| Index: src/a64/instructions-a64.cc
|
| diff --git a/src/a64/instructions-a64.cc b/src/a64/instructions-a64.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..ebd6c26bb32452bd7bc8b7bccd9e89f636a15876
|
| --- /dev/null
|
| +++ b/src/a64/instructions-a64.cc
|
| @@ -0,0 +1,322 @@
|
| +// Copyright 2013 the V8 project authors. All rights reserved.
|
| +// Redistribution and use in source and binary forms, with or without
|
| +// modification, are permitted provided that the following conditions are
|
| +// met:
|
| +//
|
| +// * Redistributions of source code must retain the above copyright
|
| +// notice, this list of conditions and the following disclaimer.
|
| +// * Redistributions in binary form must reproduce the above
|
| +// copyright notice, this list of conditions and the following
|
| +// disclaimer in the documentation and/or other materials provided
|
| +// with the distribution.
|
| +// * Neither the name of Google Inc. nor the names of its
|
| +// contributors may be used to endorse or promote products derived
|
| +// from this software without specific prior written permission.
|
| +//
|
| +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
| +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
| +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
| +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
| +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
| +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
| +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
| +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
| +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| +
|
| +#include "v8.h"
|
| +
|
| +#if V8_TARGET_ARCH_A64
|
| +
|
| +#define A64_DEFINE_FP_STATICS
|
| +
|
| +#include "a64/instructions-a64.h"
|
| +#include "a64/assembler-a64-inl.h"
|
| +
|
| +namespace v8 {
|
| +namespace internal {
|
| +
|
| +
|
| +bool Instruction::IsLoad() const {
|
| + if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
|
| + return false;
|
| + }
|
| +
|
| + if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
|
| + return Mask(LoadStorePairLBit) != 0;
|
| + } else {
|
| + LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreOpMask));
|
| + switch (op) {
|
| + case LDRB_w:
|
| + case LDRH_w:
|
| + case LDR_w:
|
| + case LDR_x:
|
| + case LDRSB_w:
|
| + case LDRSB_x:
|
| + case LDRSH_w:
|
| + case LDRSH_x:
|
| + case LDRSW_x:
|
| + case LDR_s:
|
| + case LDR_d: return true;
|
| + default: return false;
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +bool Instruction::IsStore() const {
|
| + if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
|
| + return false;
|
| + }
|
| +
|
| + if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
|
| + return Mask(LoadStorePairLBit) == 0;
|
| + } else {
|
| + LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreOpMask));
|
| + switch (op) {
|
| + case STRB_w:
|
| + case STRH_w:
|
| + case STR_w:
|
| + case STR_x:
|
| + case STR_s:
|
| + case STR_d: return true;
|
| + default: return false;
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +static uint64_t RotateRight(uint64_t value,
|
| + unsigned int rotate,
|
| + unsigned int width) {
|
| + ASSERT(width <= 64);
|
| + rotate &= 63;
|
| + return ((value & ((1UL << rotate) - 1UL)) << (width - rotate)) |
|
| + (value >> rotate);
|
| +}
|
| +
|
| +
|
| +static uint64_t RepeatBitsAcrossReg(unsigned reg_size,
|
| + uint64_t value,
|
| + unsigned width) {
|
| + ASSERT((width == 2) || (width == 4) || (width == 8) || (width == 16) ||
|
| + (width == 32));
|
| + ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
|
| + uint64_t result = value & ((1UL << width) - 1UL);
|
| + for (unsigned i = width; i < reg_size; i *= 2) {
|
| + result |= (result << i);
|
| + }
|
| + return result;
|
| +}
|
| +
|
| +
|
| +// Logical immediates can't encode zero, so a return value of zero is used to
|
| +// indicate a failure case. Specifically, where the constraints on imm_s are not
|
| +// met.
