Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(47)

Unified Diff: src/a64/macro-assembler-a64.cc

Issue 148293020: Merge experimental/a64 to bleeding_edge. (Closed) Base URL: https://v8.googlecode.com/svn/branches/bleeding_edge
Patch Set: Remove ARM from OWNERS Created 6 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/a64/macro-assembler-a64.h ('k') | src/a64/macro-assembler-a64-inl.h » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/a64/macro-assembler-a64.cc
diff --git a/src/a64/macro-assembler-a64.cc b/src/a64/macro-assembler-a64.cc
new file mode 100644
index 0000000000000000000000000000000000000000..b51e9277c4e4969212417284b84033a4dc60c1e4
--- /dev/null
+++ b/src/a64/macro-assembler-a64.cc
@@ -0,0 +1,4806 @@
+// Copyright 2013 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include "v8.h"
+
+#if V8_TARGET_ARCH_A64
+
+#include "bootstrapper.h"
+#include "codegen.h"
+#include "cpu-profiler.h"
+#include "debug.h"
+#include "isolate-inl.h"
+#include "runtime.h"
+
+namespace v8 {
+namespace internal {
+
+// Define a fake double underscore to use with the ASM_UNIMPLEMENTED macros.
+#define __
+
+
+MacroAssembler::MacroAssembler(Isolate* arg_isolate,
+ byte * buffer,
+ unsigned buffer_size)
+ : Assembler(arg_isolate, buffer, buffer_size),
+ generating_stub_(false),
+#if DEBUG
+ allow_macro_instructions_(true),
+#endif
+ has_frame_(false),
+ use_real_aborts_(true),
+ sp_(jssp), tmp0_(ip0), tmp1_(ip1), fptmp0_(fp_scratch) {
+ if (isolate() != NULL) {
+ code_object_ = Handle<Object>(isolate()->heap()->undefined_value(),
+ isolate());
+ }
+}
+
+
+void MacroAssembler::LogicalMacro(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ LogicalOp op) {
+ if (operand.NeedsRelocation()) {
+ LoadRelocated(Tmp0(), operand);
+ Logical(rd, rn, Tmp0(), op);
+
+ } else if (operand.IsImmediate()) {
+ int64_t immediate = operand.immediate();
+ unsigned reg_size = rd.SizeInBits();
+ ASSERT(rd.Is64Bits() || is_uint32(immediate));
+
+ // If the operation is NOT, invert the operation and immediate.
+ if ((op & NOT) == NOT) {
+ op = static_cast<LogicalOp>(op & ~NOT);
+ immediate = ~immediate;
+ if (rd.Is32Bits()) {
+ immediate &= kWRegMask;
+ }
+ }
+
+ // Special cases for all set or all clear immediates.
+ if (immediate == 0) {
+ switch (op) {
+ case AND:
+ Mov(rd, 0);
+ return;
+ case ORR: // Fall through.
+ case EOR:
+ Mov(rd, rn);
+ return;
+ case ANDS: // Fall through.
+ case BICS:
+ break;
+ default:
+ UNREACHABLE();
+ }
+ } else if ((rd.Is64Bits() && (immediate == -1L)) ||
+ (rd.Is32Bits() && (immediate == 0xffffffffL))) {
+ switch (op) {
+ case AND:
+ Mov(rd, rn);
+ return;
+ case ORR:
+ Mov(rd, immediate);
+ return;
+ case EOR:
+ Mvn(rd, rn);
+ return;
+ case ANDS: // Fall through.
+ case BICS:
+ break;
+ default:
+ UNREACHABLE();
+ }
+ }
+
+ unsigned n, imm_s, imm_r;
+ if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) {
+ // Immediate can be encoded in the instruction.
+ LogicalImmediate(rd, rn, n, imm_s, imm_r, op);
+ } else {
+ // Immediate can't be encoded: synthesize using move immediate.
+ Register temp = AppropriateTempFor(rn);
+ Mov(temp, immediate);
+ if (rd.Is(csp)) {
+ // If rd is the stack pointer we cannot use it as the destination
+ // register so we use the temp register as an intermediate again.
+ Logical(temp, rn, temp, op);
+ Mov(csp, temp);
+ } else {
+ Logical(rd, rn, temp, op);
+ }
+ }
+
+ } else if (operand.IsExtendedRegister()) {
+ ASSERT(operand.reg().SizeInBits() <= rd.SizeInBits());
+ // Add/sub extended supports shift <= 4. We want to support exactly the
+ // same modes here.
+ ASSERT(operand.shift_amount() <= 4);
+ ASSERT(operand.reg().Is64Bits() ||
+ ((operand.extend() != UXTX) && (operand.extend() != SXTX)));
+ Register temp = AppropriateTempFor(rn, operand.reg());
+ EmitExtendShift(temp, operand.reg(), operand.extend(),
+ operand.shift_amount());
+ Logical(rd, rn, temp, op);
+
+ } else {
+ // The operand can be encoded in the instruction.
+ ASSERT(operand.IsShiftedRegister());
+ Logical(rd, rn, operand, op);
+ }
+}
+
+
+void MacroAssembler::Mov(const Register& rd, uint64_t imm) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(is_uint32(imm) || is_int32(imm) || rd.Is64Bits());
+ ASSERT(!rd.IsZero());
+
+ // TODO(all) extend to support more immediates.
+ //
+ // Immediates on Aarch64 can be produced using an initial value, and zero to
+ // three move keep operations.
+ //
+ // Initial values can be generated with:
+ // 1. 64-bit move zero (movz).
+ // 2. 32-bit move inverted (movn).
+ // 3. 64-bit move inverted.
+ // 4. 32-bit orr immediate.
+ // 5. 64-bit orr immediate.
+ // Move-keep may then be used to modify each of the 16-bit half-words.
+ //
+ // The code below supports all five initial value generators, and
+ // applying move-keep operations to move-zero and move-inverted initial
+ // values.
+
+ unsigned reg_size = rd.SizeInBits();
+ unsigned n, imm_s, imm_r;
+ if (IsImmMovz(imm, reg_size) && !rd.IsSP()) {
+ // Immediate can be represented in a move zero instruction. Movz can't
+ // write to the stack pointer.
+ movz(rd, imm);
+ } else if (IsImmMovn(imm, reg_size) && !rd.IsSP()) {
+ // Immediate can be represented in a move inverted instruction. Movn can't
+ // write to the stack pointer.
+ movn(rd, rd.Is64Bits() ? ~imm : (~imm & kWRegMask));
+ } else if (IsImmLogical(imm, reg_size, &n, &imm_s, &imm_r)) {
+ // Immediate can be represented in a logical orr instruction.
+ LogicalImmediate(rd, AppropriateZeroRegFor(rd), n, imm_s, imm_r, ORR);
+ } else {
+ // Generic immediate case. Imm will be represented by
+ // [imm3, imm2, imm1, imm0], where each imm is 16 bits.
+ // A move-zero or move-inverted is generated for the first non-zero or
+ // non-0xffff immX, and a move-keep for subsequent non-zero immX.
+
+ uint64_t ignored_halfword = 0;
+ bool invert_move = false;
+ // If the number of 0xffff halfwords is greater than the number of 0x0000
+ // halfwords, it's more efficient to use move-inverted.
+ if (CountClearHalfWords(~imm, reg_size) >
+ CountClearHalfWords(imm, reg_size)) {
+ ignored_halfword = 0xffffL;
+ invert_move = true;
+ }
+
+ // Mov instructions can't move value into the stack pointer, so set up a
+ // temporary register, if needed.
+ Register temp = rd.IsSP() ? AppropriateTempFor(rd) : rd;
+
+ // Iterate through the halfwords. Use movn/movz for the first non-ignored
+ // halfword, and movk for subsequent halfwords.
+ ASSERT((reg_size % 16) == 0);
+ bool first_mov_done = false;
+ for (unsigned i = 0; i < (rd.SizeInBits() / 16); i++) {
+ uint64_t imm16 = (imm >> (16 * i)) & 0xffffL;
+ if (imm16 != ignored_halfword) {
+ if (!first_mov_done) {
+ if (invert_move) {
+ movn(temp, (~imm16) & 0xffffL, 16 * i);
+ } else {
+ movz(temp, imm16, 16 * i);
+ }
+ first_mov_done = true;
+ } else {
+ // Construct a wider constant.
+ movk(temp, imm16, 16 * i);
+ }
+ }
+ }
+ ASSERT(first_mov_done);
+
+ // Move the temporary if the original destination register was the stack
+ // pointer.
+ if (rd.IsSP()) {
+ mov(rd, temp);
+ }
+ }
+}
+
+
+void MacroAssembler::Mov(const Register& rd,
+ const Operand& operand,
+ DiscardMoveMode discard_mode) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ // Provide a swap register for instructions that need to write into the
+ // system stack pointer (and can't do this inherently).
+ Register dst = (rd.Is(csp)) ? (Tmp1()) : (rd);
+
+ if (operand.NeedsRelocation()) {
+ LoadRelocated(dst, operand);
+
+ } else if (operand.IsImmediate()) {
+ // Call the macro assembler for generic immediates.
+ Mov(dst, operand.immediate());
+
+ } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) {
+ // Emit a shift instruction if moving a shifted register. This operation
+ // could also be achieved using an orr instruction (like orn used by Mvn),
+ // but using a shift instruction makes the disassembly clearer.
+ EmitShift(dst, operand.reg(), operand.shift(), operand.shift_amount());
+
+ } else if (operand.IsExtendedRegister()) {
+ // Emit an extend instruction if moving an extended register. This handles
+ // extend with post-shift operations, too.
+ EmitExtendShift(dst, operand.reg(), operand.extend(),
+ operand.shift_amount());
+
+ } else {
+ // Otherwise, emit a register move only if the registers are distinct, or
+ // if they are not X registers.
+ //
+ // Note that mov(w0, w0) is not a no-op because it clears the top word of
+ // x0. A flag is provided (kDiscardForSameWReg) if a move between the same W
+ // registers is not required to clear the top word of the X register. In
+ // this case, the instruction is discarded.
+ //
+ // If csp is an operand, add #0 is emitted, otherwise, orr #0.
+ if (!rd.Is(operand.reg()) || (rd.Is32Bits() &&
+ (discard_mode == kDontDiscardForSameWReg))) {
+ Assembler::mov(rd, operand.reg());
+ }
+ // This case can handle writes into the system stack pointer directly.
+ dst = rd;
+ }
+
+ // Copy the result to the system stack pointer.
+ if (!dst.Is(rd)) {
+ ASSERT(rd.IsZero());
+ ASSERT(dst.Is(Tmp1()));
+ Assembler::mov(rd, dst);
+ }
+}
+
+
+void MacroAssembler::Mvn(const Register& rd, const Operand& operand) {
+ ASSERT(allow_macro_instructions_);
+
+ if (operand.NeedsRelocation()) {
+ LoadRelocated(Tmp0(), operand);
+ Mvn(rd, Tmp0());
+
+ } else if (operand.IsImmediate()) {
+ // Call the macro assembler for generic immediates.
+ Mov(rd, ~operand.immediate());
+
+ } else if (operand.IsExtendedRegister()) {
+ // Emit two instructions for the extend case. This differs from Mov, as
+ // the extend and invert can't be achieved in one instruction.
+ Register temp = AppropriateTempFor(rd, operand.reg());
+ EmitExtendShift(temp, operand.reg(), operand.extend(),
+ operand.shift_amount());
+ mvn(rd, temp);
+
+ } else {
+ // Otherwise, emit a register move only if the registers are distinct.
+ // If the jssp is an operand, add #0 is emitted, otherwise, orr #0.
+ mvn(rd, operand);
+ }
+}
+
+
+unsigned MacroAssembler::CountClearHalfWords(uint64_t imm, unsigned reg_size) {
+ ASSERT((reg_size % 8) == 0);
+ int count = 0;
+ for (unsigned i = 0; i < (reg_size / 16); i++) {
+ if ((imm & 0xffff) == 0) {
+ count++;
+ }
+ imm >>= 16;
+ }
+ return count;
+}
+
+
+// The movz instruction can generate immediates containing an arbitrary 16-bit
+// half-word, with remaining bits clear, eg. 0x00001234, 0x0000123400000000.
+bool MacroAssembler::IsImmMovz(uint64_t imm, unsigned reg_size) {
+ ASSERT((reg_size == kXRegSize) || (reg_size == kWRegSize));
+ return CountClearHalfWords(imm, reg_size) >= ((reg_size / 16) - 1);
+}
+
+
+// The movn instruction can generate immediates containing an arbitrary 16-bit
+// half-word, with remaining bits set, eg. 0xffff1234, 0xffff1234ffffffff.
+bool MacroAssembler::IsImmMovn(uint64_t imm, unsigned reg_size) {
+ return IsImmMovz(~imm, reg_size);
+}
+
+
+void MacroAssembler::ConditionalCompareMacro(const Register& rn,
+ const Operand& operand,
+ StatusFlags nzcv,
+ Condition cond,
+ ConditionalCompareOp op) {
+ ASSERT((cond != al) && (cond != nv));
+ if (operand.NeedsRelocation()) {
+ LoadRelocated(Tmp0(), operand);
+ ConditionalCompareMacro(rn, Tmp0(), nzcv, cond, op);
+
+ } else if ((operand.IsShiftedRegister() && (operand.shift_amount() == 0)) ||
+ (operand.IsImmediate() && IsImmConditionalCompare(operand.immediate()))) {
+ // The immediate can be encoded in the instruction, or the operand is an
+ // unshifted register: call the assembler.
+ ConditionalCompare(rn, operand, nzcv, cond, op);
+
+ } else {
+ // The operand isn't directly supported by the instruction: perform the
+ // operation on a temporary register.
+ Register temp = AppropriateTempFor(rn);
+ Mov(temp, operand);
+ ConditionalCompare(rn, temp, nzcv, cond, op);
+ }
+}
+
+
+void MacroAssembler::Csel(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ Condition cond) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT((cond != al) && (cond != nv));
+ if (operand.IsImmediate()) {
+ // Immediate argument. Handle special cases of 0, 1 and -1 using zero
+ // register.
+ int64_t imm = operand.immediate();
+ Register zr = AppropriateZeroRegFor(rn);
+ if (imm == 0) {
+ csel(rd, rn, zr, cond);
+ } else if (imm == 1) {
+ csinc(rd, rn, zr, cond);
+ } else if (imm == -1) {
+ csinv(rd, rn, zr, cond);
+ } else {
+ Register temp = AppropriateTempFor(rn);
+ Mov(temp, operand.immediate());
+ csel(rd, rn, temp, cond);
+ }
+ } else if (operand.IsShiftedRegister() && (operand.shift_amount() == 0)) {
+ // Unshifted register argument.
+ csel(rd, rn, operand.reg(), cond);
+ } else {
+ // All other arguments.
+ Register temp = AppropriateTempFor(rn);
+ Mov(temp, operand);
+ csel(rd, rn, temp, cond);
+ }
+}
+
+
+void MacroAssembler::AddSubMacro(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S,
+ AddSubOp op) {
+ if (operand.IsZero() && rd.Is(rn) && rd.Is64Bits() && rn.Is64Bits() &&
+ !operand.NeedsRelocation() && (S == LeaveFlags)) {
+ // The instruction would be a nop. Avoid generating useless code.
+ return;
+ }
+
+ if (operand.NeedsRelocation()) {
+ LoadRelocated(Tmp0(), operand);
+ AddSubMacro(rd, rn, Tmp0(), S, op);
+ } else if ((operand.IsImmediate() && !IsImmAddSub(operand.immediate())) ||
+ (rn.IsZero() && !operand.IsShiftedRegister()) ||
+ (operand.IsShiftedRegister() && (operand.shift() == ROR))) {
+ Register temp = AppropriateTempFor(rn);
+ Mov(temp, operand);
+ AddSub(rd, rn, temp, S, op);
+ } else {
+ AddSub(rd, rn, operand, S, op);
+ }
+}
+
+
+void MacroAssembler::AddSubWithCarryMacro(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S,
+ AddSubWithCarryOp op) {
+ ASSERT(rd.SizeInBits() == rn.SizeInBits());
+
+ if (operand.NeedsRelocation()) {
+ LoadRelocated(Tmp0(), operand);
+ AddSubWithCarryMacro(rd, rn, Tmp0(), S, op);
+
+ } else if (operand.IsImmediate() ||
+ (operand.IsShiftedRegister() && (operand.shift() == ROR))) {
+ // Add/sub with carry (immediate or ROR shifted register.)
+ Register temp = AppropriateTempFor(rn);
+ Mov(temp, operand);
+ AddSubWithCarry(rd, rn, temp, S, op);
+ } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) {
+ // Add/sub with carry (shifted register).
+ ASSERT(operand.reg().SizeInBits() == rd.SizeInBits());
+ ASSERT(operand.shift() != ROR);
+ ASSERT(is_uintn(operand.shift_amount(),
+ rd.SizeInBits() == kXRegSize ? kXRegSizeLog2 : kWRegSizeLog2));
+ Register temp = AppropriateTempFor(rn, operand.reg());
+ EmitShift(temp, operand.reg(), operand.shift(), operand.shift_amount());
+ AddSubWithCarry(rd, rn, temp, S, op);
+
+ } else if (operand.IsExtendedRegister()) {
+ // Add/sub with carry (extended register).
+ ASSERT(operand.reg().SizeInBits() <= rd.SizeInBits());
+ // Add/sub extended supports a shift <= 4. We want to support exactly the
+ // same modes.
+ ASSERT(operand.shift_amount() <= 4);
+ ASSERT(operand.reg().Is64Bits() ||
+ ((operand.extend() != UXTX) && (operand.extend() != SXTX)));
+ Register temp = AppropriateTempFor(rn, operand.reg());
+ EmitExtendShift(temp, operand.reg(), operand.extend(),
+ operand.shift_amount());
+ AddSubWithCarry(rd, rn, temp, S, op);
+
+ } else {
+ // The addressing mode is directly supported by the instruction.
+ AddSubWithCarry(rd, rn, operand, S, op);
+ }
+}
+
+
+void MacroAssembler::LoadStoreMacro(const CPURegister& rt,
+ const MemOperand& addr,
+ LoadStoreOp op) {
+ int64_t offset = addr.offset();
+ LSDataSize size = CalcLSDataSize(op);
+
+ // Check if an immediate offset fits in the immediate field of the
+ // appropriate instruction. If not, emit two instructions to perform
+ // the operation.
+ if (addr.IsImmediateOffset() && !IsImmLSScaled(offset, size) &&
+ !IsImmLSUnscaled(offset)) {
+ // Immediate offset that can't be encoded using unsigned or unscaled
+ // addressing modes.
+ Register temp = AppropriateTempFor(addr.base());
+ Mov(temp, addr.offset());
+ LoadStore(rt, MemOperand(addr.base(), temp), op);
+ } else if (addr.IsPostIndex() && !IsImmLSUnscaled(offset)) {
+ // Post-index beyond unscaled addressing range.
+ LoadStore(rt, MemOperand(addr.base()), op);
+ add(addr.base(), addr.base(), offset);
+ } else if (addr.IsPreIndex() && !IsImmLSUnscaled(offset)) {
+ // Pre-index beyond unscaled addressing range.
+ add(addr.base(), addr.base(), offset);
+ LoadStore(rt, MemOperand(addr.base()), op);
+ } else {
+ // Encodable in one load/store instruction.
+ LoadStore(rt, addr, op);
+ }
+}
+
+
+void MacroAssembler::Load(const Register& rt,
+ const MemOperand& addr,
+ Representation r) {
+ ASSERT(!r.IsDouble());
+
+ if (r.IsInteger8()) {
+ Ldrsb(rt, addr);
+ } else if (r.IsUInteger8()) {
+ Ldrb(rt, addr);
+ } else if (r.IsInteger16()) {
+ Ldrsh(rt, addr);
+ } else if (r.IsUInteger16()) {
+ Ldrh(rt, addr);
+ } else if (r.IsInteger32()) {
+ Ldr(rt.W(), addr);
+ } else {
+ ASSERT(rt.Is64Bits());
+ Ldr(rt, addr);
+ }
+}
+
+
+void MacroAssembler::Store(const Register& rt,
+ const MemOperand& addr,
+ Representation r) {
+ ASSERT(!r.IsDouble());
+
+ if (r.IsInteger8() || r.IsUInteger8()) {
+ Strb(rt, addr);
+ } else if (r.IsInteger16() || r.IsUInteger16()) {
+ Strh(rt, addr);
+ } else if (r.IsInteger32()) {
+ Str(rt.W(), addr);
+ } else {
+ ASSERT(rt.Is64Bits());
+ Str(rt, addr);
+ }
+}
+
+
+// Pseudo-instructions.
+
+
+void MacroAssembler::Abs(const Register& rd, const Register& rm,
+ Label* is_not_representable,
+ Label* is_representable) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(AreSameSizeAndType(rd, rm));
+
+ Cmp(rm, 1);
+ Cneg(rd, rm, lt);
+
+ // If the comparison sets the v flag, the input was the smallest value
+ // representable by rm, and the mathematical result of abs(rm) is not
+ // representable using two's complement.
+ if ((is_not_representable != NULL) && (is_representable != NULL)) {
+ B(is_not_representable, vs);
+ B(is_representable);
+ } else if (is_not_representable != NULL) {
+ B(is_not_representable, vs);
+ } else if (is_representable != NULL) {
+ B(is_representable, vc);
+ }
+}
+
+
+// Abstracted stack operations.
+
+
+void MacroAssembler::Push(const CPURegister& src0, const CPURegister& src1,
+ const CPURegister& src2, const CPURegister& src3) {
+ ASSERT(AreSameSizeAndType(src0, src1, src2, src3));
+ ASSERT(src0.IsValid());
+
+ int count = 1 + src1.IsValid() + src2.IsValid() + src3.IsValid();
+ int size = src0.SizeInBytes();
+
+ PrepareForPush(count, size);
+ PushHelper(count, size, src0, src1, src2, src3);
+}
+
+
+void MacroAssembler::Pop(const CPURegister& dst0, const CPURegister& dst1,
+ const CPURegister& dst2, const CPURegister& dst3) {
+ // It is not valid to pop into the same register more than once in one
+ // instruction, not even into the zero register.
