| Index: src/a64/instructions-a64.h
|
| diff --git a/src/a64/instructions-a64.h b/src/a64/instructions-a64.h
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..83d22e869f89d5621642dad3aabcdd4c3bdea29b
|
| --- /dev/null
|
| +++ b/src/a64/instructions-a64.h
|
| @@ -0,0 +1,491 @@
|
| +// Copyright 2013 the V8 project authors. All rights reserved.
|
| +// Redistribution and use in source and binary forms, with or without
|
| +// modification, are permitted provided that the following conditions are
|
| +// met:
|
| +//
|
| +// * Redistributions of source code must retain the above copyright
|
| +// notice, this list of conditions and the following disclaimer.
|
| +// * Redistributions in binary form must reproduce the above
|
| +// copyright notice, this list of conditions and the following
|
| +// disclaimer in the documentation and/or other materials provided
|
| +// with the distribution.
|
| +// * Neither the name of Google Inc. nor the names of its
|
| +// contributors may be used to endorse or promote products derived
|
| +// from this software without specific prior written permission.
|
| +//
|
| +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
| +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
| +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
| +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
| +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
| +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
| +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
| +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
| +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| +
|
| +#ifndef V8_A64_INSTRUCTIONS_A64_H_
|
| +#define V8_A64_INSTRUCTIONS_A64_H_
|
| +
|
| +#include "globals.h"
|
| +#include "utils.h"
|
| +#include "a64/constants-a64.h"
|
| +#include "a64/utils-a64.h"
|
| +
|
| +namespace v8 {
|
| +namespace internal {
|
| +
|
| +
|
| +// ISA constants. --------------------------------------------------------------
|
| +
|
| +typedef uint32_t Instr;
|
| +
|
| +// The following macros initialize a float/double variable with a bit pattern
|
| +// without using static initializers: If A64_DEFINE_FP_STATICS is defined, the
|
| +// symbol is defined as uint32_t/uint64_t initialized with the desired bit
|
| +// pattern. Otherwise, the same symbol is declared as an external float/double.
|
| +#if defined(A64_DEFINE_FP_STATICS)
|
| +#define DEFINE_FLOAT(name, value) extern const uint32_t name = value
|
| +#define DEFINE_DOUBLE(name, value) extern const uint64_t name = value
|
| +#else
|
| +#define DEFINE_FLOAT(name, value) extern const float name
|
| +#define DEFINE_DOUBLE(name, value) extern const double name
|
| +#endif // defined(A64_DEFINE_FP_STATICS)
|
| +
|
| +DEFINE_FLOAT(kFP32PositiveInfinity, 0x7f800000);
|
| +DEFINE_FLOAT(kFP32NegativeInfinity, 0xff800000);
|
| +DEFINE_DOUBLE(kFP64PositiveInfinity, 0x7ff0000000000000UL);
|
| +DEFINE_DOUBLE(kFP64NegativeInfinity, 0xfff0000000000000UL);
|
| +
|
| +// This value is a signalling NaN as both a double and as a float (taking the
|
| +// least-significant word).
|
| +DEFINE_DOUBLE(kFP64SignallingNaN, 0x7ff000007f800001);
|
| +DEFINE_FLOAT(kFP32SignallingNaN, 0x7f800001);
|
| +
|
| +// A similar value, but as a quiet NaN.
|
| +DEFINE_DOUBLE(kFP64QuietNaN, 0x7ff800007fc00001);
|
| +DEFINE_FLOAT(kFP32QuietNaN, 0x7fc00001);
|
| +
|
| +#undef DEFINE_FLOAT
|
| +#undef DEFINE_DOUBLE
|
| +
|
| +
|
| +enum LSDataSize {
|
| + LSByte = 0,
|
| + LSHalfword = 1,
|
| + LSWord = 2,
|
| + LSDoubleWord = 3
|
| +};
|
| +
|
| +LSDataSize CalcLSPairDataSize(LoadStorePairOp op);
|
| +
|
| +enum ImmBranchType {
|
| + UnknownBranchType = 0,
|
| + CondBranchType = 1,
|
| + UncondBranchType = 2,
|
| + CompareBranchType = 3,
|
| + TestBranchType = 4
|
| +};
|
| +
|
| +enum AddrMode {
|
| + Offset,
|
| + PreIndex,
|
| + PostIndex
|
| +};
|
| +
|
| +enum FPRounding {
|
| + // The first four values are encodable directly by FPCR<RMode>.
