| Index: src/a64/macro-assembler-a64.cc
|
| diff --git a/src/a64/macro-assembler-a64.cc b/src/a64/macro-assembler-a64.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..b51e9277c4e4969212417284b84033a4dc60c1e4
|
| --- /dev/null
|
| +++ b/src/a64/macro-assembler-a64.cc
|
| @@ -0,0 +1,4806 @@
|
| +// Copyright 2013 the V8 project authors. All rights reserved.
|
| +// Redistribution and use in source and binary forms, with or without
|
| +// modification, are permitted provided that the following conditions are
|
| +// met:
|
| +//
|
| +// * Redistributions of source code must retain the above copyright
|
| +// notice, this list of conditions and the following disclaimer.
|
| +// * Redistributions in binary form must reproduce the above
|
| +// copyright notice, this list of conditions and the following
|
| +// disclaimer in the documentation and/or other materials provided
|
| +// with the distribution.
|
| +// * Neither the name of Google Inc. nor the names of its
|
| +// contributors may be used to endorse or promote products derived
|
| +// from this software without specific prior written permission.
|
| +//
|
| +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
| +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
| +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
| +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
| +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
| +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
| +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
| +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
| +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| +
|
| +#include "v8.h"
|
| +
|
| +#if V8_TARGET_ARCH_A64
|
| +
|
| +#include "bootstrapper.h"
|
| +#include "codegen.h"
|
| +#include "cpu-profiler.h"
|
| +#include "debug.h"
|
| +#include "isolate-inl.h"
|
| +#include "runtime.h"
|
| +
|
| +namespace v8 {
|
| +namespace internal {
|
| +
|
| +// Define a fake double underscore to use with the ASM_UNIMPLEMENTED macros.
|
| +#define __
|
| +
|
| +
|
| +MacroAssembler::MacroAssembler(Isolate* arg_isolate,
|
| + byte * buffer,
|
| + unsigned buffer_size)
|
| + : Assembler(arg_isolate, buffer, buffer_size),
|
| + generating_stub_(false),
|
| +#if DEBUG
|
| + allow_macro_instructions_(true),
|
| +#endif
|
| + has_frame_(false),
|
| + use_real_aborts_(true),
|
| + sp_(jssp), tmp0_(ip0), tmp1_(ip1), fptmp0_(fp_scratch) {
|
| + if (isolate() != NULL) {
|
| + code_object_ = Handle<Object>(isolate()->heap()->undefined_value(),
|
| + isolate());
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::LogicalMacro(const Register& rd,
|
| + const Register& rn,
|
| + const Operand& operand,
|
| + LogicalOp op) {
|
| + if (operand.NeedsRelocation()) {
|
| + LoadRelocated(Tmp0(), operand);
|
| + Logical(rd, rn, Tmp0(), op);
|
| +
|
| + } else if (operand.IsImmediate()) {
|
| + int64_t immediate = operand.immediate();
|
| + unsigned reg_size = rd.SizeInBits();
|
| + ASSERT(rd.Is64Bits() || is_uint32(immediate));
|
| +
|
| + // If the operation is NOT, invert the operation and immediate.
|
| + if ((op & NOT) == NOT) {
|
| + op = static_cast<LogicalOp>(op & ~NOT);
|
| + immediate = ~immediate;
|
| + if (rd.Is32Bits()) {
|
| + immediate &= kWRegMask;
|
| + }
|
| + }
|
| +
|
| + // Special cases for all set or all clear immediates.
|
| + if (immediate == 0) {
|
| + switch (op) {
|
| + case AND:
|
| + Mov(rd, 0);
|
| + return;
|
| + case ORR: // Fall through.
|
| + case EOR:
|
| + Mov(rd, rn);
|
| + return;
|
| + case ANDS: // Fall through.
|
| + case BICS:
|
| + break;
|
| + default:
|
| + UNREACHABLE();
|
| + }
|
| + } else if ((rd.Is64Bits() && (immediate == -1L)) ||
|
| + (rd.Is32Bits() && (immediate == 0xffffffffL))) {
|
| + switch (op) {
|
| + case AND:
|
| + Mov(rd, rn);
|
| + return;
|
| + case ORR:
|
| + Mov(rd, immediate);
|
| + return;
|
| + case EOR:
|
| + Mvn(rd, rn);
|
| + return;
|
| + case ANDS: // Fall through.
|
| + case BICS:
|
| + break;
|
| + default:
|
| + UNREACHABLE();
|
| + }
|
| + }
|
| +
|
| + unsigned n, imm_s, imm_r;
|
| + if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) {
|
| + // Immediate can be encoded in the instruction.
|
| + LogicalImmediate(rd, rn, n, imm_s, imm_r, op);
|
| + } else {
|
| + // Immediate can't be encoded: synthesize using move immediate.
|
| + Register temp = AppropriateTempFor(rn);
|
| + Mov(temp, immediate);
|
| + if (rd.Is(csp)) {
|
| + // If rd is the stack pointer we cannot use it as the destination
|
| + // register so we use the temp register as an intermediate again.
|
| + Logical(temp, rn, temp, op);
|
| + Mov(csp, temp);
|
| + } else {
|
| + Logical(rd, rn, temp, op);
|
| + }
|
| + }
|
| +
|
| + } else if (operand.IsExtendedRegister()) {
|
| + ASSERT(operand.reg().SizeInBits() <= rd.SizeInBits());
|
| + // Add/sub extended supports shift <= 4. We want to support exactly the
|
| + // same modes here.
|
| + ASSERT(operand.shift_amount() <= 4);
|
| + ASSERT(operand.reg().Is64Bits() ||
|
| + ((operand.extend() != UXTX) && (operand.extend() != SXTX)));
|
| + Register temp = AppropriateTempFor(rn, operand.reg());
|
| + EmitExtendShift(temp, operand.reg(), operand.extend(),
|
| + operand.shift_amount());
|
| + Logical(rd, rn, temp, op);
|
| +
|
| + } else {
|
| + // The operand can be encoded in the instruction.