|
| +uint64_t Instruction::ImmLogical() {
|
| + unsigned reg_size = SixtyFourBits() ? kXRegSize : kWRegSize;
|
| + int64_t n = BitN();
|
| + int64_t imm_s = ImmSetBits();
|
| + int64_t imm_r = ImmRotate();
|
| +
|
| + // An integer is constructed from the n, imm_s and imm_r bits according to
|
| + // the following table:
|
| + //
|
| + // N imms immr size S R
|
| + // 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr)
|
| + // 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr)
|
| + // 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr)
|
| + // 0 110sss xxxrrr 8 UInt(sss) UInt(rrr)
|
| + // 0 1110ss xxxxrr 4 UInt(ss) UInt(rr)
|
| + // 0 11110s xxxxxr 2 UInt(s) UInt(r)
|
| + // (s bits must not be all set)
|
| + //
|
| + // A pattern is constructed of size bits, where the least significant S+1
|
| + // bits are set. The pattern is rotated right by R, and repeated across a
|
| + // 32 or 64-bit value, depending on destination register width.
|
| + //
|
| +
|
| + if (n == 1) {
|
| + if (imm_s == 0x3F) {
|
| + return 0;
|
| + }
|
| + uint64_t bits = (1UL << (imm_s + 1)) - 1;
|
| + return RotateRight(bits, imm_r, 64);
|
| + } else {
|
| + if ((imm_s >> 1) == 0x1F) {
|
| + return 0;
|
| + }
|
| + for (int width = 0x20; width >= 0x2; width >>= 1) {
|
| + if ((imm_s & width) == 0) {
|
| + int mask = width - 1;
|
| + if ((imm_s & mask) == mask) {
|
| + return 0;
|
| + }
|
| + uint64_t bits = (1UL << ((imm_s & mask) + 1)) - 1;
|
| + return RepeatBitsAcrossReg(reg_size,
|
| + RotateRight(bits, imm_r & mask, width),
|
| + width);
|
| + }
|
| + }
|
| + }
|
| + UNREACHABLE();
|
| + return 0;
|
| +}
|
| +
|
| +
|
| +float Instruction::ImmFP32() {
|
| + // ImmFP: abcdefgh (8 bits)
|
| + // Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits)
|
| + // where B is b ^ 1
|
| + uint32_t bits = ImmFP();
|
| + uint32_t bit7 = (bits >> 7) & 0x1;
|
| + uint32_t bit6 = (bits >> 6) & 0x1;
|
| + uint32_t bit5_to_0 = bits & 0x3f;
|
| + uint32_t result = (bit7 << 31) | ((32 - bit6) << 25) | (bit5_to_0 << 19);
|
| +
|
| + return rawbits_to_float(result);
|
| +}
|
| +
|
| +
|
| +double Instruction::ImmFP64() {
|
| + // ImmFP: abcdefgh (8 bits)
|
| + // Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
|
| + // 0000.0000.0000.0000.0000.0000.0000.0000 (64 bits)
|
| + // where B is b ^ 1
|
| + uint32_t bits = ImmFP();
|
| + uint64_t bit7 = (bits >> 7) & 0x1;
|
| + uint64_t bit6 = (bits >> 6) & 0x1;
|
| + uint64_t bit5_to_0 = bits & 0x3f;
|
| + uint64_t result = (bit7 << 63) | ((256 - bit6) << 54) | (bit5_to_0 << 48);
|
| +
|
| + return rawbits_to_double(result);
|
| +}
|
| +
|
| +
|
| +LSDataSize CalcLSPairDataSize(LoadStorePairOp op) {
|
| + switch (op) {
|
| + case STP_x:
|
| + case LDP_x:
|
| + case STP_d:
|
| + case LDP_d: return LSDoubleWord;
|
| + default: return LSWord;
|
| + }
|
| +}
|
| +
|
| +
|
| +ptrdiff_t Instruction::ImmPCOffset() {
|
| + ptrdiff_t offset;
|
| + if (IsPCRelAddressing()) {
|
| + // PC-relative addressing. Only ADR is supported.
|
| + offset = ImmPCRel();
|
| + } else if (BranchType() != UnknownBranchType) {
|
| + // All PC-relative branches.
|
| + // Relative branch offsets are instruction-size-aligned.
|
| + offset = ImmBranch() << kInstructionSizeLog2;
|
| + } else {
|
| + // Load literal (offset from PC).
|
| + ASSERT(IsLdrLiteral());
|
| + // The offset is always shifted by 2 bits, even for loads to 64-bits
|
| + // registers.