+ ASSERT(!AreAliased(dst0, dst1, dst2, dst3));
+ ASSERT(AreSameSizeAndType(dst0, dst1, dst2, dst3));
+ ASSERT(dst0.IsValid());
+
+ int count = 1 + dst1.IsValid() + dst2.IsValid() + dst3.IsValid();
+ int size = dst0.SizeInBytes();
+
+ PrepareForPop(count, size);
+ PopHelper(count, size, dst0, dst1, dst2, dst3);
+
+ if (!csp.Is(StackPointer()) && emit_debug_code()) {
+ // It is safe to leave csp where it is when unwinding the JavaScript stack,
+ // but if we keep it matching StackPointer, the simulator can detect memory
+ // accesses in the now-free part of the stack.
+ Mov(csp, StackPointer());
+ }
+}
+
+
+void MacroAssembler::PushCPURegList(CPURegList registers) {
+ int size = registers.RegisterSizeInBytes();
+
+ PrepareForPush(registers.Count(), size);
+ // Push up to four registers at a time because if the current stack pointer is
+ // csp and reg_size is 32, registers must be pushed in blocks of four in order
+ // to maintain the 16-byte alignment for csp.
+ while (!registers.IsEmpty()) {
+ int count_before = registers.Count();
+ const CPURegister& src0 = registers.PopHighestIndex();
+ const CPURegister& src1 = registers.PopHighestIndex();
+ const CPURegister& src2 = registers.PopHighestIndex();
+ const CPURegister& src3 = registers.PopHighestIndex();
+ int count = count_before - registers.Count();
+ PushHelper(count, size, src0, src1, src2, src3);
+ }
+}
+
+
+void MacroAssembler::PopCPURegList(CPURegList registers) {
+ int size = registers.RegisterSizeInBytes();
+
+ PrepareForPop(registers.Count(), size);
+ // Pop up to four registers at a time because if the current stack pointer is
+ // csp and reg_size is 32, registers must be pushed in blocks of four in
+ // order to maintain the 16-byte alignment for csp.
+ while (!registers.IsEmpty()) {
+ int count_before = registers.Count();
+ const CPURegister& dst0 = registers.PopLowestIndex();
+ const CPURegister& dst1 = registers.PopLowestIndex();
+ const CPURegister& dst2 = registers.PopLowestIndex();
+ const CPURegister& dst3 = registers.PopLowestIndex();
+ int count = count_before - registers.Count();
+ PopHelper(count, size, dst0, dst1, dst2, dst3);
+ }
+
+ if (!csp.Is(StackPointer()) && emit_debug_code()) {
+ // It is safe to leave csp where it is when unwinding the JavaScript stack,
+ // but if we keep it matching StackPointer, the simulator can detect memory
+ // accesses in the now-free part of the stack.
+ Mov(csp, StackPointer());
+ }
+}
+
+
+void MacroAssembler::PushMultipleTimes(int count, Register src) {
+ int size = src.SizeInBytes();
+
+ PrepareForPush(count, size);
+
+ if (FLAG_optimize_for_size && count > 8) {
+ Label loop;
+ __ Mov(Tmp0(), count / 2);
+ __ Bind(&loop);
+ PushHelper(2, size, src, src, NoReg, NoReg);
+ __ Subs(Tmp0(), Tmp0(), 1);
+ __ B(ne, &loop);
+
+ count %= 2;
+ }
+
+ // Push up to four registers at a time if possible because if the current
+ // stack pointer is csp and the register size is 32, registers must be pushed
+ // in blocks of four in order to maintain the 16-byte alignment for csp.
+ while (count >= 4) {
+ PushHelper(4, size, src, src, src, src);
+ count -= 4;
+ }
+ if (count >= 2) {
+ PushHelper(2, size, src, src, NoReg, NoReg);
+ count -= 2;
+ }
+ if (count == 1) {
+ PushHelper(1, size, src, NoReg, NoReg, NoReg);
+ count -= 1;
+ }
+ ASSERT(count == 0);
+}
+
+
+void MacroAssembler::PushHelper(int count, int size,
+ const CPURegister& src0,
+ const CPURegister& src1,
+ const CPURegister& src2,
+ const CPURegister& src3) {
+ // Ensure that we don't unintentially modify scratch or debug registers.
+ InstructionAccurateScope scope(this);
+
+ ASSERT(AreSameSizeAndType(src0, src1, src2, src3));
+ ASSERT(size == src0.SizeInBytes());
+
+ // When pushing multiple registers, the store order is chosen such that
+ // Push(a, b) is equivalent to Push(a) followed by Push(b).
+ switch (count) {
+ case 1:
+ ASSERT(src1.IsNone() && src2.IsNone() && src3.IsNone());
+ str(src0, MemOperand(StackPointer(), -1 * size, PreIndex));
+ break;
+ case 2:
+ ASSERT(src2.IsNone() && src3.IsNone());
+ stp(src1, src0, MemOperand(StackPointer(), -2 * size, PreIndex));
+ break;
+ case 3:
+ ASSERT(src3.IsNone());
+ stp(src2, src1, MemOperand(StackPointer(), -3 * size, PreIndex));
+ str(src0, MemOperand(StackPointer(), 2 * size));
+ break;
+ case 4:
+ // Skip over 4 * size, then fill in the gap. This allows four W registers
+ // to be pushed using csp, whilst maintaining 16-byte alignment for csp
+ // at all times.
+ stp(src3, src2, MemOperand(StackPointer(), -4 * size, PreIndex));
+ stp(src1, src0, MemOperand(StackPointer(), 2 * size));
+ break;
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+void MacroAssembler::PopHelper(int count, int size,
+ const CPURegister& dst0,
+ const CPURegister& dst1,
+ const CPURegister& dst2,
+ const CPURegister& dst3) {
+ // Ensure that we don't unintentially modify scratch or debug registers.
+ InstructionAccurateScope scope(this);
+
+ ASSERT(AreSameSizeAndType(dst0, dst1, dst2, dst3));
+ ASSERT(size == dst0.SizeInBytes());
+
+ // When popping multiple registers, the load order is chosen such that
+ // Pop(a, b) is equivalent to Pop(a) followed by Pop(b).
+ switch (count) {
+ case 1:
+ ASSERT(dst1.IsNone() && dst2.IsNone() && dst3.IsNone());
+ ldr(dst0, MemOperand(StackPointer(), 1 * size, PostIndex));
+ break;
+ case 2:
+ ASSERT(dst2.IsNone() && dst3.IsNone());
+ ldp(dst0, dst1, MemOperand(StackPointer(), 2 * size, PostIndex));
+ break;
+ case 3:
+ ASSERT(dst3.IsNone());
+ ldr(dst2, MemOperand(StackPointer(), 2 * size));
+ ldp(dst0, dst1, MemOperand(StackPointer(), 3 * size, PostIndex));
+ break;
+ case 4:
+ // Load the higher addresses first, then load the lower addresses and
+ // skip the whole block in the second instruction. This allows four W
+ // registers to be popped using csp, whilst maintaining 16-byte alignment
+ // for csp at all times.
+ ldp(dst2, dst3, MemOperand(StackPointer(), 2 * size));
+ ldp(dst0, dst1, MemOperand(StackPointer(), 4 * size, PostIndex));
+ break;
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+void MacroAssembler::PrepareForPush(int count, int size) {
+ // TODO(jbramley): Use AssertStackConsistency here, if possible. See the
+ // AssertStackConsistency for details of why we can't at the moment.
+ if (csp.Is(StackPointer())) {
+ // If the current stack pointer is csp, then it must be aligned to 16 bytes
+ // on entry and the total size of the specified registers must also be a
+ // multiple of 16 bytes.
+ ASSERT((count * size) % 16 == 0);
+ } else {
+ // Even if the current stack pointer is not the system stack pointer (csp),
+ // the system stack pointer will still be modified in order to comply with
+ // ABI rules about accessing memory below the system stack pointer.
+ BumpSystemStackPointer(count * size);
+ }
+}
+
+
+void MacroAssembler::PrepareForPop(int count, int size) {
+ AssertStackConsistency();
+ if (csp.Is(StackPointer())) {
+ // If the current stack pointer is csp, then it must be aligned to 16 bytes
+ // on entry and the total size of the specified registers must also be a
+ // multiple of 16 bytes.
+ ASSERT((count * size) % 16 == 0);
+ }
+}
+
+
+void MacroAssembler::Poke(const CPURegister& src, const Operand& offset) {
+ if (offset.IsImmediate()) {
+ ASSERT(offset.immediate() >= 0);
+ } else if (emit_debug_code()) {
+ Cmp(xzr, offset);
+ Check(le, kStackAccessBelowStackPointer);
+ }
+
+ Str(src, MemOperand(StackPointer(), offset));
+}
+
+
+void MacroAssembler::Peek(const CPURegister& dst, const Operand& offset) {
+ if (offset.IsImmediate()) {
+ ASSERT(offset.immediate() >= 0);
+ } else if (emit_debug_code()) {
+ Cmp(xzr, offset);
+ Check(le, kStackAccessBelowStackPointer);
+ }
+
+ Ldr(dst, MemOperand(StackPointer(), offset));
+}
+
+
+void MacroAssembler::PokePair(const CPURegister& src1,
+ const CPURegister& src2,
+ int offset) {
+ ASSERT(AreSameSizeAndType(src1, src2));
+ ASSERT((offset >= 0) && ((offset % src1.SizeInBytes()) == 0));
+ Stp(src1, src2, MemOperand(StackPointer(), offset));
+}
+
+
+void MacroAssembler::PeekPair(const CPURegister& dst1,
+ const CPURegister& dst2,
+ int offset) {
+ ASSERT(AreSameSizeAndType(dst1, dst2));
+ ASSERT((offset >= 0) && ((offset % dst1.SizeInBytes()) == 0));
+ Ldp(dst1, dst2, MemOperand(StackPointer(), offset));
+}
+
+
+void MacroAssembler::PushCalleeSavedRegisters() {
+ // Ensure that the macro-assembler doesn't use any scratch registers.
+ InstructionAccurateScope scope(this);
+
+ // This method must not be called unless the current stack pointer is the
+ // system stack pointer (csp).
+ ASSERT(csp.Is(StackPointer()));
+
+ MemOperand tos(csp, -2 * kXRegSizeInBytes, PreIndex);
+
+ stp(d14, d15, tos);
+ stp(d12, d13, tos);
+ stp(d10, d11, tos);
+ stp(d8, d9, tos);
+
+ stp(x29, x30, tos);
+ stp(x27, x28, tos); // x28 = jssp
+ stp(x25, x26, tos);
+ stp(x23, x24, tos);
+ stp(x21, x22, tos);
+ stp(x19, x20, tos);
+}
+
+
+void MacroAssembler::PopCalleeSavedRegisters() {
+ // Ensure that the macro-assembler doesn't use any scratch registers.
+ InstructionAccurateScope scope(this);
+
+ // This method must not be called unless the current stack pointer is the
+ // system stack pointer (csp).
+ ASSERT(csp.Is(StackPointer()));
+
+ MemOperand tos(csp, 2 * kXRegSizeInBytes, PostIndex);
+
+ ldp(x19, x20, tos);
+ ldp(x21, x22, tos);
+ ldp(x23, x24, tos);
+ ldp(x25, x26, tos);
+ ldp(x27, x28, tos); // x28 = jssp
+ ldp(x29, x30, tos);
+
+ ldp(d8, d9, tos);
+ ldp(d10, d11, tos);
+ ldp(d12, d13, tos);
+ ldp(d14, d15, tos);
+}
+
+
+void MacroAssembler::AssertStackConsistency() {
+ if (emit_debug_code() && !csp.Is(StackPointer())) {
+ if (csp.Is(StackPointer())) {
+ // TODO(jbramley): Check for csp alignment if it is the stack pointer.
+ } else {
+ // TODO(jbramley): Currently we cannot use this assertion in Push because
+ // some calling code assumes that the flags are preserved. For an example,
+ // look at Builtins::Generate_ArgumentsAdaptorTrampoline.
+ Cmp(csp, StackPointer());
+ Check(ls, kTheCurrentStackPointerIsBelowCsp);
+ }
+ }
+}
+
+
+void MacroAssembler::LoadRoot(Register destination,
+ Heap::RootListIndex index) {
+ // TODO(jbramley): Most root values are constants, and can be synthesized
+ // without a load. Refer to the ARM back end for details.
+ Ldr(destination, MemOperand(root, index << kPointerSizeLog2));
+}
+
+
+void MacroAssembler::StoreRoot(Register source,
+ Heap::RootListIndex index) {
+ Str(source, MemOperand(root, index << kPointerSizeLog2));
+}
+
+
+void MacroAssembler::LoadTrueFalseRoots(Register true_root,
+ Register false_root) {
+ STATIC_ASSERT((Heap::kTrueValueRootIndex + 1) == Heap::kFalseValueRootIndex);
+ Ldp(true_root, false_root,
+ MemOperand(root, Heap::kTrueValueRootIndex << kPointerSizeLog2));
+}
+
+
+void MacroAssembler::LoadHeapObject(Register result,
+ Handle<HeapObject> object) {
+ AllowDeferredHandleDereference using_raw_address;
+ if (isolate()->heap()->InNewSpace(*object)) {
+ Handle<Cell> cell = isolate()->factory()->NewCell(object);
+ Mov(result, Operand(cell));
+ Ldr(result, FieldMemOperand(result, Cell::kValueOffset));
+ } else {
+ Mov(result, Operand(object));
+ }
+}
+
+
+void MacroAssembler::LoadInstanceDescriptors(Register map,
+ Register descriptors) {
+ Ldr(descriptors, FieldMemOperand(map, Map::kDescriptorsOffset));
+}
+
+
+void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) {
+ Ldr(dst, FieldMemOperand(map, Map::kBitField3Offset));
+ DecodeField<Map::NumberOfOwnDescriptorsBits>(dst);
+}
+
+
+void MacroAssembler::EnumLengthUntagged(Register dst, Register map) {
+ STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
+ Ldrsw(dst, UntagSmiFieldMemOperand(map, Map::kBitField3Offset));
+ And(dst, dst, Map::EnumLengthBits::kMask);
+}
+
+
+void MacroAssembler::EnumLengthSmi(Register dst, Register map) {
+ STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
+ Ldr(dst, FieldMemOperand(map, Map::kBitField3Offset));
+ And(dst, dst, Operand(Smi::FromInt(Map::EnumLengthBits::kMask)));
+}
+
+
+void MacroAssembler::CheckEnumCache(Register object,
+ Register null_value,
+ Register scratch0,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Label* call_runtime) {
+ ASSERT(!AreAliased(object, null_value, scratch0, scratch1, scratch2,
+ scratch3));
+
+ Register empty_fixed_array_value = scratch0;
+ Register current_object = scratch1;
+
+ LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex);
+ Label next, start;
+
+ Mov(current_object, object);
+
+ // Check if the enum length field is properly initialized, indicating that
+ // there is an enum cache.
+ Register map = scratch2;
+ Register enum_length = scratch3;
+ Ldr(map, FieldMemOperand(current_object, HeapObject::kMapOffset));
+
+ EnumLengthUntagged(enum_length, map);
+ Cmp(enum_length, kInvalidEnumCacheSentinel);
+ B(eq, call_runtime);
+
+ B(&start);
+
+ Bind(&next);
+ Ldr(map, FieldMemOperand(current_object, HeapObject::kMapOffset));
+
+ // For all objects but the receiver, check that the cache is empty.
+ EnumLengthUntagged(enum_length, map);
+ Cbnz(enum_length, call_runtime);
+
+ Bind(&start);
+
+ // Check that there are no elements. Register current_object contains the
+ // current JS object we've reached through the prototype chain.
+ Label no_elements;
+ Ldr(current_object, FieldMemOperand(current_object,
+ JSObject::kElementsOffset));
+ Cmp(current_object, empty_fixed_array_value);
+ B(eq, &no_elements);
+
+ // Second chance, the object may be using the empty slow element dictionary.
+ CompareRoot(current_object, Heap::kEmptySlowElementDictionaryRootIndex);
+ B(ne, call_runtime);
+
+ Bind(&no_elements);
+ Ldr(current_object, FieldMemOperand(map, Map::kPrototypeOffset));
+ Cmp(current_object, null_value);
+ B(ne, &next);
+}
+
+
+void MacroAssembler::TestJSArrayForAllocationMemento(Register receiver,
+ Register scratch1,
+ Register scratch2,
+ Label* no_memento_found) {
+ ExternalReference new_space_start =
+ ExternalReference::new_space_start(isolate());
+ ExternalReference new_space_allocation_top =
+ ExternalReference::new_space_allocation_top_address(isolate());
+
+ Add(scratch1, receiver,
+ JSArray::kSize + AllocationMemento::kSize - kHeapObjectTag);
+ Cmp(scratch1, Operand(new_space_start));
+ B(lt, no_memento_found);
+
+ Mov(scratch2, Operand(new_space_allocation_top));
+ Ldr(scratch2, MemOperand(scratch2));
+ Cmp(scratch1, scratch2);
+ B(gt, no_memento_found);
+
+ Ldr(scratch1, MemOperand(scratch1, -AllocationMemento::kSize));
+ Cmp(scratch1,
+ Operand(isolate()->factory()->allocation_memento_map()));
+}
+
+
+void MacroAssembler::JumpToHandlerEntry(Register exception,
+ Register object,
+ Register state,
+ Register scratch1,
+ Register scratch2) {
+ // Handler expects argument in x0.
+ ASSERT(exception.Is(x0));
+
+ // Compute the handler entry address and jump to it. The handler table is
+ // a fixed array of (smi-tagged) code offsets.
+ Ldr(scratch1, FieldMemOperand(object, Code::kHandlerTableOffset));
+ Add(scratch1, scratch1, FixedArray::kHeaderSize - kHeapObjectTag);
+ STATIC_ASSERT(StackHandler::kKindWidth < kPointerSizeLog2);
+ Lsr(scratch2, state, StackHandler::kKindWidth);
+ Ldr(scratch2, MemOperand(scratch1, scratch2, LSL, kPointerSizeLog2));
+ Add(scratch1, object, Code::kHeaderSize - kHeapObjectTag);
+ Add(scratch1, scratch1, Operand::UntagSmi(scratch2));
+ Br(scratch1);
+}
+
+
+void MacroAssembler::InNewSpace(Register object,
+ Condition cond,
+ Label* branch) {
+ ASSERT(cond == eq || cond == ne);
+ // Use Tmp1() to have a different destination register, as Tmp0() will be used
+ // for relocation.
+ And(Tmp1(), object, Operand(ExternalReference::new_space_mask(isolate())));
+ Cmp(Tmp1(), Operand(ExternalReference::new_space_start(isolate())));
+ B(cond, branch);
+}
+
+
+void MacroAssembler::Throw(Register value,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Register scratch4) {
+ // Adjust this code if not the case.
+ STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
+ STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
+
+ // The handler expects the exception in x0.
+ ASSERT(value.Is(x0));
+
+ // Drop the stack pointer to the top of the top handler.
+ ASSERT(jssp.Is(StackPointer()));
+ Mov(scratch1, Operand(ExternalReference(Isolate::kHandlerAddress,
+ isolate())));
+ Ldr(jssp, MemOperand(scratch1));
+ // Restore the next handler.
+ Pop(scratch2);
+ Str(scratch2, MemOperand(scratch1));
+
+ // Get the code object and state. Restore the context and frame pointer.
+ Register object = scratch1;
+ Register state = scratch2;
+ Pop(object, state, cp, fp);
+
+ // If the handler is a JS frame, restore the context to the frame.
+ // (kind == ENTRY) == (fp == 0) == (cp == 0), so we could test either fp
+ // or cp.
+ Label not_js_frame;
+ Cbz(cp, &not_js_frame);
+ Str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+ Bind(&not_js_frame);
+
+ JumpToHandlerEntry(value, object, state, scratch3, scratch4);
+}
+
+
+void MacroAssembler::ThrowUncatchable(Register value,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Register scratch4) {
+ // Adjust this code if not the case.
+ STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
+
+ // The handler expects the exception in x0.
+ ASSERT(value.Is(x0));
+
+ // Drop the stack pointer to the top of the top stack handler.
+ ASSERT(jssp.Is(StackPointer()));
+ Mov(scratch1, Operand(ExternalReference(Isolate::kHandlerAddress,
+ isolate())));
+ Ldr(jssp, MemOperand(scratch1));
+
+ // Unwind the handlers until the ENTRY handler is found.
+ Label fetch_next, check_kind;
+ B(&check_kind);
+ Bind(&fetch_next);
+ Peek(jssp, StackHandlerConstants::kNextOffset);
+
+ Bind(&check_kind);
+ STATIC_ASSERT(StackHandler::JS_ENTRY == 0);
+ Peek(scratch2, StackHandlerConstants::kStateOffset);
+ TestAndBranchIfAnySet(scratch2, StackHandler::KindField::kMask, &fetch_next);
+
+ // Set the top handler address to next handler past the top ENTRY handler.
+ Pop(scratch2);
+ Str(scratch2, MemOperand(scratch1));
+
+ // Get the code object and state. Clear the context and frame pointer (0 was
+ // saved in the handler).
+ Register object = scratch1;
+ Register state = scratch2;
+ Pop(object, state, cp, fp);
+
+ JumpToHandlerEntry(value, object, state, scratch3, scratch4);
+}
+
+
+void MacroAssembler::Throw(BailoutReason reason) {
+ Label throw_start;
+ Bind(&throw_start);
+#ifdef DEBUG
+ const char* msg = GetBailoutReason(reason);
+ RecordComment("Throw message: ");
+ RecordComment((msg != NULL) ? msg : "UNKNOWN");
+#endif
+
+ Mov(x0, Operand(Smi::FromInt(reason)));
+ Push(x0);
+
+ // Disable stub call restrictions to always allow calls to throw.