|
| + ASSERT(operand.IsShiftedRegister());
|
| + Logical(rd, rn, operand, op);
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::Mov(const Register& rd, uint64_t imm) {
|
| + ASSERT(allow_macro_instructions_);
|
| + ASSERT(is_uint32(imm) || is_int32(imm) || rd.Is64Bits());
|
| + ASSERT(!rd.IsZero());
|
| +
|
| + // TODO(all) extend to support more immediates.
|
| + //
|
| + // Immediates on Aarch64 can be produced using an initial value, and zero to
|
| + // three move keep operations.
|
| + //
|
| + // Initial values can be generated with:
|
| + // 1. 64-bit move zero (movz).
|
| + // 2. 32-bit move inverted (movn).
|
| + // 3. 64-bit move inverted.
|
| + // 4. 32-bit orr immediate.
|
| + // 5. 64-bit orr immediate.
|
| + // Move-keep may then be used to modify each of the 16-bit half-words.
|
| + //
|
| + // The code below supports all five initial value generators, and
|
| + // applying move-keep operations to move-zero and move-inverted initial
|
| + // values.
|
| +
|
| + unsigned reg_size = rd.SizeInBits();
|
| + unsigned n, imm_s, imm_r;
|
| + if (IsImmMovz(imm, reg_size) && !rd.IsSP()) {
|
| + // Immediate can be represented in a move zero instruction. Movz can't
|
| + // write to the stack pointer.
|
| + movz(rd, imm);
|
| + } else if (IsImmMovn(imm, reg_size) && !rd.IsSP()) {
|
| + // Immediate can be represented in a move inverted instruction. Movn can't
|
| + // write to the stack pointer.
|
| + movn(rd, rd.Is64Bits() ? ~imm : (~imm & kWRegMask));
|
| + } else if (IsImmLogical(imm, reg_size, &n, &imm_s, &imm_r)) {
|
| + // Immediate can be represented in a logical orr instruction.
|
| + LogicalImmediate(rd, AppropriateZeroRegFor(rd), n, imm_s, imm_r, ORR);
|
| + } else {
|
| + // Generic immediate case. Imm will be represented by
|
| + // [imm3, imm2, imm1, imm0], where each imm is 16 bits.
|
| + // A move-zero or move-inverted is generated for the first non-zero or
|
| + // non-0xffff immX, and a move-keep for subsequent non-zero immX.
|
| +
|
| + uint64_t ignored_halfword = 0;
|
| + bool invert_move = false;
|
| + // If the number of 0xffff halfwords is greater than the number of 0x0000
|
| + // halfwords, it's more efficient to use move-inverted.
|
| + if (CountClearHalfWords(~imm, reg_size) >
|
| + CountClearHalfWords(imm, reg_size)) {
|
| + ignored_halfword = 0xffffL;
|
| + invert_move = true;
|
| + }
|
| +
|
| + // Mov instructions can't move value into the stack pointer, so set up a
|
| + // temporary register, if needed.
|
| + Register temp = rd.IsSP() ? AppropriateTempFor(rd) : rd;
|
| +
|
| + // Iterate through the halfwords. Use movn/movz for the first non-ignored
|
| + // halfword, and movk for subsequent halfwords.
|
| + ASSERT((reg_size % 16) == 0);
|
| + bool first_mov_done = false;
|
| + for (unsigned i = 0; i < (rd.SizeInBits() / 16); i++) {
|
| + uint64_t imm16 = (imm >> (16 * i)) & 0xffffL;
|
| + if (imm16 != ignored_halfword) {
|
| + if (!first_mov_done) {
|
| + if (invert_move) {
|
| + movn(temp, (~imm16) & 0xffffL, 16 * i);
|
| + } else {
|
| + movz(temp, imm16, 16 * i);
|
| + }
|
| + first_mov_done = true;
|
| + } else {
|
| + // Construct a wider constant.
|
| + movk(temp, imm16, 16 * i);
|
| + }
|
| + }
|
| + }
|
| + ASSERT(first_mov_done);
|
| +
|
| + // Move the temporary if the original destination register was the stack
|
| + // pointer.
|
| + if (rd.IsSP()) {
|
| + mov(rd, temp);
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::Mov(const Register& rd,
|
| + const Operand& operand,
|
| + DiscardMoveMode discard_mode) {
|
| + ASSERT(allow_macro_instructions_);
|
| + ASSERT(!rd.IsZero());
|
| + // Provide a swap register for instructions that need to write into the
|
| + // system stack pointer (and can't do this inherently).
|
| + Register dst = (rd.Is(csp)) ? (Tmp1()) : (rd);
|
| +
|
| + if (operand.NeedsRelocation()) {
|
| + LoadRelocated(dst, operand);
|
| +
|
| + } else if (operand.IsImmediate()) {
|
| + // Call the macro assembler for generic immediates.
|
| + Mov(dst, operand.immediate());
|
| +
|
| + } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) {
|
| + // Emit a shift instruction if moving a shifted register. This operation
|
| + // could also be achieved using an orr instruction (like orn used by Mvn),
|
| + // but using a shift instruction makes the disassembly clearer.
|
| + EmitShift(dst, operand.reg(), operand.shift(), operand.shift_amount());
|
| +
|
| + } else if (operand.IsExtendedRegister()) {
|
| + // Emit an extend instruction if moving an extended register. This handles
|
| + // extend with post-shift operations, too.
|
| + EmitExtendShift(dst, operand.reg(), operand.extend(),
|
| + operand.shift_amount());
|
| +
|
| + } else {
|
| + // Otherwise, emit a register move only if the registers are distinct, or
|
| + // if they are not X registers.
|
| + //
|
| + // Note that mov(w0, w0) is not a no-op because it clears the top word of
|
| + // x0. A flag is provided (kDiscardForSameWReg) if a move between the same W
|
| + // registers is not required to clear the top word of the X register. In
|
| + // this case, the instruction is discarded.
|
| + //
|
| + // If csp is an operand, add #0 is emitted, otherwise, orr #0.
