - kHeapObjectTag);
|
| + __ Bind(&next_capture);
|
| + __ Subs(number_of_capture_registers, number_of_capture_registers, 2);
|
| + __ B(mi, &done);
|
| + // Read two 32 bit values from the static offsets vector buffer into
|
| + // an X register
|
| + __ Ldr(current_offset,
|
| + MemOperand(offsets_vector_index, kWRegSizeInBytes * 2, PostIndex));
|
| + // Store the smi values in the last match info.
|
| + __ SmiTag(x10, current_offset);
|
| + // Clearing the 32 bottom bits gives us a Smi.
|
| + STATIC_ASSERT(kSmiShift == 32);
|
| + __ And(x11, current_offset, ~kWRegMask);
|
| + __ Stp(x10,
|
| + x11,
|
| + MemOperand(last_match_offsets, kXRegSizeInBytes * 2, PostIndex));
|
| + __ B(&next_capture);
|
| + __ Bind(&done);
|
| +
|
| + // Return last match info.
|
| + __ Peek(x0, kLastMatchInfoOffset);
|
| + __ PopCPURegList(used_callee_saved_registers);
|
| + // Drop the 4 arguments of the stub from the stack.
|
| + __ Drop(4);
|
| + __ Ret();
|
| +
|
| + __ Bind(&exception);
|
| + Register exception_value = x0;
|
| + // A stack overflow (on the backtrack stack) may have occured
|
| + // in the RegExp code but no exception has been created yet.
|
| + // If there is no pending exception, handle that in the runtime system.
|
| + __ Mov(x10, Operand(isolate->factory()->the_hole_value()));
|
| + __ Mov(x11,
|
| + Operand(ExternalReference(Isolate::kPendingExceptionAddress,
|
| + isolate)));
|
| + __ Ldr(exception_value, MemOperand(x11));
|
| + __ Cmp(x10, exception_value);
|
| + __ B(eq, &runtime);
|
| +
|
| + __ Str(x10, MemOperand(x11)); // Clear pending exception.
|
| +
|
| + // Check if the exception is a termination. If so, throw as uncatchable.
|
| + Label termination_exception;
|
| + __ JumpIfRoot(exception_value,
|
| + Heap::kTerminationExceptionRootIndex,
|
| + &termination_exception);
|
| +
|
| + __ Throw(exception_value, x10, x11, x12, x13);
|
| +
|
| + __ Bind(&termination_exception);
|
| + __ ThrowUncatchable(exception_value, x10, x11, x12, x13);
|
| +
|
| + __ Bind(&failure);
|
| + __ Mov(x0, Operand(masm->isolate()->factory()->null_value()));
|
| + __ PopCPURegList(used_callee_saved_registers);
|
| + // Drop the 4 arguments of the stub from the stack.
|
| + __ Drop(4);
|
| + __ Ret();
|
| +
|
| + __ Bind(&runtime);
|
| + __ PopCPURegList(used_callee_saved_registers);
|
| + __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
|
| +
|
| + // Deferred code for string handling.
|
| + // (6) Not a long external string? If yes, go to (8).
|
| + __ Bind(¬_seq_nor_cons);
|
| + // Compare flags are still set.
|
| + __ B(ne, ¬_long_external); // Go to (8).
|
| +
|
| + // (7) External string. Make it, offset-wise, look like a sequential string.
|
| + __ Bind(&external_string);
|
| + if (masm->emit_debug_code()) {
|
| + // Assert that we do not have a cons or slice (indirect strings) here.
|
| + // Sequential strings have already been ruled out.
|
| + __ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset));
|
| + __ Ldrb(x10, FieldMemOperand(x10, Map::kInstanceTypeOffset));
|
| + __ Tst(x10, kIsIndirectStringMask);
|
| + __ Check(eq, kExternalStringExpectedButNotFound);
|
| + __ And(x10, x10, kStringRepresentationMask);
|
| + __ Cmp(x10, 0);
|
| + __ Check(ne, kExternalStringExpectedButNotFound);
|
| + }
|
| + __ Ldr(subject,
|
| + FieldMemOperand(subject, ExternalString::kResourceDataOffset));
|
| + // Move the pointer so that offset-wise, it looks like a sequential string.
|
| + STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
|
| + __ Sub(subject, subject, SeqTwoByteString::kHeaderSize - kHeapObjectTag);
|
| + __ B(&seq_string); // Go to (5).
|
| +
|
| + // (8) If this is a short external string or not a string, bail out to
|
| + // runtime.
|
| + __ Bind(¬_long_external);
|
| + STATIC_ASSERT(kShortExternalStringTag != 0);
|
| + __ TestAndBranchIfAnySet(string_representation,
|
| + kShortExternalStringMask | kIsNotStringMask,
|
| + &runtime);
|
| +
|
| + // (9) Sliced string. Replace subject with parent.
|
| + __ Ldr(sliced_string_offset,
|
| + UntagSmiFieldMemOperand(subject, SlicedString::kOffsetOffset));
|
| + __ Ldr(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
|
| + __ B(&check_underlying); // Go to (4).
|
| +#endif
|
| +}
|
| +
|
| +
|
| +// TODO(jbramley): Don't use static registers here, but take them as arguments.
|
| +static void GenerateRecordCallTarget(MacroAssembler* masm) {
|
| + ASM_LOCATION("GenerateRecordCallTarget");
|
| + // Cache the called function in a feedback vector slot. Cache states are
|
| + // uninitialized, monomorphic (indicated by a JSFunction), and megamorphic.
|
| + // x0 : number of arguments to the construct function
|
| + // x1 : the function to call
|
| + // x2 : feedback vector
|
| + // x3 : slot in feedback vector (smi)
|
| + Label initialize, done, miss, megamorphic, not_array_function;
|
| +
|
| + ASSERT_EQ(*TypeFeedbackInfo::MegamorphicSentinel(masm->isolate()),
|
| + masm->isolate()->heap()->undefined_value());
|
| + ASSERT_EQ(*TypeFeedbackInfo::UninitializedSentinel(masm->isolate()),
|
| + masm->isolate()->heap()->the_hole_value());
|
| +
|
| + // Load the cache state.
|
| + __ Add(x4, x2, Operand::UntagSmiAndScale(x3, kPointerSizeLog2));
|
| + __ Ldr(x4, FieldMemOperand(x4, FixedArray::kHeaderSize));
|
| +
|
| + // A monomorphic cache hit or an already megamorphic state: invoke the
|
| + // function without changing the state.
|
| + __ Cmp(x4, x1);
|
| + __ B(eq, &done);
|
| +
|
| + // If we came here, we need to see if we are the array function.
|
| + // If we didn't have a matching function, and we didn't find the megamorph
|
| + // sentinel, then we have in the slot either some other function or an
|
| + // AllocationSite. Do a map check on the object in ecx.
|
| + __ Ldr(x5, FieldMemOperand(x4, AllocationSite::kMapOffset));
|
| + __ JumpIfNotRoot(x5, Heap::kAllocationSiteMapRootIndex, &miss);
|
| +
|
| + // Make sure the function is the Array() function
|
| + __ LoadArrayFunction(x4);
|
| + __ Cmp(x1, x4);
|
| + __ B(ne, &megamorphic);
|
| + __ B(&done);
|
| +
|
| + __ Bind(&miss);
|
| +
|
| + // A monomorphic miss (i.e, here the cache is not uninitialized) goes
|
| + // megamorphic.
|
| + __ JumpIfRoot(x4, Heap::kTheHoleValueRootIndex, &initialize);
|
| + // MegamorphicSentinel is an immortal immovable object (undefined) so no
|
| + // write-barrier is needed.
|
| + __ Bind(&megamorphic);
|
| + __ Add(x4, x2, Operand::UntagSmiAndScale(x3, kPointerSizeLog2));
|
| + __ LoadRoot(x10, Heap::kUndefinedValueRootIndex);
|
| + __ Str(x10, FieldMemOperand(x4, FixedArray::kHeaderSize));
|
| + __ B(&done);
|
| +
|
| + // An uninitialized cache is patched with the function or sentinel to
|
| + // indicate the ElementsKind if function is the Array constructor.
|
| + __ Bind(&initialize);
|
| + // Make sure the function is the Array() function
|
| + __ LoadArrayFunction(x4);
|
| + __ Cmp(x1, x4);
|
| + __ B(ne, ¬_array_function);
|
| +
|
| + // The target function is the Array constructor,
|
| + // Create an AllocationSite if we don't already have it, store it in the slot.
|
| + {
|
| + FrameScope scope(masm, StackFrame::INTERNAL);
|
| + CreateAllocationSiteStub create_stub;
|
| +
|
| + // Arguments register must be smi-tagged to call out.
|
| + __ SmiTag(x0);
|
| + __ Push(x0, x1, x2, x3);
|
| +
|
| + __ CallStub(&create_stub);
|
| +
|
| + __ Pop(x3, x2, x1, x0);
|
| + __ SmiUntag(x0);
|
| + }
|
| + __ B(&done);
|
| +
|
| + __ Bind(¬_array_function);
|
| + // An uninitialized cache is patched with the function.
|
| +
|
| + __ Add(x4, x2, Operand::UntagSmiAndScale(x3, kPointerSizeLog2));
|
| + // TODO(all): Does the value need to be left in x4? If not, FieldMemOperand
|
| + // could be used to avoid this add.
|
| + __ Add(x4, x4, FixedArray::kHeaderSize - kHeapObjectTag);
|
| + __ Str(x1, MemOperand(x4, 0));
|
| +
|
| + __ Push(x4, x2, x1);
|
| + __ RecordWrite(x2, x4, x1, kLRHasNotBeenSaved, kDontSaveFPRegs,
|
| + EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
|
| + __ Pop(x1, x2, x4);
|
| +
|
| + // TODO(all): Are x4, x2 and x1 outputs? This isn't clear.
|
| +
|
| + __ Bind(&done);
|
| +}
|
| +
|
| +
|
| +void CallFunctionStub::Generate(MacroAssembler* masm) {
|
| + ASM_LOCATION("CallFunctionStub::Generate");
|
| + // x1 function the function to call
|
| + // x2 : feedback vector
|
| + // x3 : slot in feedback vector (smi) (if x2 is not undefined)
|
| + Register function = x1;
|
| + Register cache_cell = x2;
|
| + Register slot = x3;
|
| + Register type = x4;
|
| + Label slow, non_function, wrap, cont;
|
| +
|
| + // TODO(jbramley): This function has a lot of unnamed registers. Name them,
|
| + // and tidy things up a bit.
|
| +
|
| + if (NeedsChecks()) {
|
| + // Check that the function is really a JavaScript function.
|
| + __ JumpIfSmi(function, &non_function);
|
| +
|
| + // Goto slow case if we do not have a function.
|
| + __ JumpIfNotObjectType(function, x10, type, JS_FUNCTION_TYPE, &slow);
|
| +
|
| + if (RecordCallTarget()) {
|
| + GenerateRecordCallTarget(masm);
|
| + }
|
| + }
|
| +
|
| + // Fast-case: Invoke the function now.
|
| + // x1 function pushed function
|
| + ParameterCount actual(argc_);
|
| +
|
| + if (CallAsMethod()) {
|
| + if (NeedsChecks()) {
|
| + // Do not transform the receiver for strict mode functions.
|
| + __ Ldr(x3, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
|
| + __ Ldr(w4, FieldMemOperand(x3, SharedFunctionInfo::kCompilerHintsOffset));
|
| + __ Tbnz(w4, SharedFunctionInfo::kStrictModeFunction, &cont);
|
| +
|
| + // Do not transform the receiver for native (Compilerhints already in x3).
|
| + __ Tbnz(w4, SharedFunctionInfo::kNative, &cont);
|
| + }
|
| +
|
| + // Compute the receiver in non-strict mode.
|
| + __ Peek(x3, argc_ * kPointerSize);
|
| +
|
| + if (NeedsChecks()) {
|
| + __ JumpIfSmi(x3, &wrap);
|
| + __ JumpIfObjectType(x3, x10, type, FIRST_SPEC_OBJECT_TYPE, &wrap, lt);
|
| + } else {
|
| + __ B(&wrap);
|
| + }
|
| +
|
| + __ Bind(&cont);
|
| + }
|
| + __ InvokeFunction(function,
|
| + actual,
|
| + JUMP_FUNCTION,
|
| + NullCallWrapper());
|
| +
|
| + if (NeedsChecks()) {
|
| + // Slow-case: Non-function called.
|
| + __ Bind(&slow);
|
| + if (RecordCallTarget()) {
|
| + // If there is a call target cache, mark it megamorphic in the
|
| + // non-function case. MegamorphicSentinel is an immortal immovable object
|
| + // (undefined) so no write barrier is needed.
|
| + ASSERT_EQ(*TypeFeedbackInfo::MegamorphicSentinel(masm->isolate()),
|
| + masm->isolate()->heap()->undefined_value());
|
| + __ Add(x12, cache_cell, Operand::UntagSmiAndScale(slot,
|
| + kPointerSizeLog2));
|
| + __ LoadRoot(x11, Heap::kUndefinedValueRootIndex);
|
| + __ Str(x11, FieldMemOperand(x12, FixedArray::kHeaderSize));
|
| + }
|
| + // Check for function proxy.
|
| + // x10 : function type.
|
| + __ CompareAndBranch(type, JS_FUNCTION_PROXY_TYPE, ne, &non_function);
|
| + __ Push(function); // put proxy as additional argument
|
| + __ Mov(x0, argc_ + 1);
|
| + __ Mov(x2, 0);
|
| + __ GetBuiltinFunction(x1, Builtins::CALL_FUNCTION_PROXY);
|
| + {
|
| + Handle<Code> adaptor =
|
| + masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
|
| + __ Jump(adaptor, RelocInfo::CODE_TARGET);
|
| + }
|
| +
|
| + // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
|
| + // of the original receiver from the call site).
|
| + __ Bind(&non_function);
|
| + __ Poke(function, argc_ * kXRegSizeInBytes);
|
| + __ Mov(x0, argc_); // Set up the number of arguments.
|
| + __ Mov(x2, 0);
|
| + __ GetBuiltinFunction(function, Builtins::CALL_NON_FUNCTION);
|
| + __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
|
| + RelocInfo::CODE_TARGET);
|
| + }
|
| +
|
| + if (CallAsMethod()) {
|
| + __ Bind(&wrap);
|
| + // Wrap the receiver and patch it back onto the stack.