+ if (!has_frame_) {
+ // We don't actually want to generate a pile of code for this, so just
+ // claim there is a stack frame, without generating one.
+ FrameScope scope(this, StackFrame::NONE);
+ CallRuntime(Runtime::kThrowMessage, 1);
+ } else {
+ CallRuntime(Runtime::kThrowMessage, 1);
+ }
+ // ThrowMessage should not return here.
+ Unreachable();
+}
+
+
+void MacroAssembler::ThrowIf(Condition cc, BailoutReason reason) {
+ Label ok;
+ B(InvertCondition(cc), &ok);
+ Throw(reason);
+ Bind(&ok);
+}
+
+
+void MacroAssembler::ThrowIfSmi(const Register& value, BailoutReason reason) {
+ Label ok;
+ JumpIfNotSmi(value, &ok);
+ Throw(reason);
+ Bind(&ok);
+}
+
+
+void MacroAssembler::SmiAbs(const Register& smi, Label* slow) {
+ ASSERT(smi.Is64Bits());
+ Abs(smi, smi, slow);
+}
+
+
+void MacroAssembler::AssertSmi(Register object, BailoutReason reason) {
+ if (emit_debug_code()) {
+ STATIC_ASSERT(kSmiTag == 0);
+ Tst(object, kSmiTagMask);
+ Check(eq, reason);
+ }
+}
+
+
+void MacroAssembler::AssertNotSmi(Register object, BailoutReason reason) {
+ if (emit_debug_code()) {
+ STATIC_ASSERT(kSmiTag == 0);
+ Tst(object, kSmiTagMask);
+ Check(ne, reason);
+ }
+}
+
+
+void MacroAssembler::AssertName(Register object) {
+ if (emit_debug_code()) {
+ STATIC_ASSERT(kSmiTag == 0);
+ // TODO(jbramley): Add AbortIfSmi and related functions.
+ Label not_smi;
+ JumpIfNotSmi(object, &not_smi);
+ Abort(kOperandIsASmiAndNotAName);
+ Bind(&not_smi);
+
+ Ldr(Tmp1(), FieldMemOperand(object, HeapObject::kMapOffset));
+ CompareInstanceType(Tmp1(), Tmp1(), LAST_NAME_TYPE);
+ Check(ls, kOperandIsNotAName);
+ }
+}
+
+
+void MacroAssembler::AssertString(Register object) {
+ if (emit_debug_code()) {
+ Register temp = Tmp1();
+ STATIC_ASSERT(kSmiTag == 0);
+ Tst(object, kSmiTagMask);
+ Check(ne, kOperandIsASmiAndNotAString);
+ Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
+ CompareInstanceType(temp, temp, FIRST_NONSTRING_TYPE);
+ Check(lo, kOperandIsNotAString);
+ }
+}
+
+
+void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id) {
+ ASSERT(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs.
+ Call(stub->GetCode(isolate()), RelocInfo::CODE_TARGET, ast_id);
+}
+
+
+void MacroAssembler::TailCallStub(CodeStub* stub) {
+ Jump(stub->GetCode(isolate()), RelocInfo::CODE_TARGET);
+}
+
+
+void MacroAssembler::CallRuntime(const Runtime::Function* f,
+ int num_arguments,
+ SaveFPRegsMode save_doubles) {
+ // All arguments must be on the stack before this function is called.
+ // x0 holds the return value after the call.
+
+ // Check that the number of arguments matches what the function expects.
+ // If f->nargs is -1, the function can accept a variable number of arguments.
+ if (f->nargs >= 0 && f->nargs != num_arguments) {
+ // Illegal operation: drop the stack arguments and return undefined.
+ if (num_arguments > 0) {
+ Drop(num_arguments);
+ }
+ LoadRoot(x0, Heap::kUndefinedValueRootIndex);
+ return;
+ }
+
+ // Place the necessary arguments.
+ Mov(x0, num_arguments);
+ Mov(x1, Operand(ExternalReference(f, isolate())));
+
+ CEntryStub stub(1, save_doubles);
+ CallStub(&stub);
+}
+
+
+static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
+ return ref0.address() - ref1.address();
+}
+
+
+void MacroAssembler::CallApiFunctionAndReturn(
+ Register function_address,
+ ExternalReference thunk_ref,
+ int stack_space,
+ int spill_offset,
+ MemOperand return_value_operand,
+ MemOperand* context_restore_operand) {
+ ASM_LOCATION("CallApiFunctionAndReturn");
+ ExternalReference next_address =
+ ExternalReference::handle_scope_next_address(isolate());
+ const int kNextOffset = 0;
+ const int kLimitOffset = AddressOffset(
+ ExternalReference::handle_scope_limit_address(isolate()),
+ next_address);
+ const int kLevelOffset = AddressOffset(
+ ExternalReference::handle_scope_level_address(isolate()),
+ next_address);
+
+ ASSERT(function_address.is(x1) || function_address.is(x2));
+
+ Label profiler_disabled;
+ Label end_profiler_check;
+ bool* is_profiling_flag = isolate()->cpu_profiler()->is_profiling_address();
+ STATIC_ASSERT(sizeof(*is_profiling_flag) == 1);
+ Mov(x10, reinterpret_cast<uintptr_t>(is_profiling_flag));
+ Ldrb(w10, MemOperand(x10));
+ Cbz(w10, &profiler_disabled);
+ Mov(x3, Operand(thunk_ref));
+ B(&end_profiler_check);
+
+ Bind(&profiler_disabled);
+ Mov(x3, function_address);
+ Bind(&end_profiler_check);
+
+ // Save the callee-save registers we are going to use.
+ // TODO(all): Is this necessary? ARM doesn't do it.
+ STATIC_ASSERT(kCallApiFunctionSpillSpace == 4);
+ Poke(x19, (spill_offset + 0) * kXRegSizeInBytes);
+ Poke(x20, (spill_offset + 1) * kXRegSizeInBytes);
+ Poke(x21, (spill_offset + 2) * kXRegSizeInBytes);
+ Poke(x22, (spill_offset + 3) * kXRegSizeInBytes);
+
+ // Allocate HandleScope in callee-save registers.
+ // We will need to restore the HandleScope after the call to the API function,
+ // by allocating it in callee-save registers they will be preserved by C code.
+ Register handle_scope_base = x22;
+ Register next_address_reg = x19;
+ Register limit_reg = x20;
+ Register level_reg = w21;
+
+ Mov(handle_scope_base, Operand(next_address));
+ Ldr(next_address_reg, MemOperand(handle_scope_base, kNextOffset));
+ Ldr(limit_reg, MemOperand(handle_scope_base, kLimitOffset));
+ Ldr(level_reg, MemOperand(handle_scope_base, kLevelOffset));
+ Add(level_reg, level_reg, 1);
+ Str(level_reg, MemOperand(handle_scope_base, kLevelOffset));
+
+ if (FLAG_log_timer_events) {
+ FrameScope frame(this, StackFrame::MANUAL);
+ PushSafepointRegisters();
+ Mov(x0, Operand(ExternalReference::isolate_address(isolate())));
+ CallCFunction(ExternalReference::log_enter_external_function(isolate()), 1);
+ PopSafepointRegisters();
+ }
+
+ // Native call returns to the DirectCEntry stub which redirects to the
+ // return address pushed on stack (could have moved after GC).
+ // DirectCEntry stub itself is generated early and never moves.
+ DirectCEntryStub stub;
+ stub.GenerateCall(this, x3);
+
+ if (FLAG_log_timer_events) {
+ FrameScope frame(this, StackFrame::MANUAL);
+ PushSafepointRegisters();
+ Mov(x0, Operand(ExternalReference::isolate_address(isolate())));
+ CallCFunction(ExternalReference::log_leave_external_function(isolate()), 1);
+ PopSafepointRegisters();
+ }
+
+ Label promote_scheduled_exception;
+ Label exception_handled;
+ Label delete_allocated_handles;
+ Label leave_exit_frame;
+ Label return_value_loaded;
+
+ // Load value from ReturnValue.
+ Ldr(x0, return_value_operand);
+ Bind(&return_value_loaded);
+ // No more valid handles (the result handle was the last one). Restore
+ // previous handle scope.
+ Str(next_address_reg, MemOperand(handle_scope_base, kNextOffset));
+ if (emit_debug_code()) {
+ Ldr(w1, MemOperand(handle_scope_base, kLevelOffset));
+ Cmp(w1, level_reg);
+ Check(eq, kUnexpectedLevelAfterReturnFromApiCall);
+ }
+ Sub(level_reg, level_reg, 1);
+ Str(level_reg, MemOperand(handle_scope_base, kLevelOffset));
+ Ldr(x1, MemOperand(handle_scope_base, kLimitOffset));
+ Cmp(limit_reg, x1);
+ B(ne, &delete_allocated_handles);
+
+ Bind(&leave_exit_frame);
+ // Restore callee-saved registers.
+ Peek(x19, (spill_offset + 0) * kXRegSizeInBytes);
+ Peek(x20, (spill_offset + 1) * kXRegSizeInBytes);
+ Peek(x21, (spill_offset + 2) * kXRegSizeInBytes);
+ Peek(x22, (spill_offset + 3) * kXRegSizeInBytes);
+
+ // Check if the function scheduled an exception.
+ Mov(x5, Operand(ExternalReference::scheduled_exception_address(isolate())));
+ Ldr(x5, MemOperand(x5));
+ JumpIfNotRoot(x5, Heap::kTheHoleValueRootIndex, &promote_scheduled_exception);
+ Bind(&exception_handled);
+
+ bool restore_context = context_restore_operand != NULL;
+ if (restore_context) {
+ Ldr(cp, *context_restore_operand);
+ }
+
+ LeaveExitFrame(false, x1, !restore_context);
+ Drop(stack_space);
+ Ret();
+
+ Bind(&promote_scheduled_exception);
+ {
+ FrameScope frame(this, StackFrame::INTERNAL);
+ CallExternalReference(
+ ExternalReference(Runtime::kPromoteScheduledException, isolate()), 0);
+ }
+ B(&exception_handled);
+
+ // HandleScope limit has changed. Delete allocated extensions.
+ Bind(&delete_allocated_handles);
+ Str(limit_reg, MemOperand(handle_scope_base, kLimitOffset));
+ // Save the return value in a callee-save register.
+ Register saved_result = x19;
+ Mov(saved_result, x0);
+ Mov(x0, Operand(ExternalReference::isolate_address(isolate())));
+ CallCFunction(
+ ExternalReference::delete_handle_scope_extensions(isolate()), 1);
+ Mov(x0, saved_result);
+ B(&leave_exit_frame);
+}
+
+
+void MacroAssembler::CallExternalReference(const ExternalReference& ext,
+ int num_arguments) {
+ Mov(x0, num_arguments);
+ Mov(x1, Operand(ext));
+
+ CEntryStub stub(1);
+ CallStub(&stub);
+}
+
+
+void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin) {
+ Mov(x1, Operand(builtin));
+ CEntryStub stub(1);
+ Jump(stub.GetCode(isolate()), RelocInfo::CODE_TARGET);
+}
+
+
+void MacroAssembler::GetBuiltinFunction(Register target,
+ Builtins::JavaScript id) {
+ // Load the builtins object into target register.
+ Ldr(target, GlobalObjectMemOperand());
+ Ldr(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset));
+ // Load the JavaScript builtin function from the builtins object.
+ Ldr(target, FieldMemOperand(target,
+ JSBuiltinsObject::OffsetOfFunctionWithId(id)));
+}
+
+
+void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
+ ASSERT(!target.is(x1));
+ GetBuiltinFunction(x1, id);
+ // Load the code entry point from the builtins object.
+ Ldr(target, FieldMemOperand(x1, JSFunction::kCodeEntryOffset));
+}
+
+
+void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper) {
+ ASM_LOCATION("MacroAssembler::InvokeBuiltin");
+ // You can't call a builtin without a valid frame.
+ ASSERT(flag == JUMP_FUNCTION || has_frame());
+
+ GetBuiltinEntry(x2, id);
+ if (flag == CALL_FUNCTION) {
+ call_wrapper.BeforeCall(CallSize(x2));
+ Call(x2);
+ call_wrapper.AfterCall();
+ } else {
+ ASSERT(flag == JUMP_FUNCTION);
+ Jump(x2);
+ }
+}
+
+
+void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
+ int num_arguments,
+ int result_size) {
+ // TODO(1236192): Most runtime routines don't need the number of
+ // arguments passed in because it is constant. At some point we
+ // should remove this need and make the runtime routine entry code
+ // smarter.
+ Mov(x0, num_arguments);
+ JumpToExternalReference(ext);
+}
+
+
+void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
+ int num_arguments,
+ int result_size) {
+ TailCallExternalReference(ExternalReference(fid, isolate()),
+ num_arguments,
+ result_size);
+}
+
+
+void MacroAssembler::InitializeNewString(Register string,
+ Register length,
+ Heap::RootListIndex map_index,
+ Register scratch1,
+ Register scratch2) {
+ ASSERT(!AreAliased(string, length, scratch1, scratch2));
+ LoadRoot(scratch2, map_index);
+ SmiTag(scratch1, length);
+ Str(scratch2, FieldMemOperand(string, HeapObject::kMapOffset));
+
+ Mov(scratch2, String::kEmptyHashField);
+ Str(scratch1, FieldMemOperand(string, String::kLengthOffset));
+ Str(scratch2, FieldMemOperand(string, String::kHashFieldOffset));
+}
+
+
+int MacroAssembler::ActivationFrameAlignment() {
+#if V8_HOST_ARCH_A64
+ // Running on the real platform. Use the alignment as mandated by the local
+ // environment.
+ // Note: This will break if we ever start generating snapshots on one ARM
+ // platform for another ARM platform with a different alignment.
+ return OS::ActivationFrameAlignment();
+#else // V8_HOST_ARCH_A64
+ // If we are using the simulator then we should always align to the expected
+ // alignment. As the simulator is used to generate snapshots we do not know
+ // if the target platform will need alignment, so this is controlled from a
+ // flag.
+ return FLAG_sim_stack_alignment;
+#endif // V8_HOST_ARCH_A64
+}
+
+
+void MacroAssembler::CallCFunction(ExternalReference function,
+ int num_of_reg_args) {
+ CallCFunction(function, num_of_reg_args, 0);
+}
+
+
+void MacroAssembler::CallCFunction(ExternalReference function,
+ int num_of_reg_args,
+ int num_of_double_args) {
+ Mov(Tmp0(), Operand(function));
+ CallCFunction(Tmp0(), num_of_reg_args, num_of_double_args);
+}
+
+
+void MacroAssembler::CallCFunction(Register function,
+ int num_of_reg_args,
+ int num_of_double_args) {
+ ASSERT(has_frame());
+ // We can pass 8 integer arguments in registers. If we need to pass more than
+ // that, we'll need to implement support for passing them on the stack.
+ ASSERT(num_of_reg_args <= 8);
+
+ // If we're passing doubles, we're limited to the following prototypes
+ // (defined by ExternalReference::Type):
+ // BUILTIN_COMPARE_CALL: int f(double, double)
+ // BUILTIN_FP_FP_CALL: double f(double, double)
+ // BUILTIN_FP_CALL: double f(double)
+ // BUILTIN_FP_INT_CALL: double f(double, int)
+ if (num_of_double_args > 0) {
+ ASSERT(num_of_reg_args <= 1);
+ ASSERT((num_of_double_args + num_of_reg_args) <= 2);
+ }
+
+
+ // If the stack pointer is not csp, we need to derive an aligned csp from the
+ // current stack pointer.
+ const Register old_stack_pointer = StackPointer();
+ if (!csp.Is(old_stack_pointer)) {
+ AssertStackConsistency();
+
+ int sp_alignment = ActivationFrameAlignment();
+ // The ABI mandates at least 16-byte alignment.
+ ASSERT(sp_alignment >= 16);
+ ASSERT(IsPowerOf2(sp_alignment));
+
+ // The current stack pointer is a callee saved register, and is preserved
+ // across the call.
+ ASSERT(kCalleeSaved.IncludesAliasOf(old_stack_pointer));
+
+ // Align and synchronize the system stack pointer with jssp.
+ Bic(csp, old_stack_pointer, sp_alignment - 1);
+ SetStackPointer(csp);
+ }
+
+ // Call directly. The function called cannot cause a GC, or allow preemption,
+ // so the return address in the link register stays correct.
+ Call(function);
+
+ if (!csp.Is(old_stack_pointer)) {
+ if (emit_debug_code()) {
+ // Because the stack pointer must be aligned on a 16-byte boundary, the
+ // aligned csp can be up to 12 bytes below the jssp. This is the case
+ // where we only pushed one W register on top of an aligned jssp.
+ Register temp = Tmp1();
+ ASSERT(ActivationFrameAlignment() == 16);
+ Sub(temp, csp, old_stack_pointer);
+ // We want temp <= 0 && temp >= -12.
+ Cmp(temp, 0);
+ Ccmp(temp, -12, NFlag, le);
+ Check(ge, kTheStackWasCorruptedByMacroAssemblerCall);
+ }
+ SetStackPointer(old_stack_pointer);
+ }
+}
+
+
+void MacroAssembler::Jump(Register target) {
+ Br(target);
+}
+
+
+void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode) {
+ Mov(Tmp0(), Operand(target, rmode));
+ Br(Tmp0());
+}
+
+
+void MacroAssembler::Jump(Address target, RelocInfo::Mode rmode) {
+ ASSERT(!RelocInfo::IsCodeTarget(rmode));
+ Jump(reinterpret_cast<intptr_t>(target), rmode);
+}
+
+
+void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode) {
+ ASSERT(RelocInfo::IsCodeTarget(rmode));
+ AllowDeferredHandleDereference embedding_raw_address;
+ Jump(reinterpret_cast<intptr_t>(code.location()), rmode);
+}
+
+
+void MacroAssembler::Call(Register target) {
+ BlockConstPoolScope scope(this);
+#ifdef DEBUG
+ Label start_call;
+ Bind(&start_call);
+#endif
+
+ Blr(target);
+
+#ifdef DEBUG
+ AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target));
+#endif
+}
+
+
+void MacroAssembler::Call(Label* target) {
+ BlockConstPoolScope scope(this);
+#ifdef DEBUG
+ Label start_call;
+ Bind(&start_call);
+#endif
+
+ Bl(target);
+
+#ifdef DEBUG
+ AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target));
+#endif
+}
+
+
+// MacroAssembler::CallSize is sensitive to changes in this function, as it
+// requires to know how many instructions are used to branch to the target.
+void MacroAssembler::Call(Address target, RelocInfo::Mode rmode) {
+ BlockConstPoolScope scope(this);
+#ifdef DEBUG
+ Label start_call;
+ Bind(&start_call);
+#endif
+ // Statement positions are expected to be recorded when the target
+ // address is loaded.
+ positions_recorder()->WriteRecordedPositions();
+
+ // Addresses always have 64 bits, so we shouldn't encounter NONE32.
+ ASSERT(rmode != RelocInfo::NONE32);
+
+ if (rmode == RelocInfo::NONE64) {
+ uint64_t imm = reinterpret_cast<uint64_t>(target);
+ movz(Tmp0(), (imm >> 0) & 0xffff, 0);
+ movk(Tmp0(), (imm >> 16) & 0xffff, 16);
+ movk(Tmp0(), (imm >> 32) & 0xffff, 32);
+ movk(Tmp0(), (imm >> 48) & 0xffff, 48);
+ } else {
+ LoadRelocated(Tmp0(), Operand(reinterpret_cast<intptr_t>(target), rmode));
+ }
+ Blr(Tmp0());
+#ifdef DEBUG
+ AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target, rmode));
+#endif
+}
+
+
+void MacroAssembler::Call(Handle<Code> code,
+ RelocInfo::Mode rmode,
+ TypeFeedbackId ast_id) {
+#ifdef DEBUG
+ Label start_call;
+ Bind(&start_call);
+#endif
+
+ if ((rmode == RelocInfo::CODE_TARGET) && (!ast_id.IsNone())) {
+ SetRecordedAstId(ast_id);
+ rmode = RelocInfo::CODE_TARGET_WITH_ID;
+ }
+
+ AllowDeferredHandleDereference embedding_raw_address;
+ Call(reinterpret_cast<Address>(code.location()), rmode);
+
+#ifdef DEBUG
+ // Check the size of the code generated.
+ AssertSizeOfCodeGeneratedSince(&start_call, CallSize(code, rmode, ast_id));
+#endif
+}
+
+
+int MacroAssembler::CallSize(Register target) {
+ USE(target);
+ return kInstructionSize;
+}
+
+
+int MacroAssembler::CallSize(Label* target) {
+ USE(target);
+ return kInstructionSize;
+}
+
+
+int MacroAssembler::CallSize(Address target, RelocInfo::Mode rmode) {
+ USE(target);
+
+ // Addresses always have 64 bits, so we shouldn't encounter NONE32.
+ ASSERT(rmode != RelocInfo::NONE32);
+
+ if (rmode == RelocInfo::NONE64) {
+ return kCallSizeWithoutRelocation;
+ } else {
+ return kCallSizeWithRelocation;
+ }
+}
+
+
+int MacroAssembler::CallSize(Handle<Code> code,
+ RelocInfo::Mode rmode,
+ TypeFeedbackId ast_id) {
+ USE(code);
+ USE(ast_id);
+
+ // Addresses always have 64 bits, so we shouldn't encounter NONE32.
+ ASSERT(rmode != RelocInfo::NONE32);
+
+ if (rmode == RelocInfo::NONE64) {
+ return kCallSizeWithoutRelocation;
+ } else {
+ return kCallSizeWithRelocation;
+ }
+}
+
+
+
+
+
+void MacroAssembler::JumpForHeapNumber(Register object,
+ Register heap_number_map,
+ Label* on_heap_number,
+ Label* on_not_heap_number) {
+ ASSERT(on_heap_number || on_not_heap_number);
+ // Tmp0() is used as a scratch register.
+ ASSERT(!AreAliased(Tmp0(), heap_number_map));
+ AssertNotSmi(object);
+
+ // Load the HeapNumber map if it is not passed.