|
| + if (!rd.Is(operand.reg()) || (rd.Is32Bits() &&
|
| + (discard_mode == kDontDiscardForSameWReg))) {
|
| + Assembler::mov(rd, operand.reg());
|
| + }
|
| + // This case can handle writes into the system stack pointer directly.
|
| + dst = rd;
|
| + }
|
| +
|
| + // Copy the result to the system stack pointer.
|
| + if (!dst.Is(rd)) {
|
| + ASSERT(rd.IsZero());
|
| + ASSERT(dst.Is(Tmp1()));
|
| + Assembler::mov(rd, dst);
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::Mvn(const Register& rd, const Operand& operand) {
|
| + ASSERT(allow_macro_instructions_);
|
| +
|
| + if (operand.NeedsRelocation()) {
|
| + LoadRelocated(Tmp0(), operand);
|
| + Mvn(rd, Tmp0());
|
| +
|
| + } else if (operand.IsImmediate()) {
|
| + // Call the macro assembler for generic immediates.
|
| + Mov(rd, ~operand.immediate());
|
| +
|
| + } else if (operand.IsExtendedRegister()) {
|
| + // Emit two instructions for the extend case. This differs from Mov, as
|
| + // the extend and invert can't be achieved in one instruction.
|
| + Register temp = AppropriateTempFor(rd, operand.reg());
|
| + EmitExtendShift(temp, operand.reg(), operand.extend(),
|
| + operand.shift_amount());
|
| + mvn(rd, temp);
|
| +
|
| + } else {
|
| + // Otherwise, emit a register move only if the registers are distinct.
|
| + // If the jssp is an operand, add #0 is emitted, otherwise, orr #0.
|
| + mvn(rd, operand);
|
| + }
|
| +}
|
| +
|
| +
|
| +unsigned MacroAssembler::CountClearHalfWords(uint64_t imm, unsigned reg_size) {
|
| + ASSERT((reg_size % 8) == 0);
|
| + int count = 0;
|
| + for (unsigned i = 0; i < (reg_size / 16); i++) {
|
| + if ((imm & 0xffff) == 0) {
|
| + count++;
|
| + }
|
| + imm >>= 16;
|
| + }
|
| + return count;
|
| +}
|
| +
|
| +
|
| +// The movz instruction can generate immediates containing an arbitrary 16-bit
|
| +// half-word, with remaining bits clear, eg. 0x00001234, 0x0000123400000000.
|
| +bool MacroAssembler::IsImmMovz(uint64_t imm, unsigned reg_size) {
|
| + ASSERT((reg_size == kXRegSize) || (reg_size == kWRegSize));
|
| + return CountClearHalfWords(imm, reg_size) >= ((reg_size / 16) - 1);
|
| +}
|
| +
|
| +
|
| +// The movn instruction can generate immediates containing an arbitrary 16-bit
|
| +// half-word, with remaining bits set, eg. 0xffff1234, 0xffff1234ffffffff.
|
| +bool MacroAssembler::IsImmMovn(uint64_t imm, unsigned reg_size) {
|
| + return IsImmMovz(~imm, reg_size);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::ConditionalCompareMacro(const Register& rn,
|
| + const Operand& operand,
|
| + StatusFlags nzcv,
|
| + Condition cond,
|
| + ConditionalCompareOp op) {
|
| + ASSERT((cond != al) && (cond != nv));
|
| + if (operand.NeedsRelocation()) {
|
| + LoadRelocated(Tmp0(), operand);
|
| + ConditionalCompareMacro(rn, Tmp0(), nzcv, cond, op);
|
| +
|
| + } else if ((operand.IsShiftedRegister() && (operand.shift_amount() == 0)) ||
|
| + (operand.IsImmediate() && IsImmConditionalCompare(operand.immediate()))) {
|
| + // The immediate can be encoded in the instruction, or the operand is an
|
| + // unshifted register: call the assembler.
|
| + ConditionalCompare(rn, operand, nzcv, cond, op);
|
| +
|
| + } else {
|
| + // The operand isn't directly supported by the instruction: perform the
|
| + // operation on a temporary register.
|
| + Register temp = AppropriateTempFor(rn);
|
| + Mov(temp, operand);
|
| + ConditionalCompare(rn, temp, nzcv, cond, op);
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::Csel(const Register& rd,
|
| + const Register& rn,
|
| + const Operand& operand,
|
| + Condition cond) {
|
| + ASSERT(allow_macro_instructions_);
|
| + ASSERT(!rd.IsZero());
|
| + ASSERT((cond != al) && (cond != nv));
|
| + if (operand.IsImmediate()) {
|
| + // Immediate argument. Handle special cases of 0, 1 and -1 using zero
|
| + // register.
|
| + int64_t imm = operand.immediate();
|
| + Register zr = AppropriateZeroRegFor(rn);
|
| + if (imm == 0) {
|
| + csel(rd, rn, zr, cond);
|
| + } else if (imm == 1) {
|
| + csinc(rd, rn, zr, cond);
|
| + } else if (imm == -1) {
|
| + csinv(rd, rn, zr, cond);
|
| + } else {
|
| + Register temp = AppropriateTempFor(rn);
|
| + Mov(temp, operand.immediate());
|
| + csel(rd, rn, temp, cond);
|
| + }
|
| + } else if (operand.IsShiftedRegister() && (operand.shift_amount() == 0)) {
|
| + // Unshifted register argument.
|
| + csel(rd, rn, operand.reg(), cond);
|
| + } else {
|
| + // All other arguments.
|
| + Register temp = AppropriateTempFor(rn);
|
| + Mov(temp, operand);
|
| + csel(rd, rn, temp, cond);
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::AddSubMacro(const Register& rd,
|
| + const Register& rn,
|
| + const Operand& operand,
|
| + FlagsUpdate S,
|
| + AddSubOp op) {
|
| + if (operand.IsZero() && rd.Is(rn) && rd.Is64Bits() && rn.Is64Bits() &&
|
| + !operand.NeedsRelocation() && (S == LeaveFlags)) {
|
| + // The instruction would be a nop. Avoid generating useless code.