|
| + { FrameScope frame_scope(masm, StackFrame::INTERNAL);
|
| + __ Push(x1, x3);
|
| + __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
|
| + __ Pop(x1);
|
| + }
|
| + __ Poke(x0, argc_ * kPointerSize);
|
| + __ B(&cont);
|
| + }
|
| +}
|
| +
|
| +
|
| +void CallConstructStub::Generate(MacroAssembler* masm) {
|
| + ASM_LOCATION("CallConstructStub::Generate");
|
| + // x0 : number of arguments
|
| + // x1 : the function to call
|
| + // x2 : feedback vector
|
| + // x3 : slot in feedback vector (smi) (if r2 is not undefined)
|
| + Register function = x1;
|
| + Label slow, non_function_call;
|
| +
|
| + // Check that the function is not a smi.
|
| + __ JumpIfSmi(function, &non_function_call);
|
| + // Check that the function is a JSFunction.
|
| + Register object_type = x10;
|
| + __ JumpIfNotObjectType(function, object_type, object_type, JS_FUNCTION_TYPE,
|
| + &slow);
|
| +
|
| + if (RecordCallTarget()) {
|
| + GenerateRecordCallTarget(masm);
|
| + }
|
| +
|
| + // Jump to the function-specific construct stub.
|
| + Register jump_reg = x4;
|
| + Register shared_func_info = jump_reg;
|
| + Register cons_stub = jump_reg;
|
| + Register cons_stub_code = jump_reg;
|
| + __ Ldr(shared_func_info,
|
| + FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
|
| + __ Ldr(cons_stub,
|
| + FieldMemOperand(shared_func_info,
|
| + SharedFunctionInfo::kConstructStubOffset));
|
| + __ Add(cons_stub_code, cons_stub, Code::kHeaderSize - kHeapObjectTag);
|
| + __ Br(cons_stub_code);
|
| +
|
| + Label do_call;
|
| + __ Bind(&slow);
|
| + __ Cmp(object_type, JS_FUNCTION_PROXY_TYPE);
|
| + __ B(ne, &non_function_call);
|
| + __ GetBuiltinFunction(x1, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
|
| + __ B(&do_call);
|
| +
|
| + __ Bind(&non_function_call);
|
| + __ GetBuiltinFunction(x1, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
|
| +
|
| + __ Bind(&do_call);
|
| + // Set expected number of arguments to zero (not changing x0).
|
| + __ Mov(x2, 0);
|
| + __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
|
| + RelocInfo::CODE_TARGET);
|
| +}
|
| +
|
| +
|
| +void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
|
| + // If the receiver is a smi trigger the non-string case.
|
| + __ JumpIfSmi(object_, receiver_not_string_);
|
| +
|
| + // Fetch the instance type of the receiver into result register.
|
| + __ Ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
|
| + __ Ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
|
| +
|
| + // If the receiver is not a string trigger the non-string case.
|
| + __ TestAndBranchIfAnySet(result_, kIsNotStringMask, receiver_not_string_);
|
| +
|
| + // If the index is non-smi trigger the non-smi case.
|
| + __ JumpIfNotSmi(index_, &index_not_smi_);
|
| +
|
| + __ Bind(&got_smi_index_);
|
| + // Check for index out of range.
|
| + __ Ldrsw(result_, UntagSmiFieldMemOperand(object_, String::kLengthOffset));
|
| + __ Cmp(result_, Operand::UntagSmi(index_));
|
| + __ B(ls, index_out_of_range_);
|
| +
|
| + __ SmiUntag(index_);
|
| +
|
| + StringCharLoadGenerator::Generate(masm,
|
| + object_,
|
| + index_,
|
| + result_,
|
| + &call_runtime_);
|
| + __ SmiTag(result_);
|
| + __ Bind(&exit_);
|
| +}
|
| +
|
| +
|
| +void StringCharCodeAtGenerator::GenerateSlow(
|
| + MacroAssembler* masm,
|
| + const RuntimeCallHelper& call_helper) {
|
| + __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
|
| +
|
| + __ Bind(&index_not_smi_);
|
| + // If index is a heap number, try converting it to an integer.
|
| + __ CheckMap(index_,
|
| + result_,
|
| + Heap::kHeapNumberMapRootIndex,
|
| + index_not_number_,
|
| + DONT_DO_SMI_CHECK);
|
| + call_helper.BeforeCall(masm);
|
| + // Save object_ on the stack and pass index_ as argument for runtime call.
|
| + __ Push(object_, index_);
|
| + if (index_flags_ == STRING_INDEX_IS_NUMBER) {
|
| + __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
|
| + } else {
|
| + ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
|
| + // NumberToSmi discards numbers that are not exact integers.
|
| + __ CallRuntime(Runtime::kNumberToSmi, 1);
|
| + }
|
| + // Save the conversion result before the pop instructions below
|
| + // have a chance to overwrite it.
|
| + __ Mov(index_, x0);
|
| + __ Pop(object_);
|
| + // Reload the instance type.
|
| + __ Ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
|
| + __ Ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
|
| + call_helper.AfterCall(masm);
|
| +
|
| + // If index is still not a smi, it must be out of range.
|
| + __ JumpIfNotSmi(index_, index_out_of_range_);
|
| + // Otherwise, return to the fast path.
|
| + __ B(&got_smi_index_);
|
| +
|
| + // Call runtime. We get here when the receiver is a string and the
|
| + // index is a number, but the code of getting the actual character
|
| + // is too complex (e.g., when the string needs to be flattened).
|
| + __ Bind(&call_runtime_);
|
| + call_helper.BeforeCall(masm);
|
| + __ SmiTag(index_);
|
| + __ Push(object_, index_);
|
| + __ CallRuntime(Runtime::kStringCharCodeAt, 2);
|
| + __ Mov(result_, x0);
|
| + call_helper.AfterCall(masm);
|
| + __ B(&exit_);
|
| +
|
| + __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
|
| +}
|
| +
|
| +
|
| +void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
|
| + __ JumpIfNotSmi(code_, &slow_case_);
|
| + __ Cmp(code_, Operand(Smi::FromInt(String::kMaxOneByteCharCode)));
|
| + __ B(hi, &slow_case_);
|
| +
|
| + __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
|
| + // At this point code register contains smi tagged ASCII char code.
|
| + STATIC_ASSERT(kSmiShift > kPointerSizeLog2);
|
| + __ Add(result_, result_, Operand(code_, LSR, kSmiShift - kPointerSizeLog2));
|
| + __ Ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
|
| + __ JumpIfRoot(result_, Heap::kUndefinedValueRootIndex, &slow_case_);
|
| + __ Bind(&exit_);
|
| +}
|
| +
|
| +
|
| +void StringCharFromCodeGenerator::GenerateSlow(
|
| + MacroAssembler* masm,
|
| + const RuntimeCallHelper& call_helper) {
|
| + __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
|
| +
|
| + __ Bind(&slow_case_);
|
| + call_helper.BeforeCall(masm);
|
| + __ Push(code_);
|
| + __ CallRuntime(Runtime::kCharFromCode, 1);
|
| + __ Mov(result_, x0);
|
| + call_helper.AfterCall(masm);
|
| + __ B(&exit_);
|
| +
|
| + __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
|
| +}
|
| +
|
| +
|
| +void ICCompareStub::GenerateSmis(MacroAssembler* masm) {
|
| + // Inputs are in x0 (lhs) and x1 (rhs).
|
| + ASSERT(state_ == CompareIC::SMI);
|
| + ASM_LOCATION("ICCompareStub[Smis]");
|
| + Label miss;
|
| + // Bail out (to 'miss') unless both x0 and x1 are smis.
|
| + __ JumpIfEitherNotSmi(x0, x1, &miss);
|
| +
|
| + // TODO(jbramley): Why do we only set the flags for EQ?
|
| + if (GetCondition() == eq) {
|
| + // For equality we do not care about the sign of the result.
|
| + __ Subs(x0, x0, x1);
|
| + } else {
|
| + // Untag before subtracting to avoid handling overflow.
|
| + __ SmiUntag(x1);
|
| + __ Sub(x0, x1, Operand::UntagSmi(x0));
|
| + }
|
| + __ Ret();
|
| +
|
| + __ Bind(&miss);
|
| + GenerateMiss(masm);
|
| +}
|
| +
|
| +
|
| +void ICCompareStub::GenerateNumbers(MacroAssembler* masm) {
|
| + ASSERT(state_ == CompareIC::NUMBER);
|
| + ASM_LOCATION("ICCompareStub[HeapNumbers]");
|
| +
|
| + Label unordered, maybe_undefined1, maybe_undefined2;
|
| + Label miss, handle_lhs, values_in_d_regs;
|
| + Label untag_rhs, untag_lhs;
|
| +
|
| + Register result = x0;
|
| + Register rhs = x0;
|
| + Register lhs = x1;
|
| + FPRegister rhs_d = d0;
|
| + FPRegister lhs_d = d1;
|
| +
|
| + if (left_ == CompareIC::SMI) {
|
| + __ JumpIfNotSmi(lhs, &miss);
|
| + }
|
| + if (right_ == CompareIC::SMI) {
|
| + __ JumpIfNotSmi(rhs, &miss);
|
| + }
|
| +
|
| + __ SmiUntagToDouble(rhs_d, rhs, kSpeculativeUntag);
|
| + __ SmiUntagToDouble(lhs_d, lhs, kSpeculativeUntag);
|
| +
|
| + // Load rhs if it's a heap number.
|
| + __ JumpIfSmi(rhs, &handle_lhs);
|
| + __ CheckMap(rhs, x10, Heap::kHeapNumberMapRootIndex, &maybe_undefined1,
|
| + DONT_DO_SMI_CHECK);
|
| + __ Ldr(rhs_d, FieldMemOperand(rhs, HeapNumber::kValueOffset));
|
| +
|
| + // Load lhs if it's a heap number.
|
| + __ Bind(&handle_lhs);
|
| + __ JumpIfSmi(lhs, &values_in_d_regs);
|
| + __ CheckMap(lhs, x10, Heap::kHeapNumberMapRootIndex, &maybe_undefined2,
|
| + DONT_DO_SMI_CHECK);
|
| + __ Ldr(lhs_d, FieldMemOperand(lhs, HeapNumber::kValueOffset));
|
| +
|
| + __ Bind(&values_in_d_regs);
|
| + __ Fcmp(lhs_d, rhs_d);
|
| + __ B(vs, &unordered); // Overflow flag set if either is NaN.
|
| + STATIC_ASSERT((LESS == -1) && (EQUAL == 0) && (GREATER == 1));
|
| + __ Cset(result, gt); // gt => 1, otherwise (lt, eq) => 0 (EQUAL).
|
| + __ Csinv(result, result, xzr, ge); // lt => -1, gt => 1, eq => 0.
|
| + __ Ret();
|
| +
|
| + __ Bind(&unordered);
|
| + ICCompareStub stub(op_, CompareIC::GENERIC, CompareIC::GENERIC,
|
| + CompareIC::GENERIC);
|
| + __ Jump(stub.GetCode(masm->isolate()), RelocInfo::CODE_TARGET);
|
| +
|
| + __ Bind(&maybe_undefined1);
|
| + if (Token::IsOrderedRelationalCompareOp(op_)) {
|
| + __ JumpIfNotRoot(rhs, Heap::kUndefinedValueRootIndex, &miss);
|
| + __ JumpIfSmi(lhs, &unordered);
|
| + __ JumpIfNotObjectType(lhs, x10, x10, HEAP_NUMBER_TYPE, &maybe_undefined2);
|
| + __ B(&unordered);
|
| + }
|
| +
|
| + __ Bind(&maybe_undefined2);
|
| + if (Token::IsOrderedRelationalCompareOp(op_)) {
|
| + __ JumpIfRoot(lhs, Heap::kUndefinedValueRootIndex, &unordered);
|
| + }
|
| +
|
| + __ Bind(&miss);
|
| + GenerateMiss(masm);
|
| +}
|
| +
|
| +
|
| +void ICCompareStub::GenerateInternalizedStrings(MacroAssembler* masm) {
|
| + ASSERT(state_ == CompareIC::INTERNALIZED_STRING);
|
| + ASM_LOCATION("ICCompareStub[InternalizedStrings]");
|
| + Label miss;
|
| +
|
| + Register result = x0;
|
| + Register rhs = x0;
|
| + Register lhs = x1;
|
| +
|
| + // Check that both operands are heap objects.
|
| + __ JumpIfEitherSmi(lhs, rhs, &miss);
|
| +
|
| + // Check that both operands are internalized strings.
|
| + Register rhs_map = x10;
|
| + Register lhs_map = x11;
|
| + Register rhs_type = x10;
|
| + Register lhs_type = x11;
|
| + __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset));
|
| + __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset));
|
| + __ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset));
|
| + __ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset));
|
| +
|
| + STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0));
|
| + __ Orr(x12, lhs_type, rhs_type);
|
| + __ TestAndBranchIfAnySet(
|
| + x12, kIsNotStringMask | kIsNotInternalizedMask, &miss);
|
| +
|
| + // Internalized strings are compared by identity.
|
| + STATIC_ASSERT(EQUAL == 0);
|
| + __ Cmp(lhs, rhs);
|
| + __ Cset(result, ne);
|
| + __ Ret();
|
| +
|
| + __ Bind(&miss);
|
| + GenerateMiss(masm);
|
| +}
|
| +
|
| +
|
| +void ICCompareStub::GenerateUniqueNames(MacroAssembler* masm) {
|
| + ASSERT(state_ == CompareIC::UNIQUE_NAME);
|
| + ASM_LOCATION("ICCompareStub[UniqueNames]");
|
| + ASSERT(GetCondition() == eq);
|
| + Label miss;
|
| +
|
| + Register result = x0;
|
| + Register rhs = x0;
|
| + Register lhs = x1;
|
| +
|
| + Register lhs_instance_type = w2;
|
| + Register rhs_instance_type = w3;
|
| +
|
| + // Check that both operands are heap objects.
|
| + __ JumpIfEitherSmi(lhs, rhs, &miss);
|
| +
|
| + // Check that both operands are unique names. This leaves the instance
|
| + // types loaded in tmp1 and tmp2.
|
| + __ Ldr(x10, FieldMemOperand(lhs, HeapObject::kMapOffset));
|
| + __ Ldr(x11, FieldMemOperand(rhs, HeapObject::kMapOffset));
|
| + __ Ldrb(lhs_instance_type, FieldMemOperand(x10, Map::kInstanceTypeOffset));
|
| + __ Ldrb(rhs_instance_type, FieldMemOperand(x11, Map::kInstanceTypeOffset));
|
| +
|
| + // To avoid a miss, each instance type should be either SYMBOL_TYPE or it
|
| + // should have kInternalizedTag set.