|
| + FPTieEven = 0x0,
|
| + FPPositiveInfinity = 0x1,
|
| + FPNegativeInfinity = 0x2,
|
| + FPZero = 0x3,
|
| +
|
| + // The final rounding mode is only available when explicitly specified by the
|
| + // instruction (such as with fcvta). It cannot be set in FPCR.
|
| + FPTieAway
|
| +};
|
| +
|
| +enum Reg31Mode {
|
| + Reg31IsStackPointer,
|
| + Reg31IsZeroRegister
|
| +};
|
| +
|
| +// Instructions. ---------------------------------------------------------------
|
| +
|
| +class Instruction {
|
| + public:
|
| + Instr InstructionBits() const {
|
| + Instr bits;
|
| + memcpy(&bits, this, sizeof(bits));
|
| + return bits;
|
| + }
|
| +
|
| + void SetInstructionBits(Instr new_instr) {
|
| + memcpy(this, &new_instr, sizeof(new_instr));
|
| + }
|
| +
|
| + int Bit(int pos) const {
|
| + return (InstructionBits() >> pos) & 1;
|
| + }
|
| +
|
| + uint32_t Bits(int msb, int lsb) const {
|
| + return unsigned_bitextract_32(msb, lsb, InstructionBits());
|
| + }
|
| +
|
| + int32_t SignedBits(int msb, int lsb) const {
|
| + int32_t bits = *(reinterpret_cast<const int32_t*>(this));
|
| + return signed_bitextract_32(msb, lsb, bits);
|
| + }
|
| +
|
| + Instr Mask(uint32_t mask) const {
|
| + return InstructionBits() & mask;
|
| + }
|
| +
|
| + Instruction* following(int count = 1) {
|
| + return this + count * kInstructionSize;
|
| + }
|
| +
|
| + Instruction* preceding(int count = 1) {
|
| + return this - count * kInstructionSize;
|
| + }
|
| +
|
| + #define DEFINE_GETTER(Name, HighBit, LowBit, Func) \
|
| + int64_t Name() const { return Func(HighBit, LowBit); }
|
| + INSTRUCTION_FIELDS_LIST(DEFINE_GETTER)
|
| + #undef DEFINE_GETTER
|
| +
|
| + // ImmPCRel is a compound field (not present in INSTRUCTION_FIELDS_LIST),
|
| + // formed from ImmPCRelLo and ImmPCRelHi.
|
| + int ImmPCRel() const {
|
| + int const offset = ((ImmPCRelHi() << ImmPCRelLo_width) | ImmPCRelLo());
|
| + int const width = ImmPCRelLo_width + ImmPCRelHi_width;
|
| + return signed_bitextract_32(width-1, 0, offset);
|
| + }
|
| +
|
| + uint64_t ImmLogical();
|
| + float ImmFP32();
|
| + double ImmFP64();
|
| +
|
| + LSDataSize SizeLSPair() const {
|
| + return CalcLSPairDataSize(
|
| + static_cast<LoadStorePairOp>(Mask(LoadStorePairMask)));
|
| + }
|
| +
|
| + // Helpers.
|
| + bool IsCondBranchImm() const {
|
| + return Mask(ConditionalBranchFMask) == ConditionalBranchFixed;
|
| + }
|
| +
|
| + bool IsUncondBranchImm() const {
|
| + return Mask(UnconditionalBranchFMask) == UnconditionalBranchFixed;
|
| + }
|
| +
|
| + bool IsCompareBranch() const {
|
| + return Mask(CompareBranchFMask) == CompareBranchFixed;
|
| + }
|
| +
|
| + bool IsTestBranch() const {
|
| + return Mask(TestBranchFMask) == TestBranchFixed;
|
| + }
|
| +
|
| + bool IsLdrLiteral() const {
|
| + return Mask(LoadLiteralFMask) == LoadLiteralFixed;
|
| + }
|
| +
|
| + bool IsLdrLiteralX() const {
|
| + return Mask(LoadLiteralMask) == LDR_x_lit;
|
| + }
|
| +
|
| + bool IsPCRelAddressing() const {
|
| + return Mask(PCRelAddressingFMask) == PCRelAddressingFixed;
|
| + }
|
| +
|
| + bool IsLogicalImmediate() const {
|
| + return Mask(LogicalImmediateFMask) == LogicalImmediateFixed;
|
| + }
|
| +
|
| + bool IsAddSubImmediate() const {
|
| + return Mask(AddSubImmediateFMask) == AddSubImmediateFixed;
|
| + }
|
| +
|
| + bool IsAddSubExtended() const {
|
| + return Mask(AddSubExtendedFMask) == AddSubExtendedFixed;
|
| + }
|
| +
|
| + // Match any loads or stores, including pairs.