|
| + return;
|
| + }
|
| +
|
| + if (operand.NeedsRelocation()) {
|
| + LoadRelocated(Tmp0(), operand);
|
| + AddSubMacro(rd, rn, Tmp0(), S, op);
|
| + } else if ((operand.IsImmediate() && !IsImmAddSub(operand.immediate())) ||
|
| + (rn.IsZero() && !operand.IsShiftedRegister()) ||
|
| + (operand.IsShiftedRegister() && (operand.shift() == ROR))) {
|
| + Register temp = AppropriateTempFor(rn);
|
| + Mov(temp, operand);
|
| + AddSub(rd, rn, temp, S, op);
|
| + } else {
|
| + AddSub(rd, rn, operand, S, op);
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::AddSubWithCarryMacro(const Register& rd,
|
| + const Register& rn,
|
| + const Operand& operand,
|
| + FlagsUpdate S,
|
| + AddSubWithCarryOp op) {
|
| + ASSERT(rd.SizeInBits() == rn.SizeInBits());
|
| +
|
| + if (operand.NeedsRelocation()) {
|
| + LoadRelocated(Tmp0(), operand);
|
| + AddSubWithCarryMacro(rd, rn, Tmp0(), S, op);
|
| +
|
| + } else if (operand.IsImmediate() ||
|
| + (operand.IsShiftedRegister() && (operand.shift() == ROR))) {
|
| + // Add/sub with carry (immediate or ROR shifted register.)
|
| + Register temp = AppropriateTempFor(rn);
|
| + Mov(temp, operand);
|
| + AddSubWithCarry(rd, rn, temp, S, op);
|
| + } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) {
|
| + // Add/sub with carry (shifted register).
|
| + ASSERT(operand.reg().SizeInBits() == rd.SizeInBits());
|
| + ASSERT(operand.shift() != ROR);
|
| + ASSERT(is_uintn(operand.shift_amount(),
|
| + rd.SizeInBits() == kXRegSize ? kXRegSizeLog2 : kWRegSizeLog2));
|
| + Register temp = AppropriateTempFor(rn, operand.reg());
|
| + EmitShift(temp, operand.reg(), operand.shift(), operand.shift_amount());
|
| + AddSubWithCarry(rd, rn, temp, S, op);
|
| +
|
| + } else if (operand.IsExtendedRegister()) {
|
| + // Add/sub with carry (extended register).
|
| + ASSERT(operand.reg().SizeInBits() <= rd.SizeInBits());
|
| + // Add/sub extended supports a shift <= 4. We want to support exactly the
|
| + // same modes.
|
| + ASSERT(operand.shift_amount() <= 4);
|
| + ASSERT(operand.reg().Is64Bits() ||
|
| + ((operand.extend() != UXTX) && (operand.extend() != SXTX)));
|
| + Register temp = AppropriateTempFor(rn, operand.reg());
|
| + EmitExtendShift(temp, operand.reg(), operand.extend(),
|
| + operand.shift_amount());
|
| + AddSubWithCarry(rd, rn, temp, S, op);
|
| +
|
| + } else {
|
| + // The addressing mode is directly supported by the instruction.
|
| + AddSubWithCarry(rd, rn, operand, S, op);
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::LoadStoreMacro(const CPURegister& rt,
|
| + const MemOperand& addr,
|
| + LoadStoreOp op) {
|
| + int64_t offset = addr.offset();
|
| + LSDataSize size = CalcLSDataSize(op);
|
| +
|
| + // Check if an immediate offset fits in the immediate field of the
|
| + // appropriate instruction. If not, emit two instructions to perform
|
| + // the operation.
|
| + if (addr.IsImmediateOffset() && !IsImmLSScaled(offset, size) &&
|
| + !IsImmLSUnscaled(offset)) {
|
| + // Immediate offset that can't be encoded using unsigned or unscaled
|
| + // addressing modes.
|
| + Register temp = AppropriateTempFor(addr.base());
|
| + Mov(temp, addr.offset());
|
| + LoadStore(rt, MemOperand(addr.base(), temp), op);
|
| + } else if (addr.IsPostIndex() && !IsImmLSUnscaled(offset)) {
|
| + // Post-index beyond unscaled addressing range.
|
| + LoadStore(rt, MemOperand(addr.base()), op);
|
| + add(addr.base(), addr.base(), offset);
|
| + } else if (addr.IsPreIndex() && !IsImmLSUnscaled(offset)) {
|
| + // Pre-index beyond unscaled addressing range.
|
| + add(addr.base(), addr.base(), offset);
|
| + LoadStore(rt, MemOperand(addr.base()), op);
|
| + } else {
|
| + // Encodable in one load/store instruction.
|
| + LoadStore(rt, addr, op);
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::Load(const Register& rt,
|
| + const MemOperand& addr,
|
| + Representation r) {
|
| + ASSERT(!r.IsDouble());
|
| +
|
| + if (r.IsInteger8()) {
|
| + Ldrsb(rt, addr);
|
| + } else if (r.IsUInteger8()) {
|
| + Ldrb(rt, addr);
|
| + } else if (r.IsInteger16()) {
|
| + Ldrsh(rt, addr);
|
| + } else if (r.IsUInteger16()) {
|
| + Ldrh(rt, addr);
|
| + } else if (r.IsInteger32()) {
|
| + Ldr(rt.W(), addr);
|
| + } else {
|
| + ASSERT(rt.Is64Bits());
|
| + Ldr(rt, addr);
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::Store(const Register& rt,
|
| + const MemOperand& addr,
|
| + Representation r) {
|
| + ASSERT(!r.IsDouble());
|
| +
|
| + if (r.IsInteger8() || r.IsUInteger8()) {
|
| + Strb(rt, addr);
|
| + } else if (r.IsInteger16() || r.IsUInteger16()) {
|
| + Strh(rt, addr);
|
| + } else if (r.IsInteger32()) {
|
| + Str(rt.W(), addr);
|
| + } else {
|
| + ASSERT(rt.Is64Bits());
|
| + Str(rt, addr);
|
| + }
|
| +}
|
| +
|
| +
|
| +// Pseudo-instructions.