|
| + __ JumpIfNotUniqueName(lhs_instance_type, &miss);
|
| + __ JumpIfNotUniqueName(rhs_instance_type, &miss);
|
| +
|
| + // Unique names are compared by identity.
|
| + STATIC_ASSERT(EQUAL == 0);
|
| + __ Cmp(lhs, rhs);
|
| + __ Cset(result, ne);
|
| + __ Ret();
|
| +
|
| + __ Bind(&miss);
|
| + GenerateMiss(masm);
|
| +}
|
| +
|
| +
|
| +void ICCompareStub::GenerateStrings(MacroAssembler* masm) {
|
| + ASSERT(state_ == CompareIC::STRING);
|
| + ASM_LOCATION("ICCompareStub[Strings]");
|
| +
|
| + Label miss;
|
| +
|
| + bool equality = Token::IsEqualityOp(op_);
|
| +
|
| + Register result = x0;
|
| + Register rhs = x0;
|
| + Register lhs = x1;
|
| +
|
| + // Check that both operands are heap objects.
|
| + __ JumpIfEitherSmi(rhs, lhs, &miss);
|
| +
|
| + // Check that both operands are strings.
|
| + Register rhs_map = x10;
|
| + Register lhs_map = x11;
|
| + Register rhs_type = x10;
|
| + Register lhs_type = x11;
|
| + __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset));
|
| + __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset));
|
| + __ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset));
|
| + __ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset));
|
| + STATIC_ASSERT(kNotStringTag != 0);
|
| + __ Orr(x12, lhs_type, rhs_type);
|
| + __ Tbnz(x12, MaskToBit(kIsNotStringMask), &miss);
|
| +
|
| + // Fast check for identical strings.
|
| + Label not_equal;
|
| + __ Cmp(lhs, rhs);
|
| + __ B(ne, ¬_equal);
|
| + __ Mov(result, EQUAL);
|
| + __ Ret();
|
| +
|
| + __ Bind(¬_equal);
|
| + // Handle not identical strings
|
| +
|
| + // Check that both strings are internalized strings. If they are, we're done
|
| + // because we already know they are not identical. We know they are both
|
| + // strings.
|
| + if (equality) {
|
| + ASSERT(GetCondition() == eq);
|
| + STATIC_ASSERT(kInternalizedTag == 0);
|
| + Label not_internalized_strings;
|
| + __ Orr(x12, lhs_type, rhs_type);
|
| + __ TestAndBranchIfAnySet(
|
| + x12, kIsNotInternalizedMask, ¬_internalized_strings);
|
| + // Result is in rhs (x0), and not EQUAL, as rhs is not a smi.
|
| + __ Ret();
|
| + __ Bind(¬_internalized_strings);
|
| + }
|
| +
|
| + // Check that both strings are sequential ASCII.
|
| + Label runtime;
|
| + __ JumpIfBothInstanceTypesAreNotSequentialAscii(
|
| + lhs_type, rhs_type, x12, x13, &runtime);
|
| +
|
| + // Compare flat ASCII strings. Returns when done.
|
| + if (equality) {
|
| + StringCompareStub::GenerateFlatAsciiStringEquals(
|
| + masm, lhs, rhs, x10, x11, x12);
|
| + } else {
|
| + StringCompareStub::GenerateCompareFlatAsciiStrings(
|
| + masm, lhs, rhs, x10, x11, x12, x13);
|
| + }
|
| +
|
| + // Handle more complex cases in runtime.
|
| + __ Bind(&runtime);
|
| + __ Push(lhs, rhs);
|
| + if (equality) {
|
| + __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
|
| + } else {
|
| + __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
|
| + }
|
| +
|
| + __ Bind(&miss);
|
| + GenerateMiss(masm);
|
| +}
|
| +
|
| +
|
| +void ICCompareStub::GenerateObjects(MacroAssembler* masm) {
|
| + ASSERT(state_ == CompareIC::OBJECT);
|
| + ASM_LOCATION("ICCompareStub[Objects]");
|
| +
|
| + Label miss;
|
| +
|
| + Register result = x0;
|
| + Register rhs = x0;
|
| + Register lhs = x1;
|
| +
|
| + __ JumpIfEitherSmi(rhs, lhs, &miss);
|
| +
|
| + __ JumpIfNotObjectType(rhs, x10, x10, JS_OBJECT_TYPE, &miss);
|
| + __ JumpIfNotObjectType(lhs, x10, x10, JS_OBJECT_TYPE, &miss);
|
| +
|
| + ASSERT(GetCondition() == eq);
|
| + __ Sub(result, rhs, lhs);
|
| + __ Ret();
|
| +
|
| + __ Bind(&miss);
|
| + GenerateMiss(masm);
|
| +}
|
| +
|
| +
|
| +void ICCompareStub::GenerateKnownObjects(MacroAssembler* masm) {
|
| + ASM_LOCATION("ICCompareStub[KnownObjects]");
|
| +
|
| + Label miss;
|
| +
|
| + Register result = x0;
|
| + Register rhs = x0;
|
| + Register lhs = x1;
|
| +
|
| + __ JumpIfEitherSmi(rhs, lhs, &miss);
|
| +
|
| + Register rhs_map = x10;
|
| + Register lhs_map = x11;
|
| + __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset));
|
| + __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset));
|
| + __ Cmp(rhs_map, Operand(known_map_));
|
| + __ B(ne, &miss);
|
| + __ Cmp(lhs_map, Operand(known_map_));
|
| + __ B(ne, &miss);
|
| +
|
| + __ Sub(result, rhs, lhs);
|
| + __ Ret();
|
| +
|
| + __ Bind(&miss);
|
| + GenerateMiss(masm);
|
| +}
|
| +
|
| +
|
| +// This method handles the case where a compare stub had the wrong
|
| +// implementation. It calls a miss handler, which re-writes the stub. All other
|
| +// ICCompareStub::Generate* methods should fall back into this one if their
|
| +// operands were not the expected types.
|
| +void ICCompareStub::GenerateMiss(MacroAssembler* masm) {
|
| + ASM_LOCATION("ICCompareStub[Miss]");
|
| +
|
| + Register stub_entry = x11;
|
| + {
|
| + ExternalReference miss =
|
| + ExternalReference(IC_Utility(IC::kCompareIC_Miss), masm->isolate());
|
| +
|
| + FrameScope scope(masm, StackFrame::INTERNAL);
|
| + Register op = x10;
|
| + Register left = x1;
|
| + Register right = x0;
|
| + // Preserve some caller-saved registers.
|
| + __ Push(x1, x0, lr);
|
| + // Push the arguments.
|
| + __ Mov(op, Operand(Smi::FromInt(op_)));
|
| + __ Push(left, right, op);
|
| +
|
| + // Call the miss handler. This also pops the arguments.
|
| + __ CallExternalReference(miss, 3);
|
| +
|
| + // Compute the entry point of the rewritten stub.
|
| + __ Add(stub_entry, x0, Code::kHeaderSize - kHeapObjectTag);
|
| + // Restore caller-saved registers.
|
| + __ Pop(lr, x0, x1);
|
| + }
|
| +
|
| + // Tail-call to the new stub.
|
| + __ Jump(stub_entry);
|
| +}
|
| +
|
| +
|
| +void StringHelper::GenerateHashInit(MacroAssembler* masm,
|
| + Register hash,
|
| + Register character) {
|
| + ASSERT(!AreAliased(hash, character));
|
| +
|
| + // hash = character + (character << 10);
|
| + __ LoadRoot(hash, Heap::kHashSeedRootIndex);
|
| + // Untag smi seed and add the character.
|
| + __ Add(hash, character, Operand(hash, LSR, kSmiShift));
|
| +
|
| + // Compute hashes modulo 2^32 using a 32-bit W register.
|
| + Register hash_w = hash.W();
|
| +
|
| + // hash += hash << 10;
|
| + __ Add(hash_w, hash_w, Operand(hash_w, LSL, 10));
|
| + // hash ^= hash >> 6;
|
| + __ Eor(hash_w, hash_w, Operand(hash_w, LSR, 6));
|
| +}
|
| +
|
| +
|
| +void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
|
| + Register hash,
|
| + Register character) {
|
| + ASSERT(!AreAliased(hash, character));
|
| +
|
| + // hash += character;
|
| + __ Add(hash, hash, character);
|
| +
|
| + // Compute hashes modulo 2^32 using a 32-bit W register.
|
| + Register hash_w = hash.W();
|
| +
|
| + // hash += hash << 10;
|
| + __ Add(hash_w, hash_w, Operand(hash_w, LSL, 10));
|
| + // hash ^= hash >> 6;
|
| + __ Eor(hash_w, hash_w, Operand(hash_w, LSR, 6));
|
| +}
|
| +
|
| +
|
| +void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
|
| + Register hash,
|
| + Register scratch) {
|
| + // Compute hashes modulo 2^32 using a 32-bit W register.
|
| + Register hash_w = hash.W();
|
| + Register scratch_w = scratch.W();
|
| + ASSERT(!AreAliased(hash_w, scratch_w));
|
| +
|
| + // hash += hash << 3;
|
| + __ Add(hash_w, hash_w, Operand(hash_w, LSL, 3));
|
| + // hash ^= hash >> 11;
|
| + __ Eor(hash_w, hash_w, Operand(hash_w, LSR, 11));
|
| + // hash += hash << 15;
|
| + __ Add(hash_w, hash_w, Operand(hash_w, LSL, 15));
|
| +
|
| + __ Ands(hash_w, hash_w, String::kHashBitMask);
|
| +
|
| + // if (hash == 0) hash = 27;
|
| + __ Mov(scratch_w, StringHasher::kZeroHash);
|
| + __ Csel(hash_w, scratch_w, hash_w, eq);
|
| +}
|
| +
|
| +
|
| +void SubStringStub::Generate(MacroAssembler* masm) {
|
| + ASM_LOCATION("SubStringStub::Generate");
|
| + Label runtime;
|
| +
|
| + // Stack frame on entry.
|
| + // lr: return address
|
| + // jssp[0]: substring "to" offset
|
| + // jssp[8]: substring "from" offset
|
| + // jssp[16]: pointer to string object
|
| +
|
| + // This stub is called from the native-call %_SubString(...), so
|
| + // nothing can be assumed about the arguments. It is tested that:
|
| + // "string" is a sequential string,
|
| + // both "from" and "to" are smis, and
|
| + // 0 <= from <= to <= string.length (in debug mode.)
|
| + // If any of these assumptions fail, we call the runtime system.
|
| +
|
| + static const int kToOffset = 0 * kPointerSize;
|
| + static const int kFromOffset = 1 * kPointerSize;
|
| + static const int kStringOffset = 2 * kPointerSize;
|
| +
|
| + Register to = x0;
|
| + Register from = x15;
|
| + Register input_string = x10;
|
| + Register input_length = x11;
|
| + Register input_type = x12;
|
| + Register result_string = x0;
|
| + Register result_length = x1;
|
| + Register temp = x3;
|
| +
|
| + __ Peek(to, kToOffset);
|
| + __ Peek(from, kFromOffset);
|
| +
|
| + // Check that both from and to are smis. If not, jump to runtime.
|
| + __ JumpIfEitherNotSmi(from, to, &runtime);
|
| + __ SmiUntag(from);
|
| + __ SmiUntag(to);
|
| +
|
| + // Calculate difference between from and to. If to < from, branch to runtime.
|
| + __ Subs(result_length, to, from);
|
| + __ B(mi, &runtime);
|
| +
|
| + // Check from is positive.
|
| + __ Tbnz(from, kWSignBit, &runtime);
|
| +
|
| + // Make sure first argument is a string.
|
| + __ Peek(input_string, kStringOffset);
|
| + __ JumpIfSmi(input_string, &runtime);
|
| + __ IsObjectJSStringType(input_string, input_type, &runtime);
|
| +
|
| + Label single_char;
|
| + __ Cmp(result_length, 1);
|
| + __ B(eq, &single_char);
|
| +
|
| + // Short-cut for the case of trivial substring.
|
| + Label return_x0;
|
| + __ Ldrsw(input_length,
|
| + UntagSmiFieldMemOperand(input_string, String::kLengthOffset));
|
| +
|
| + __ Cmp(result_length, input_length);
|
| + __ CmovX(x0, input_string, eq);
|
| + // Return original string.
|
| + __ B(eq, &return_x0);
|
| +
|
| + // Longer than original string's length or negative: unsafe arguments.
|
| + __ B(hi, &runtime);
|
| +
|
| + // Shorter than original string's length: an actual substring.
|
| +
|
| + // x0 to substring end character offset
|
| + // x1 result_length length of substring result
|
| + // x10 input_string pointer to input string object
|
| + // x10 unpacked_string pointer to unpacked string object
|
| + // x11 input_length length of input string
|
| + // x12 input_type instance type of input string
|
| + // x15 from substring start character offset
|
| +
|
| + // Deal with different string types: update the index if necessary and put
|
| + // the underlying string into register unpacked_string.
|
| + Label underlying_unpacked, sliced_string, seq_or_external_string;
|
| + Label update_instance_type;
|
| + // If the string is not indirect, it can only be sequential or external.
|
| + STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
|
| + STATIC_ASSERT(kIsIndirectStringMask != 0);
|
| +
|
| + // Test for string types, and branch/fall through to appropriate unpacking
|
| + // code.
|
| + __ Tst(input_type, kIsIndirectStringMask);
|
| + __ B(eq, &seq_or_external_string);
|
| + __ Tst(input_type, kSlicedNotConsMask);
|
| + __ B(ne, &sliced_string);
|
| +
|
| + Register unpacked_string = input_string;
|
| +
|
| + // Cons string. Check whether it is flat, then fetch first part.
|
| + __ Ldr(temp, FieldMemOperand(input_string, ConsString::kSecondOffset));
|
| + __ JumpIfNotRoot(temp, Heap::kempty_stringRootIndex, &runtime);
|
| + __ Ldr(unpacked_string,
|
| + FieldMemOperand(input_string, ConsString::kFirstOffset));
|
| + __ B(&update_instance_type);
|
| +
|
| + __ Bind(&sliced_string);
|
| + // Sliced string. Fetch parent and correct start index by offset.
|
| + __ Ldrsw(temp,
|
| + UntagSmiFieldMemOperand(input_string, SlicedString::kOffsetOffset));
|
| + __ Add(from, from, temp);
|
| + __ Ldr(unpacked_string,
|
| + FieldMemOperand(input_string, SlicedString::kParentOffset));
|
| +
|
| + __ Bind(&update_instance_type);
|
| + __ Ldr(temp, FieldMemOperand(unpacked_string, HeapObject::kMapOffset));
|
| + __ Ldrb(input_type, FieldMemOperand(temp, Map::kInstanceTypeOffset));
|
| + // TODO(all): This generates "b #+0x4". Can these be optimised out?