+ if (heap_number_map.Is(NoReg)) {
+ heap_number_map = Tmp1();
+ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
+ } else {
+ // This assert clobbers Tmp0(), so do it before loading Tmp0() with the map.
+ AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
+ }
+
+ Ldr(Tmp0(), FieldMemOperand(object, HeapObject::kMapOffset));
+ Cmp(Tmp0(), heap_number_map);
+
+ if (on_heap_number) {
+ B(eq, on_heap_number);
+ }
+ if (on_not_heap_number) {
+ B(ne, on_not_heap_number);
+ }
+}
+
+
+void MacroAssembler::JumpIfHeapNumber(Register object,
+ Label* on_heap_number,
+ Register heap_number_map) {
+ JumpForHeapNumber(object,
+ heap_number_map,
+ on_heap_number,
+ NULL);
+}
+
+
+void MacroAssembler::JumpIfNotHeapNumber(Register object,
+ Label* on_not_heap_number,
+ Register heap_number_map) {
+ JumpForHeapNumber(object,
+ heap_number_map,
+ NULL,
+ on_not_heap_number);
+}
+
+
+void MacroAssembler::LookupNumberStringCache(Register object,
+ Register result,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Label* not_found) {
+ ASSERT(!AreAliased(object, result, scratch1, scratch2, scratch3));
+
+ // Use of registers. Register result is used as a temporary.
+ Register number_string_cache = result;
+ Register mask = scratch3;
+
+ // Load the number string cache.
+ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
+
+ // Make the hash mask from the length of the number string cache. It
+ // contains two elements (number and string) for each cache entry.
+ Ldrsw(mask, UntagSmiFieldMemOperand(number_string_cache,
+ FixedArray::kLengthOffset));
+ Asr(mask, mask, 1); // Divide length by two.
+ Sub(mask, mask, 1); // Make mask.
+
+ // Calculate the entry in the number string cache. The hash value in the
+ // number string cache for smis is just the smi value, and the hash for
+ // doubles is the xor of the upper and lower words. See
+ // Heap::GetNumberStringCache.
+ Label is_smi;
+ Label load_result_from_cache;
+
+ JumpIfSmi(object, &is_smi);
+ CheckMap(object, scratch1, Heap::kHeapNumberMapRootIndex, not_found,
+ DONT_DO_SMI_CHECK);
+
+ STATIC_ASSERT(kDoubleSize == (kWRegSizeInBytes * 2));
+ Add(scratch1, object, HeapNumber::kValueOffset - kHeapObjectTag);
+ Ldp(scratch1.W(), scratch2.W(), MemOperand(scratch1));
+ Eor(scratch1, scratch1, scratch2);
+ And(scratch1, scratch1, mask);
+
+ // Calculate address of entry in string cache: each entry consists of two
+ // pointer sized fields.
+ Add(scratch1, number_string_cache,
+ Operand(scratch1, LSL, kPointerSizeLog2 + 1));
+
+ Register probe = mask;
+ Ldr(probe, FieldMemOperand(scratch1, FixedArray::kHeaderSize));
+ JumpIfSmi(probe, not_found);
+ Ldr(d0, FieldMemOperand(object, HeapNumber::kValueOffset));
+ Ldr(d1, FieldMemOperand(probe, HeapNumber::kValueOffset));
+ Fcmp(d0, d1);
+ B(ne, not_found);
+ B(&load_result_from_cache);
+
+ Bind(&is_smi);
+ Register scratch = scratch1;
+ And(scratch, mask, Operand::UntagSmi(object));
+ // Calculate address of entry in string cache: each entry consists
+ // of two pointer sized fields.
+ Add(scratch, number_string_cache,
+ Operand(scratch, LSL, kPointerSizeLog2 + 1));
+
+ // Check if the entry is the smi we are looking for.
+ Ldr(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize));
+ Cmp(object, probe);
+ B(ne, not_found);
+
+ // Get the result from the cache.
+ Bind(&load_result_from_cache);
+ Ldr(result, FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize));
+ IncrementCounter(isolate()->counters()->number_to_string_native(), 1,
+ scratch1, scratch2);
+}
+
+
+void MacroAssembler::TryConvertDoubleToInt(Register as_int,
+ FPRegister value,
+ FPRegister scratch_d,
+ Label* on_successful_conversion,
+ Label* on_failed_conversion) {
+ // Convert to an int and back again, then compare with the original value.
+ Fcvtzs(as_int, value);
+ Scvtf(scratch_d, as_int);
+ Fcmp(value, scratch_d);
+
+ if (on_successful_conversion) {
+ B(on_successful_conversion, eq);
+ }
+ if (on_failed_conversion) {
+ B(on_failed_conversion, ne);
+ }
+}
+
+
+void MacroAssembler::JumpIfMinusZero(DoubleRegister input,
+ Label* on_negative_zero) {
+ // Floating point -0.0 is kMinInt as an integer, so subtracting 1 (cmp) will
+ // cause overflow.
+ Fmov(Tmp0(), input);
+ Cmp(Tmp0(), 1);
+ B(vs, on_negative_zero);
+}
+
+
+void MacroAssembler::ClampInt32ToUint8(Register output, Register input) {
+ // Clamp the value to [0..255].
+ Cmp(input.W(), Operand(input.W(), UXTB));
+ // If input < input & 0xff, it must be < 0, so saturate to 0.
+ Csel(output.W(), wzr, input.W(), lt);
+ // Create a constant 0xff.
+ Mov(WTmp0(), 255);
+ // If input > input & 0xff, it must be > 255, so saturate to 255.
+ Csel(output.W(), WTmp0(), output.W(), gt);
+}
+
+
+void MacroAssembler::ClampInt32ToUint8(Register in_out) {
+ ClampInt32ToUint8(in_out, in_out);
+}
+
+
+void MacroAssembler::ClampDoubleToUint8(Register output,
+ DoubleRegister input,
+ DoubleRegister dbl_scratch) {
+ // This conversion follows the WebIDL "[Clamp]" rules for PIXEL types:
+ // - Inputs lower than 0 (including -infinity) produce 0.
+ // - Inputs higher than 255 (including +infinity) produce 255.
+ // Also, it seems that PIXEL types use round-to-nearest rather than
+ // round-towards-zero.
+
+ // Squash +infinity before the conversion, since Fcvtnu will normally
+ // convert it to 0.
+ Fmov(dbl_scratch, 255);
+ Fmin(dbl_scratch, dbl_scratch, input);
+
+ // Convert double to unsigned integer. Values less than zero become zero.
+ // Values greater than 255 have already been clamped to 255.
+ Fcvtnu(output, dbl_scratch);
+}
+
+
+void MacroAssembler::CopyFieldsLoopPairsHelper(Register dst,
+ Register src,
+ unsigned count,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3) {
+ // Untag src and dst into scratch registers.
+ // Copy src->dst in a tight loop.
+ ASSERT(!AreAliased(dst, src, scratch1, scratch2, scratch3, Tmp0(), Tmp1()));
+ ASSERT(count >= 2);
+
+ const Register& remaining = scratch3;
+ Mov(remaining, count / 2);
+
+ // Only use the Assembler, so we can use Tmp0() and Tmp1().
+ InstructionAccurateScope scope(this);
+
+ const Register& dst_untagged = scratch1;
+ const Register& src_untagged = scratch2;
+ sub(dst_untagged, dst, kHeapObjectTag);
+ sub(src_untagged, src, kHeapObjectTag);
+
+ // Copy fields in pairs.
+ Label loop;
+ bind(&loop);
+ ldp(Tmp0(), Tmp1(), MemOperand(src_untagged, kXRegSizeInBytes * 2,
+ PostIndex));
+ stp(Tmp0(), Tmp1(), MemOperand(dst_untagged, kXRegSizeInBytes * 2,
+ PostIndex));
+ sub(remaining, remaining, 1);
+ cbnz(remaining, &loop);
+
+ // Handle the leftovers.
+ if (count & 1) {
+ ldr(Tmp0(), MemOperand(src_untagged));
+ str(Tmp0(), MemOperand(dst_untagged));
+ }
+}
+
+
+void MacroAssembler::CopyFieldsUnrolledPairsHelper(Register dst,
+ Register src,
+ unsigned count,
+ Register scratch1,
+ Register scratch2) {
+ // Untag src and dst into scratch registers.
+ // Copy src->dst in an unrolled loop.
+ ASSERT(!AreAliased(dst, src, scratch1, scratch2, Tmp0(), Tmp1()));
+
+ // Only use the Assembler, so we can use Tmp0() and Tmp1().
+ InstructionAccurateScope scope(this);
+
+ const Register& dst_untagged = scratch1;
+ const Register& src_untagged = scratch2;
+ sub(dst_untagged, dst, kHeapObjectTag);
+ sub(src_untagged, src, kHeapObjectTag);
+
+ // Copy fields in pairs.
+ for (unsigned i = 0; i < count / 2; i++) {
+ ldp(Tmp0(), Tmp1(), MemOperand(src_untagged, kXRegSizeInBytes * 2,
+ PostIndex));
+ stp(Tmp0(), Tmp1(), MemOperand(dst_untagged, kXRegSizeInBytes * 2,
+ PostIndex));
+ }
+
+ // Handle the leftovers.
+ if (count & 1) {
+ ldr(Tmp0(), MemOperand(src_untagged));
+ str(Tmp0(), MemOperand(dst_untagged));
+ }
+}
+
+
+void MacroAssembler::CopyFieldsUnrolledHelper(Register dst,
+ Register src,
+ unsigned count,
+ Register scratch1) {
+ // Untag src and dst into scratch registers.
+ // Copy src->dst in an unrolled loop.
+ ASSERT(!AreAliased(dst, src, scratch1, Tmp0(), Tmp1()));
+
+ // Only use the Assembler, so we can use Tmp0() and Tmp1().
+ InstructionAccurateScope scope(this);
+
+ const Register& dst_untagged = scratch1;
+ const Register& src_untagged = Tmp1();
+ sub(dst_untagged, dst, kHeapObjectTag);
+ sub(src_untagged, src, kHeapObjectTag);
+
+ // Copy fields one by one.
+ for (unsigned i = 0; i < count; i++) {
+ ldr(Tmp0(), MemOperand(src_untagged, kXRegSizeInBytes, PostIndex));
+ str(Tmp0(), MemOperand(dst_untagged, kXRegSizeInBytes, PostIndex));
+ }
+}
+
+
+void MacroAssembler::CopyFields(Register dst, Register src, CPURegList temps,
+ unsigned count) {
+ // One of two methods is used:
+ //
+ // For high 'count' values where many scratch registers are available:
+ // Untag src and dst into scratch registers.
+ // Copy src->dst in a tight loop.
+ //
+ // For low 'count' values or where few scratch registers are available:
+ // Untag src and dst into scratch registers.
+ // Copy src->dst in an unrolled loop.
+ //
+ // In both cases, fields are copied in pairs if possible, and left-overs are
+ // handled separately.
+ ASSERT(!temps.IncludesAliasOf(dst));
+ ASSERT(!temps.IncludesAliasOf(src));
+ ASSERT(!temps.IncludesAliasOf(Tmp0()));
+ ASSERT(!temps.IncludesAliasOf(Tmp1()));
+ ASSERT(!temps.IncludesAliasOf(xzr));
+ ASSERT(!AreAliased(dst, src, Tmp0(), Tmp1()));
+
+ if (emit_debug_code()) {
+ Cmp(dst, src);
+ Check(ne, kTheSourceAndDestinationAreTheSame);
+ }
+
+ // The value of 'count' at which a loop will be generated (if there are
+ // enough scratch registers).
+ static const unsigned kLoopThreshold = 8;
+
+ ASSERT(!temps.IsEmpty());
+ Register scratch1 = Register(temps.PopLowestIndex());
+ Register scratch2 = Register(temps.PopLowestIndex());
+ Register scratch3 = Register(temps.PopLowestIndex());
+
+ if (scratch3.IsValid() && (count >= kLoopThreshold)) {
+ CopyFieldsLoopPairsHelper(dst, src, count, scratch1, scratch2, scratch3);
+ } else if (scratch2.IsValid()) {
+ CopyFieldsUnrolledPairsHelper(dst, src, count, scratch1, scratch2);
+ } else if (scratch1.IsValid()) {
+ CopyFieldsUnrolledHelper(dst, src, count, scratch1);
+ } else {
+ UNREACHABLE();
+ }
+}
+
+
+void MacroAssembler::CopyBytes(Register dst,
+ Register src,
+ Register length,
+ Register scratch,
+ CopyHint hint) {
+ ASSERT(!AreAliased(src, dst, length, scratch));
+
+ // TODO(all): Implement a faster copy function, and use hint to determine
+ // which algorithm to use for copies.
+ if (emit_debug_code()) {
+ // Check copy length.
+ Cmp(length, 0);
+ Assert(ge, kUnexpectedNegativeValue);
+
+ // Check src and dst buffers don't overlap.
+ Add(scratch, src, length); // Calculate end of src buffer.
+ Cmp(scratch, dst);
+ Add(scratch, dst, length); // Calculate end of dst buffer.
+ Ccmp(scratch, src, ZFlag, gt);
+ Assert(le, kCopyBuffersOverlap);
+ }
+
+ Label loop, done;
+ Cbz(length, &done);
+
+ Bind(&loop);
+ Sub(length, length, 1);
+ Ldrb(scratch, MemOperand(src, 1, PostIndex));
+ Strb(scratch, MemOperand(dst, 1, PostIndex));
+ Cbnz(length, &loop);
+ Bind(&done);
+}
+
+
+void MacroAssembler::InitializeFieldsWithFiller(Register start_offset,
+ Register end_offset,
+ Register filler) {
+ Label loop, entry;
+ B(&entry);
+ Bind(&loop);
+ // TODO(all): consider using stp here.
+ Str(filler, MemOperand(start_offset, kPointerSize, PostIndex));
+ Bind(&entry);
+ Cmp(start_offset, end_offset);
+ B(lt, &loop);
+}
+
+
+void MacroAssembler::JumpIfEitherIsNotSequentialAsciiStrings(
+ Register first,
+ Register second,
+ Register scratch1,
+ Register scratch2,
+ Label* failure,
+ SmiCheckType smi_check) {
+
+ if (smi_check == DO_SMI_CHECK) {
+ JumpIfEitherSmi(first, second, failure);
+ } else if (emit_debug_code()) {
+ ASSERT(smi_check == DONT_DO_SMI_CHECK);
+ Label not_smi;
+ JumpIfEitherSmi(first, second, NULL, &not_smi);
+
+ // At least one input is a smi, but the flags indicated a smi check wasn't
+ // needed.
+ Abort(kUnexpectedSmi);
+
+ Bind(&not_smi);
+ }
+
+ // Test that both first and second are sequential ASCII strings.
+ Ldr(scratch1, FieldMemOperand(first, HeapObject::kMapOffset));
+ Ldr(scratch2, FieldMemOperand(second, HeapObject::kMapOffset));
+ Ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
+ Ldrb(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset));
+
+ JumpIfEitherInstanceTypeIsNotSequentialAscii(scratch1,
+ scratch2,
+ scratch1,
+ scratch2,
+ failure);
+}
+
+
+void MacroAssembler::JumpIfEitherInstanceTypeIsNotSequentialAscii(
+ Register first,
+ Register second,
+ Register scratch1,
+ Register scratch2,
+ Label* failure) {
+ ASSERT(!AreAliased(scratch1, second));
+ ASSERT(!AreAliased(scratch1, scratch2));
+ static const int kFlatAsciiStringMask =
+ kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
+ static const int kFlatAsciiStringTag = ASCII_STRING_TYPE;
+ And(scratch1, first, kFlatAsciiStringMask);
+ And(scratch2, second, kFlatAsciiStringMask);
+ Cmp(scratch1, kFlatAsciiStringTag);
+ Ccmp(scratch2, kFlatAsciiStringTag, NoFlag, eq);
+ B(ne, failure);
+}
+
+
+void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(Register type,
+ Register scratch,
+ Label* failure) {
+ const int kFlatAsciiStringMask =
+ kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
+ const int kFlatAsciiStringTag =
+ kStringTag | kOneByteStringTag | kSeqStringTag;
+ And(scratch, type, kFlatAsciiStringMask);
+ Cmp(scratch, kFlatAsciiStringTag);
+ B(ne, failure);
+}
+
+
+void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialAscii(
+ Register first,
+ Register second,
+ Register scratch1,
+ Register scratch2,
+ Label* failure) {
+ ASSERT(!AreAliased(first, second, scratch1, scratch2));
+ const int kFlatAsciiStringMask =
+ kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
+ const int kFlatAsciiStringTag =
+ kStringTag | kOneByteStringTag | kSeqStringTag;
+ And(scratch1, first, kFlatAsciiStringMask);
+ And(scratch2, second, kFlatAsciiStringMask);
+ Cmp(scratch1, kFlatAsciiStringTag);
+ Ccmp(scratch2, kFlatAsciiStringTag, NoFlag, eq);
+ B(ne, failure);
+}
+
+
+void MacroAssembler::JumpIfNotUniqueName(Register type,
+ Label* not_unique_name) {
+ STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0));
+ // if ((type is string && type is internalized) || type == SYMBOL_TYPE) {
+ // continue
+ // } else {
+ // goto not_unique_name
+ // }
+ Tst(type, kIsNotStringMask | kIsNotInternalizedMask);
+ Ccmp(type, SYMBOL_TYPE, ZFlag, ne);
+ B(ne, not_unique_name);
+}
+
+
+void MacroAssembler::InvokePrologue(const ParameterCount& expected,
+ const ParameterCount& actual,
+ Handle<Code> code_constant,
+ Register code_reg,
+ Label* done,
+ InvokeFlag flag,
+ bool* definitely_mismatches,
+ const CallWrapper& call_wrapper) {
+ bool definitely_matches = false;
+ *definitely_mismatches = false;
+ Label regular_invoke;
+
+ // Check whether the expected and actual arguments count match. If not,
+ // setup registers according to contract with ArgumentsAdaptorTrampoline:
+ // x0: actual arguments count.
+ // x1: function (passed through to callee).
+ // x2: expected arguments count.
+
+ // The code below is made a lot easier because the calling code already sets
+ // up actual and expected registers according to the contract if values are
+ // passed in registers.
+ ASSERT(actual.is_immediate() || actual.reg().is(x0));
+ ASSERT(expected.is_immediate() || expected.reg().is(x2));
+ ASSERT((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(x3));
+
+ if (expected.is_immediate()) {
+ ASSERT(actual.is_immediate());
+ if (expected.immediate() == actual.immediate()) {
+ definitely_matches = true;
+
+ } else {
+ Mov(x0, actual.immediate());
+ if (expected.immediate() ==
+ SharedFunctionInfo::kDontAdaptArgumentsSentinel) {
+ // Don't worry about adapting arguments for builtins that
+ // don't want that done. Skip adaption code by making it look
+ // like we have a match between expected and actual number of
+ // arguments.
+ definitely_matches = true;
+ } else {
+ *definitely_mismatches = true;
+ // Set up x2 for the argument adaptor.
+ Mov(x2, expected.immediate());
+ }
+ }
+
+ } else { // expected is a register.
+ Operand actual_op = actual.is_immediate() ? Operand(actual.immediate())
+ : Operand(actual.reg());
+ // If actual == expected perform a regular invocation.
+ Cmp(expected.reg(), actual_op);
+ B(eq, &regular_invoke);
+ // Otherwise set up x0 for the argument adaptor.
+ Mov(x0, actual_op);
+ }
+
+ // If the argument counts may mismatch, generate a call to the argument
+ // adaptor.
+ if (!definitely_matches) {
+ if (!code_constant.is_null()) {
+ Mov(x3, Operand(code_constant));
+ Add(x3, x3, Code::kHeaderSize - kHeapObjectTag);
+ }
+
+ Handle<Code> adaptor =
+ isolate()->builtins()->ArgumentsAdaptorTrampoline();
+ if (flag == CALL_FUNCTION) {
+ call_wrapper.BeforeCall(CallSize(adaptor));
+ Call(adaptor);
+ call_wrapper.AfterCall();
+ if (!*definitely_mismatches) {
+ // If the arg counts don't match, no extra code is emitted by
+ // MAsm::InvokeCode and we can just fall through.
+ B(done);
+ }
+ } else {
+ Jump(adaptor, RelocInfo::CODE_TARGET);
+ }
+ }
+ Bind(&regular_invoke);
+}
+
+
+void MacroAssembler::InvokeCode(Register code,
+ const ParameterCount& expected,
+ const ParameterCount& actual,
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper) {
+ // You can't call a function without a valid frame.
+ ASSERT(flag == JUMP_FUNCTION || has_frame());
+
+ Label done;
+
+ bool definitely_mismatches = false;
+ InvokePrologue(expected, actual, Handle<Code>::null(), code, &done, flag,
+ &definitely_mismatches, call_wrapper);
+
+ // If we are certain that actual != expected, then we know InvokePrologue will
+ // have handled the call through the argument adaptor mechanism.
+ // The called function expects the call kind in x5.
+ if (!definitely_mismatches) {
+ if (flag == CALL_FUNCTION) {
+ call_wrapper.BeforeCall(CallSize(code));
+ Call(code);
+ call_wrapper.AfterCall();
+ } else {
+ ASSERT(flag == JUMP_FUNCTION);
+ Jump(code);
+ }
+ }
+
+ // Continue here if InvokePrologue does handle the invocation due to
+ // mismatched parameter counts.
+ Bind(&done);
+}
+
+
+void MacroAssembler::InvokeFunction(Register function,
+ const ParameterCount& actual,
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper) {
+ // You can't call a function without a valid frame.
+ ASSERT(flag == JUMP_FUNCTION || has_frame());
+
+ // Contract with called JS functions requires that function is passed in x1.
+ // (See FullCodeGenerator::Generate().)