|
| +
|
| +
|
| +void MacroAssembler::Abs(const Register& rd, const Register& rm,
|
| + Label* is_not_representable,
|
| + Label* is_representable) {
|
| + ASSERT(allow_macro_instructions_);
|
| + ASSERT(AreSameSizeAndType(rd, rm));
|
| +
|
| + Cmp(rm, 1);
|
| + Cneg(rd, rm, lt);
|
| +
|
| + // If the comparison sets the v flag, the input was the smallest value
|
| + // representable by rm, and the mathematical result of abs(rm) is not
|
| + // representable using two's complement.
|
| + if ((is_not_representable != NULL) && (is_representable != NULL)) {
|
| + B(is_not_representable, vs);
|
| + B(is_representable);
|
| + } else if (is_not_representable != NULL) {
|
| + B(is_not_representable, vs);
|
| + } else if (is_representable != NULL) {
|
| + B(is_representable, vc);
|
| + }
|
| +}
|
| +
|
| +
|
| +// Abstracted stack operations.
|
| +
|
| +
|
| +void MacroAssembler::Push(const CPURegister& src0, const CPURegister& src1,
|
| + const CPURegister& src2, const CPURegister& src3) {
|
| + ASSERT(AreSameSizeAndType(src0, src1, src2, src3));
|
| + ASSERT(src0.IsValid());
|
| +
|
| + int count = 1 + src1.IsValid() + src2.IsValid() + src3.IsValid();
|
| + int size = src0.SizeInBytes();
|
| +
|
| + PrepareForPush(count, size);
|
| + PushHelper(count, size, src0, src1, src2, src3);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::Pop(const CPURegister& dst0, const CPURegister& dst1,
|
| + const CPURegister& dst2, const CPURegister& dst3) {
|
| + // It is not valid to pop into the same register more than once in one
|
| + // instruction, not even into the zero register.
|
| + ASSERT(!AreAliased(dst0, dst1, dst2, dst3));
|
| + ASSERT(AreSameSizeAndType(dst0, dst1, dst2, dst3));
|
| + ASSERT(dst0.IsValid());
|
| +
|
| + int count = 1 + dst1.IsValid() + dst2.IsValid() + dst3.IsValid();
|
| + int size = dst0.SizeInBytes();
|
| +
|
| + PrepareForPop(count, size);
|
| + PopHelper(count, size, dst0, dst1, dst2, dst3);
|
| +
|
| + if (!csp.Is(StackPointer()) && emit_debug_code()) {
|
| + // It is safe to leave csp where it is when unwinding the JavaScript stack,
|
| + // but if we keep it matching StackPointer, the simulator can detect memory
|
| + // accesses in the now-free part of the stack.
|
| + Mov(csp, StackPointer());
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::PushCPURegList(CPURegList registers) {
|
| + int size = registers.RegisterSizeInBytes();
|
| +
|
| + PrepareForPush(registers.Count(), size);
|
| + // Push up to four registers at a time because if the current stack pointer is
|
| + // csp and reg_size is 32, registers must be pushed in blocks of four in order
|
| + // to maintain the 16-byte alignment for csp.
|
| + while (!registers.IsEmpty()) {
|
| + int count_before = registers.Count();
|
| + const CPURegister& src0 = registers.PopHighestIndex();
|
| + const CPURegister& src1 = registers.PopHighestIndex();
|
| + const CPURegister& src2 = registers.PopHighestIndex();
|
| + const CPURegister& src3 = registers.PopHighestIndex();
|
| + int count = count_before - registers.Count();
|
| + PushHelper(count, size, src0, src1, src2, src3);
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::PopCPURegList(CPURegList registers) {
|
| + int size = registers.RegisterSizeInBytes();
|
| +
|
| + PrepareForPop(registers.Count(), size);
|
| + // Pop up to four registers at a time because if the current stack pointer is
|
| + // csp and reg_size is 32, registers must be pushed in blocks of four in
|
| + // order to maintain the 16-byte alignment for csp.
|
| + while (!registers.IsEmpty()) {
|
| + int count_before = registers.Count();
|
| + const CPURegister& dst0 = registers.PopLowestIndex();
|
| + const CPURegister& dst1 = registers.PopLowestIndex();
|
| + const CPURegister& dst2 = registers.PopLowestIndex();
|
| + const CPURegister& dst3 = registers.PopLowestIndex();
|
| + int count = count_before - registers.Count();
|
| + PopHelper(count, size, dst0, dst1, dst2, dst3);
|
| + }
|
| +
|
| + if (!csp.Is(StackPointer()) && emit_debug_code()) {
|
| + // It is safe to leave csp where it is when unwinding the JavaScript stack,
|
| + // but if we keep it matching StackPointer, the simulator can detect memory
|
| + // accesses in the now-free part of the stack.
|
| + Mov(csp, StackPointer());
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::PushMultipleTimes(int count, Register src) {
|
| + int size = src.SizeInBytes();
|
| +
|
| + PrepareForPush(count, size);
|
| +
|
| + if (FLAG_optimize_for_size && count > 8) {
|
| + Label loop;
|
| + __ Mov(Tmp0(), count / 2);
|
| + __ Bind(&loop);
|
| + PushHelper(2, size, src, src, NoReg, NoReg);
|
| + __ Subs(Tmp0(), Tmp0(), 1);
|
| + __ B(ne, &loop);
|
| +
|
| + count %= 2;
|
| + }
|
| +
|
| + // Push up to four registers at a time if possible because if the current
|
| + // stack pointer is csp and the register size is 32, registers must be pushed
|
| + // in blocks of four in order to maintain the 16-byte alignment for csp.