|
| + __ B(&underlying_unpacked);
|
| +
|
| + __ Bind(&seq_or_external_string);
|
| + // Sequential or external string. Registers unpacked_string and input_string
|
| + // alias, so there's nothing to do here.
|
| +
|
| + // x0 result_string pointer to result string object (uninit)
|
| + // x1 result_length length of substring result
|
| + // x10 unpacked_string pointer to unpacked string object
|
| + // x11 input_length length of input string
|
| + // x12 input_type instance type of input string
|
| + // x15 from substring start character offset
|
| + __ Bind(&underlying_unpacked);
|
| +
|
| + if (FLAG_string_slices) {
|
| + Label copy_routine;
|
| + __ Cmp(result_length, SlicedString::kMinLength);
|
| + // Short slice. Copy instead of slicing.
|
| + __ B(lt, ©_routine);
|
| + // Allocate new sliced string. At this point we do not reload the instance
|
| + // type including the string encoding because we simply rely on the info
|
| + // provided by the original string. It does not matter if the original
|
| + // string's encoding is wrong because we always have to recheck encoding of
|
| + // the newly created string's parent anyway due to externalized strings.
|
| + Label two_byte_slice, set_slice_header;
|
| + STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
|
| + STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
|
| + __ Tbz(input_type, MaskToBit(kStringEncodingMask), &two_byte_slice);
|
| + __ AllocateAsciiSlicedString(result_string, result_length, x3, x4,
|
| + &runtime);
|
| + __ B(&set_slice_header);
|
| +
|
| + __ Bind(&two_byte_slice);
|
| + __ AllocateTwoByteSlicedString(result_string, result_length, x3, x4,
|
| + &runtime);
|
| +
|
| + __ Bind(&set_slice_header);
|
| + __ SmiTag(from);
|
| + __ Str(from, FieldMemOperand(result_string, SlicedString::kOffsetOffset));
|
| + __ Str(unpacked_string,
|
| + FieldMemOperand(result_string, SlicedString::kParentOffset));
|
| + __ B(&return_x0);
|
| +
|
| + __ Bind(©_routine);
|
| + }
|
| +
|
| + // x0 result_string pointer to result string object (uninit)
|
| + // x1 result_length length of substring result
|
| + // x10 unpacked_string pointer to unpacked string object
|
| + // x11 input_length length of input string
|
| + // x12 input_type instance type of input string
|
| + // x13 unpacked_char0 pointer to first char of unpacked string (uninit)
|
| + // x13 substring_char0 pointer to first char of substring (uninit)
|
| + // x14 result_char0 pointer to first char of result (uninit)
|
| + // x15 from substring start character offset
|
| + Register unpacked_char0 = x13;
|
| + Register substring_char0 = x13;
|
| + Register result_char0 = x14;
|
| + Label two_byte_sequential, sequential_string, allocate_result;
|
| + STATIC_ASSERT(kExternalStringTag != 0);
|
| + STATIC_ASSERT(kSeqStringTag == 0);
|
| +
|
| + __ Tst(input_type, kExternalStringTag);
|
| + __ B(eq, &sequential_string);
|
| +
|
| + __ Tst(input_type, kShortExternalStringTag);
|
| + __ B(ne, &runtime);
|
| + __ Ldr(unpacked_char0,
|
| + FieldMemOperand(unpacked_string, ExternalString::kResourceDataOffset));
|
| + // unpacked_char0 points to the first character of the underlying string.
|
| + __ B(&allocate_result);
|
| +
|
| + __ Bind(&sequential_string);
|
| + // Locate first character of underlying subject string.
|
| + STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
|
| + __ Add(unpacked_char0, unpacked_string,
|
| + SeqOneByteString::kHeaderSize - kHeapObjectTag);
|
| +
|
| + __ Bind(&allocate_result);
|
| + // Sequential ASCII string. Allocate the result.
|
| + STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
|
| + __ Tbz(input_type, MaskToBit(kStringEncodingMask), &two_byte_sequential);
|
| +
|
| + // Allocate and copy the resulting ASCII string.
|
| + __ AllocateAsciiString(result_string, result_length, x3, x4, x5, &runtime);
|
| +
|
| + // Locate first character of substring to copy.
|
| + __ Add(substring_char0, unpacked_char0, from);
|
| +
|
| + // Locate first character of result.
|
| + __ Add(result_char0, result_string,
|
| + SeqOneByteString::kHeaderSize - kHeapObjectTag);
|
| +
|
| + STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
|
| + __ CopyBytes(result_char0, substring_char0, result_length, x3, kCopyLong);
|
| + __ B(&return_x0);
|
| +
|
| + // Allocate and copy the resulting two-byte string.
|
| + __ Bind(&two_byte_sequential);
|
| + __ AllocateTwoByteString(result_string, result_length, x3, x4, x5, &runtime);
|
| +
|
| + // Locate first character of substring to copy.
|
| + __ Add(substring_char0, unpacked_char0, Operand(from, LSL, 1));
|
| +
|
| + // Locate first character of result.
|
| + __ Add(result_char0, result_string,
|
| + SeqTwoByteString::kHeaderSize - kHeapObjectTag);
|
| +
|
| + STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
|
| + __ Add(result_length, result_length, result_length);
|
| + __ CopyBytes(result_char0, substring_char0, result_length, x3, kCopyLong);
|
| +
|
| + __ Bind(&return_x0);
|
| + Counters* counters = masm->isolate()->counters();
|
| + __ IncrementCounter(counters->sub_string_native(), 1, x3, x4);
|
| + __ Drop(3);
|
| + __ Ret();
|
| +
|
| + __ Bind(&runtime);
|
| + __ TailCallRuntime(Runtime::kSubString, 3, 1);
|
| +
|
| + __ bind(&single_char);
|
| + // x1: result_length
|
| + // x10: input_string
|
| + // x12: input_type
|
| + // x15: from (untagged)
|
| + __ SmiTag(from);
|
| + StringCharAtGenerator generator(
|
| + input_string, from, result_length, x0,
|
| + &runtime, &runtime, &runtime, STRING_INDEX_IS_NUMBER);
|
| + generator.GenerateFast(masm);
|
| + // TODO(jbramley): Why doesn't this jump to return_x0?
|
| + __ Drop(3);
|
| + __ Ret();
|
| + generator.SkipSlow(masm, &runtime);
|
| +}
|
| +
|
| +
|
| +void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm,
|
| + Register left,
|
| + Register right,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Register scratch3) {
|
| + ASSERT(!AreAliased(left, right, scratch1, scratch2, scratch3));
|
| + Register result = x0;
|
| + Register left_length = scratch1;
|
| + Register right_length = scratch2;
|
| +
|
| + // Compare lengths. If lengths differ, strings can't be equal. Lengths are
|
| + // smis, and don't need to be untagged.
|
| + Label strings_not_equal, check_zero_length;
|
| + __ Ldr(left_length, FieldMemOperand(left, String::kLengthOffset));
|
| + __ Ldr(right_length, FieldMemOperand(right, String::kLengthOffset));
|
| + __ Cmp(left_length, right_length);
|
| + __ B(eq, &check_zero_length);
|
| +
|
| + __ Bind(&strings_not_equal);
|
| + __ Mov(result, Operand(Smi::FromInt(NOT_EQUAL)));
|
| + __ Ret();
|
| +
|
| + // Check if the length is zero. If so, the strings must be equal (and empty.)
|
| + Label compare_chars;
|
| + __ Bind(&check_zero_length);
|
| + STATIC_ASSERT(kSmiTag == 0);
|
| + __ Cbnz(left_length, &compare_chars);
|
| + __ Mov(result, Operand(Smi::FromInt(EQUAL)));
|
| + __ Ret();
|
| +
|
| + // Compare characters. Falls through if all characters are equal.
|
| + __ Bind(&compare_chars);
|
| + GenerateAsciiCharsCompareLoop(masm, left, right, left_length, scratch2,
|
| + scratch3, &strings_not_equal);
|
| +
|
| + // Characters in strings are equal.
|
| + __ Mov(result, Operand(Smi::FromInt(EQUAL)));
|
| + __ Ret();
|
| +}
|
| +
|
| +
|
| +void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
|
| + Register left,
|
| + Register right,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Register scratch3,
|
| + Register scratch4) {
|
| + ASSERT(!AreAliased(left, right, scratch1, scratch2, scratch3, scratch4));
|
| + Label result_not_equal, compare_lengths;
|
| +
|
| + // Find minimum length and length difference.
|
| + Register length_delta = scratch3;
|
| + __ Ldr(scratch1, FieldMemOperand(left, String::kLengthOffset));
|
| + __ Ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
|
| + __ Subs(length_delta, scratch1, scratch2);
|
| +
|
| + Register min_length = scratch1;
|
| + __ Csel(min_length, scratch2, scratch1, gt);
|
| + __ Cbz(min_length, &compare_lengths);
|
| +
|
| + // Compare loop.
|
| + GenerateAsciiCharsCompareLoop(masm,
|
| + left, right, min_length, scratch2, scratch4,
|
| + &result_not_equal);
|
| +
|
| + // Compare lengths - strings up to min-length are equal.
|
| + __ Bind(&compare_lengths);
|
| +
|
| + ASSERT(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
|
| +
|
| + // Use length_delta as result if it's zero.
|
| + Register result = x0;
|
| + __ Subs(result, length_delta, 0);
|
| +
|
| + __ Bind(&result_not_equal);
|
| + Register greater = x10;
|
| + Register less = x11;
|
| + __ Mov(greater, Operand(Smi::FromInt(GREATER)));
|
| + __ Mov(less, Operand(Smi::FromInt(LESS)));
|
| + __ CmovX(result, greater, gt);
|
| + __ CmovX(result, less, lt);
|
| + __ Ret();
|
| +}
|
| +
|
| +
|
| +void StringCompareStub::GenerateAsciiCharsCompareLoop(
|
| + MacroAssembler* masm,
|
| + Register left,
|
| + Register right,
|
| + Register length,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Label* chars_not_equal) {
|
| + ASSERT(!AreAliased(left, right, length, scratch1, scratch2));
|
| +
|
| + // Change index to run from -length to -1 by adding length to string
|
| + // start. This means that loop ends when index reaches zero, which
|
| + // doesn't need an additional compare.
|
| + __ SmiUntag(length);
|
| + __ Add(scratch1, length, SeqOneByteString::kHeaderSize - kHeapObjectTag);
|
| + __ Add(left, left, scratch1);
|
| + __ Add(right, right, scratch1);
|
| +
|
| + Register index = length;
|
| + __ Neg(index, length); // index = -length;
|
| +
|
| + // Compare loop
|
| + Label loop;
|
| + __ Bind(&loop);
|
| + __ Ldrb(scratch1, MemOperand(left, index));
|
| + __ Ldrb(scratch2, MemOperand(right, index));
|
| + __ Cmp(scratch1, scratch2);
|
| + __ B(ne, chars_not_equal);
|
| + __ Add(index, index, 1);
|
| + __ Cbnz(index, &loop);
|
| +}
|
| +
|
| +
|
| +void StringCompareStub::Generate(MacroAssembler* masm) {
|
| + Label runtime;
|
| +
|
| + Counters* counters = masm->isolate()->counters();
|
| +
|
| + // Stack frame on entry.
|
| + // sp[0]: right string
|
| + // sp[8]: left string
|
| + Register right = x10;
|
| + Register left = x11;
|
| + Register result = x0;
|
| + __ Pop(right, left);
|
| +
|
| + Label not_same;
|
| + __ Subs(result, right, left);
|
| + __ B(ne, ¬_same);
|
| + STATIC_ASSERT(EQUAL == 0);
|
| + __ IncrementCounter(counters->string_compare_native(), 1, x3, x4);
|
| + __ Ret();
|
| +
|
| + __ Bind(¬_same);
|
| +
|
| + // Check that both objects are sequential ASCII strings.
|
| + __ JumpIfEitherIsNotSequentialAsciiStrings(left, right, x12, x13, &runtime);
|
| +
|
| + // Compare flat ASCII strings natively. Remove arguments from stack first,
|
| + // as this function will generate a return.
|
| + __ IncrementCounter(counters->string_compare_native(), 1, x3, x4);
|
| + GenerateCompareFlatAsciiStrings(masm, left, right, x12, x13, x14, x15);
|
| +
|
| + __ Bind(&runtime);
|
| +
|
| + // Push arguments back on to the stack.
|
| + // sp[0] = right string
|
| + // sp[8] = left string.
|
| + __ Push(left, right);
|
| +
|
| + // Call the runtime.
|
| + // Returns -1 (less), 0 (equal), or 1 (greater) tagged as a small integer.
|
| + __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
|
| +}
|
| +
|
| +
|
| +void ArrayPushStub::Generate(MacroAssembler* masm) {
|
| + Register receiver = x0;
|
| +
|
| + int argc = arguments_count();
|
| +
|
| + if (argc == 0) {
|
| + // Nothing to do, just return the length.
|
| + __ Ldr(x0, FieldMemOperand(receiver, JSArray::kLengthOffset));
|
| + __ Drop(argc + 1);
|
| + __ Ret();
|
| + return;
|
| + }
|
| +
|
| + Isolate* isolate = masm->isolate();
|
| +
|
| + if (argc != 1) {
|
| + __ TailCallExternalReference(
|
| + ExternalReference(Builtins::c_ArrayPush, isolate), argc + 1, 1);
|
| + return;
|
| + }
|
| +
|
| + Label call_builtin, attempt_to_grow_elements, with_write_barrier;
|
| +
|
| + Register elements_length = x8;
|
| + Register length = x7;
|
| + Register elements = x6;
|
| + Register end_elements = x5;
|
| + Register value = x4;
|
| + // Get the elements array of the object.
|
| + __ Ldr(elements, FieldMemOperand(receiver, JSArray::kElementsOffset));
|
| +
|
| + if (IsFastSmiOrObjectElementsKind(elements_kind())) {
|
| + // Check that the elements are in fast mode and writable.
|
| + __ CheckMap(elements,
|
| + x10,
|
| + Heap::kFixedArrayMapRootIndex,
|
| + &call_builtin,
|
| + DONT_DO_SMI_CHECK);
|
| + }
|
| +
|
| + // Get the array's length and calculate new length.