+ ASSERT(function.is(x1));
+
+ Register expected_reg = x2;
+ Register code_reg = x3;
+
+ Ldr(cp, FieldMemOperand(function, JSFunction::kContextOffset));
+ // The number of arguments is stored as an int32_t, and -1 is a marker
+ // (SharedFunctionInfo::kDontAdaptArgumentsSentinel), so we need sign
+ // extension to correctly handle it.
+ Ldr(expected_reg, FieldMemOperand(function,
+ JSFunction::kSharedFunctionInfoOffset));
+ Ldrsw(expected_reg,
+ FieldMemOperand(expected_reg,
+ SharedFunctionInfo::kFormalParameterCountOffset));
+ Ldr(code_reg,
+ FieldMemOperand(function, JSFunction::kCodeEntryOffset));
+
+ ParameterCount expected(expected_reg);
+ InvokeCode(code_reg, expected, actual, flag, call_wrapper);
+}
+
+
+void MacroAssembler::InvokeFunction(Register function,
+ const ParameterCount& expected,
+ const ParameterCount& actual,
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper) {
+ // You can't call a function without a valid frame.
+ ASSERT(flag == JUMP_FUNCTION || has_frame());
+
+ // Contract with called JS functions requires that function is passed in x1.
+ // (See FullCodeGenerator::Generate().)
+ ASSERT(function.Is(x1));
+
+ Register code_reg = x3;
+
+ // Set up the context.
+ Ldr(cp, FieldMemOperand(function, JSFunction::kContextOffset));
+
+ // We call indirectly through the code field in the function to
+ // allow recompilation to take effect without changing any of the
+ // call sites.
+ Ldr(code_reg, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
+ InvokeCode(code_reg, expected, actual, flag, call_wrapper);
+}
+
+
+void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
+ const ParameterCount& expected,
+ const ParameterCount& actual,
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper) {
+ // Contract with called JS functions requires that function is passed in x1.
+ // (See FullCodeGenerator::Generate().)
+ __ LoadObject(x1, function);
+ InvokeFunction(x1, expected, actual, flag, call_wrapper);
+}
+
+
+void MacroAssembler::ECMA262ToInt32(Register result,
+ DoubleRegister input,
+ Register scratch1,
+ Register scratch2,
+ ECMA262ToInt32Result format) {
+ ASSERT(!AreAliased(result, scratch1, scratch2));
+ ASSERT(result.Is64Bits() && scratch1.Is64Bits() && scratch2.Is64Bits());
+ STATIC_ASSERT(kSmiTag == 0);
+ STATIC_ASSERT(kSmiValueSize == 32);
+
+ Label done, tag, manual_conversion;
+
+ // 1. Try to convert with a FPU convert instruction. It's trivial to compute
+ // the modulo operation on an integer register so we convert to a 64-bit
+ // integer, then find the 32-bit result from that.
+ //
+ // Fcvtzs will saturate to INT64_MIN (0x800...00) or INT64_MAX (0x7ff...ff)
+ // when the double is out of range. NaNs and infinities will be converted to 0
+ // (as ECMA-262 requires).
+ Fcvtzs(result, input);
+
+ // The values INT64_MIN (0x800...00) or INT64_MAX (0x7ff...ff) are not
+ // representable using a double, so if the result is one of those then we know
+ // that saturation occured, and we need to manually handle the conversion.
+ //
+ // It is easy to detect INT64_MIN and INT64_MAX because adding or subtracting
+ // 1 will cause signed overflow.
+ Cmp(result, 1);
+ Ccmp(result, -1, VFlag, vc);
+ B(vc, &tag);
+
+ // 2. Manually convert the input to an int32.
+ Fmov(result, input);
+
+ // Extract the exponent.
+ Register exponent = scratch1;
+ Ubfx(exponent, result, HeapNumber::kMantissaBits, HeapNumber::kExponentBits);
+
+ // It the exponent is >= 84 (kMantissaBits + 32), the result is always 0 since
+ // the mantissa gets shifted completely out of the int32_t result.
+ Cmp(exponent, HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 32);
+ CzeroX(result, ge);
+ B(ge, &done);
+
+ // The Fcvtzs sequence handles all cases except where the conversion causes
+ // signed overflow in the int64_t target. Since we've already handled
+ // exponents >= 84, we can guarantee that 63 <= exponent < 84.
+
+ if (emit_debug_code()) {
+ Cmp(exponent, HeapNumber::kExponentBias + 63);
+ // Exponents less than this should have been handled by the Fcvt case.
+ Check(ge, kUnexpectedValue);
+ }
+
+ // Isolate the mantissa bits, and set the implicit '1'.
+ Register mantissa = scratch2;
+ Ubfx(mantissa, result, 0, HeapNumber::kMantissaBits);
+ Orr(mantissa, mantissa, 1UL << HeapNumber::kMantissaBits);
+
+ // Negate the mantissa if necessary.
+ Tst(result, kXSignMask);
+ Cneg(mantissa, mantissa, ne);
+
+ // Shift the mantissa bits in the correct place. We know that we have to shift
+ // it left here, because exponent >= 63 >= kMantissaBits.
+ Sub(exponent, exponent,
+ HeapNumber::kExponentBias + HeapNumber::kMantissaBits);
+ Lsl(result, mantissa, exponent);
+
+ Bind(&tag);
+ switch (format) {
+ case INT32_IN_W:
+ // There is nothing to do; the upper 32 bits are undefined.
+ if (emit_debug_code()) {
+ __ Mov(scratch1, 0x55555555);
+ __ Bfi(result, scratch1, 32, 32);
+ }
+ break;
+ case INT32_IN_X:
+ Sxtw(result, result);
+ break;
+ case SMI:
+ SmiTag(result);
+ break;
+ }
+
+ Bind(&done);
+}
+
+
+void MacroAssembler::HeapNumberECMA262ToInt32(Register result,
+ Register heap_number,
+ Register scratch1,
+ Register scratch2,
+ DoubleRegister double_scratch,
+ ECMA262ToInt32Result format) {
+ if (emit_debug_code()) {
+ // Verify we indeed have a HeapNumber.
+ Label ok;
+ JumpIfHeapNumber(heap_number, &ok);
+ Abort(kExpectedHeapNumber);
+ Bind(&ok);
+ }
+
+ Ldr(double_scratch, FieldMemOperand(heap_number, HeapNumber::kValueOffset));
+ ECMA262ToInt32(result, double_scratch, scratch1, scratch2, format);
+}
+
+
+void MacroAssembler::Prologue(PrologueFrameMode frame_mode) {
+ if (frame_mode == BUILD_STUB_FRAME) {
+ ASSERT(StackPointer().Is(jssp));
+ // TODO(jbramley): Does x1 contain a JSFunction here, or does it already
+ // have the special STUB smi?
+ __ Mov(Tmp0(), Operand(Smi::FromInt(StackFrame::STUB)));
+ // Compiled stubs don't age, and so they don't need the predictable code
+ // ageing sequence.
+ __ Push(lr, fp, cp, Tmp0());
+ __ Add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp);
+ } else {
+ if (isolate()->IsCodePreAgingActive()) {
+ Code* stub = Code::GetPreAgedCodeAgeStub(isolate());
+ __ EmitCodeAgeSequence(stub);
+ } else {
+ __ EmitFrameSetupForCodeAgePatching();
+ }
+ }
+}
+
+
+void MacroAssembler::EnterFrame(StackFrame::Type type) {
+ ASSERT(jssp.Is(StackPointer()));
+ Push(lr, fp, cp);
+ Mov(Tmp1(), Operand(Smi::FromInt(type)));
+ Mov(Tmp0(), Operand(CodeObject()));
+ Push(Tmp1(), Tmp0());
+ // jssp[4] : lr
+ // jssp[3] : fp
+ // jssp[2] : cp
+ // jssp[1] : type
+ // jssp[0] : code object
+
+ // Adjust FP to point to saved FP.
+ add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize);
+}
+
+
+void MacroAssembler::LeaveFrame(StackFrame::Type type) {
+ ASSERT(jssp.Is(StackPointer()));
+ // Drop the execution stack down to the frame pointer and restore
+ // the caller frame pointer and return address.
+ Mov(jssp, fp);
+ AssertStackConsistency();
+ Pop(fp, lr);
+}
+
+
+void MacroAssembler::ExitFramePreserveFPRegs() {
+ PushCPURegList(kCallerSavedFP);
+}
+
+
+void MacroAssembler::ExitFrameRestoreFPRegs() {
+ // Read the registers from the stack without popping them. The stack pointer
+ // will be reset as part of the unwinding process.
+ CPURegList saved_fp_regs = kCallerSavedFP;
+ ASSERT(saved_fp_regs.Count() % 2 == 0);
+
+ int offset = ExitFrameConstants::kLastExitFrameField;
+ while (!saved_fp_regs.IsEmpty()) {
+ const CPURegister& dst0 = saved_fp_regs.PopHighestIndex();
+ const CPURegister& dst1 = saved_fp_regs.PopHighestIndex();
+ offset -= 2 * kDRegSizeInBytes;
+ Ldp(dst1, dst0, MemOperand(fp, offset));
+ }
+}
+
+
+// TODO(jbramley): Check that we're handling the frame pointer correctly.
+void MacroAssembler::EnterExitFrame(bool save_doubles,
+ const Register& scratch,
+ int extra_space) {
+ ASSERT(jssp.Is(StackPointer()));
+
+ // Set up the new stack frame.
+ Mov(scratch, Operand(CodeObject()));
+ Push(lr, fp);
+ Mov(fp, StackPointer());
+ Push(xzr, scratch);
+ // fp[8]: CallerPC (lr)
+ // fp -> fp[0]: CallerFP (old fp)
+ // fp[-8]: Space reserved for SPOffset.
+ // jssp -> fp[-16]: CodeObject()
+ STATIC_ASSERT((2 * kPointerSize) ==
+ ExitFrameConstants::kCallerSPDisplacement);
+ STATIC_ASSERT((1 * kPointerSize) == ExitFrameConstants::kCallerPCOffset);
+ STATIC_ASSERT((0 * kPointerSize) == ExitFrameConstants::kCallerFPOffset);
+ STATIC_ASSERT((-1 * kPointerSize) == ExitFrameConstants::kSPOffset);
+ STATIC_ASSERT((-2 * kPointerSize) == ExitFrameConstants::kCodeOffset);
+
+ // Save the frame pointer and context pointer in the top frame.
+ Mov(scratch, Operand(ExternalReference(Isolate::kCEntryFPAddress,
+ isolate())));
+ Str(fp, MemOperand(scratch));
+ Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress,
+ isolate())));
+ Str(cp, MemOperand(scratch));
+
+ STATIC_ASSERT((-2 * kPointerSize) ==
+ ExitFrameConstants::kLastExitFrameField);
+ if (save_doubles) {
+ ExitFramePreserveFPRegs();
+ }
+
+ // Reserve space for the return address and for user requested memory.
+ // We do this before aligning to make sure that we end up correctly
+ // aligned with the minimum of wasted space.
+ Claim(extra_space + 1, kXRegSizeInBytes);
+ // fp[8]: CallerPC (lr)
+ // fp -> fp[0]: CallerFP (old fp)
+ // fp[-8]: Space reserved for SPOffset.
+ // fp[-16]: CodeObject()
+ // jssp[-16 - fp_size]: Saved doubles (if save_doubles is true).
+ // jssp[8]: Extra space reserved for caller (if extra_space != 0).
+ // jssp -> jssp[0]: Space reserved for the return address.
+
+ // Align and synchronize the system stack pointer with jssp.
+ AlignAndSetCSPForFrame();
+ ASSERT(csp.Is(StackPointer()));
+
+ // fp[8]: CallerPC (lr)
+ // fp -> fp[0]: CallerFP (old fp)
+ // fp[-8]: Space reserved for SPOffset.
+ // fp[-16]: CodeObject()
+ // csp[...]: Saved doubles, if saved_doubles is true.
+ // csp[8]: Memory reserved for the caller if extra_space != 0.
+ // Alignment padding, if necessary.
+ // csp -> csp[0]: Space reserved for the return address.
+
+ // ExitFrame::GetStateForFramePointer expects to find the return address at
+ // the memory address immediately below the pointer stored in SPOffset.
+ // It is not safe to derive much else from SPOffset, because the size of the
+ // padding can vary.
+ Add(scratch, csp, kXRegSizeInBytes);
+ Str(scratch, MemOperand(fp, ExitFrameConstants::kSPOffset));
+}
+
+
+// Leave the current exit frame.
+void MacroAssembler::LeaveExitFrame(bool restore_doubles,
+ const Register& scratch,
+ bool restore_context) {
+ ASSERT(csp.Is(StackPointer()));
+
+ if (restore_doubles) {
+ ExitFrameRestoreFPRegs();
+ }
+
+ // Restore the context pointer from the top frame.
+ if (restore_context) {
+ Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress,
+ isolate())));
+ Ldr(cp, MemOperand(scratch));
+ }
+
+ if (emit_debug_code()) {
+ // Also emit debug code to clear the cp in the top frame.
+ Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress,
+ isolate())));
+ Str(xzr, MemOperand(scratch));
+ }
+ // Clear the frame pointer from the top frame.
+ Mov(scratch, Operand(ExternalReference(Isolate::kCEntryFPAddress,
+ isolate())));
+ Str(xzr, MemOperand(scratch));
+
+ // Pop the exit frame.
+ // fp[8]: CallerPC (lr)
+ // fp -> fp[0]: CallerFP (old fp)
+ // fp[...]: The rest of the frame.
+ Mov(jssp, fp);
+ SetStackPointer(jssp);
+ AssertStackConsistency();
+ Pop(fp, lr);
+}
+
+
+void MacroAssembler::SetCounter(StatsCounter* counter, int value,
+ Register scratch1, Register scratch2) {
+ if (FLAG_native_code_counters && counter->Enabled()) {
+ Mov(scratch1, value);
+ Mov(scratch2, Operand(ExternalReference(counter)));
+ Str(scratch1, MemOperand(scratch2));
+ }
+}
+
+
+void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
+ Register scratch1, Register scratch2) {
+ ASSERT(value != 0);
+ if (FLAG_native_code_counters && counter->Enabled()) {
+ Mov(scratch2, Operand(ExternalReference(counter)));
+ Ldr(scratch1, MemOperand(scratch2));
+ Add(scratch1, scratch1, value);
+ Str(scratch1, MemOperand(scratch2));
+ }
+}
+
+
+void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
+ Register scratch1, Register scratch2) {
+ IncrementCounter(counter, -value, scratch1, scratch2);
+}
+
+
+void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
+ if (context_chain_length > 0) {
+ // Move up the chain of contexts to the context containing the slot.
+ Ldr(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX)));
+ for (int i = 1; i < context_chain_length; i++) {
+ Ldr(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
+ }
+ } else {
+ // Slot is in the current function context. Move it into the
+ // destination register in case we store into it (the write barrier
+ // cannot be allowed to destroy the context in cp).
+ Mov(dst, cp);
+ }
+}
+
+
+#ifdef ENABLE_DEBUGGER_SUPPORT
+void MacroAssembler::DebugBreak() {
+ Mov(x0, 0);
+ Mov(x1, Operand(ExternalReference(Runtime::kDebugBreak, isolate())));
+ CEntryStub ces(1);
+ ASSERT(AllowThisStubCall(&ces));
+ Call(ces.GetCode(isolate()), RelocInfo::DEBUG_BREAK);
+}
+#endif
+
+
+void MacroAssembler::PushTryHandler(StackHandler::Kind kind,
+ int handler_index) {
+ ASSERT(jssp.Is(StackPointer()));
+ // Adjust this code if the asserts don't hold.
+ STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
+
+ // For the JSEntry handler, we must preserve the live registers x0-x4.
+ // (See JSEntryStub::GenerateBody().)
+
+ unsigned state =
+ StackHandler::IndexField::encode(handler_index) |
+ StackHandler::KindField::encode(kind);
+
+ // Set up the code object and the state for pushing.
+ Mov(x10, Operand(CodeObject()));
+ Mov(x11, state);
+
+ // Push the frame pointer, context, state, and code object.
+ if (kind == StackHandler::JS_ENTRY) {
+ ASSERT(Smi::FromInt(0) == 0);
+ Push(xzr, xzr, x11, x10);
+ } else {
+ Push(fp, cp, x11, x10);
+ }
+
+ // Link the current handler as the next handler.
+ Mov(x11, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
+ Ldr(x10, MemOperand(x11));
+ Push(x10);
+ // Set this new handler as the current one.
+ Str(jssp, MemOperand(x11));
+}
+
+
+void MacroAssembler::PopTryHandler() {
+ STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
+ Pop(x10);
+ Mov(x11, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
+ Drop(StackHandlerConstants::kSize - kXRegSizeInBytes, kByteSizeInBytes);
+ Str(x10, MemOperand(x11));
+}
+
+
+void MacroAssembler::Allocate(int object_size,
+ Register result,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required,
+ AllocationFlags flags) {
+ ASSERT(object_size <= Page::kMaxRegularHeapObjectSize);
+ if (!FLAG_inline_new) {
+ if (emit_debug_code()) {
+ // Trash the registers to simulate an allocation failure.
+ // We apply salt to the original zap value to easily spot the values.
+ Mov(result, (kDebugZapValue & ~0xffL) | 0x11L);
+ Mov(scratch1, (kDebugZapValue & ~0xffL) | 0x21L);
+ Mov(scratch2, (kDebugZapValue & ~0xffL) | 0x21L);
+ }
+ B(gc_required);
+ return;
+ }
+
+ ASSERT(!AreAliased(result, scratch1, scratch2, Tmp0(), Tmp1()));
+ ASSERT(result.Is64Bits() && scratch1.Is64Bits() && scratch2.Is64Bits() &&
+ Tmp0().Is64Bits() && Tmp1().Is64Bits());
+
+ // Make object size into bytes.
+ if ((flags & SIZE_IN_WORDS) != 0) {
+ object_size *= kPointerSize;
+ }
+ ASSERT(0 == (object_size & kObjectAlignmentMask));
+
+ // Check relative positions of allocation top and limit addresses.
+ // The values must be adjacent in memory to allow the use of LDP.
+ ExternalReference heap_allocation_top =
+ AllocationUtils::GetAllocationTopReference(isolate(), flags);
+ ExternalReference heap_allocation_limit =
+ AllocationUtils::GetAllocationLimitReference(isolate(), flags);
+ intptr_t top = reinterpret_cast<intptr_t>(heap_allocation_top.address());
+ intptr_t limit = reinterpret_cast<intptr_t>(heap_allocation_limit.address());
+ ASSERT((limit - top) == kPointerSize);
+
+ // Set up allocation top address and object size registers.
+ Register top_address = scratch1;
+ Register allocation_limit = scratch2;
+ Mov(top_address, Operand(heap_allocation_top));
+
+ if ((flags & RESULT_CONTAINS_TOP) == 0) {
+ // Load allocation top into result and the allocation limit.
+ Ldp(result, allocation_limit, MemOperand(top_address));
+ } else {
+ if (emit_debug_code()) {
+ // Assert that result actually contains top on entry.
+ Ldr(Tmp0(), MemOperand(top_address));
+ Cmp(result, Tmp0());
+ Check(eq, kUnexpectedAllocationTop);
+ }
+ // Load the allocation limit. 'result' already contains the allocation top.
+ Ldr(allocation_limit, MemOperand(top_address, limit - top));
+ }
+
+ // We can ignore DOUBLE_ALIGNMENT flags here because doubles and pointers have
+ // the same alignment on A64.
+ STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
+
+ // Calculate new top and bail out if new space is exhausted.
+ Adds(Tmp1(), result, object_size);
+ B(vs, gc_required);
+ Cmp(Tmp1(), allocation_limit);
+ B(hi, gc_required);
+ Str(Tmp1(), MemOperand(top_address));
+
+ // Tag the object if requested.
+ if ((flags & TAG_OBJECT) != 0) {
+ Orr(result, result, kHeapObjectTag);
+ }
+}
+
+
+void MacroAssembler::Allocate(Register object_size,
+ Register result,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required,
+ AllocationFlags flags) {
+ if (!FLAG_inline_new) {
+ if (emit_debug_code()) {
+ // Trash the registers to simulate an allocation failure.
+ // We apply salt to the original zap value to easily spot the values.
+ Mov(result, (kDebugZapValue & ~0xffL) | 0x11L);
+ Mov(scratch1, (kDebugZapValue & ~0xffL) | 0x21L);
+ Mov(scratch2, (kDebugZapValue & ~0xffL) | 0x21L);
+ }
+ B(gc_required);
+ return;
+ }
+
+ ASSERT(!AreAliased(object_size, result, scratch1, scratch2, Tmp0(), Tmp1()));
+ ASSERT(object_size.Is64Bits() && result.Is64Bits() && scratch1.Is64Bits() &&
+ scratch2.Is64Bits() && Tmp0().Is64Bits() && Tmp1().Is64Bits());
+
+ // Check relative positions of allocation top and limit addresses.
+ // The values must be adjacent in memory to allow the use of LDP.
+ ExternalReference heap_allocation_top =
+ AllocationUtils::GetAllocationTopReference(isolate(), flags);
+ ExternalReference heap_allocation_limit =
+ AllocationUtils::GetAllocationLimitReference(isolate(), flags);
+ intptr_t top = reinterpret_cast<intptr_t>(heap_allocation_top.address());
+ intptr_t limit = reinterpret_cast<intptr_t>(heap_allocation_limit.address());
+ ASSERT((limit - top) == kPointerSize);
+
+ // Set up allocation top address and object size registers.
+ Register top_address = scratch1;
+ Register allocation_limit = scratch2;
+ Mov(top_address, Operand(heap_allocation_top));
+
+ if ((flags & RESULT_CONTAINS_TOP) == 0) {
+ // Load allocation top into result and the allocation limit.
+ Ldp(result, allocation_limit, MemOperand(top_address));
+ } else {
+ if (emit_debug_code()) {
+ // Assert that result actually contains top on entry.
+ Ldr(Tmp0(), MemOperand(top_address));
+ Cmp(result, Tmp0());
+ Check(eq, kUnexpectedAllocationTop);
+ }
+ // Load the allocation limit. 'result' already contains the allocation top.