|
| + while (count >= 4) {
|
| + PushHelper(4, size, src, src, src, src);
|
| + count -= 4;
|
| + }
|
| + if (count >= 2) {
|
| + PushHelper(2, size, src, src, NoReg, NoReg);
|
| + count -= 2;
|
| + }
|
| + if (count == 1) {
|
| + PushHelper(1, size, src, NoReg, NoReg, NoReg);
|
| + count -= 1;
|
| + }
|
| + ASSERT(count == 0);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::PushHelper(int count, int size,
|
| + const CPURegister& src0,
|
| + const CPURegister& src1,
|
| + const CPURegister& src2,
|
| + const CPURegister& src3) {
|
| + // Ensure that we don't unintentially modify scratch or debug registers.
|
| + InstructionAccurateScope scope(this);
|
| +
|
| + ASSERT(AreSameSizeAndType(src0, src1, src2, src3));
|
| + ASSERT(size == src0.SizeInBytes());
|
| +
|
| + // When pushing multiple registers, the store order is chosen such that
|
| + // Push(a, b) is equivalent to Push(a) followed by Push(b).
|
| + switch (count) {
|
| + case 1:
|
| + ASSERT(src1.IsNone() && src2.IsNone() && src3.IsNone());
|
| + str(src0, MemOperand(StackPointer(), -1 * size, PreIndex));
|
| + break;
|
| + case 2:
|
| + ASSERT(src2.IsNone() && src3.IsNone());
|
| + stp(src1, src0, MemOperand(StackPointer(), -2 * size, PreIndex));
|
| + break;
|
| + case 3:
|
| + ASSERT(src3.IsNone());
|
| + stp(src2, src1, MemOperand(StackPointer(), -3 * size, PreIndex));
|
| + str(src0, MemOperand(StackPointer(), 2 * size));
|
| + break;
|
| + case 4:
|
| + // Skip over 4 * size, then fill in the gap. This allows four W registers
|
| + // to be pushed using csp, whilst maintaining 16-byte alignment for csp
|
| + // at all times.
|
| + stp(src3, src2, MemOperand(StackPointer(), -4 * size, PreIndex));
|
| + stp(src1, src0, MemOperand(StackPointer(), 2 * size));
|
| + break;
|
| + default:
|
| + UNREACHABLE();
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::PopHelper(int count, int size,
|
| + const CPURegister& dst0,
|
| + const CPURegister& dst1,
|
| + const CPURegister& dst2,
|
| + const CPURegister& dst3) {
|
| + // Ensure that we don't unintentially modify scratch or debug registers.
|
| + InstructionAccurateScope scope(this);
|
| +
|
| + ASSERT(AreSameSizeAndType(dst0, dst1, dst2, dst3));
|
| + ASSERT(size == dst0.SizeInBytes());
|
| +
|
| + // When popping multiple registers, the load order is chosen such that
|
| + // Pop(a, b) is equivalent to Pop(a) followed by Pop(b).
|
| + switch (count) {
|
| + case 1:
|
| + ASSERT(dst1.IsNone() && dst2.IsNone() && dst3.IsNone());
|
| + ldr(dst0, MemOperand(StackPointer(), 1 * size, PostIndex));
|
| + break;
|
| + case 2:
|
| + ASSERT(dst2.IsNone() && dst3.IsNone());
|
| + ldp(dst0, dst1, MemOperand(StackPointer(), 2 * size, PostIndex));
|
| + break;
|
| + case 3:
|
| + ASSERT(dst3.IsNone());
|
| + ldr(dst2, MemOperand(StackPointer(), 2 * size));
|
| + ldp(dst0, dst1, MemOperand(StackPointer(), 3 * size, PostIndex));
|
| + break;
|
| + case 4:
|
| + // Load the higher addresses first, then load the lower addresses and
|
| + // skip the whole block in the second instruction. This allows four W
|
| + // registers to be popped using csp, whilst maintaining 16-byte alignment
|
| + // for csp at all times.
|
| + ldp(dst2, dst3, MemOperand(StackPointer(), 2 * size));
|
| + ldp(dst0, dst1, MemOperand(StackPointer(), 4 * size, PostIndex));
|
| + break;
|
| + default:
|
| + UNREACHABLE();
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::PrepareForPush(int count, int size) {
|
| + // TODO(jbramley): Use AssertStackConsistency here, if possible. See the
|
| + // AssertStackConsistency for details of why we can't at the moment.
|
| + if (csp.Is(StackPointer())) {
|
| + // If the current stack pointer is csp, then it must be aligned to 16 bytes
|
| + // on entry and the total size of the specified registers must also be a
|
| + // multiple of 16 bytes.
|
| + ASSERT((count * size) % 16 == 0);
|
| + } else {
|
| + // Even if the current stack pointer is not the system stack pointer (csp),
|
| + // the system stack pointer will still be modified in order to comply with
|
| + // ABI rules about accessing memory below the system stack pointer.
|
| + BumpSystemStackPointer(count * size);
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::PrepareForPop(int count, int size) {
|
| + AssertStackConsistency();
|
| + if (csp.Is(StackPointer())) {
|
| + // If the current stack pointer is csp, then it must be aligned to 16 bytes
|
| + // on entry and the total size of the specified registers must also be a
|
| + // multiple of 16 bytes.
|
| + ASSERT((count * size) % 16 == 0);
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::Poke(const CPURegister& src, const Operand& offset) {
|
| + if (offset.IsImmediate()) {
|
| + ASSERT(offset.immediate() >= 0);
|
| + } else if (emit_debug_code()) {
|
| + Cmp(xzr, offset);
|
| + Check(le, kStackAccessBelowStackPointer);
|
| + }
|
| +
|
| + Str(src, MemOperand(StackPointer(), offset));
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::Peek(const CPURegister& dst, const Operand& offset) {
|
| + if (offset.IsImmediate()) {
|
| + ASSERT(offset.immediate() >= 0);
|
| + } else if (emit_debug_code()) {
|
| + Cmp(xzr, offset);
|
| + Check(le, kStackAccessBelowStackPointer);
|
| + }
|
| +
|
| + Ldr(dst, MemOperand(StackPointer(), offset));
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::PokePair(const CPURegister& src1,
|
| + const CPURegister& src2,
|
| + int offset) {
|
| + ASSERT(AreSameSizeAndType(src1, src2));
|
| + ASSERT((offset >= 0) && ((offset % src1.SizeInBytes()) == 0));
|
| + Stp(src1, src2, MemOperand(StackPointer(), offset));
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::PeekPair(const CPURegister& dst1,
|
| + const CPURegister& dst2,
|
| + int offset) {
|
| + ASSERT(AreSameSizeAndType(dst1, dst2));
|
| + ASSERT((offset >= 0) && ((offset % dst1.SizeInBytes()) == 0));
|
| + Ldp(dst1, dst2, MemOperand(StackPointer(), offset));
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::PushCalleeSavedRegisters() {
|
| + // Ensure that the macro-assembler doesn't use any scratch registers.