|
| + __ Ldr(length, FieldMemOperand(receiver, JSArray::kLengthOffset));
|
| + STATIC_ASSERT(kSmiTag == 0);
|
| + __ Add(length, length, Operand(Smi::FromInt(argc)));
|
| +
|
| + // Check if we could survive without allocation.
|
| + __ Ldr(elements_length,
|
| + FieldMemOperand(elements, FixedArray::kLengthOffset));
|
| + __ Cmp(length, elements_length);
|
| +
|
| + const int kEndElementsOffset =
|
| + FixedArray::kHeaderSize - kHeapObjectTag - argc * kPointerSize;
|
| +
|
| + if (IsFastSmiOrObjectElementsKind(elements_kind())) {
|
| + __ B(gt, &attempt_to_grow_elements);
|
| +
|
| + // Check if value is a smi.
|
| + __ Peek(value, (argc - 1) * kPointerSize);
|
| + __ JumpIfNotSmi(value, &with_write_barrier);
|
| +
|
| + // Store the value.
|
| + // We may need a register containing the address end_elements below,
|
| + // so write back the value in end_elements.
|
| + __ Add(end_elements, elements,
|
| + Operand::UntagSmiAndScale(length, kPointerSizeLog2));
|
| + __ Str(value, MemOperand(end_elements, kEndElementsOffset, PreIndex));
|
| + } else {
|
| + // TODO(all): ARM has a redundant cmp here.
|
| + __ B(gt, &call_builtin);
|
| +
|
| + __ Peek(value, (argc - 1) * kPointerSize);
|
| + __ StoreNumberToDoubleElements(value, length, elements, x10, d0, d1,
|
| + &call_builtin, argc * kDoubleSize);
|
| + }
|
| +
|
| + // Save new length.
|
| + __ Str(length, FieldMemOperand(receiver, JSArray::kLengthOffset));
|
| +
|
| + // Return length.
|
| + __ Drop(argc + 1);
|
| + __ Mov(x0, length);
|
| + __ Ret();
|
| +
|
| + if (IsFastDoubleElementsKind(elements_kind())) {
|
| + __ Bind(&call_builtin);
|
| + __ TailCallExternalReference(
|
| + ExternalReference(Builtins::c_ArrayPush, isolate), argc + 1, 1);
|
| + return;
|
| + }
|
| +
|
| + __ Bind(&with_write_barrier);
|
| +
|
| + if (IsFastSmiElementsKind(elements_kind())) {
|
| + if (FLAG_trace_elements_transitions) {
|
| + __ B(&call_builtin);
|
| + }
|
| +
|
| + __ Ldr(x10, FieldMemOperand(value, HeapObject::kMapOffset));
|
| + __ JumpIfHeapNumber(x10, &call_builtin);
|
| +
|
| + ElementsKind target_kind = IsHoleyElementsKind(elements_kind())
|
| + ? FAST_HOLEY_ELEMENTS : FAST_ELEMENTS;
|
| + __ Ldr(x10, GlobalObjectMemOperand());
|
| + __ Ldr(x10, FieldMemOperand(x10, GlobalObject::kNativeContextOffset));
|
| + __ Ldr(x10, ContextMemOperand(x10, Context::JS_ARRAY_MAPS_INDEX));
|
| + const int header_size = FixedArrayBase::kHeaderSize;
|
| + // Verify that the object can be transitioned in place.
|
| + const int origin_offset = header_size + elements_kind() * kPointerSize;
|
| + __ ldr(x11, FieldMemOperand(receiver, origin_offset));
|
| + __ ldr(x12, FieldMemOperand(x10, HeapObject::kMapOffset));
|
| + __ cmp(x11, x12);
|
| + __ B(ne, &call_builtin);
|
| +
|
| + const int target_offset = header_size + target_kind * kPointerSize;
|
| + __ Ldr(x10, FieldMemOperand(x10, target_offset));
|
| + __ Mov(x11, receiver);
|
| + ElementsTransitionGenerator::GenerateMapChangeElementsTransition(
|
| + masm, DONT_TRACK_ALLOCATION_SITE, NULL);
|
| + }
|
| +
|
| + // Save new length.
|
| + __ Str(length, FieldMemOperand(receiver, JSArray::kLengthOffset));
|
| +
|
| + // Store the value.
|
| + // We may need a register containing the address end_elements below,
|
| + // so write back the value in end_elements.
|
| + __ Add(end_elements, elements,
|
| + Operand::UntagSmiAndScale(length, kPointerSizeLog2));
|
| + __ Str(value, MemOperand(end_elements, kEndElementsOffset, PreIndex));
|
| +
|
| + __ RecordWrite(elements,
|
| + end_elements,
|
| + value,
|
| + kLRHasNotBeenSaved,
|
| + kDontSaveFPRegs,
|
| + EMIT_REMEMBERED_SET,
|
| + OMIT_SMI_CHECK);
|
| + __ Drop(argc + 1);
|
| + __ Mov(x0, length);
|
| + __ Ret();
|
| +
|
| + __ Bind(&attempt_to_grow_elements);
|
| +
|
| + if (!FLAG_inline_new) {
|
| + __ B(&call_builtin);
|
| + }
|
| +
|
| + Register argument = x2;
|
| + __ Peek(argument, (argc - 1) * kPointerSize);
|
| + // Growing elements that are SMI-only requires special handling in case
|
| + // the new element is non-Smi. For now, delegate to the builtin.
|
| + if (IsFastSmiElementsKind(elements_kind())) {
|
| + __ JumpIfNotSmi(argument, &call_builtin);
|
| + }
|
| +
|
| + // We could be lucky and the elements array could be at the top of new-space.
|
| + // In this case we can just grow it in place by moving the allocation pointer
|
| + // up.
|
| + ExternalReference new_space_allocation_top =
|
| + ExternalReference::new_space_allocation_top_address(isolate);
|
| + ExternalReference new_space_allocation_limit =
|
| + ExternalReference::new_space_allocation_limit_address(isolate);
|
| +
|
| + const int kAllocationDelta = 4;
|
| + ASSERT(kAllocationDelta >= argc);
|
| + Register allocation_top_addr = x5;
|
| + Register allocation_top = x9;
|
| + // Load top and check if it is the end of elements.
|
| + __ Add(end_elements, elements,
|
| + Operand::UntagSmiAndScale(length, kPointerSizeLog2));
|
| + __ Add(end_elements, end_elements, kEndElementsOffset);
|
| + __ Mov(allocation_top_addr, Operand(new_space_allocation_top));
|
| + __ Ldr(allocation_top, MemOperand(allocation_top_addr));
|
| + __ Cmp(end_elements, allocation_top);
|
| + __ B(ne, &call_builtin);
|
| +
|
| + __ Mov(x10, Operand(new_space_allocation_limit));
|
| + __ Ldr(x10, MemOperand(x10));
|
| + __ Add(allocation_top, allocation_top, kAllocationDelta * kPointerSize);
|
| + __ Cmp(allocation_top, x10);
|
| + __ B(hi, &call_builtin);
|
| +
|
| + // We fit and could grow elements.
|
| + // Update new_space_allocation_top.
|
| + __ Str(allocation_top, MemOperand(allocation_top_addr));
|
| + // Push the argument.
|
| + __ Str(argument, MemOperand(end_elements));
|
| + // Fill the rest with holes.
|
| + __ LoadRoot(x10, Heap::kTheHoleValueRootIndex);
|
| + for (int i = 1; i < kAllocationDelta; i++) {
|
| + // TODO(all): Try to use stp here.
|
| + __ Str(x10, MemOperand(end_elements, i * kPointerSize));
|
| + }
|
| +
|
| + // Update elements' and array's sizes.
|
| + __ Str(length, FieldMemOperand(receiver, JSArray::kLengthOffset));
|
| + __ Add(elements_length,
|
| + elements_length,
|
| + Operand(Smi::FromInt(kAllocationDelta)));
|
| + __ Str(elements_length,
|
| + FieldMemOperand(elements, FixedArray::kLengthOffset));
|
| +
|
| + // Elements are in new space, so write barrier is not required.
|
| + __ Drop(argc + 1);
|
| + __ Mov(x0, length);
|
| + __ Ret();
|
| +
|
| + __ Bind(&call_builtin);
|
| + __ TailCallExternalReference(
|
| + ExternalReference(Builtins::c_ArrayPush, isolate), argc + 1, 1);
|
| +}
|
| +
|
| +
|
| +void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
|
| + // ----------- S t a t e -------------
|
| + // -- x1 : left
|
| + // -- x0 : right
|
| + // -- lr : return address
|
| + // -----------------------------------
|
| + Isolate* isolate = masm->isolate();
|
| +
|
| + // Load x2 with the allocation site. We stick an undefined dummy value here
|
| + // and replace it with the real allocation site later when we instantiate this
|
| + // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
|
| + __ LoadObject(x2, handle(isolate->heap()->undefined_value()));
|
| +
|
| + // Make sure that we actually patched the allocation site.
|
| + if (FLAG_debug_code) {
|
| + __ AssertNotSmi(x2, kExpectedAllocationSite);
|
| + __ Ldr(x10, FieldMemOperand(x2, HeapObject::kMapOffset));
|
| + __ AssertRegisterIsRoot(x10, Heap::kAllocationSiteMapRootIndex,
|
| + kExpectedAllocationSite);
|
| + }
|
| +
|
| + // Tail call into the stub that handles binary operations with allocation
|
| + // sites.
|
| + BinaryOpWithAllocationSiteStub stub(state_);
|
| + __ TailCallStub(&stub);
|
| +}
|
| +
|
| +
|
| +bool CodeStub::CanUseFPRegisters() {
|
| + // FP registers always available on A64.
|
| + return true;
|
| +}
|
| +
|
| +
|
| +void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
|
| + // We need some extra registers for this stub, they have been allocated
|
| + // but we need to save them before using them.
|
| + regs_.Save(masm);
|
| +
|
| + if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
|
| + Label dont_need_remembered_set;
|
| +
|
| + Register value = regs_.scratch0();
|
| + __ Ldr(value, MemOperand(regs_.address()));
|
| + __ JumpIfNotInNewSpace(value, &dont_need_remembered_set);
|
| +
|
| + __ CheckPageFlagSet(regs_.object(),
|
| + value,
|
| + 1 << MemoryChunk::SCAN_ON_SCAVENGE,
|
| + &dont_need_remembered_set);
|
| +
|
| + // First notify the incremental marker if necessary, then update the
|
| + // remembered set.
|
| + CheckNeedsToInformIncrementalMarker(
|
| + masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
|
| + InformIncrementalMarker(masm, mode);
|
| + regs_.Restore(masm); // Restore the extra scratch registers we used.
|
| + __ RememberedSetHelper(object_,
|
| + address_,
|
| + value_,
|
| + save_fp_regs_mode_,
|
| + MacroAssembler::kReturnAtEnd);
|
| +
|
| + __ Bind(&dont_need_remembered_set);
|
| + }
|
| +
|
| + CheckNeedsToInformIncrementalMarker(
|
| + masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
|
| + InformIncrementalMarker(masm, mode);
|
| + regs_.Restore(masm); // Restore the extra scratch registers we used.
|
| + __ Ret();
|
| +}
|
| +
|
| +
|
| +void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm, Mode mode) {
|
| + regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode_);
|
| + Register address =
|
| + x0.Is(regs_.address()) ? regs_.scratch0() : regs_.address();
|
| + ASSERT(!address.Is(regs_.object()));
|
| + ASSERT(!address.Is(x0));
|
| + __ Mov(address, regs_.address());
|
| + __ Mov(x0, regs_.object());
|
| + __ Mov(x1, address);
|
| + __ Mov(x2, Operand(ExternalReference::isolate_address(masm->isolate())));
|
| +
|
| + AllowExternalCallThatCantCauseGC scope(masm);
|
| + ExternalReference function = (mode == INCREMENTAL_COMPACTION)
|
| + ? ExternalReference::incremental_evacuation_record_write_function(
|
| + masm->isolate())
|
| + : ExternalReference::incremental_marking_record_write_function(
|
| + masm->isolate());
|
| + __ CallCFunction(function, 3, 0);
|
| +
|
| + regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode_);
|
| +}
|
| +
|
| +
|
| +void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
|
| + MacroAssembler* masm,
|
| + OnNoNeedToInformIncrementalMarker on_no_need,
|
| + Mode mode) {
|
| + Label on_black;
|
| + Label need_incremental;
|
| + Label need_incremental_pop_scratch;
|
| +
|
| + Register mem_chunk = regs_.scratch0();
|
| + Register counter = regs_.scratch1();
|
| + __ Bic(mem_chunk, regs_.object(), Page::kPageAlignmentMask);
|
| + __ Ldr(counter,
|
| + MemOperand(mem_chunk, MemoryChunk::kWriteBarrierCounterOffset));
|
| + __ Subs(counter, counter, 1);
|
| + __ Str(counter,
|
| + MemOperand(mem_chunk, MemoryChunk::kWriteBarrierCounterOffset));
|
| + __ B(mi, &need_incremental);
|
| +
|
| + // If the object is not black we don't have to inform the incremental marker.
|
| + __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
|
| +
|
| + regs_.Restore(masm); // Restore the extra scratch registers we used.
|
| + if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
|
| + __ RememberedSetHelper(object_,
|
| + address_,
|
| + value_,
|
| + save_fp_regs_mode_,
|
| + MacroAssembler::kReturnAtEnd);
|
| + } else {
|
| + __ Ret();
|
| + }
|
| +
|
| + __ Bind(&on_black);
|
| + // Get the value from the slot.
|
| + Register value = regs_.scratch0();
|
| + __ Ldr(value, MemOperand(regs_.address()));
|
| +
|
| + if (mode == INCREMENTAL_COMPACTION) {
|
| + Label ensure_not_white;
|
| +
|
| + __ CheckPageFlagClear(value,
|
| + regs_.scratch1(),
|
| + MemoryChunk::kEvacuationCandidateMask,
|
| + &ensure_not_white);
|
| +
|
| + __ CheckPageFlagClear(regs_.object(),
|
| + regs_.scratch1(),
|
| + MemoryChunk::kSkipEvacuationSlotsRecordingMask,
|
| + &need_incremental);
|
| +
|
| + __ Bind(&ensure_not_white);
|
| + }
|
| +
|
| + // We need extra registers for this, so we push the object and the address
|
| + // register temporarily.
|
| + __ Push(regs_.address(), regs_.object());
|
| + __ EnsureNotWhite(value,
|
| + regs_.scratch1(), // Scratch.
|
| + regs_.object(), // Scratch.