+ Ldr(allocation_limit, MemOperand(top_address, limit - top));
+ }
+
+ // We can ignore DOUBLE_ALIGNMENT flags here because doubles and pointers have
+ // the same alignment on A64.
+ STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
+
+ // Calculate new top and bail out if new space is exhausted
+ if ((flags & SIZE_IN_WORDS) != 0) {
+ Adds(Tmp1(), result, Operand(object_size, LSL, kPointerSizeLog2));
+ } else {
+ Adds(Tmp1(), result, object_size);
+ }
+
+ if (emit_debug_code()) {
+ Tst(Tmp1(), kObjectAlignmentMask);
+ Check(eq, kUnalignedAllocationInNewSpace);
+ }
+
+ B(vs, gc_required);
+ Cmp(Tmp1(), allocation_limit);
+ B(hi, gc_required);
+ Str(Tmp1(), MemOperand(top_address));
+
+ // Tag the object if requested.
+ if ((flags & TAG_OBJECT) != 0) {
+ Orr(result, result, kHeapObjectTag);
+ }
+}
+
+
+void MacroAssembler::UndoAllocationInNewSpace(Register object,
+ Register scratch) {
+ ExternalReference new_space_allocation_top =
+ ExternalReference::new_space_allocation_top_address(isolate());
+
+ // Make sure the object has no tag before resetting top.
+ Bic(object, object, kHeapObjectTagMask);
+#ifdef DEBUG
+ // Check that the object un-allocated is below the current top.
+ Mov(scratch, Operand(new_space_allocation_top));
+ Ldr(scratch, MemOperand(scratch));
+ Cmp(object, scratch);
+ Check(lt, kUndoAllocationOfNonAllocatedMemory);
+#endif
+ // Write the address of the object to un-allocate as the current top.
+ Mov(scratch, Operand(new_space_allocation_top));
+ Str(object, MemOperand(scratch));
+}
+
+
+void MacroAssembler::AllocateTwoByteString(Register result,
+ Register length,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Label* gc_required) {
+ ASSERT(!AreAliased(result, length, scratch1, scratch2, scratch3));
+ // Calculate the number of bytes needed for the characters in the string while
+ // observing object alignment.
+ STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
+ Add(scratch1, length, length); // Length in bytes, not chars.
+ Add(scratch1, scratch1, kObjectAlignmentMask + SeqTwoByteString::kHeaderSize);
+ Bic(scratch1, scratch1, kObjectAlignmentMask);
+
+ // Allocate two-byte string in new space.
+ Allocate(scratch1,
+ result,
+ scratch2,
+ scratch3,
+ gc_required,
+ TAG_OBJECT);
+
+ // Set the map, length and hash field.
+ InitializeNewString(result,
+ length,
+ Heap::kStringMapRootIndex,
+ scratch1,
+ scratch2);
+}
+
+
+void MacroAssembler::AllocateAsciiString(Register result,
+ Register length,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Label* gc_required) {
+ ASSERT(!AreAliased(result, length, scratch1, scratch2, scratch3));
+ // Calculate the number of bytes needed for the characters in the string while
+ // observing object alignment.
+ STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
+ STATIC_ASSERT(kCharSize == 1);
+ Add(scratch1, length, kObjectAlignmentMask + SeqOneByteString::kHeaderSize);
+ Bic(scratch1, scratch1, kObjectAlignmentMask);
+
+ // Allocate ASCII string in new space.
+ Allocate(scratch1,
+ result,
+ scratch2,
+ scratch3,
+ gc_required,
+ TAG_OBJECT);
+
+ // Set the map, length and hash field.
+ InitializeNewString(result,
+ length,
+ Heap::kAsciiStringMapRootIndex,
+ scratch1,
+ scratch2);
+}
+
+
+void MacroAssembler::AllocateTwoByteConsString(Register result,
+ Register length,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required) {
+ Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
+ TAG_OBJECT);
+
+ InitializeNewString(result,
+ length,
+ Heap::kConsStringMapRootIndex,
+ scratch1,
+ scratch2);
+}
+
+
+void MacroAssembler::AllocateAsciiConsString(Register result,
+ Register length,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required) {
+ Label allocate_new_space, install_map;
+ AllocationFlags flags = TAG_OBJECT;
+
+ ExternalReference high_promotion_mode = ExternalReference::
+ new_space_high_promotion_mode_active_address(isolate());
+ Mov(scratch1, Operand(high_promotion_mode));
+ Ldr(scratch1, MemOperand(scratch1));
+ Cbz(scratch1, &allocate_new_space);
+
+ Allocate(ConsString::kSize,
+ result,
+ scratch1,
+ scratch2,
+ gc_required,
+ static_cast<AllocationFlags>(flags | PRETENURE_OLD_POINTER_SPACE));
+
+ B(&install_map);
+
+ Bind(&allocate_new_space);
+ Allocate(ConsString::kSize,
+ result,
+ scratch1,
+ scratch2,
+ gc_required,
+ flags);
+
+ Bind(&install_map);
+
+ InitializeNewString(result,
+ length,
+ Heap::kConsAsciiStringMapRootIndex,
+ scratch1,
+ scratch2);
+}
+
+
+void MacroAssembler::AllocateTwoByteSlicedString(Register result,
+ Register length,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required) {
+ ASSERT(!AreAliased(result, length, scratch1, scratch2));
+ Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
+ TAG_OBJECT);
+
+ InitializeNewString(result,
+ length,
+ Heap::kSlicedStringMapRootIndex,
+ scratch1,
+ scratch2);
+}
+
+
+void MacroAssembler::AllocateAsciiSlicedString(Register result,
+ Register length,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required) {
+ ASSERT(!AreAliased(result, length, scratch1, scratch2));
+ Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
+ TAG_OBJECT);
+
+ InitializeNewString(result,
+ length,
+ Heap::kSlicedAsciiStringMapRootIndex,
+ scratch1,
+ scratch2);
+}
+
+
+// Allocates a heap number or jumps to the need_gc label if the young space
+// is full and a scavenge is needed.
+void MacroAssembler::AllocateHeapNumber(Register result,
+ Label* gc_required,
+ Register scratch1,
+ Register scratch2,
+ Register heap_number_map) {
+ // Allocate an object in the heap for the heap number and tag it as a heap
+ // object.
+ Allocate(HeapNumber::kSize, result, scratch1, scratch2, gc_required,
+ TAG_OBJECT);
+
+ // Store heap number map in the allocated object.
+ if (heap_number_map.Is(NoReg)) {
+ heap_number_map = scratch1;
+ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
+ }
+ AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
+ Str(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset));
+}
+
+
+void MacroAssembler::AllocateHeapNumberWithValue(Register result,
+ DoubleRegister value,
+ Label* gc_required,
+ Register scratch1,
+ Register scratch2,
+ Register heap_number_map) {
+ // TODO(all): Check if it would be more efficient to use STP to store both
+ // the map and the value.
+ AllocateHeapNumber(result, gc_required, scratch1, scratch2, heap_number_map);
+ Str(value, FieldMemOperand(result, HeapNumber::kValueOffset));
+}
+
+
+void MacroAssembler::JumpIfObjectType(Register object,
+ Register map,
+ Register type_reg,
+ InstanceType type,
+ Label* if_cond_pass,
+ Condition cond) {
+ CompareObjectType(object, map, type_reg, type);
+ B(cond, if_cond_pass);
+}
+
+
+void MacroAssembler::JumpIfNotObjectType(Register object,
+ Register map,
+ Register type_reg,
+ InstanceType type,
+ Label* if_not_object) {
+ JumpIfObjectType(object, map, type_reg, type, if_not_object, ne);
+}
+
+
+// Sets condition flags based on comparison, and returns type in type_reg.
+void MacroAssembler::CompareObjectType(Register object,
+ Register map,
+ Register type_reg,
+ InstanceType type) {
+ Ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
+ CompareInstanceType(map, type_reg, type);
+}
+
+
+// Sets condition flags based on comparison, and returns type in type_reg.
+void MacroAssembler::CompareInstanceType(Register map,
+ Register type_reg,
+ InstanceType type) {
+ Ldrb(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
+ Cmp(type_reg, type);
+}
+
+
+void MacroAssembler::CompareMap(Register obj,
+ Register scratch,
+ Handle<Map> map,
+ Label* early_success) {
+ // TODO(jbramley): The early_success label isn't used. Remove it.
+ Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
+ CompareMap(scratch, map, early_success);
+}
+
+
+void MacroAssembler::CompareMap(Register obj_map,
+ Handle<Map> map,
+ Label* early_success) {
+ // TODO(jbramley): The early_success label isn't used. Remove it.
+ Cmp(obj_map, Operand(map));
+}
+
+
+void MacroAssembler::CheckMap(Register obj,
+ Register scratch,
+ Handle<Map> map,
+ Label* fail,
+ SmiCheckType smi_check_type) {
+ if (smi_check_type == DO_SMI_CHECK) {
+ JumpIfSmi(obj, fail);
+ }
+
+ Label success;
+ CompareMap(obj, scratch, map, &success);
+ B(ne, fail);
+ Bind(&success);
+}
+
+
+void MacroAssembler::CheckMap(Register obj,
+ Register scratch,
+ Heap::RootListIndex index,
+ Label* fail,
+ SmiCheckType smi_check_type) {
+ if (smi_check_type == DO_SMI_CHECK) {
+ JumpIfSmi(obj, fail);
+ }
+ Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
+ JumpIfNotRoot(scratch, index, fail);
+}
+
+
+void MacroAssembler::CheckMap(Register obj_map,
+ Handle<Map> map,
+ Label* fail,
+ SmiCheckType smi_check_type) {
+ if (smi_check_type == DO_SMI_CHECK) {
+ JumpIfSmi(obj_map, fail);
+ }
+ Label success;
+ CompareMap(obj_map, map, &success);
+ B(ne, fail);
+ Bind(&success);
+}
+
+
+void MacroAssembler::DispatchMap(Register obj,
+ Register scratch,
+ Handle<Map> map,
+ Handle<Code> success,
+ SmiCheckType smi_check_type) {
+ Label fail;
+ if (smi_check_type == DO_SMI_CHECK) {
+ JumpIfSmi(obj, &fail);
+ }
+ Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
+ Cmp(scratch, Operand(map));
+ B(ne, &fail);
+ Jump(success, RelocInfo::CODE_TARGET);
+ Bind(&fail);
+}
+
+
+void MacroAssembler::TestMapBitfield(Register object, uint64_t mask) {
+ Ldr(Tmp0(), FieldMemOperand(object, HeapObject::kMapOffset));
+ Ldrb(Tmp0(), FieldMemOperand(Tmp0(), Map::kBitFieldOffset));
+ Tst(Tmp0(), mask);
+}
+
+
+void MacroAssembler::LoadElementsKind(Register result, Register object) {
+ // Load map.
+ __ Ldr(result, FieldMemOperand(object, HeapObject::kMapOffset));
+ // Load the map's "bit field 2".
+ __ Ldrb(result, FieldMemOperand(result, Map::kBitField2Offset));
+ // Retrieve elements_kind from bit field 2.
+ __ Ubfx(result, result, Map::kElementsKindShift, Map::kElementsKindBitCount);
+}
+
+
+void MacroAssembler::TryGetFunctionPrototype(Register function,
+ Register result,
+ Register scratch,
+ Label* miss,
+ BoundFunctionAction action) {
+ ASSERT(!AreAliased(function, result, scratch));
+
+ // Check that the receiver isn't a smi.
+ JumpIfSmi(function, miss);
+
+ // Check that the function really is a function. Load map into result reg.
+ JumpIfNotObjectType(function, result, scratch, JS_FUNCTION_TYPE, miss);
+
+ if (action == kMissOnBoundFunction) {
+ Register scratch_w = scratch.W();
+ Ldr(scratch,
+ FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
+ // On 64-bit platforms, compiler hints field is not a smi. See definition of
+ // kCompilerHintsOffset in src/objects.h.
+ Ldr(scratch_w,
+ FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset));
+ Tbnz(scratch, SharedFunctionInfo::kBoundFunction, miss);
+ }
+
+ // Make sure that the function has an instance prototype.
+ Label non_instance;
+ Ldrb(scratch, FieldMemOperand(result, Map::kBitFieldOffset));
+ Tbnz(scratch, Map::kHasNonInstancePrototype, &non_instance);
+
+ // Get the prototype or initial map from the function.
+ Ldr(result,
+ FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
+
+ // If the prototype or initial map is the hole, don't return it and simply
+ // miss the cache instead. This will allow us to allocate a prototype object
+ // on-demand in the runtime system.
+ JumpIfRoot(result, Heap::kTheHoleValueRootIndex, miss);
+
+ // If the function does not have an initial map, we're done.
+ Label done;
+ JumpIfNotObjectType(result, scratch, scratch, MAP_TYPE, &done);
+
+ // Get the prototype from the initial map.
+ Ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
+ B(&done);
+
+ // Non-instance prototype: fetch prototype from constructor field in initial
+ // map.
+ Bind(&non_instance);
+ Ldr(result, FieldMemOperand(result, Map::kConstructorOffset));
+
+ // All done.
+ Bind(&done);
+}
+
+
+void MacroAssembler::CompareRoot(const Register& obj,
+ Heap::RootListIndex index) {
+ ASSERT(!AreAliased(obj, Tmp0()));
+ LoadRoot(Tmp0(), index);
+ Cmp(obj, Tmp0());
+}
+
+
+void MacroAssembler::JumpIfRoot(const Register& obj,
+ Heap::RootListIndex index,
+ Label* if_equal) {
+ CompareRoot(obj, index);
+ B(eq, if_equal);
+}
+
+
+void MacroAssembler::JumpIfNotRoot(const Register& obj,
+ Heap::RootListIndex index,
+ Label* if_not_equal) {
+ CompareRoot(obj, index);
+ B(ne, if_not_equal);
+}
+
+
+void MacroAssembler::CompareAndSplit(const Register& lhs,
+ const Operand& rhs,
+ Condition cond,
+ Label* if_true,
+ Label* if_false,
+ Label* fall_through) {
+ if ((if_true == if_false) && (if_false == fall_through)) {
+ // Fall through.
+ } else if (if_true == if_false) {
+ B(if_true);
+ } else if (if_false == fall_through) {
+ CompareAndBranch(lhs, rhs, cond, if_true);
+ } else if (if_true == fall_through) {
+ CompareAndBranch(lhs, rhs, InvertCondition(cond), if_false);
+ } else {
+ CompareAndBranch(lhs, rhs, cond, if_true);
+ B(if_false);
+ }
+}
+
+
+void MacroAssembler::TestAndSplit(const Register& reg,
+ uint64_t bit_pattern,
+ Label* if_all_clear,
+ Label* if_any_set,
+ Label* fall_through) {
+ if ((if_all_clear == if_any_set) && (if_any_set == fall_through)) {
+ // Fall through.
+ } else if (if_all_clear == if_any_set) {
+ B(if_all_clear);
+ } else if (if_all_clear == fall_through) {
+ TestAndBranchIfAnySet(reg, bit_pattern, if_any_set);
+ } else if (if_any_set == fall_through) {
+ TestAndBranchIfAllClear(reg, bit_pattern, if_all_clear);
+ } else {
+ TestAndBranchIfAnySet(reg, bit_pattern, if_any_set);
+ B(if_all_clear);
+ }
+}
+
+
+void MacroAssembler::CheckFastElements(Register map,
+ Register scratch,
+ Label* fail) {
+ STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
+ STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
+ STATIC_ASSERT(FAST_ELEMENTS == 2);
+ STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
+ Ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset));
+ Cmp(scratch, Map::kMaximumBitField2FastHoleyElementValue);
+ B(hi, fail);
+}
+
+
+void MacroAssembler::CheckFastObjectElements(Register map,
+ Register scratch,
+ Label* fail) {
+ STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
+ STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
+ STATIC_ASSERT(FAST_ELEMENTS == 2);
+ STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
+ Ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset));
+ Cmp(scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue));
+ // If cond==ls, set cond=hi, otherwise compare.
+ Ccmp(scratch,
+ Operand(Map::kMaximumBitField2FastHoleyElementValue), CFlag, hi);
+ B(hi, fail);
+}
+
+
+void MacroAssembler::CheckFastSmiElements(Register map,
+ Register scratch,
+ Label* fail) {
+ STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
+ STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
+ Ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset));
+ Cmp(scratch, Map::kMaximumBitField2FastHoleySmiElementValue);
+ B(hi, fail);
+}
+
+
+// Note: The ARM version of this clobbers elements_reg, but this version does
+// not. Some uses of this in A64 assume that elements_reg will be preserved.
+void MacroAssembler::StoreNumberToDoubleElements(Register value_reg,
+ Register key_reg,
+ Register elements_reg,
+ Register scratch1,
+ FPRegister fpscratch1,
+ FPRegister fpscratch2,
+ Label* fail,
+ int elements_offset) {
+ ASSERT(!AreAliased(value_reg, key_reg, elements_reg, scratch1));
+ Label store_num;
+
+ // Speculatively convert the smi to a double - all smis can be exactly
+ // represented as a double.
+ SmiUntagToDouble(fpscratch1, value_reg, kSpeculativeUntag);
+
+ // If value_reg is a smi, we're done.
+ JumpIfSmi(value_reg, &store_num);
+
+ // Ensure that the object is a heap number.
+ CheckMap(value_reg, scratch1, isolate()->factory()->heap_number_map(),
+ fail, DONT_DO_SMI_CHECK);
+
+ Ldr(fpscratch1, FieldMemOperand(value_reg, HeapNumber::kValueOffset));
+ Fmov(fpscratch2, FixedDoubleArray::canonical_not_the_hole_nan_as_double());
+
+ // Check for NaN by comparing the number to itself: NaN comparison will
+ // report unordered, indicated by the overflow flag being set.
+ Fcmp(fpscratch1, fpscratch1);
+ Fcsel(fpscratch1, fpscratch2, fpscratch1, vs);
+
+ // Store the result.
+ Bind(&store_num);
+ Add(scratch1, elements_reg,
+ Operand::UntagSmiAndScale(key_reg, kDoubleSizeLog2));
+ Str(fpscratch1,
+ FieldMemOperand(scratch1,
+ FixedDoubleArray::kHeaderSize - elements_offset));
+}
+
+
+bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
+ return has_frame_ || !stub->SometimesSetsUpAFrame();
+}
+
+
+void MacroAssembler::IndexFromHash(Register hash, Register index) {
+ // If the hash field contains an array index pick it out. The assert checks
+ // that the constants for the maximum number of digits for an array index
+ // cached in the hash field and the number of bits reserved for it does not
+ // conflict.
+ ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) <
+ (1 << String::kArrayIndexValueBits));
+ // We want the smi-tagged index in key. kArrayIndexValueMask has zeros in
+ // the low kHashShift bits.
+ STATIC_ASSERT(kSmiTag == 0);
+ Ubfx(hash, hash, String::kHashShift, String::kArrayIndexValueBits);
+ SmiTag(index, hash);
+}
+
+
+void MacroAssembler::EmitSeqStringSetCharCheck(
+ Register string,
+ Register index,
+ SeqStringSetCharCheckIndexType index_type,
+ Register scratch,
+ uint32_t encoding_mask) {
+ ASSERT(!AreAliased(string, index, scratch));
+
+ if (index_type == kIndexIsSmi) {
+ AssertSmi(index);
+ }
+
+ // Check that string is an object.
+ AssertNotSmi(string, kNonObject);
+
+ // Check that string has an appropriate map.
+ Ldr(scratch, FieldMemOperand(string, HeapObject::kMapOffset));
+ Ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
+
+ And(scratch, scratch, kStringRepresentationMask | kStringEncodingMask);
+ Cmp(scratch, encoding_mask);
+ Check(eq, kUnexpectedStringType);
+
+ Ldr(scratch, FieldMemOperand(string, String::kLengthOffset));
+ Cmp(index, index_type == kIndexIsSmi ? scratch : Operand::UntagSmi(scratch));
+ Check(lt, kIndexIsTooLarge);
+
+ ASSERT_EQ(0, Smi::FromInt(0));
+ Cmp(index, 0);
+ Check(ge, kIndexIsNegative);
+}
+
+
+void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
+ Register scratch,
+ Label* miss) {
+ // TODO(jbramley): Sort out the uses of Tmp0() and Tmp1() in this function.
+ // The ARM version takes two scratch registers, and that should be enough for
+ // all of the checks.
+
+ Label same_contexts;
+
+ ASSERT(!AreAliased(holder_reg, scratch));
+
+ // Load current lexical context from the stack frame.
+ Ldr(scratch, MemOperand(fp, StandardFrameConstants::kContextOffset));
+ // In debug mode, make sure the lexical context is set.
+#ifdef DEBUG
+ Cmp(scratch, 0);
+ Check(ne, kWeShouldNotHaveAnEmptyLexicalContext);
+#endif
+
+ // Load the native context of the current context.
+ int offset =
+ Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
+ Ldr(scratch, FieldMemOperand(scratch, offset));
+ Ldr(scratch, FieldMemOperand(scratch, GlobalObject::kNativeContextOffset));
+
+ // Check the context is a native context.
+ if (emit_debug_code()) {
+ // Read the first word and compare to the global_context_map.
+ Register temp = Tmp1();
+ Ldr(temp, FieldMemOperand(scratch, HeapObject::kMapOffset));
+ CompareRoot(temp, Heap::kNativeContextMapRootIndex);
+ Check(eq, kExpectedNativeContext);
+ }
+
+ // Check if both contexts are the same.
+ ldr(Tmp0(), FieldMemOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
+ cmp(scratch, Tmp0());
+ b(&same_contexts, eq);
+
+ // Check the context is a native context.
+ if (emit_debug_code()) {
+ // Move Tmp0() into a different register, as CompareRoot will use it.