|
| + offset = ImmLLiteral() << kInstructionSizeLog2;
|
| + }
|
| + return offset;
|
| +}
|
| +
|
| +
|
| +Instruction* Instruction::ImmPCOffsetTarget() {
|
| + return this + ImmPCOffset();
|
| +}
|
| +
|
| +
|
| +void Instruction::SetImmPCOffsetTarget(Instruction* target) {
|
| + if (IsPCRelAddressing()) {
|
| + SetPCRelImmTarget(target);
|
| + } else if (BranchType() != UnknownBranchType) {
|
| + SetBranchImmTarget(target);
|
| + } else {
|
| + SetImmLLiteral(target);
|
| + }
|
| +}
|
| +
|
| +
|
| +void Instruction::SetPCRelImmTarget(Instruction* target) {
|
| + // ADRP is not supported, so 'this' must point to an ADR instruction.
|
| + ASSERT(Mask(PCRelAddressingMask) == ADR);
|
| +
|
| + Instr imm = Assembler::ImmPCRelAddress(target - this);
|
| +
|
| + SetInstructionBits(Mask(~ImmPCRel_mask) | imm);
|
| +}
|
| +
|
| +
|
| +void Instruction::SetBranchImmTarget(Instruction* target) {
|
| + ASSERT(((target - this) & 3) == 0);
|
| + Instr branch_imm = 0;
|
| + uint32_t imm_mask = 0;
|
| + int offset = (target - this) >> kInstructionSizeLog2;
|
| + switch (BranchType()) {
|
| + case CondBranchType: {
|
| + branch_imm = Assembler::ImmCondBranch(offset);
|
| + imm_mask = ImmCondBranch_mask;
|
| + break;
|
| + }
|
| + case UncondBranchType: {
|
| + branch_imm = Assembler::ImmUncondBranch(offset);
|
| + imm_mask = ImmUncondBranch_mask;
|
| + break;
|
| + }
|
| + case CompareBranchType: {
|
| + branch_imm = Assembler::ImmCmpBranch(offset);
|
| + imm_mask = ImmCmpBranch_mask;
|
| + break;
|
| + }
|
| + case TestBranchType: {
|
| + branch_imm = Assembler::ImmTestBranch(offset);
|
| + imm_mask = ImmTestBranch_mask;
|
| + break;
|
| + }
|
| + default: UNREACHABLE();
|
| + }
|
| + SetInstructionBits(Mask(~imm_mask) | branch_imm);
|
| +}
|
| +
|
| +
|
| +void Instruction::SetImmLLiteral(Instruction* source) {
|
| + ASSERT(((source - this) & 3) == 0);
|
| + int offset = (source - this) >> kLiteralEntrySizeLog2;
|
| + Instr imm = Assembler::ImmLLiteral(offset);
|
| + Instr mask = ImmLLiteral_mask;
|
| +
|
| + SetInstructionBits(Mask(~mask) | imm);
|
| +}
|
| +
|
| +
|
| +// TODO(jbramley): We can't put this inline in the class because things like
|
| +// xzr and Register are not defined in that header. Consider adding
|
| +// instructions-a64-inl.h to work around this.
|
| +bool InstructionSequence::IsInlineData() const {
|
| + // Inline data is encoded as a single movz instruction which writes to xzr
|
| + // (x31).
|
| + return IsMovz() && SixtyFourBits() && (Rd() == xzr.code());
|
| + // TODO(all): If we extend ::InlineData() to support bigger data, we need
|
| + // to update this method too.
|
| +}
|
| +
|
| +
|
| +// TODO(jbramley): We can't put this inline in the class because things like
|
| +// xzr and Register are not defined in that header. Consider adding
|
| +// instructions-a64-inl.h to work around this.
|
| +uint64_t InstructionSequence::InlineData() const {
|
| + ASSERT(IsInlineData());
|
| + uint64_t payload = ImmMoveWide();
|
| + // TODO(all): If we extend ::InlineData() to support bigger data, we need
|
| + // to update this method too.
|
| + return payload;
|
| +}
|
| +
|
| +
|
| +} } // namespace v8::internal
|
| +
|
| +#endif // V8_TARGET_ARCH_A64
|
|
|