|
| + InstructionAccurateScope scope(this);
|
| +
|
| + // This method must not be called unless the current stack pointer is the
|
| + // system stack pointer (csp).
|
| + ASSERT(csp.Is(StackPointer()));
|
| +
|
| + MemOperand tos(csp, -2 * kXRegSizeInBytes, PreIndex);
|
| +
|
| + stp(d14, d15, tos);
|
| + stp(d12, d13, tos);
|
| + stp(d10, d11, tos);
|
| + stp(d8, d9, tos);
|
| +
|
| + stp(x29, x30, tos);
|
| + stp(x27, x28, tos); // x28 = jssp
|
| + stp(x25, x26, tos);
|
| + stp(x23, x24, tos);
|
| + stp(x21, x22, tos);
|
| + stp(x19, x20, tos);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::PopCalleeSavedRegisters() {
|
| + // Ensure that the macro-assembler doesn't use any scratch registers.
|
| + InstructionAccurateScope scope(this);
|
| +
|
| + // This method must not be called unless the current stack pointer is the
|
| + // system stack pointer (csp).
|
| + ASSERT(csp.Is(StackPointer()));
|
| +
|
| + MemOperand tos(csp, 2 * kXRegSizeInBytes, PostIndex);
|
| +
|
| + ldp(x19, x20, tos);
|
| + ldp(x21, x22, tos);
|
| + ldp(x23, x24, tos);
|
| + ldp(x25, x26, tos);
|
| + ldp(x27, x28, tos); // x28 = jssp
|
| + ldp(x29, x30, tos);
|
| +
|
| + ldp(d8, d9, tos);
|
| + ldp(d10, d11, tos);
|
| + ldp(d12, d13, tos);
|
| + ldp(d14, d15, tos);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::AssertStackConsistency() {
|
| + if (emit_debug_code() && !csp.Is(StackPointer())) {
|
| + if (csp.Is(StackPointer())) {
|
| + // TODO(jbramley): Check for csp alignment if it is the stack pointer.
|
| + } else {
|
| + // TODO(jbramley): Currently we cannot use this assertion in Push because
|
| + // some calling code assumes that the flags are preserved. For an example,
|
| + // look at Builtins::Generate_ArgumentsAdaptorTrampoline.
|
| + Cmp(csp, StackPointer());
|
| + Check(ls, kTheCurrentStackPointerIsBelowCsp);
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::LoadRoot(Register destination,
|
| + Heap::RootListIndex index) {
|
| + // TODO(jbramley): Most root values are constants, and can be synthesized
|
| + // without a load. Refer to the ARM back end for details.
|
| + Ldr(destination, MemOperand(root, index << kPointerSizeLog2));
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::StoreRoot(Register source,
|
| + Heap::RootListIndex index) {
|
| + Str(source, MemOperand(root, index << kPointerSizeLog2));
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::LoadTrueFalseRoots(Register true_root,
|
| + Register false_root) {
|
| + STATIC_ASSERT((Heap::kTrueValueRootIndex + 1) == Heap::kFalseValueRootIndex);
|
| + Ldp(true_root, false_root,
|
| + MemOperand(root, Heap::kTrueValueRootIndex << kPointerSizeLog2));
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::LoadHeapObject(Register result,
|
| + Handle<HeapObject> object) {
|
| + AllowDeferredHandleDereference using_raw_address;
|
| + if (isolate()->heap()->InNewSpace(*object)) {
|
| + Handle<Cell> cell = isolate()->factory()->NewCell(object);
|
| + Mov(result, Operand(cell));
|
| + Ldr(result, FieldMemOperand(result, Cell::kValueOffset));
|
| + } else {
|
| + Mov(result, Operand(object));
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::LoadInstanceDescriptors(Register map,
|
| + Register descriptors) {
|
| + Ldr(descriptors, FieldMemOperand(map, Map::kDescriptorsOffset));
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) {
|
| + Ldr(dst, FieldMemOperand(map, Map::kBitField3Offset));
|
| + DecodeField<Map::NumberOfOwnDescriptorsBits>(dst);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::EnumLengthUntagged(Register dst, Register map) {
|
| + STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
|
| + Ldrsw(dst, UntagSmiFieldMemOperand(map, Map::kBitField3Offset));
|
| + And(dst, dst, Map::EnumLengthBits::kMask);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::EnumLengthSmi(Register dst, Register map) {
|
| + STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
|
| + Ldr(dst, FieldMemOperand(map, Map::kBitField3Offset));
|
| + And(dst, dst, Operand(Smi::FromInt(Map::EnumLengthBits::kMask)));
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::CheckEnumCache(Register object,
|
| + Register null_value,
|
| + Register scratch0,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Register scratch3,
|
| + Label* call_runtime) {
|
| + ASSERT(!AreAliased(object, null_value, scratch0, scratch1, scratch2,
|
| + scratch3));
|
| +
|
| + Register empty_fixed_array_value = scratch0;
|
| + Register current_object = scratch1;
|
| +
|
| + LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex);
|
| + Label next, start;
|
| +
|
| + Mov(current_object, object);
|
| +
|
| + // Check if the enum length field is properly initialized, indicating that
|
| + // there is an enum cache.