+ Register temp = Tmp1();
+ mov(temp, Tmp0());
+ CompareRoot(temp, Heap::kNullValueRootIndex);
+ Check(ne, kExpectedNonNullContext);
+
+ Ldr(temp, FieldMemOperand(temp, HeapObject::kMapOffset));
+ CompareRoot(temp, Heap::kNativeContextMapRootIndex);
+ Check(eq, kExpectedNativeContext);
+
+ // Let's consider that Tmp0() has been cloberred by the MacroAssembler.
+ // We reload it with its value.
+ ldr(Tmp0(), FieldMemOperand(holder_reg,
+ JSGlobalProxy::kNativeContextOffset));
+ }
+
+ // Check that the security token in the calling global object is
+ // compatible with the security token in the receiving global
+ // object.
+ int token_offset = Context::kHeaderSize +
+ Context::SECURITY_TOKEN_INDEX * kPointerSize;
+
+ ldr(scratch, FieldMemOperand(scratch, token_offset));
+ ldr(Tmp0(), FieldMemOperand(Tmp0(), token_offset));
+ cmp(scratch, Tmp0());
+ b(miss, ne);
+
+ bind(&same_contexts);
+}
+
+
+// Compute the hash code from the untagged key. This must be kept in sync with
+// ComputeIntegerHash in utils.h and KeyedLoadGenericElementStub in
+// code-stub-hydrogen.cc
+void MacroAssembler::GetNumberHash(Register key, Register scratch) {
+ ASSERT(!AreAliased(key, scratch));
+
+ // Xor original key with a seed.
+ LoadRoot(scratch, Heap::kHashSeedRootIndex);
+ Eor(key, key, Operand::UntagSmi(scratch));
+
+ // The algorithm uses 32-bit integer values.
+ key = key.W();
+ scratch = scratch.W();
+
+ // Compute the hash code from the untagged key. This must be kept in sync
+ // with ComputeIntegerHash in utils.h.
+ //
+ // hash = ~hash + (hash <<1 15);
+ Mvn(scratch, key);
+ Add(key, scratch, Operand(key, LSL, 15));
+ // hash = hash ^ (hash >> 12);
+ Eor(key, key, Operand(key, LSR, 12));
+ // hash = hash + (hash << 2);
+ Add(key, key, Operand(key, LSL, 2));
+ // hash = hash ^ (hash >> 4);
+ Eor(key, key, Operand(key, LSR, 4));
+ // hash = hash * 2057;
+ Mov(scratch, Operand(key, LSL, 11));
+ Add(key, key, Operand(key, LSL, 3));
+ Add(key, key, scratch);
+ // hash = hash ^ (hash >> 16);
+ Eor(key, key, Operand(key, LSR, 16));
+}
+
+
+void MacroAssembler::LoadFromNumberDictionary(Label* miss,
+ Register elements,
+ Register key,
+ Register result,
+ Register scratch0,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3) {
+ ASSERT(!AreAliased(elements, key, scratch0, scratch1, scratch2, scratch3));
+
+ Label done;
+
+ SmiUntag(scratch0, key);
+ GetNumberHash(scratch0, scratch1);
+
+ // Compute the capacity mask.
+ Ldrsw(scratch1,
+ UntagSmiFieldMemOperand(elements,
+ SeededNumberDictionary::kCapacityOffset));
+ Sub(scratch1, scratch1, 1);
+
+ // Generate an unrolled loop that performs a few probes before giving up.
+ for (int i = 0; i < kNumberDictionaryProbes; i++) {
+ // Compute the masked index: (hash + i + i * i) & mask.
+ if (i > 0) {
+ Add(scratch2, scratch0, SeededNumberDictionary::GetProbeOffset(i));
+ } else {
+ Mov(scratch2, scratch0);
+ }
+ And(scratch2, scratch2, scratch1);
+
+ // Scale the index by multiplying by the element size.
+ ASSERT(SeededNumberDictionary::kEntrySize == 3);
+ Add(scratch2, scratch2, Operand(scratch2, LSL, 1));
+
+ // Check if the key is identical to the name.
+ Add(scratch2, elements, Operand(scratch2, LSL, kPointerSizeLog2));
+ Ldr(scratch3,
+ FieldMemOperand(scratch2,
+ SeededNumberDictionary::kElementsStartOffset));
+ Cmp(key, scratch3);
+ if (i != (kNumberDictionaryProbes - 1)) {
+ B(eq, &done);
+ } else {
+ B(ne, miss);
+ }
+ }
+
+ Bind(&done);
+ // Check that the value is a normal property.
+ const int kDetailsOffset =
+ SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
+ Ldrsw(scratch1, UntagSmiFieldMemOperand(scratch2, kDetailsOffset));
+ TestAndBranchIfAnySet(scratch1, PropertyDetails::TypeField::kMask, miss);
+
+ // Get the value at the masked, scaled index and return.
+ const int kValueOffset =
+ SeededNumberDictionary::kElementsStartOffset + kPointerSize;
+ Ldr(result, FieldMemOperand(scratch2, kValueOffset));
+}
+
+
+void MacroAssembler::RememberedSetHelper(Register object, // For debug tests.
+ Register address,
+ Register scratch,
+ SaveFPRegsMode fp_mode,
+ RememberedSetFinalAction and_then) {
+ ASSERT(!AreAliased(object, address, scratch));
+ Label done, store_buffer_overflow;
+ if (emit_debug_code()) {
+ Label ok;
+ JumpIfNotInNewSpace(object, &ok);
+ Abort(kRememberedSetPointerInNewSpace);
+ bind(&ok);
+ }
+ // Load store buffer top.
+ Mov(Tmp0(), Operand(ExternalReference::store_buffer_top(isolate())));
+ Ldr(scratch, MemOperand(Tmp0()));
+ // Store pointer to buffer and increment buffer top.
+ Str(address, MemOperand(scratch, kPointerSize, PostIndex));
+ // Write back new top of buffer.
+ Str(scratch, MemOperand(Tmp0()));
+ // Call stub on end of buffer.
+ // Check for end of buffer.
+ ASSERT(StoreBuffer::kStoreBufferOverflowBit ==
+ (1 << (14 + kPointerSizeLog2)));
+ if (and_then == kFallThroughAtEnd) {
+ Tbz(scratch, (14 + kPointerSizeLog2), &done);
+ } else {
+ ASSERT(and_then == kReturnAtEnd);
+ Tbnz(scratch, (14 + kPointerSizeLog2), &store_buffer_overflow);
+ Ret();
+ }
+
+ Bind(&store_buffer_overflow);
+ Push(lr);
+ StoreBufferOverflowStub store_buffer_overflow_stub =
+ StoreBufferOverflowStub(fp_mode);
+ CallStub(&store_buffer_overflow_stub);
+ Pop(lr);
+
+ Bind(&done);
+ if (and_then == kReturnAtEnd) {
+ Ret();
+ }
+}
+
+
+void MacroAssembler::PopSafepointRegisters() {
+ const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
+ PopXRegList(kSafepointSavedRegisters);
+ Drop(num_unsaved);
+}
+
+
+void MacroAssembler::PushSafepointRegisters() {
+ // Safepoints expect a block of kNumSafepointRegisters values on the stack, so
+ // adjust the stack for unsaved registers.
+ const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
+ ASSERT(num_unsaved >= 0);
+ Claim(num_unsaved);
+ PushXRegList(kSafepointSavedRegisters);
+}
+
+
+void MacroAssembler::PushSafepointFPRegisters() {
+ PushCPURegList(CPURegList(CPURegister::kFPRegister, kDRegSize,
+ FPRegister::kAllocatableFPRegisters));
+}
+
+
+void MacroAssembler::PopSafepointFPRegisters() {
+ PopCPURegList(CPURegList(CPURegister::kFPRegister, kDRegSize,
+ FPRegister::kAllocatableFPRegisters));
+}
+
+
+int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
+ // Make sure the safepoint registers list is what we expect.
+ ASSERT(CPURegList::GetSafepointSavedRegisters().list() == 0x6ffcffff);
+
+ // Safepoint registers are stored contiguously on the stack, but not all the
+ // registers are saved. The following registers are excluded:
+ // - x16 and x17 (ip0 and ip1) because they shouldn't be preserved outside of
+ // the macro assembler.
+ // - x28 (jssp) because JS stack pointer doesn't need to be included in
+ // safepoint registers.
+ // - x31 (csp) because the system stack pointer doesn't need to be included
+ // in safepoint registers.
+ //
+ // This function implements the mapping of register code to index into the
+ // safepoint register slots.
+ if ((reg_code >= 0) && (reg_code <= 15)) {
+ return reg_code;
+ } else if ((reg_code >= 18) && (reg_code <= 27)) {
+ // Skip ip0 and ip1.
+ return reg_code - 2;
+ } else if ((reg_code == 29) || (reg_code == 30)) {
+ // Also skip jssp.
+ return reg_code - 3;
+ } else {
+ // This register has no safepoint register slot.
+ UNREACHABLE();
+ return -1;
+ }
+}
+
+
+void MacroAssembler::CheckPageFlagSet(const Register& object,
+ const Register& scratch,
+ int mask,
+ Label* if_any_set) {
+ And(scratch, object, ~Page::kPageAlignmentMask);
+ Ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
+ TestAndBranchIfAnySet(scratch, mask, if_any_set);
+}
+
+
+void MacroAssembler::CheckPageFlagClear(const Register& object,
+ const Register& scratch,
+ int mask,
+ Label* if_all_clear) {
+ And(scratch, object, ~Page::kPageAlignmentMask);
+ Ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
+ TestAndBranchIfAllClear(scratch, mask, if_all_clear);
+}
+
+
+void MacroAssembler::RecordWriteField(
+ Register object,
+ int offset,
+ Register value,
+ Register scratch,
+ LinkRegisterStatus lr_status,
+ SaveFPRegsMode save_fp,
+ RememberedSetAction remembered_set_action,
+ SmiCheck smi_check) {
+ // First, check if a write barrier is even needed. The tests below
+ // catch stores of Smis.
+ Label done;
+
+ // Skip the barrier if writing a smi.
+ if (smi_check == INLINE_SMI_CHECK) {
+ JumpIfSmi(value, &done);
+ }
+
+ // Although the object register is tagged, the offset is relative to the start
+ // of the object, so offset must be a multiple of kPointerSize.
+ ASSERT(IsAligned(offset, kPointerSize));
+
+ Add(scratch, object, offset - kHeapObjectTag);
+ if (emit_debug_code()) {
+ Label ok;
+ Tst(scratch, (1 << kPointerSizeLog2) - 1);
+ B(eq, &ok);
+ Abort(kUnalignedCellInWriteBarrier);
+ Bind(&ok);
+ }
+
+ RecordWrite(object,
+ scratch,
+ value,
+ lr_status,
+ save_fp,
+ remembered_set_action,
+ OMIT_SMI_CHECK);
+
+ Bind(&done);
+
+ // Clobber clobbered input registers when running with the debug-code flag
+ // turned on to provoke errors.
+ if (emit_debug_code()) {
+ Mov(value, Operand(BitCast<int64_t>(kZapValue + 4)));
+ Mov(scratch, Operand(BitCast<int64_t>(kZapValue + 8)));
+ }
+}
+
+
+// Will clobber: object, address, value, Tmp0(), Tmp1().
+// If lr_status is kLRHasBeenSaved, lr will also be clobbered.
+//
+// The register 'object' contains a heap object pointer. The heap object tag is
+// shifted away.
+void MacroAssembler::RecordWrite(Register object,
+ Register address,
+ Register value,
+ LinkRegisterStatus lr_status,
+ SaveFPRegsMode fp_mode,
+ RememberedSetAction remembered_set_action,
+ SmiCheck smi_check) {
+ ASM_LOCATION("MacroAssembler::RecordWrite");
+ ASSERT(!AreAliased(object, value));
+
+ if (emit_debug_code()) {
+ Ldr(Tmp0(), MemOperand(address));
+ Cmp(Tmp0(), value);
+ Check(eq, kWrongAddressOrValuePassedToRecordWrite);
+ }
+
+ // Count number of write barriers in generated code.
+ isolate()->counters()->write_barriers_static()->Increment();
+ // TODO(mstarzinger): Dynamic counter missing.
+
+ // First, check if a write barrier is even needed. The tests below
+ // catch stores of smis and stores into the young generation.
+ Label done;
+
+ if (smi_check == INLINE_SMI_CHECK) {
+ ASSERT_EQ(0, kSmiTag);
+ JumpIfSmi(value, &done);
+ }
+
+ CheckPageFlagClear(value,
+ value, // Used as scratch.
+ MemoryChunk::kPointersToHereAreInterestingMask,
+ &done);
+ CheckPageFlagClear(object,
+ value, // Used as scratch.
+ MemoryChunk::kPointersFromHereAreInterestingMask,
+ &done);
+
+ // Record the actual write.
+ if (lr_status == kLRHasNotBeenSaved) {
+ Push(lr);
+ }
+ RecordWriteStub stub(object, value, address, remembered_set_action, fp_mode);
+ CallStub(&stub);
+ if (lr_status == kLRHasNotBeenSaved) {
+ Pop(lr);
+ }
+
+ Bind(&done);
+
+ // Clobber clobbered registers when running with the debug-code flag
+ // turned on to provoke errors.
+ if (emit_debug_code()) {
+ Mov(address, Operand(BitCast<int64_t>(kZapValue + 12)));
+ Mov(value, Operand(BitCast<int64_t>(kZapValue + 16)));
+ }
+}
+
+
+void MacroAssembler::AssertHasValidColor(const Register& reg) {
+ if (emit_debug_code()) {
+ // The bit sequence is backward. The first character in the string
+ // represents the least significant bit.
+ ASSERT(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
+
+ Label color_is_valid;
+ Tbnz(reg, 0, &color_is_valid);
+ Tbz(reg, 1, &color_is_valid);
+ Abort(kUnexpectedColorFound);
+ Bind(&color_is_valid);
+ }
+}
+
+
+void MacroAssembler::GetMarkBits(Register addr_reg,
+ Register bitmap_reg,
+ Register shift_reg) {
+ ASSERT(!AreAliased(addr_reg, bitmap_reg, shift_reg, no_reg));
+ // addr_reg is divided into fields:
+ // |63 page base 20|19 high 8|7 shift 3|2 0|
+ // 'high' gives the index of the cell holding color bits for the object.
+ // 'shift' gives the offset in the cell for this object's color.
+ const int kShiftBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2;
+ Ubfx(Tmp0(), addr_reg, kShiftBits, kPageSizeBits - kShiftBits);
+ Bic(bitmap_reg, addr_reg, Page::kPageAlignmentMask);
+ Add(bitmap_reg, bitmap_reg, Operand(Tmp0(), LSL, Bitmap::kBytesPerCellLog2));
+ // bitmap_reg:
+ // |63 page base 20|19 zeros 15|14 high 3|2 0|
+ Ubfx(shift_reg, addr_reg, kPointerSizeLog2, Bitmap::kBitsPerCellLog2);
+}
+
+
+void MacroAssembler::HasColor(Register object,
+ Register bitmap_scratch,
+ Register shift_scratch,
+ Label* has_color,
+ int first_bit,
+ int second_bit) {
+ // See mark-compact.h for color definitions.
+ ASSERT(!AreAliased(object, bitmap_scratch, shift_scratch));
+
+ GetMarkBits(object, bitmap_scratch, shift_scratch);
+ Ldr(bitmap_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
+ // Shift the bitmap down to get the color of the object in bits [1:0].
+ Lsr(bitmap_scratch, bitmap_scratch, shift_scratch);
+
+ AssertHasValidColor(bitmap_scratch);
+
+ // These bit sequences are backwards. The first character in the string
+ // represents the least significant bit.
+ ASSERT(strcmp(Marking::kWhiteBitPattern, "00") == 0);
+ ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
+ ASSERT(strcmp(Marking::kGreyBitPattern, "11") == 0);
+
+ // Check for the color.
+ if (first_bit == 0) {
+ // Checking for white.
+ ASSERT(second_bit == 0);
+ // We only need to test the first bit.
+ Tbz(bitmap_scratch, 0, has_color);
+ } else {
+ Label other_color;
+ // Checking for grey or black.
+ Tbz(bitmap_scratch, 0, &other_color);
+ if (second_bit == 0) {
+ Tbz(bitmap_scratch, 1, has_color);
+ } else {
+ Tbnz(bitmap_scratch, 1, has_color);
+ }
+ Bind(&other_color);
+ }
+
+ // Fall through if it does not have the right color.
+}
+
+
+void MacroAssembler::CheckMapDeprecated(Handle<Map> map,
+ Register scratch,
+ Label* if_deprecated) {
+ if (map->CanBeDeprecated()) {
+ Mov(scratch, Operand(map));
+ Ldrsw(scratch, UntagSmiFieldMemOperand(scratch, Map::kBitField3Offset));
+ TestAndBranchIfAnySet(scratch, Map::Deprecated::kMask, if_deprecated);
+ }
+}
+
+
+void MacroAssembler::JumpIfBlack(Register object,
+ Register scratch0,
+ Register scratch1,
+ Label* on_black) {
+ ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
+ HasColor(object, scratch0, scratch1, on_black, 1, 0); // kBlackBitPattern.
+}
+
+
+void MacroAssembler::JumpIfDictionaryInPrototypeChain(
+ Register object,
+ Register scratch0,
+ Register scratch1,
+ Label* found) {
+ ASSERT(!AreAliased(object, scratch0, scratch1));
+ Factory* factory = isolate()->factory();
+ Register current = scratch0;
+ Label loop_again;
+
+ // Scratch contains elements pointer.
+ Mov(current, object);
+
+ // Loop based on the map going up the prototype chain.
+ Bind(&loop_again);
+ Ldr(current, FieldMemOperand(current, HeapObject::kMapOffset));
+ Ldrb(scratch1, FieldMemOperand(current, Map::kBitField2Offset));
+ Ubfx(scratch1, scratch1, Map::kElementsKindShift, Map::kElementsKindBitCount);
+ CompareAndBranch(scratch1, DICTIONARY_ELEMENTS, eq, found);
+ Ldr(current, FieldMemOperand(current, Map::kPrototypeOffset));
+ CompareAndBranch(current, Operand(factory->null_value()), ne, &loop_again);
+}
+
+
+void MacroAssembler::GetRelocatedValueLocation(Register ldr_location,
+ Register result) {
+ ASSERT(!result.Is(ldr_location));
+ const uint32_t kLdrLitOffset_lsb = 5;
+ const uint32_t kLdrLitOffset_width = 19;
+ Ldr(result, MemOperand(ldr_location));
+ if (emit_debug_code()) {
+ And(result, result, LoadLiteralFMask);
+ Cmp(result, LoadLiteralFixed);
+ Check(eq, kTheInstructionToPatchShouldBeAnLdrLiteral);
+ // The instruction was clobbered. Reload it.
+ Ldr(result, MemOperand(ldr_location));
+ }
+ Sbfx(result, result, kLdrLitOffset_lsb, kLdrLitOffset_width);
+ Add(result, ldr_location, Operand(result, LSL, kWordSizeInBytesLog2));
+}
+
+
+void MacroAssembler::EnsureNotWhite(
+ Register value,
+ Register bitmap_scratch,
+ Register shift_scratch,
+ Register load_scratch,
+ Register length_scratch,
+ Label* value_is_white_and_not_data) {
+ ASSERT(!AreAliased(
+ value, bitmap_scratch, shift_scratch, load_scratch, length_scratch));
+
+ // These bit sequences are backwards. The first character in the string
+ // represents the least significant bit.
+ ASSERT(strcmp(Marking::kWhiteBitPattern, "00") == 0);
+ ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
+ ASSERT(strcmp(Marking::kGreyBitPattern, "11") == 0);
+
+ GetMarkBits(value, bitmap_scratch, shift_scratch);
+ Ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
+ Lsr(load_scratch, load_scratch, shift_scratch);
+
+ AssertHasValidColor(load_scratch);
+
+ // If the value is black or grey we don't need to do anything.
+ // Since both black and grey have a 1 in the first position and white does
+ // not have a 1 there we only need to check one bit.
+ Label done;
+ Tbnz(load_scratch, 0, &done);
+
+ // Value is white. We check whether it is data that doesn't need scanning.
+ Register map = load_scratch; // Holds map while checking type.
+ Label is_data_object;
+
+ // Check for heap-number.
+ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
+ Mov(length_scratch, HeapNumber::kSize);
+ JumpIfRoot(map, Heap::kHeapNumberMapRootIndex, &is_data_object);
+
+ // Check for strings.
+ ASSERT(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
+ ASSERT(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
+ // If it's a string and it's not a cons string then it's an object containing
+ // no GC pointers.
+ Register instance_type = load_scratch;
+ Ldrb(instance_type, FieldMemOperand(map, Map::kInstanceTypeOffset));
+ TestAndBranchIfAnySet(instance_type,
+ kIsIndirectStringMask | kIsNotStringMask,
+ value_is_white_and_not_data);
+
+ // It's a non-indirect (non-cons and non-slice) string.
+ // If it's external, the length is just ExternalString::kSize.
+ // Otherwise it's String::kHeaderSize + string->length() * (1 or 2).
+ // External strings are the only ones with the kExternalStringTag bit
+ // set.
+ ASSERT_EQ(0, kSeqStringTag & kExternalStringTag);
+ ASSERT_EQ(0, kConsStringTag & kExternalStringTag);
+ Mov(length_scratch, ExternalString::kSize);
+ TestAndBranchIfAnySet(instance_type, kExternalStringTag, &is_data_object);
+
+ // Sequential string, either ASCII or UC16.
+ // For ASCII (char-size of 1) we shift the smi tag away to get the length.
+ // For UC16 (char-size of 2) we just leave the smi tag in place, thereby
+ // getting the length multiplied by 2.
+ ASSERT(kOneByteStringTag == 4 && kStringEncodingMask == 4);
+ Ldrsw(length_scratch, UntagSmiFieldMemOperand(value,
+ String::kLengthOffset));
+ Tst(instance_type, kStringEncodingMask);
+ Cset(load_scratch, eq);
+ Lsl(length_scratch, length_scratch, load_scratch);
+ Add(length_scratch,
+ length_scratch,
+ SeqString::kHeaderSize + kObjectAlignmentMask);
+ Bic(length_scratch, length_scratch, kObjectAlignmentMask);
+
+ Bind(&is_data_object);
+ // Value is a data object, and it is white. Mark it black. Since we know
+ // that the object is white we can make it black by flipping one bit.