|
| + bool IsLoadOrStore() const {
|
| + return Mask(LoadStoreAnyFMask) == LoadStoreAnyFixed;
|
| + }
|
| +
|
| + // Match any loads, including pairs.
|
| + bool IsLoad() const;
|
| + // Match any stores, including pairs.
|
| + bool IsStore() const;
|
| +
|
| + // Indicate whether Rd can be the stack pointer or the zero register. This
|
| + // does not check that the instruction actually has an Rd field.
|
| + Reg31Mode RdMode() const {
|
| + // The following instructions use csp or wsp as Rd:
|
| + // Add/sub (immediate) when not setting the flags.
|
| + // Add/sub (extended) when not setting the flags.
|
| + // Logical (immediate) when not setting the flags.
|
| + // Otherwise, r31 is the zero register.
|
| + if (IsAddSubImmediate() || IsAddSubExtended()) {
|
| + if (Mask(AddSubSetFlagsBit)) {
|
| + return Reg31IsZeroRegister;
|
| + } else {
|
| + return Reg31IsStackPointer;
|
| + }
|
| + }
|
| + if (IsLogicalImmediate()) {
|
| + // Of the logical (immediate) instructions, only ANDS (and its aliases)
|
| + // can set the flags. The others can all write into csp.
|
| + // Note that some logical operations are not available to
|
| + // immediate-operand instructions, so we have to combine two masks here.
|
| + if (Mask(LogicalImmediateMask & LogicalOpMask) == ANDS) {
|
| + return Reg31IsZeroRegister;
|
| + } else {
|
| + return Reg31IsStackPointer;
|
| + }
|
| + }
|
| + return Reg31IsZeroRegister;
|
| + }
|
| +
|
| + // Indicate whether Rn can be the stack pointer or the zero register. This
|
| + // does not check that the instruction actually has an Rn field.
|
| + Reg31Mode RnMode() const {
|
| + // The following instructions use csp or wsp as Rn:
|
| + // All loads and stores.
|
| + // Add/sub (immediate).
|
| + // Add/sub (extended).
|
| + // Otherwise, r31 is the zero register.
|
| + if (IsLoadOrStore() || IsAddSubImmediate() || IsAddSubExtended()) {
|
| + return Reg31IsStackPointer;
|
| + }
|
| + return Reg31IsZeroRegister;
|
| + }
|
| +
|
| + ImmBranchType BranchType() const {
|
| + if (IsCondBranchImm()) {
|
| + return CondBranchType;
|
| + } else if (IsUncondBranchImm()) {
|
| + return UncondBranchType;
|
| + } else if (IsCompareBranch()) {
|
| + return CompareBranchType;
|
| + } else if (IsTestBranch()) {
|
| + return TestBranchType;
|
| + } else {
|
| + return UnknownBranchType;
|
| + }
|
| + }
|
| +
|
| + int ImmBranch() const {
|
| + switch (BranchType()) {
|
| + case CondBranchType: return ImmCondBranch();
|
| + case UncondBranchType: return ImmUncondBranch();
|
| + case CompareBranchType: return ImmCmpBranch();
|
| + case TestBranchType: return ImmTestBranch();
|
| + default: UNREACHABLE();
|
| + }
|
| + return 0;
|
| + }
|
| +
|
| + bool IsBranchAndLinkToRegister() const {
|
| + return Mask(UnconditionalBranchToRegisterMask) == BLR;
|
| + }
|
| +
|
| + bool IsMovz() const {
|
| + return (Mask(MoveWideImmediateMask) == MOVZ_x) ||
|
| + (Mask(MoveWideImmediateMask) == MOVZ_w);
|
| + }
|
| +
|
| + bool IsMovk() const {
|
| + return (Mask(MoveWideImmediateMask) == MOVK_x) ||
|
| + (Mask(MoveWideImmediateMask) == MOVK_w);
|
| + }
|
| +
|
| + bool IsMovn() const {
|
| + return (Mask(MoveWideImmediateMask) == MOVN_x) ||
|
| + (Mask(MoveWideImmediateMask) == MOVN_w);
|
| + }
|
| +
|
| + bool IsNop(int n) {
|
| + // A marking nop is an instruction
|
| + // mov r<n>, r<n>
|
| + // which is encoded as
|
| + // orr r<n>, xzr, r<n>
|
| + return (Mask(LogicalShiftedMask) == ORR_x) &&
|
| + (Rd() == Rm()) &&
|
| + (Rd() == n);
|
| + }
|
| +
|
| + // Find the PC offset encoded in this instruction. 'this' may be a branch or
|
| + // a PC-relative addressing instruction.