|
| + regs_.address(), // Scratch.
|
| + regs_.scratch2(), // Scratch.
|
| + &need_incremental_pop_scratch);
|
| + __ Pop(regs_.object(), regs_.address());
|
| +
|
| + regs_.Restore(masm); // Restore the extra scratch registers we used.
|
| + if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
|
| + __ RememberedSetHelper(object_,
|
| + address_,
|
| + value_,
|
| + save_fp_regs_mode_,
|
| + MacroAssembler::kReturnAtEnd);
|
| + } else {
|
| + __ Ret();
|
| + }
|
| +
|
| + __ Bind(&need_incremental_pop_scratch);
|
| + __ Pop(regs_.object(), regs_.address());
|
| +
|
| + __ Bind(&need_incremental);
|
| + // Fall through when we need to inform the incremental marker.
|
| +}
|
| +
|
| +
|
| +void RecordWriteStub::Generate(MacroAssembler* masm) {
|
| + Label skip_to_incremental_noncompacting;
|
| + Label skip_to_incremental_compacting;
|
| +
|
| + // We patch these two first instructions back and forth between a nop and
|
| + // real branch when we start and stop incremental heap marking.
|
| + // Initially the stub is expected to be in STORE_BUFFER_ONLY mode, so 2 nops
|
| + // are generated.
|
| + // See RecordWriteStub::Patch for details.
|
| + {
|
| + InstructionAccurateScope scope(masm, 2);
|
| + __ adr(xzr, &skip_to_incremental_noncompacting);
|
| + __ adr(xzr, &skip_to_incremental_compacting);
|
| + }
|
| +
|
| + if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
|
| + __ RememberedSetHelper(object_,
|
| + address_,
|
| + value_,
|
| + save_fp_regs_mode_,
|
| + MacroAssembler::kReturnAtEnd);
|
| + }
|
| + __ Ret();
|
| +
|
| + __ Bind(&skip_to_incremental_noncompacting);
|
| + GenerateIncremental(masm, INCREMENTAL);
|
| +
|
| + __ Bind(&skip_to_incremental_compacting);
|
| + GenerateIncremental(masm, INCREMENTAL_COMPACTION);
|
| +}
|
| +
|
| +
|
| +void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
|
| + // TODO(all): Possible optimisations in this function:
|
| + // 1. Merge CheckFastElements and CheckFastSmiElements, so that the map
|
| + // bitfield is loaded only once.
|
| + // 2. Refactor the Ldr/Add sequence at the start of fast_elements and
|
| + // smi_element.
|
| +
|
| + // x0 value element value to store
|
| + // x3 index_smi element index as smi
|
| + // sp[0] array_index_smi array literal index in function as smi
|
| + // sp[1] array array literal
|
| +
|
| + Register value = x0;
|
| + Register index_smi = x3;
|
| +
|
| + Register array = x1;
|
| + Register array_map = x2;
|
| + Register array_index_smi = x4;
|
| + __ PeekPair(array_index_smi, array, 0);
|
| + __ Ldr(array_map, FieldMemOperand(array, JSObject::kMapOffset));
|
| +
|
| + Label double_elements, smi_element, fast_elements, slow_elements;
|
| + __ CheckFastElements(array_map, x10, &double_elements);
|
| + __ JumpIfSmi(value, &smi_element);
|
| + __ CheckFastSmiElements(array_map, x10, &fast_elements);
|
| +
|
| + // Store into the array literal requires an elements transition. Call into
|
| + // the runtime.
|
| + __ Bind(&slow_elements);
|
| + __ Push(array, index_smi, value);
|
| + __ Ldr(x10, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
|
| + __ Ldr(x11, FieldMemOperand(x10, JSFunction::kLiteralsOffset));
|
| + __ Push(x11, array_index_smi);
|
| + __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
|
| +
|
| + // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object.
|
| + __ Bind(&fast_elements);
|
| + __ Ldr(x10, FieldMemOperand(array, JSObject::kElementsOffset));
|
| + __ Add(x11, x10, Operand::UntagSmiAndScale(index_smi, kPointerSizeLog2));
|
| + __ Add(x11, x11, FixedArray::kHeaderSize - kHeapObjectTag);
|
| + __ Str(value, MemOperand(x11));
|
| + // Update the write barrier for the array store.
|
| + __ RecordWrite(x10, x11, value, kLRHasNotBeenSaved, kDontSaveFPRegs,
|
| + EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
|
| + __ Ret();
|
| +
|
| + // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS,
|
| + // and value is Smi.
|
| + __ Bind(&smi_element);
|
| + __ Ldr(x10, FieldMemOperand(array, JSObject::kElementsOffset));
|
| + __ Add(x11, x10, Operand::UntagSmiAndScale(index_smi, kPointerSizeLog2));
|
| + __ Str(value, FieldMemOperand(x11, FixedArray::kHeaderSize));
|
| + __ Ret();
|
| +
|
| + __ Bind(&double_elements);
|
| + __ Ldr(x10, FieldMemOperand(array, JSObject::kElementsOffset));
|
| + __ StoreNumberToDoubleElements(value, index_smi, x10, x11, d0, d1,
|
| + &slow_elements);
|
| + __ Ret();
|
| +}
|
| +
|
| +
|
| +void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
|
| + // TODO(jbramley): The ARM code leaves the (shifted) offset in r1. Why?
|
| + CEntryStub ces(1, kSaveFPRegs);
|
| + __ Call(ces.GetCode(masm->isolate()), RelocInfo::CODE_TARGET);
|
| + int parameter_count_offset =
|
| + StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
|
| + __ Ldr(x1, MemOperand(fp, parameter_count_offset));
|
| + if (function_mode_ == JS_FUNCTION_STUB_MODE) {
|
| + __ Add(x1, x1, 1);
|
| + }
|
| + masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
|
| + __ Drop(x1);
|
| + // Return to IC Miss stub, continuation still on stack.
|
| + __ Ret();
|
| +}
|
| +
|
| +
|
| +void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
|
| + if (masm->isolate()->function_entry_hook() != NULL) {
|
| + // TODO(all): This needs to be reliably consistent with
|
| + // kReturnAddressDistanceFromFunctionStart in ::Generate.
|
| + Assembler::BlockConstPoolScope no_const_pools(masm);
|
| + ProfileEntryHookStub stub;
|
| + __ Push(lr);
|
| + __ CallStub(&stub);
|
| + __ Pop(lr);
|
| + }
|
| +}
|
| +
|
| +
|
| +void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
|
| + MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm);
|
| + // The entry hook is a "BumpSystemStackPointer" instruction (sub), followed by
|
| + // a "Push lr" instruction, followed by a call.
|
| + // TODO(jbramley): Verify that this call is always made with relocation.
|
| + static const int kReturnAddressDistanceFromFunctionStart =
|
| + Assembler::kCallSizeWithRelocation + (2 * kInstructionSize);
|
| +
|
| + // Save all kCallerSaved registers (including lr), since this can be called
|
| + // from anywhere.
|
| + // TODO(jbramley): What about FP registers?
|
| + __ PushCPURegList(kCallerSaved);
|
| + ASSERT(kCallerSaved.IncludesAliasOf(lr));
|
| + const int kNumSavedRegs = kCallerSaved.Count();
|
| +
|
| + // Compute the function's address as the first argument.
|
| + __ Sub(x0, lr, kReturnAddressDistanceFromFunctionStart);
|
| +
|
| +#if V8_HOST_ARCH_A64
|
| + uintptr_t entry_hook =
|
| + reinterpret_cast<uintptr_t>(masm->isolate()->function_entry_hook());
|
| + __ Mov(x10, entry_hook);
|
| +#else
|
| + // Under the simulator we need to indirect the entry hook through a trampoline
|
| + // function at a known address.
|
| + ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
|
| + __ Mov(x10, Operand(ExternalReference(&dispatcher,
|
| + ExternalReference::BUILTIN_CALL,
|
| + masm->isolate())));
|
| + // It additionally takes an isolate as a third parameter
|
| + __ Mov(x2, Operand(ExternalReference::isolate_address(masm->isolate())));
|
| +#endif
|
| +
|
| + // The caller's return address is above the saved temporaries.
|
| + // Grab its location for the second argument to the hook.
|
| + __ Add(x1, __ StackPointer(), kNumSavedRegs * kPointerSize);
|
| +
|
| + {
|
| + // Create a dummy frame, as CallCFunction requires this.
|
| + FrameScope frame(masm, StackFrame::MANUAL);
|
| + __ CallCFunction(x10, 2, 0);
|
| + }
|
| +
|
| + __ PopCPURegList(kCallerSaved);
|
| + __ Ret();
|
| +}
|
| +
|
| +
|
| +void DirectCEntryStub::Generate(MacroAssembler* masm) {
|
| + // When calling into C++ code the stack pointer must be csp.
|
| + // Therefore this code must use csp for peek/poke operations when the
|
| + // stub is generated. When the stub is called
|
| + // (via DirectCEntryStub::GenerateCall), the caller must setup an ExitFrame
|
| + // and configure the stack pointer *before* doing the call.
|
| + const Register old_stack_pointer = __ StackPointer();
|
| + __ SetStackPointer(csp);
|
| +
|
| + // Put return address on the stack (accessible to GC through exit frame pc).
|
| + __ Poke(lr, 0);
|
| + // Call the C++ function.
|
| + __ Blr(x10);
|
| + // Return to calling code.
|
| + __ Peek(lr, 0);
|
| + __ Ret();
|
| +
|
| + __ SetStackPointer(old_stack_pointer);
|
| +}
|
| +
|
| +void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
|
| + Register target) {
|
| + // Make sure the caller configured the stack pointer (see comment in
|
| + // DirectCEntryStub::Generate).
|
| + ASSERT(csp.Is(__ StackPointer()));
|
| +
|
| + intptr_t code =
|
| + reinterpret_cast<intptr_t>(GetCode(masm->isolate()).location());
|
| + __ Mov(lr, Operand(code, RelocInfo::CODE_TARGET));
|
| + __ Mov(x10, target);
|
| + // Branch to the stub.
|
| + __ Blr(lr);
|
| +}
|
| +
|
| +
|
| +// Probe the name dictionary in the 'elements' register.
|
| +// Jump to the 'done' label if a property with the given name is found.
|
| +// Jump to the 'miss' label otherwise.
|
| +//
|
| +// If lookup was successful 'scratch2' will be equal to elements + 4 * index.
|
| +// 'elements' and 'name' registers are preserved on miss.
|
| +void NameDictionaryLookupStub::GeneratePositiveLookup(
|
| + MacroAssembler* masm,
|
| + Label* miss,
|
| + Label* done,
|
| + Register elements,
|
| + Register name,
|
| + Register scratch1,
|
| + Register scratch2) {
|
| + ASSERT(!AreAliased(elements, name, scratch1, scratch2));
|
| +
|
| + // Assert that name contains a string.
|
| + __ AssertName(name);
|
| +
|
| + // Compute the capacity mask.
|
| + __ Ldrsw(scratch1, UntagSmiFieldMemOperand(elements, kCapacityOffset));
|
| + __ Sub(scratch1, scratch1, 1);
|
| +
|
| + // Generate an unrolled loop that performs a few probes before giving up.
|
| + for (int i = 0; i < kInlinedProbes; i++) {
|
| + // Compute the masked index: (hash + i + i * i) & mask.
|
| + __ Ldr(scratch2, FieldMemOperand(name, Name::kHashFieldOffset));
|
| + if (i > 0) {
|
| + // Add the probe offset (i + i * i) left shifted to avoid right shifting
|
| + // the hash in a separate instruction. The value hash + i + i * i is right
|
| + // shifted in the following and instruction.
|
| + ASSERT(NameDictionary::GetProbeOffset(i) <
|
| + 1 << (32 - Name::kHashFieldOffset));
|
| + __ Add(scratch2, scratch2, Operand(
|
| + NameDictionary::GetProbeOffset(i) << Name::kHashShift));
|
| + }
|
| + __ And(scratch2, scratch1, Operand(scratch2, LSR, Name::kHashShift));
|
| +
|
| + // Scale the index by multiplying by the element size.
|
| + ASSERT(NameDictionary::kEntrySize == 3);
|
| + __ Add(scratch2, scratch2, Operand(scratch2, LSL, 1));
|
| +
|
| + // Check if the key is identical to the name.
|
| + __ Add(scratch2, elements, Operand(scratch2, LSL, kPointerSizeLog2));
|
| + // TODO(jbramley): We need another scratch here, but some callers can't
|
| + // provide a scratch3 so we have to use Tmp1(). We should find a clean way
|
| + // to make it unavailable to the MacroAssembler for a short time.
|
| + __ Ldr(__ Tmp1(), FieldMemOperand(scratch2, kElementsStartOffset));
|
| + __ Cmp(name, __ Tmp1());
|
| + __ B(eq, done);
|
| + }
|
| +
|
| + // The inlined probes didn't find the entry.
|
| + // Call the complete stub to scan the whole dictionary.
|
| +
|
| + CPURegList spill_list(CPURegister::kRegister, kXRegSize, 0, 6);
|
| + spill_list.Combine(lr);
|
| + spill_list.Remove(scratch1);
|
| + spill_list.Remove(scratch2);
|
| +
|
| + __ PushCPURegList(spill_list);
|
| +
|
| + if (name.is(x0)) {
|
| + ASSERT(!elements.is(x1));
|
| + __ Mov(x1, name);
|
| + __ Mov(x0, elements);
|
| + } else {
|
| + __ Mov(x0, elements);
|
| + __ Mov(x1, name);
|
| + }
|
| +
|
| + Label not_found;
|
| + NameDictionaryLookupStub stub(POSITIVE_LOOKUP);
|
| + __ CallStub(&stub);
|
| + __ Cbz(x0, ¬_found);
|
| + __ Mov(scratch2, x2); // Move entry index into scratch2.
|
| + __ PopCPURegList(spill_list);
|
| + __ B(done);
|
| +
|
| + __ Bind(¬_found);
|
| + __ PopCPURegList(spill_list);
|
| + __ B(miss);
|
| +}
|
| +
|
| +
|
| +void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
|
| + Label* miss,
|
| + Label* done,
|
| + Register receiver,
|
| + Register properties,
|
| + Handle<Name> name,
|
| + Register scratch0) {
|
| + ASSERT(!AreAliased(receiver, properties, scratch0));
|
| + ASSERT(name->IsUniqueName());
|
| + // If names of slots in range from 1 to kProbes - 1 for the hash value are
|
| + // not equal to the name and kProbes-th slot is not used (its name is the
|
| + // undefined value), it guarantees the hash table doesn't contain the
|
| + // property. It's true even if some slots represent deleted properties
|
| + // (their names are the hole value).