+ Register mask = shift_scratch;
+ Mov(load_scratch, 1);
+ Lsl(mask, load_scratch, shift_scratch);
+
+ Ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
+ Orr(load_scratch, load_scratch, mask);
+ Str(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
+
+ Bic(bitmap_scratch, bitmap_scratch, Page::kPageAlignmentMask);
+ Ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
+ Add(load_scratch, load_scratch, length_scratch);
+ Str(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
+
+ Bind(&done);
+}
+
+
+void MacroAssembler::Assert(Condition cond, BailoutReason reason) {
+ if (emit_debug_code()) {
+ Check(cond, reason);
+ }
+}
+
+
+
+void MacroAssembler::AssertRegisterIsClear(Register reg, BailoutReason reason) {
+ if (emit_debug_code()) {
+ CheckRegisterIsClear(reg, reason);
+ }
+}
+
+
+void MacroAssembler::AssertRegisterIsRoot(Register reg,
+ Heap::RootListIndex index,
+ BailoutReason reason) {
+ // CompareRoot uses Tmp0().
+ ASSERT(!reg.Is(Tmp0()));
+ if (emit_debug_code()) {
+ CompareRoot(reg, index);
+ Check(eq, reason);
+ }
+}
+
+
+void MacroAssembler::AssertFastElements(Register elements) {
+ if (emit_debug_code()) {
+ Register temp = Tmp1();
+ Label ok;
+ Ldr(temp, FieldMemOperand(elements, HeapObject::kMapOffset));
+ JumpIfRoot(temp, Heap::kFixedArrayMapRootIndex, &ok);
+ JumpIfRoot(temp, Heap::kFixedDoubleArrayMapRootIndex, &ok);
+ JumpIfRoot(temp, Heap::kFixedCOWArrayMapRootIndex, &ok);
+ Abort(kJSObjectWithFastElementsMapHasSlowElements);
+ Bind(&ok);
+ }
+}
+
+
+void MacroAssembler::AssertIsString(const Register& object) {
+ if (emit_debug_code()) {
+ Register temp = Tmp1();
+ STATIC_ASSERT(kSmiTag == 0);
+ Tst(object, Operand(kSmiTagMask));
+ Check(ne, kOperandIsNotAString);
+ Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
+ CompareInstanceType(temp, temp, FIRST_NONSTRING_TYPE);
+ Check(lo, kOperandIsNotAString);
+ }
+}
+
+
+void MacroAssembler::Check(Condition cond, BailoutReason reason) {
+ Label ok;
+ B(cond, &ok);
+ Abort(reason);
+ // Will not return here.
+ Bind(&ok);
+}
+
+
+void MacroAssembler::CheckRegisterIsClear(Register reg, BailoutReason reason) {
+ Label ok;
+ Cbz(reg, &ok);
+ Abort(reason);
+ // Will not return here.
+ Bind(&ok);
+}
+
+
+void MacroAssembler::Abort(BailoutReason reason) {
+#ifdef DEBUG
+ RecordComment("Abort message: ");
+ RecordComment(GetBailoutReason(reason));
+
+ if (FLAG_trap_on_abort) {
+ Brk(0);
+ return;
+ }
+#endif
+
+ Label msg_address;
+ Adr(x0, &msg_address);
+
+ if (use_real_aborts()) {
+ // Split the message pointer into two SMI to avoid the GC
+ // trying to scan the string.
+ STATIC_ASSERT((kSmiShift == 32) && (kSmiTag == 0));
+ SmiTag(x1, x0);
+ Bic(x0, x0, kSmiShiftMask);
+
+ Push(x0, x1);
+
+ if (!has_frame_) {
+ // We don't actually want to generate a pile of code for this, so just
+ // claim there is a stack frame, without generating one.
+ FrameScope scope(this, StackFrame::NONE);
+ CallRuntime(Runtime::kAbort, 2);
+ } else {
+ CallRuntime(Runtime::kAbort, 2);
+ }
+ } else {
+ // Call Printf directly, to report the error. The message is in x0, which is
+ // the first argument to Printf.
+ if (!csp.Is(StackPointer())) {
+ Bic(csp, StackPointer(), 0xf);
+ }
+ CallPrintf();
+
+ // The CallPrintf will return, so this point is actually reachable in this
+ // context. However:
+ // - We're already executing an abort (which shouldn't be reachable in
+ // valid code).
+ // - We need a way to stop execution on both the simulator and real
+ // hardware, and Unreachable() is the best option.
+ Unreachable();
+ }
+
+ // Emit the message string directly in the instruction stream.
+ {
+ BlockConstPoolScope scope(this);
+ Bind(&msg_address);
+ // TODO(jbramley): Since the reason is an enum, why do we still encode the
+ // string (and a pointer to it) in the instruction stream?
+ EmitStringData(GetBailoutReason(reason));
+ }
+}
+
+
+void MacroAssembler::LoadTransitionedArrayMapConditional(
+ ElementsKind expected_kind,
+ ElementsKind transitioned_kind,
+ Register map_in_out,
+ Register scratch,
+ Label* no_map_match) {
+ // Load the global or builtins object from the current context.
+ Ldr(scratch, GlobalObjectMemOperand());
+ Ldr(scratch, FieldMemOperand(scratch, GlobalObject::kNativeContextOffset));
+
+ // Check that the function's map is the same as the expected cached map.
+ Ldr(scratch, ContextMemOperand(scratch, Context::JS_ARRAY_MAPS_INDEX));
+ size_t offset = (expected_kind * kPointerSize) + FixedArrayBase::kHeaderSize;
+ Ldr(Tmp0(), FieldMemOperand(scratch, offset));
+ Cmp(map_in_out, Tmp0());
+ B(ne, no_map_match);
+
+ // Use the transitioned cached map.
+ offset = (transitioned_kind * kPointerSize) + FixedArrayBase::kHeaderSize;
+ Ldr(map_in_out, FieldMemOperand(scratch, offset));
+}
+
+
+void MacroAssembler::LoadInitialArrayMap(Register function_in,
+ Register scratch,
+ Register map_out,
+ ArrayHasHoles holes) {
+ ASSERT(!AreAliased(function_in, scratch, map_out));
+ Label done;
+ Ldr(map_out, FieldMemOperand(function_in,
+ JSFunction::kPrototypeOrInitialMapOffset));
+
+ if (!FLAG_smi_only_arrays) {
+ ElementsKind kind = (holes == kArrayCanHaveHoles) ? FAST_HOLEY_ELEMENTS
+ : FAST_ELEMENTS;
+ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS, kind, map_out,
+ scratch, &done);
+ } else if (holes == kArrayCanHaveHoles) {
+ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS,
+ FAST_HOLEY_SMI_ELEMENTS, map_out,
+ scratch, &done);
+ }
+ Bind(&done);
+}
+
+
+void MacroAssembler::LoadArrayFunction(Register function) {
+ // Load the global or builtins object from the current context.
+ Ldr(function, GlobalObjectMemOperand());
+ // Load the global context from the global or builtins object.
+ Ldr(function,
+ FieldMemOperand(function, GlobalObject::kGlobalContextOffset));
+ // Load the array function from the native context.
+ Ldr(function, ContextMemOperand(function, Context::ARRAY_FUNCTION_INDEX));
+}
+
+
+void MacroAssembler::LoadGlobalFunction(int index, Register function) {
+ // Load the global or builtins object from the current context.
+ Ldr(function, GlobalObjectMemOperand());
+ // Load the native context from the global or builtins object.
+ Ldr(function, FieldMemOperand(function,
+ GlobalObject::kNativeContextOffset));
+ // Load the function from the native context.
+ Ldr(function, ContextMemOperand(function, index));
+}
+
+
+void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
+ Register map,
+ Register scratch) {
+ // Load the initial map. The global functions all have initial maps.
+ Ldr(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
+ if (emit_debug_code()) {
+ Label ok, fail;
+ CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK);
+ B(&ok);
+ Bind(&fail);
+ Abort(kGlobalFunctionsMustHaveInitialMap);
+ Bind(&ok);
+ }
+}
+
+
+// This is the main Printf implementation. All other Printf variants call
+// PrintfNoPreserve after setting up one or more PreserveRegisterScopes.
+void MacroAssembler::PrintfNoPreserve(const char * format,
+ const CPURegister& arg0,
+ const CPURegister& arg1,
+ const CPURegister& arg2,
+ const CPURegister& arg3) {
+ // We cannot handle a caller-saved stack pointer. It doesn't make much sense
+ // in most cases anyway, so this restriction shouldn't be too serious.
+ ASSERT(!kCallerSaved.IncludesAliasOf(__ StackPointer()));
+
+ // We cannot print Tmp0() or Tmp1() as they're used internally by the macro
+ // assembler. We cannot print the stack pointer because it is typically used
+ // to preserve caller-saved registers (using other Printf variants which
+ // depend on this helper).
+ ASSERT(!AreAliased(Tmp0(), Tmp1(), StackPointer(), arg0));
+ ASSERT(!AreAliased(Tmp0(), Tmp1(), StackPointer(), arg1));
+ ASSERT(!AreAliased(Tmp0(), Tmp1(), StackPointer(), arg2));
+ ASSERT(!AreAliased(Tmp0(), Tmp1(), StackPointer(), arg3));
+
+ static const int kMaxArgCount = 4;
+ // Assume that we have the maximum number of arguments until we know
+ // otherwise.
+ int arg_count = kMaxArgCount;
+
+ // The provided arguments.
+ CPURegister args[kMaxArgCount] = {arg0, arg1, arg2, arg3};
+
+ // The PCS registers where the arguments need to end up.
+ CPURegister pcs[kMaxArgCount] = {NoCPUReg, NoCPUReg, NoCPUReg, NoCPUReg};
+
+ // Promote FP arguments to doubles, and integer arguments to X registers.
+ // Note that FP and integer arguments cannot be mixed, but we'll check
+ // AreSameSizeAndType once we've processed these promotions.
+ for (int i = 0; i < kMaxArgCount; i++) {
+ if (args[i].IsRegister()) {
+ // Note that we use x1 onwards, because x0 will hold the format string.
+ pcs[i] = Register::XRegFromCode(i + 1);
+ // For simplicity, we handle all integer arguments as X registers. An X
+ // register argument takes the same space as a W register argument in the
+ // PCS anyway. The only limitation is that we must explicitly clear the
+ // top word for W register arguments as the callee will expect it to be
+ // clear.
+ if (!args[i].Is64Bits()) {
+ const Register& as_x = args[i].X();
+ And(as_x, as_x, 0x00000000ffffffff);
+ args[i] = as_x;
+ }
+ } else if (args[i].IsFPRegister()) {
+ pcs[i] = FPRegister::DRegFromCode(i);
+ // C and C++ varargs functions (such as printf) implicitly promote float
+ // arguments to doubles.
+ if (!args[i].Is64Bits()) {
+ FPRegister s(args[i]);
+ const FPRegister& as_d = args[i].D();
+ Fcvt(as_d, s);
+ args[i] = as_d;
+ }
+ } else {
+ // This is the first empty (NoCPUReg) argument, so use it to set the
+ // argument count and bail out.
+ arg_count = i;
+ break;
+ }
+ }
+ ASSERT((arg_count >= 0) && (arg_count <= kMaxArgCount));
+ // Check that every remaining argument is NoCPUReg.
+ for (int i = arg_count; i < kMaxArgCount; i++) {
+ ASSERT(args[i].IsNone());
+ }
+ ASSERT((arg_count == 0) || AreSameSizeAndType(args[0], args[1],
+ args[2], args[3],
+ pcs[0], pcs[1],
+ pcs[2], pcs[3]));
+
+ // Move the arguments into the appropriate PCS registers.
+ //
+ // Arranging an arbitrary list of registers into x1-x4 (or d0-d3) is
+ // surprisingly complicated.
+ //
+ // * For even numbers of registers, we push the arguments and then pop them
+ // into their final registers. This maintains 16-byte stack alignment in
+ // case csp is the stack pointer, since we're only handling X or D
+ // registers at this point.
+ //
+ // * For odd numbers of registers, we push and pop all but one register in
+ // the same way, but the left-over register is moved directly, since we
+ // can always safely move one register without clobbering any source.
+ if (arg_count >= 4) {
+ Push(args[3], args[2], args[1], args[0]);
+ } else if (arg_count >= 2) {
+ Push(args[1], args[0]);
+ }
+
+ if ((arg_count % 2) != 0) {
+ // Move the left-over register directly.
+ const CPURegister& leftover_arg = args[arg_count - 1];
+ const CPURegister& leftover_pcs = pcs[arg_count - 1];
+ if (leftover_arg.IsRegister()) {
+ Mov(Register(leftover_pcs), Register(leftover_arg));
+ } else {
+ Fmov(FPRegister(leftover_pcs), FPRegister(leftover_arg));
+ }
+ }
+
+ if (arg_count >= 4) {
+ Pop(pcs[0], pcs[1], pcs[2], pcs[3]);
+ } else if (arg_count >= 2) {
+ Pop(pcs[0], pcs[1]);
+ }
+
+ // Load the format string into x0, as per the procedure-call standard.
+ //
+ // To make the code as portable as possible, the format string is encoded
+ // directly in the instruction stream. It might be cleaner to encode it in a
+ // literal pool, but since Printf is usually used for debugging, it is
+ // beneficial for it to be minimally dependent on other features.
+ Label format_address;
+ Adr(x0, &format_address);
+
+ // Emit the format string directly in the instruction stream.
+ { BlockConstPoolScope scope(this);
+ Label after_data;
+ B(&after_data);
+ Bind(&format_address);
+ EmitStringData(format);
+ Unreachable();
+ Bind(&after_data);
+ }
+
+ // We don't pass any arguments on the stack, but we still need to align the C
+ // stack pointer to a 16-byte boundary for PCS compliance.
+ if (!csp.Is(StackPointer())) {
+ Bic(csp, StackPointer(), 0xf);
+ }
+
+ CallPrintf(pcs[0].type());
+}
+
+
+void MacroAssembler::CallPrintf(CPURegister::RegisterType type) {
+ // A call to printf needs special handling for the simulator, since the system
+ // printf function will use a different instruction set and the procedure-call
+ // standard will not be compatible.
+#ifdef USE_SIMULATOR
+ { InstructionAccurateScope scope(this, kPrintfLength / kInstructionSize);
+ hlt(kImmExceptionIsPrintf);
+ dc32(type);
+ }
+#else
+ Call(FUNCTION_ADDR(printf), RelocInfo::EXTERNAL_REFERENCE);
+#endif
+}
+
+
+void MacroAssembler::Printf(const char * format,
+ const CPURegister& arg0,
+ const CPURegister& arg1,
+ const CPURegister& arg2,
+ const CPURegister& arg3) {
+ // Preserve all caller-saved registers as well as NZCV.
+ // If csp is the stack pointer, PushCPURegList asserts that the size of each
+ // list is a multiple of 16 bytes.
+ PushCPURegList(kCallerSaved);
+ PushCPURegList(kCallerSavedFP);
+ // Use Tmp0() as a scratch register. It is not accepted by Printf so it will
+ // never overlap an argument register.
+ Mrs(Tmp0(), NZCV);
+ Push(Tmp0(), xzr);
+
+ PrintfNoPreserve(format, arg0, arg1, arg2, arg3);
+
+ Pop(xzr, Tmp0());
+ Msr(NZCV, Tmp0());
+ PopCPURegList(kCallerSavedFP);
+ PopCPURegList(kCallerSaved);
+}
+
+
+void MacroAssembler::EmitFrameSetupForCodeAgePatching() {
+ // TODO(jbramley): Other architectures use the internal memcpy to copy the
+ // sequence. If this is a performance bottleneck, we should consider caching
+ // the sequence and copying it in the same way.
+ InstructionAccurateScope scope(this, kCodeAgeSequenceSize / kInstructionSize);
+ ASSERT(jssp.Is(StackPointer()));
+ EmitFrameSetupForCodeAgePatching(this);
+}
+
+
+
+void MacroAssembler::EmitCodeAgeSequence(Code* stub) {
+ InstructionAccurateScope scope(this, kCodeAgeSequenceSize / kInstructionSize);
+ ASSERT(jssp.Is(StackPointer()));
+ EmitCodeAgeSequence(this, stub);
+}
+
+
+#undef __
+#define __ assm->
+
+
+void MacroAssembler::EmitFrameSetupForCodeAgePatching(Assembler * assm) {
+ Label start;
+ __ bind(&start);
+
+ // We can do this sequence using four instructions, but the code ageing
+ // sequence that patches it needs five, so we use the extra space to try to
+ // simplify some addressing modes and remove some dependencies (compared to
+ // using two stp instructions with write-back).
+ __ sub(jssp, jssp, 4 * kXRegSizeInBytes);
+ __ sub(csp, csp, 4 * kXRegSizeInBytes);
+ __ stp(x1, cp, MemOperand(jssp, 0 * kXRegSizeInBytes));
+ __ stp(fp, lr, MemOperand(jssp, 2 * kXRegSizeInBytes));
+ __ add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp);
+
+ __ AssertSizeOfCodeGeneratedSince(&start, kCodeAgeSequenceSize);
+}
+
+
+void MacroAssembler::EmitCodeAgeSequence(Assembler * assm,
+ Code * stub) {
+ Label start;
+ __ bind(&start);
+ // When the stub is called, the sequence is replaced with the young sequence
+ // (as in EmitFrameSetupForCodeAgePatching). After the code is replaced, the
+ // stub jumps to &start, stored in x0. The young sequence does not call the
+ // stub so there is no infinite loop here.
+ //
+ // A branch (br) is used rather than a call (blr) because this code replaces
+ // the frame setup code that would normally preserve lr.
+ __ LoadLiteral(ip0, kCodeAgeStubEntryOffset);
+ __ adr(x0, &start);
+ __ br(ip0);
+ // IsCodeAgeSequence in codegen-a64.cc assumes that the code generated up
+ // until now (kCodeAgeStubEntryOffset) is the same for all code age sequences.
+ __ AssertSizeOfCodeGeneratedSince(&start, kCodeAgeStubEntryOffset);
+ if (stub) {
+ __ dc64(reinterpret_cast<uint64_t>(stub->instruction_start()));
+ __ AssertSizeOfCodeGeneratedSince(&start, kCodeAgeSequenceSize);
+ }
+}
+
+
+bool MacroAssembler::IsYoungSequence(byte* sequence) {
+ // Generate a young sequence to compare with.
+ const int length = kCodeAgeSequenceSize / kInstructionSize;
+ static bool initialized = false;
+ static byte young[kCodeAgeSequenceSize];
+ if (!initialized) {
+ PatchingAssembler patcher(young, length);
+ // The young sequence is the frame setup code for FUNCTION code types. It is
+ // generated by FullCodeGenerator::Generate.
+ MacroAssembler::EmitFrameSetupForCodeAgePatching(&patcher);
+ initialized = true;
+ }
+
+ bool is_young = (memcmp(sequence, young, kCodeAgeSequenceSize) == 0);
+ ASSERT(is_young || IsCodeAgeSequence(sequence));
+ return is_young;
+}
+
+
+#ifdef DEBUG
+bool MacroAssembler::IsCodeAgeSequence(byte* sequence) {
+ // The old sequence varies depending on the code age. However, the code up
+ // until kCodeAgeStubEntryOffset does not change, so we can check that part to
+ // get a reasonable level of verification.
+ const int length = kCodeAgeStubEntryOffset / kInstructionSize;
+ static bool initialized = false;
+ static byte old[kCodeAgeStubEntryOffset];
+ if (!initialized) {
+ PatchingAssembler patcher(old, length);
+ MacroAssembler::EmitCodeAgeSequence(&patcher, NULL);
+ initialized = true;
+ }
+ return memcmp(sequence, old, kCodeAgeStubEntryOffset) == 0;
+}
+#endif
+
+
+#undef __
+#define __ masm->
+
+
+void InlineSmiCheckInfo::Emit(MacroAssembler* masm, const Register& reg,
+ const Label* smi_check) {
+ Assembler::BlockConstPoolScope scope(masm);
+ if (reg.IsValid()) {
+ ASSERT(smi_check->is_bound());
+ ASSERT(reg.Is64Bits());
+
+ // Encode the register (x0-x30) in the lowest 5 bits, then the offset to
+ // 'check' in the other bits. The possible offset is limited in that we
+ // use BitField to pack the data, and the underlying data type is a
+ // uint32_t.
+ uint32_t delta = __ InstructionsGeneratedSince(smi_check);
+ __ InlineData(RegisterBits::encode(reg.code()) | DeltaBits::encode(delta));
+ } else {
+ ASSERT(!smi_check->is_bound());
+
+ // An offset of 0 indicates that there is no patch site.
+ __ InlineData(0);
+ }
+}
+
+
+InlineSmiCheckInfo::InlineSmiCheckInfo(Address info)
+ : reg_(NoReg), smi_check_(NULL) {
+ InstructionSequence* inline_data = InstructionSequence::At(info);
+ ASSERT(inline_data->IsInlineData());
+ if (inline_data->IsInlineData()) {
+ uint64_t payload = inline_data->InlineData();
+ // We use BitField to decode the payload, and BitField can only handle
+ // 32-bit values.
+ ASSERT(is_uint32(payload));
+ if (payload != 0) {
+ int reg_code = RegisterBits::decode(payload);
+ reg_ = Register::XRegFromCode(reg_code);
+ uint64_t smi_check_delta = DeltaBits::decode(payload);
+ ASSERT(smi_check_delta != 0);
+ smi_check_ = inline_data - (smi_check_delta * kInstructionSize);
+ }
+ }
+}
+
+
+#undef __
+
+
+} } // namespace v8::internal
+
+#endif // V8_TARGET_ARCH_A64
« no previous file with comments | « src/a64/macro-assembler-a64.h ('k') | src/a64/macro-assembler-a64-inl.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698