|
| + // The offset returned is unscaled.
|
| + ptrdiff_t ImmPCOffset();
|
| +
|
| + // Find the target of this instruction. 'this' may be a branch or a
|
| + // PC-relative addressing instruction.
|
| + Instruction* ImmPCOffsetTarget();
|
| +
|
| + // Patch a PC-relative offset to refer to 'target'. 'this' may be a branch or
|
| + // a PC-relative addressing instruction.
|
| + void SetImmPCOffsetTarget(Instruction* target);
|
| + // Patch a literal load instruction to load from 'source'.
|
| + void SetImmLLiteral(Instruction* source);
|
| +
|
| + uint8_t* LiteralAddress() {
|
| + int offset = ImmLLiteral() << kLiteralEntrySizeLog2;
|
| + return reinterpret_cast<uint8_t*>(this) + offset;
|
| + }
|
| +
|
| + uint32_t Literal32() {
|
| + uint32_t literal;
|
| + memcpy(&literal, LiteralAddress(), sizeof(literal));
|
| +
|
| + return literal;
|
| + }
|
| +
|
| + uint64_t Literal64() {
|
| + uint64_t literal;
|
| + memcpy(&literal, LiteralAddress(), sizeof(literal));
|
| +
|
| + return literal;
|
| + }
|
| +
|
| + float LiteralFP32() {
|
| + return rawbits_to_float(Literal32());
|
| + }
|
| +
|
| + double LiteralFP64() {
|
| + return rawbits_to_double(Literal64());
|
| + }
|
| +
|
| + Instruction* NextInstruction() {
|
| + return this + kInstructionSize;
|
| + }
|
| +
|
| + Instruction* InstructionAtOffset(int64_t offset) {
|
| + ASSERT(IsAligned(reinterpret_cast<uintptr_t>(this) + offset,
|
| + kInstructionSize));
|
| + return this + offset;
|
| + }
|
| +
|
| + template<typename T> static Instruction* Cast(T src) {
|
| + return reinterpret_cast<Instruction*>(src);
|
| + }
|
| +
|
| +
|
| + void SetPCRelImmTarget(Instruction* target);
|
| + void SetBranchImmTarget(Instruction* target);
|
| +};
|
| +
|
| +
|
| +// Where Instruction looks at instructions generated by the Assembler,
|
| +// InstructionSequence looks at instructions sequences generated by the
|
| +// MacroAssembler.
|
| +class InstructionSequence : public Instruction {
|
| + public:
|
| + static InstructionSequence* At(Address address) {
|
| + return reinterpret_cast<InstructionSequence*>(address);
|
| + }
|
| +
|
| + // Sequences generated by MacroAssembler::InlineData().
|
| + bool IsInlineData() const;
|
| + uint64_t InlineData() const;
|
| +};
|
| +
|
| +
|
| +// Simulator/Debugger debug instructions ---------------------------------------
|
| +// Each debug marker is represented by a HLT instruction. The immediate comment
|
| +// field in the instruction is used to identify the type of debug marker. Each
|
| +// marker encodes arguments in a different way, as described below.
|
| +
|
| +// Indicate to the Debugger that the instruction is a redirected call.
|
| +const Instr kImmExceptionIsRedirectedCall = 0xca11;
|
| +
|
| +// Represent unreachable code. This is used as a guard in parts of the code that
|
| +// should not be reachable, such as in data encoded inline in the instructions.
|
| +const Instr kImmExceptionIsUnreachable = 0xdebf;
|
| +
|
| +// A pseudo 'printf' instruction. The arguments will be passed to the platform
|
| +// printf method.