|
| + for (int i = 0; i < kInlinedProbes; i++) {
|
| + // scratch0 points to properties hash.
|
| + // Compute the masked index: (hash + i + i * i) & mask.
|
| + Register index = scratch0;
|
| + // Capacity is smi 2^n.
|
| + __ Ldrsw(index, UntagSmiFieldMemOperand(properties, kCapacityOffset));
|
| + __ Sub(index, index, 1);
|
| + __ And(index, index, name->Hash() + NameDictionary::GetProbeOffset(i));
|
| +
|
| + // Scale the index by multiplying by the entry size.
|
| + ASSERT(NameDictionary::kEntrySize == 3);
|
| + __ Add(index, index, Operand(index, LSL, 1)); // index *= 3.
|
| +
|
| + Register entity_name = scratch0;
|
| + // Having undefined at this place means the name is not contained.
|
| + Register tmp = index;
|
| + __ Add(tmp, properties, Operand(index, LSL, kPointerSizeLog2));
|
| + __ Ldr(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
|
| +
|
| + __ JumpIfRoot(entity_name, Heap::kUndefinedValueRootIndex, done);
|
| +
|
| + // Stop if found the property.
|
| + __ Cmp(entity_name, Operand(name));
|
| + __ B(eq, miss);
|
| +
|
| + Label good;
|
| + __ JumpIfRoot(entity_name, Heap::kTheHoleValueRootIndex, &good);
|
| +
|
| + // Check if the entry name is not a unique name.
|
| + __ Ldr(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
|
| + __ Ldrb(entity_name,
|
| + FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
|
| + __ JumpIfNotUniqueName(entity_name, miss);
|
| + __ Bind(&good);
|
| + }
|
| +
|
| + CPURegList spill_list(CPURegister::kRegister, kXRegSize, 0, 6);
|
| + spill_list.Combine(lr);
|
| + spill_list.Remove(scratch0); // Scratch registers don't need to be preserved.
|
| +
|
| + __ PushCPURegList(spill_list);
|
| +
|
| + __ Ldr(x0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
|
| + __ Mov(x1, Operand(name));
|
| + NameDictionaryLookupStub stub(NEGATIVE_LOOKUP);
|
| + __ CallStub(&stub);
|
| + // Move stub return value to scratch0. Note that scratch0 is not included in
|
| + // spill_list and won't be clobbered by PopCPURegList.
|
| + __ Mov(scratch0, x0);
|
| + __ PopCPURegList(spill_list);
|
| +
|
| + __ Cbz(scratch0, done);
|
| + __ B(miss);
|
| +}
|
| +
|
| +
|
| +void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
|
| + // This stub overrides SometimesSetsUpAFrame() to return false. That means
|
| + // we cannot call anything that could cause a GC from this stub.
|
| + //
|
| + // Arguments are in x0 and x1:
|
| + // x0: property dictionary.
|
| + // x1: the name of the property we are looking for.
|
| + //
|
| + // Return value is in x0 and is zero if lookup failed, non zero otherwise.
|
| + // If the lookup is successful, x2 will contains the index of the entry.
|
| +
|
| + Register result = x0;
|
| + Register dictionary = x0;
|
| + Register key = x1;
|
| + Register index = x2;
|
| + Register mask = x3;
|
| + Register hash = x4;
|
| + Register undefined = x5;
|
| + Register entry_key = x6;
|
| +
|
| + Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
|
| +
|
| + __ Ldrsw(mask, UntagSmiFieldMemOperand(dictionary, kCapacityOffset));
|
| + __ Sub(mask, mask, 1);
|
| +
|
| + __ Ldr(hash, FieldMemOperand(key, Name::kHashFieldOffset));
|
| + __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
|
| +
|
| + for (int i = kInlinedProbes; i < kTotalProbes; i++) {
|
| + // Compute the masked index: (hash + i + i * i) & mask.
|
| + // Capacity is smi 2^n.
|
| + if (i > 0) {
|
| + // Add the probe offset (i + i * i) left shifted to avoid right shifting
|
| + // the hash in a separate instruction. The value hash + i + i * i is right
|
| + // shifted in the following and instruction.
|
| + ASSERT(NameDictionary::GetProbeOffset(i) <
|
| + 1 << (32 - Name::kHashFieldOffset));
|
| + __ Add(index, hash,
|
| + NameDictionary::GetProbeOffset(i) << Name::kHashShift);
|
| + } else {
|
| + __ Mov(index, hash);
|
| + }
|
| + __ And(index, mask, Operand(index, LSR, Name::kHashShift));
|
| +
|
| + // Scale the index by multiplying by the entry size.
|
| + ASSERT(NameDictionary::kEntrySize == 3);
|
| + __ Add(index, index, Operand(index, LSL, 1)); // index *= 3.
|
| +
|
| + __ Add(index, dictionary, Operand(index, LSL, kPointerSizeLog2));
|
| + __ Ldr(entry_key, FieldMemOperand(index, kElementsStartOffset));
|
| +
|
| + // Having undefined at this place means the name is not contained.
|
| + __ Cmp(entry_key, undefined);
|
| + __ B(eq, ¬_in_dictionary);
|
| +
|
| + // Stop if found the property.
|
| + __ Cmp(entry_key, key);
|
| + __ B(eq, &in_dictionary);
|
| +
|
| + if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) {
|
| + // Check if the entry name is not a unique name.
|
| + __ Ldr(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
|
| + __ Ldrb(entry_key, FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
|
| + __ JumpIfNotUniqueName(entry_key, &maybe_in_dictionary);
|
| + }
|
| + }
|
| +
|
| + __ Bind(&maybe_in_dictionary);
|
| + // If we are doing negative lookup then probing failure should be
|
| + // treated as a lookup success. For positive lookup, probing failure
|
| + // should be treated as lookup failure.
|
| + if (mode_ == POSITIVE_LOOKUP) {
|
| + __ Mov(result, 0);
|
| + __ Ret();
|
| + }
|
| +
|
| + __ Bind(&in_dictionary);
|
| + __ Mov(result, 1);
|
| + __ Ret();
|
| +
|
| + __ Bind(¬_in_dictionary);
|
| + __ Mov(result, 0);
|
| + __ Ret();
|
| +}
|
| +
|
| +
|
| +template<class T>
|
| +static void CreateArrayDispatch(MacroAssembler* masm,
|
| + AllocationSiteOverrideMode mode) {
|
| + ASM_LOCATION("CreateArrayDispatch");
|
| + if (mode == DISABLE_ALLOCATION_SITES) {
|
| + T stub(GetInitialFastElementsKind(), mode);
|
| + __ TailCallStub(&stub);
|
| +
|
| + } else if (mode == DONT_OVERRIDE) {
|
| + Register kind = x3;
|
| + int last_index =
|
| + GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
|
| + for (int i = 0; i <= last_index; ++i) {
|
| + Label next;
|
| + ElementsKind candidate_kind = GetFastElementsKindFromSequenceIndex(i);
|
| + // TODO(jbramley): Is this the best way to handle this? Can we make the
|
| + // tail calls conditional, rather than hopping over each one?
|
| + __ CompareAndBranch(kind, candidate_kind, ne, &next);
|
| + T stub(candidate_kind);
|
| + __ TailCallStub(&stub);
|
| + __ Bind(&next);
|
| + }
|
| +
|
| + // If we reached this point there is a problem.
|
| + __ Abort(kUnexpectedElementsKindInArrayConstructor);
|
| +
|
| + } else {
|
| + UNREACHABLE();
|
| + }
|
| +}
|
| +
|
| +
|
| +// TODO(jbramley): If this needs to be a special case, make it a proper template
|
| +// specialization, and not a separate function.
|
| +static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
|
| + AllocationSiteOverrideMode mode) {
|
| + ASM_LOCATION("CreateArrayDispatchOneArgument");
|
| + // x0 - argc
|
| + // x1 - constructor?
|
| + // x2 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
|
| + // x3 - kind (if mode != DISABLE_ALLOCATION_SITES)
|
| + // sp[0] - last argument
|
| +
|
| + Register allocation_site = x2;
|
| + Register kind = x3;
|
| +
|
| + Label normal_sequence;
|
| + if (mode == DONT_OVERRIDE) {
|
| + STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
|
| + STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
|
| + STATIC_ASSERT(FAST_ELEMENTS == 2);
|
| + STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
|
| + STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4);
|
| + STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
|
| +
|
| + // Is the low bit set? If so, the array is holey.
|
| + __ Tbnz(kind, 0, &normal_sequence);
|
| + }
|
| +
|
| + // Look at the last argument.
|
| + // TODO(jbramley): What does a 0 argument represent?
|
| + __ Peek(x10, 0);
|
| + __ Cbz(x10, &normal_sequence);
|
| +
|
| + if (mode == DISABLE_ALLOCATION_SITES) {
|
| + ElementsKind initial = GetInitialFastElementsKind();
|
| + ElementsKind holey_initial = GetHoleyElementsKind(initial);
|
| +
|
| + ArraySingleArgumentConstructorStub stub_holey(holey_initial,
|
| + DISABLE_ALLOCATION_SITES);
|
| + __ TailCallStub(&stub_holey);
|
| +
|
| + __ Bind(&normal_sequence);
|
| + ArraySingleArgumentConstructorStub stub(initial,
|
| + DISABLE_ALLOCATION_SITES);
|
| + __ TailCallStub(&stub);
|
| + } else if (mode == DONT_OVERRIDE) {
|
| + // We are going to create a holey array, but our kind is non-holey.
|
| + // Fix kind and retry (only if we have an allocation site in the slot).
|
| + __ Orr(kind, kind, 1);
|
| +
|
| + if (FLAG_debug_code) {
|
| + __ Ldr(x10, FieldMemOperand(allocation_site, 0));
|
| + __ JumpIfNotRoot(x10, Heap::kAllocationSiteMapRootIndex,
|
| + &normal_sequence);
|
| + __ Assert(eq, kExpectedAllocationSite);
|
| + }
|
| +
|
| + // Save the resulting elements kind in type info. We can't just store 'kind'
|
| + // in the AllocationSite::transition_info field because elements kind is
|
| + // restricted to a portion of the field; upper bits need to be left alone.
|
| + STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
|
| + __ Ldr(x11, FieldMemOperand(allocation_site,
|
| + AllocationSite::kTransitionInfoOffset));
|
| + __ Add(x11, x11, Operand(Smi::FromInt(kFastElementsKindPackedToHoley)));
|
| + __ Str(x11, FieldMemOperand(allocation_site,
|
| + AllocationSite::kTransitionInfoOffset));
|
| +
|
| + __ Bind(&normal_sequence);
|
| + int last_index =
|
| + GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
|
| + for (int i = 0; i <= last_index; ++i) {
|
| + Label next;
|
| + ElementsKind candidate_kind = GetFastElementsKindFromSequenceIndex(i);
|
| + // TODO(jbramley): Is this the best way to handle this? Can we make the
|
| + // tail calls conditional, rather than hopping over each one?
|
| + __ CompareAndBranch(kind, candidate_kind, ne, &next);
|
| + ArraySingleArgumentConstructorStub stub(candidate_kind);
|
| + __ TailCallStub(&stub);
|
| + __ Bind(&next);
|
| + }
|
| +
|
| + // If we reached this point there is a problem.
|
| + __ Abort(kUnexpectedElementsKindInArrayConstructor);
|
| + } else {
|
| + UNREACHABLE();
|
| + }
|
| +}
|
| +
|
| +
|
| +template<class T>
|
| +static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
|
| + int to_index = GetSequenceIndexFromFastElementsKind(
|
| + TERMINAL_FAST_ELEMENTS_KIND);
|
| + for (int i = 0; i <= to_index; ++i) {
|
| + ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
|
| + T stub(kind);
|
| + stub.GetCode(isolate);
|
| + if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
|
| + T stub1(kind, DISABLE_ALLOCATION_SITES);
|
| + stub1.GetCode(isolate);
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
|
| + ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
|
| + isolate);
|
| + ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
|
| + isolate);
|
| + ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
|
| + isolate);
|
| +}
|
| +
|
| +
|
| +void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
|
| + Isolate* isolate) {
|
| + ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
|
| + for (int i = 0; i < 2; i++) {
|
| + // For internal arrays we only need a few things
|
| + InternalArrayNoArgumentConstructorStub stubh1(kinds[i]);
|
| + stubh1.GetCode(isolate);
|
| + InternalArraySingleArgumentConstructorStub stubh2(kinds[i]);
|
| + stubh2.GetCode(isolate);
|
| + InternalArrayNArgumentsConstructorStub stubh3(kinds[i]);
|
| + stubh3.GetCode(isolate);
|
| + }
|
| +}
|
| +
|
| +
|
| +void ArrayConstructorStub::GenerateDispatchToArrayStub(
|
| + MacroAssembler* masm,
|
| + AllocationSiteOverrideMode mode) {
|
| + Register argc = x0;
|
| + if (argument_count_ == ANY) {
|
| + Label zero_case, n_case;
|
| + __ Cbz(argc, &zero_case);
|
| + __ Cmp(argc, 1);
|
| + __ B(ne, &n_case);
|
| +
|
| + // One argument.
|
| + CreateArrayDispatchOneArgument(masm, mode);
|
| +
|
| + __ Bind(&zero_case);
|
| + // No arguments.
|
| + CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
|
| +
|
| + __ Bind(&n_case);
|
| + // N arguments.
|
| + CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
|
| +
|
| + } else if (argument_count_ == NONE) {
|
| + CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
|
| + } else if (argument_count_ == ONE) {
|
| + CreateArrayDispatchOneArgument(masm, mode);
|
| + } else if (argument_count_ == MORE_THAN_ONE) {
|
| + CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
|
| + } else {
|
| + UNREACHABLE();
|
| + }
|
| +}
|
| +
|
| +
|
| +void ArrayConstructorStub::Generate(MacroAssembler* masm) {
|
| + ASM_LOCATION("ArrayConstructorStub::Generate");
|
| + // ----------- S t a t e -------------
|
| + // -- x0 : argc (only if argument_count_ == ANY)
|
| + // -- x1 : constructor
|
| + // -- x2 : feedback vector (fixed array or undefined)
|
| + // -- x3 : slot index (if x2 is fixed array)
|
| + // -- sp[0] : return address
|
| + // -- sp[4] : last argument
|
| + // -----------------------------------
|
| + Register constructor = x1;
|
| + Register feedback_vector = x2;
|
| + Register slot_index = x3;
|
| +
|
| + if (FLAG_debug_code) {
|
| + // The array construct code is only set for the global and natives
|
| + // builtin Array functions which always have maps.