|
| +const Instr kImmExceptionIsPrintf = 0xdeb1;
|
| +// Parameters are stored in A64 registers as if the printf pseudo-instruction
|
| +// was a call to the real printf method:
|
| +//
|
| +// x0: The format string, then either of:
|
| +// x1-x7: Optional arguments.
|
| +// d0-d7: Optional arguments.
|
| +//
|
| +// Floating-point and integer arguments are passed in separate sets of
|
| +// registers in AAPCS64 (even for varargs functions), so it is not possible to
|
| +// determine the type of location of each arguments without some information
|
| +// about the values that were passed in. This information could be retrieved
|
| +// from the printf format string, but the format string is not trivial to
|
| +// parse so we encode the relevant information with the HLT instruction.
|
| +// - Type
|
| +// Either kRegister or kFPRegister, but stored as a uint32_t because there's
|
| +// no way to guarantee the size of the CPURegister::RegisterType enum.
|
| +const unsigned kPrintfTypeOffset = 1 * kInstructionSize;
|
| +const unsigned kPrintfLength = 2 * kInstructionSize;
|
| +
|
| +// A pseudo 'debug' instruction.
|
| +const Instr kImmExceptionIsDebug = 0xdeb0;
|
| +// Parameters are inlined in the code after a debug pseudo-instruction:
|
| +// - Debug code.
|
| +// - Debug parameters.
|
| +// - Debug message string. This is a NULL-terminated ASCII string, padded to
|
| +// kInstructionSize so that subsequent instructions are correctly aligned.
|
| +// - A kImmExceptionIsUnreachable marker, to catch accidental execution of the
|
| +// string data.
|
| +const unsigned kDebugCodeOffset = 1 * kInstructionSize;
|
| +const unsigned kDebugParamsOffset = 2 * kInstructionSize;
|
| +const unsigned kDebugMessageOffset = 3 * kInstructionSize;
|
| +
|
| +// Debug parameters.
|
| +// Used without a TRACE_ option, the Debugger will print the arguments only
|
| +// once. Otherwise TRACE_ENABLE and TRACE_DISABLE will enable or disable tracing
|
| +// before every instruction for the specified LOG_ parameters.
|
| +//
|
| +// TRACE_OVERRIDE enables the specified LOG_ parameters, and disabled any
|
| +// others that were not specified.
|
| +//
|
| +// For example:
|
| +//
|
| +// __ debug("print registers and fp registers", 0, LOG_REGS | LOG_FP_REGS);
|
| +// will print the registers and fp registers only once.
|
| +//
|
| +// __ debug("trace disasm", 1, TRACE_ENABLE | LOG_DISASM);
|
| +// starts disassembling the code.
|
| +//
|
| +// __ debug("trace rets", 2, TRACE_ENABLE | LOG_REGS);
|
| +// adds the general purpose registers to the trace.
|
| +//
|
| +// __ debug("stop regs", 3, TRACE_DISABLE | LOG_REGS);
|
| +// stops tracing the registers.
|
| +const unsigned kDebuggerTracingDirectivesMask = 3 << 6;
|
| +enum DebugParameters {
|
| + NO_PARAM = 0,
|
| + BREAK = 1 << 0,
|
| + LOG_DISASM = 1 << 1, // Use only with TRACE. Disassemble the code.
|
| + LOG_REGS = 1 << 2, // Log general purpose registers.
|
| + LOG_FP_REGS = 1 << 3, // Log floating-point registers.
|
| + LOG_SYS_REGS = 1 << 4, // Log the status flags.
|
| + LOG_WRITE = 1 << 5, // Log any memory write.
|
| +
|
| + LOG_STATE = LOG_REGS | LOG_FP_REGS | LOG_SYS_REGS,
|
| + LOG_ALL = LOG_DISASM | LOG_STATE | LOG_WRITE,
|
| +
|
| + // Trace control.
|
| + TRACE_ENABLE = 1 << 6,
|
| + TRACE_DISABLE = 2 << 6,
|
| + TRACE_OVERRIDE = 3 << 6
|
| +};
|
| +
|
| +
|
| +} } // namespace v8::internal
|
| +
|
| +
|
| +#endif // V8_A64_INSTRUCTIONS_A64_H_
|
|
|