|
| +
|
| + Label unexpected_map, map_ok;
|
| + // Initial map for the builtin Array function should be a map.
|
| + __ Ldr(x10, FieldMemOperand(constructor,
|
| + JSFunction::kPrototypeOrInitialMapOffset));
|
| + // Will both indicate a NULL and a Smi.
|
| + __ JumpIfSmi(x10, &unexpected_map);
|
| + __ JumpIfObjectType(x10, x10, x11, MAP_TYPE, &map_ok);
|
| + __ Bind(&unexpected_map);
|
| + __ Abort(kUnexpectedInitialMapForArrayFunction);
|
| + __ Bind(&map_ok);
|
| +
|
| + // In feedback_vector, we expect either undefined or a valid fixed array.
|
| + Label okay_here;
|
| + Handle<Map> fixed_array_map = masm->isolate()->factory()->fixed_array_map();
|
| + __ JumpIfRoot(feedback_vector, Heap::kUndefinedValueRootIndex, &okay_here);
|
| + __ Ldr(x10, FieldMemOperand(feedback_vector, FixedArray::kMapOffset));
|
| + __ Cmp(x10, Operand(fixed_array_map));
|
| + __ Assert(eq, kExpectedFixedArrayInFeedbackVector);
|
| +
|
| + // slot_index should be a smi if we don't have undefined in feedback_vector.
|
| + __ AssertSmi(slot_index);
|
| +
|
| + __ Bind(&okay_here);
|
| + }
|
| +
|
| + Register allocation_site = x2; // Overwrites feedback_vector.
|
| + Register kind = x3;
|
| + Label no_info;
|
| + // Get the elements kind and case on that.
|
| + __ JumpIfRoot(feedback_vector, Heap::kUndefinedValueRootIndex, &no_info);
|
| + __ Add(feedback_vector, feedback_vector,
|
| + Operand::UntagSmiAndScale(slot_index, kPointerSizeLog2));
|
| + __ Ldr(allocation_site, FieldMemOperand(feedback_vector,
|
| + FixedArray::kHeaderSize));
|
| +
|
| + // If the feedback vector is undefined, or contains anything other than an
|
| + // AllocationSite, call an array constructor that doesn't use AllocationSites.
|
| + __ Ldr(x10, FieldMemOperand(allocation_site, AllocationSite::kMapOffset));
|
| + __ JumpIfNotRoot(x10, Heap::kAllocationSiteMapRootIndex, &no_info);
|
| +
|
| + __ Ldrsw(kind,
|
| + UntagSmiFieldMemOperand(allocation_site,
|
| + AllocationSite::kTransitionInfoOffset));
|
| + __ And(kind, kind, AllocationSite::ElementsKindBits::kMask);
|
| + GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
|
| +
|
| + __ Bind(&no_info);
|
| + GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
|
| +}
|
| +
|
| +
|
| +void InternalArrayConstructorStub::GenerateCase(
|
| + MacroAssembler* masm, ElementsKind kind) {
|
| + Label zero_case, n_case;
|
| + Register argc = x0;
|
| +
|
| + __ Cbz(argc, &zero_case);
|
| + __ CompareAndBranch(argc, 1, ne, &n_case);
|
| +
|
| + // One argument.
|
| + if (IsFastPackedElementsKind(kind)) {
|
| + Label packed_case;
|
| +
|
| + // We might need to create a holey array; look at the first argument.
|
| + __ Peek(x10, 0);
|
| + __ Cbz(x10, &packed_case);
|
| +
|
| + InternalArraySingleArgumentConstructorStub
|
| + stub1_holey(GetHoleyElementsKind(kind));
|
| + __ TailCallStub(&stub1_holey);
|
| +
|
| + __ Bind(&packed_case);
|
| + }
|
| + InternalArraySingleArgumentConstructorStub stub1(kind);
|
| + __ TailCallStub(&stub1);
|
| +
|
| + __ Bind(&zero_case);
|
| + // No arguments.
|
| + InternalArrayNoArgumentConstructorStub stub0(kind);
|
| + __ TailCallStub(&stub0);
|
| +
|
| + __ Bind(&n_case);
|
| + // N arguments.
|
| + InternalArrayNArgumentsConstructorStub stubN(kind);
|
| + __ TailCallStub(&stubN);
|
| +}
|
| +
|
| +
|
| +void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
|
| + // ----------- S t a t e -------------
|
| + // -- x0 : argc
|
| + // -- x1 : constructor
|
| + // -- sp[0] : return address
|
| + // -- sp[4] : last argument
|
| + // -----------------------------------
|
| + Handle<Object> undefined_sentinel(
|
| + masm->isolate()->heap()->undefined_value(), masm->isolate());
|
| +
|
| + Register constructor = x1;
|
| +
|
| + if (FLAG_debug_code) {
|
| + // The array construct code is only set for the global and natives
|
| + // builtin Array functions which always have maps.
|
| +
|
| + Label unexpected_map, map_ok;
|
| + // Initial map for the builtin Array function should be a map.
|
| + __ Ldr(x10, FieldMemOperand(constructor,
|
| + JSFunction::kPrototypeOrInitialMapOffset));
|
| + // Will both indicate a NULL and a Smi.
|
| + __ JumpIfSmi(x10, &unexpected_map);
|
| + __ JumpIfObjectType(x10, x10, x11, MAP_TYPE, &map_ok);
|
| + __ Bind(&unexpected_map);
|
| + __ Abort(kUnexpectedInitialMapForArrayFunction);
|
| + __ Bind(&map_ok);
|
| + }
|
| +
|
| + Register kind = w3;
|
| + // Figure out the right elements kind
|
| + __ Ldr(x10, FieldMemOperand(constructor,
|
| + JSFunction::kPrototypeOrInitialMapOffset));
|
| +
|
| + // TODO(jbramley): Add a helper function to read elements kind from an
|
| + // existing map.
|
| + // Load the map's "bit field 2" into result.
|
| + __ Ldr(kind, FieldMemOperand(x10, Map::kBitField2Offset));
|
| + // Retrieve elements_kind from bit field 2.
|
| + __ Ubfx(kind, kind, Map::kElementsKindShift, Map::kElementsKindBitCount);
|
| +
|
| + if (FLAG_debug_code) {
|
| + Label done;
|
| + __ Cmp(x3, FAST_ELEMENTS);
|
| + __ Ccmp(x3, FAST_HOLEY_ELEMENTS, ZFlag, ne);
|
| + __ Assert(eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray);
|
| + }
|
| +
|
| + Label fast_elements_case;
|
| + __ CompareAndBranch(kind, FAST_ELEMENTS, eq, &fast_elements_case);
|
| + GenerateCase(masm, FAST_HOLEY_ELEMENTS);
|
| +
|
| + __ Bind(&fast_elements_case);
|
| + GenerateCase(masm, FAST_ELEMENTS);
|
| +}
|
| +
|
| +
|
| +void CallApiFunctionStub::Generate(MacroAssembler* masm) {
|
| + // ----------- S t a t e -------------
|
| + // -- x0 : callee
|
| + // -- x4 : call_data
|
| + // -- x2 : holder
|
| + // -- x1 : api_function_address
|
| + // -- cp : context
|
| + // --
|
| + // -- sp[0] : last argument
|
| + // -- ...
|
| + // -- sp[(argc - 1) * 8] : first argument
|
| + // -- sp[argc * 8] : receiver
|
| + // -----------------------------------
|
| +
|
| + Register callee = x0;
|
| + Register call_data = x4;
|
| + Register holder = x2;
|
| + Register api_function_address = x1;
|
| + Register context = cp;
|
| +
|
| + int argc = ArgumentBits::decode(bit_field_);
|
| + bool restore_context = RestoreContextBits::decode(bit_field_);
|
| + bool call_data_undefined = CallDataUndefinedBits::decode(bit_field_);
|
| +
|
| + typedef FunctionCallbackArguments FCA;
|
| +
|
| + STATIC_ASSERT(FCA::kContextSaveIndex == 6);
|
| + STATIC_ASSERT(FCA::kCalleeIndex == 5);
|
| + STATIC_ASSERT(FCA::kDataIndex == 4);
|
| + STATIC_ASSERT(FCA::kReturnValueOffset == 3);
|
| + STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
|
| + STATIC_ASSERT(FCA::kIsolateIndex == 1);
|
| + STATIC_ASSERT(FCA::kHolderIndex == 0);
|
| + STATIC_ASSERT(FCA::kArgsLength == 7);
|
| +
|
| + Isolate* isolate = masm->isolate();
|
| +
|
| + // FunctionCallbackArguments: context, callee and call data.
|
| + __ Push(context, callee, call_data);
|
| +
|
| + // Load context from callee
|
| + __ Ldr(context, FieldMemOperand(callee, JSFunction::kContextOffset));
|
| +
|
| + if (!call_data_undefined) {
|
| + __ LoadRoot(call_data, Heap::kUndefinedValueRootIndex);
|
| + }
|
| + Register isolate_reg = x5;
|
| + __ Mov(isolate_reg, Operand(ExternalReference::isolate_address(isolate)));
|
| +
|
| + // FunctionCallbackArguments:
|
| + // return value, return value default, isolate, holder.
|
| + __ Push(call_data, call_data, isolate_reg, holder);
|
| +
|
| + // Prepare arguments.
|
| + Register args = x6;
|
| + __ Mov(args, masm->StackPointer());
|
| +
|
| + // Allocate the v8::Arguments structure in the arguments' space, since it's
|
| + // not controlled by GC.
|
| + const int kApiStackSpace = 4;
|
| +
|
| + // Allocate space for CallApiFunctionAndReturn can store some scratch
|
| + // registeres on the stack.
|
| + const int kCallApiFunctionSpillSpace = 4;
|
| +
|
| + FrameScope frame_scope(masm, StackFrame::MANUAL);
|
| + __ EnterExitFrame(false, x10, kApiStackSpace + kCallApiFunctionSpillSpace);
|
| +
|
| + // TODO(all): Optimize this with stp and suchlike.
|
| + ASSERT(!AreAliased(x0, api_function_address));
|
| + // x0 = FunctionCallbackInfo&
|
| + // Arguments is after the return address.
|
| + __ Add(x0, masm->StackPointer(), 1 * kPointerSize);
|
| + // FunctionCallbackInfo::implicit_args_
|
| + __ Str(args, MemOperand(x0, 0 * kPointerSize));
|
| + // FunctionCallbackInfo::values_
|
| + __ Add(x10, args, Operand((FCA::kArgsLength - 1 + argc) * kPointerSize));
|
| + __ Str(x10, MemOperand(x0, 1 * kPointerSize));
|
| + // FunctionCallbackInfo::length_ = argc
|
| + __ Mov(x10, argc);
|
| + __ Str(x10, MemOperand(x0, 2 * kPointerSize));
|
| + // FunctionCallbackInfo::is_construct_call = 0
|
| + __ Str(xzr, MemOperand(x0, 3 * kPointerSize));
|
| +
|
| + const int kStackUnwindSpace = argc + FCA::kArgsLength + 1;
|
| + Address thunk_address = FUNCTION_ADDR(&InvokeFunctionCallback);
|
| + ExternalReference::Type thunk_type = ExternalReference::PROFILING_API_CALL;
|
| + ApiFunction thunk_fun(thunk_address);
|
| + ExternalReference thunk_ref = ExternalReference(&thunk_fun, thunk_type,
|
| + masm->isolate());
|
| +
|
| + AllowExternalCallThatCantCauseGC scope(masm);
|
| + MemOperand context_restore_operand(
|
| + fp, (2 + FCA::kContextSaveIndex) * kPointerSize);
|
| + MemOperand return_value_operand(fp,
|
| + (2 + FCA::kReturnValueOffset) * kPointerSize);
|
| +
|
| + const int spill_offset = 1 + kApiStackSpace;
|
| + __ CallApiFunctionAndReturn(api_function_address,
|
| + thunk_ref,
|
| + kStackUnwindSpace,
|
| + spill_offset,
|
| + return_value_operand,
|
| + restore_context ?
|
| + &context_restore_operand : NULL);
|
| +}
|
| +
|
| +
|
| +void CallApiGetterStub::Generate(MacroAssembler* masm) {
|
| + // ----------- S t a t e -------------
|
| + // -- sp[0] : name
|
| + // -- sp[8 - kArgsLength*8] : PropertyCallbackArguments object
|
| + // -- ...
|
| + // -- x2 : api_function_address
|
| + // -----------------------------------
|
| +
|
| + Register api_function_address = x2;
|
| +
|
| + __ Mov(x0, masm->StackPointer()); // x0 = Handle<Name>
|
| + __ Add(x1, x0, 1 * kPointerSize); // x1 = PCA
|
| +
|
| + const int kApiStackSpace = 1;
|
| +
|
| + // Allocate space for CallApiFunctionAndReturn can store some scratch
|
| + // registeres on the stack.
|
| + const int kCallApiFunctionSpillSpace = 4;
|
| +
|
| + FrameScope frame_scope(masm, StackFrame::MANUAL);
|
| + __ EnterExitFrame(false, x10, kApiStackSpace + kCallApiFunctionSpillSpace);
|
| +
|
| + // Create PropertyAccessorInfo instance on the stack above the exit frame with
|
| + // x1 (internal::Object** args_) as the data.
|
| + __ Poke(x1, 1 * kPointerSize);
|
| + __ Add(x1, masm->StackPointer(), 1 * kPointerSize); // x1 = AccessorInfo&
|
| +
|
| + const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
|
| +
|
| + Address thunk_address = FUNCTION_ADDR(&InvokeAccessorGetterCallback);
|
| + ExternalReference::Type thunk_type =
|
| + ExternalReference::PROFILING_GETTER_CALL;
|
| + ApiFunction thunk_fun(thunk_address);
|
| + ExternalReference thunk_ref = ExternalReference(&thunk_fun, thunk_type,
|
| + masm->isolate());
|
| +
|
| + const int spill_offset = 1 + kApiStackSpace;
|
| + __ CallApiFunctionAndReturn(api_function_address,
|
| + thunk_ref,
|
| + kStackUnwindSpace,
|
| + spill_offset,
|
| + MemOperand(fp, 6 * kPointerSize),
|
| + NULL);
|
| +}
|
| +
|
| +
|
| +#undef __
|
| +
|
| +} } // namespace v8::internal
|
| +
|
| +#endif // V8_TARGET_ARCH_A64
|
|
|