|
| + Register map = scratch2;
|
| + Register enum_length = scratch3;
|
| + Ldr(map, FieldMemOperand(current_object, HeapObject::kMapOffset));
|
| +
|
| + EnumLengthUntagged(enum_length, map);
|
| + Cmp(enum_length, kInvalidEnumCacheSentinel);
|
| + B(eq, call_runtime);
|
| +
|
| + B(&start);
|
| +
|
| + Bind(&next);
|
| + Ldr(map, FieldMemOperand(current_object, HeapObject::kMapOffset));
|
| +
|
| + // For all objects but the receiver, check that the cache is empty.
|
| + EnumLengthUntagged(enum_length, map);
|
| + Cbnz(enum_length, call_runtime);
|
| +
|
| + Bind(&start);
|
| +
|
| + // Check that there are no elements. Register current_object contains the
|
| + // current JS object we've reached through the prototype chain.
|
| + Label no_elements;
|
| + Ldr(current_object, FieldMemOperand(current_object,
|
| + JSObject::kElementsOffset));
|
| + Cmp(current_object, empty_fixed_array_value);
|
| + B(eq, &no_elements);
|
| +
|
| + // Second chance, the object may be using the empty slow element dictionary.
|
| + CompareRoot(current_object, Heap::kEmptySlowElementDictionaryRootIndex);
|
| + B(ne, call_runtime);
|
| +
|
| + Bind(&no_elements);
|
| + Ldr(current_object, FieldMemOperand(map, Map::kPrototypeOffset));
|
| + Cmp(current_object, null_value);
|
| + B(ne, &next);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::TestJSArrayForAllocationMemento(Register receiver,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Label* no_memento_found) {
|
| + ExternalReference new_space_start =
|
| + ExternalReference::new_space_start(isolate());
|
| + ExternalReference new_space_allocation_top =
|
| + ExternalReference::new_space_allocation_top_address(isolate());
|
| +
|
| + Add(scratch1, receiver,
|
| + JSArray::kSize + AllocationMemento::kSize - kHeapObjectTag);
|
| + Cmp(scratch1, Operand(new_space_start));
|
| + B(lt, no_memento_found);
|
| +
|
| + Mov(scratch2, Operand(new_space_allocation_top));
|
| + Ldr(scratch2, MemOperand(scratch2));
|
| + Cmp(scratch1, scratch2);
|
| + B(gt, no_memento_found);
|
| +
|
| + Ldr(scratch1, MemOperand(scratch1, -AllocationMemento::kSize));
|
| + Cmp(scratch1,
|
| + Operand(isolate()->factory()->allocation_memento_map()));
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::JumpToHandlerEntry(Register exception,
|
| + Register object,
|
| + Register state,
|
| + Register scratch1,
|
| + Register scratch2) {
|
| + // Handler expects argument in x0.
|
| + ASSERT(exception.Is(x0));
|
| +
|
| + // Compute the handler entry address and jump to it. The handler table is
|
| + // a fixed array of (smi-tagged) code offsets.
|
| + Ldr(scratch1, FieldMemOperand(object, Code::kHandlerTableOffset));
|
| + Add(scratch1, scratch1, FixedArray::kHeaderSize - kHeapObjectTag);
|
| + STATIC_ASSERT(StackHandler::kKindWidth < kPointerSizeLog2);
|
| + Lsr(scratch2, state, StackHandler::kKindWidth);
|
| + Ldr(scratch2, MemOperand(scratch1, scratch2, LSL, kPointerSizeLog2));
|
| + Add(scratch1, object, Code::kHeaderSize - kHeapObjectTag);
|
| + Add(scratch1, scratch1, Operand::UntagSmi(scratch2));
|
| + Br(scratch1);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::InNewSpace(Register object,
|
| + Condition cond,
|
| + Label* branch) {
|
| + ASSERT(cond == eq || cond == ne);
|
| + // Use Tmp1() to have a different destination register, as Tmp0() will be used
|
| + // for relocation.
|
| + And(Tmp1(), object, Operand(ExternalReference::new_space_mask(isolate())));
|
| + Cmp(Tmp1(), Operand(ExternalReference::new_space_start(isolate())));
|
| + B(cond, branch);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::Throw(Register value,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Register scratch3,
|
| + Register scratch4) {
|
| + // Adjust this code if not the case.
|
| + STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
|
| + STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
|
| + STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
|
| + STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
|
| + STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
|
| + STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
|
| +
|
| + // The handler expects the exception in x0.
|
| + ASSERT(value.Is(x0));
|
| +
|
| + // Drop the stack pointer to the top of the top handler.
|
| + ASSERT(jssp.Is(StackPointer()));
|
| + Mov(scratch1, Operand(ExternalReference(Isolate::kHandlerAddress,
|
| + isolate())));
|
| + Ldr(jssp, MemOperand(scratch1));
|
| + // Restore the next handler.
|
| + Pop(scratch2);
|
| + Str(scratch2, MemOperand(scratch1));
|
| +
|
| + // Get the code object and state. Restore the context and frame pointer.
|
| + Register object = scratch1;
|
| + Register state = scratch2;
|
| + Pop(object, state, cp, fp);
|
| +
|
| + // If the handler is a JS frame, restore the context to the frame.
|
| + // (kind == ENTRY) == (fp == 0) == (cp == 0), so we could test either fp
|
| + // or cp.
|
| + Label not_js_frame;
|
| + Cbz(cp, ¬_js_frame);
|
| + Str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
|
| + Bind(¬_js_frame);
|
| +
|
| + JumpToHandlerEntry(value, object, state, scratch3, scratch4);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::ThrowUncatchable(Register value,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Register scratch3,
|
| + Register scratch4) {
|
| + // Adjust this code if not the case.
|
| + STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
|
| + STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
|
| + STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
|
| + STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
|
| + STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
|
| + STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
|
| +
|
| + // The handler expects the exception in x0.
|
| + ASSERT(value.Is(x0));
|
| +
|
| + // Drop the stack pointer to the top of the top stack handler.
|
| + ASSERT(jssp.Is(StackPointer()));
|
| + Mov(scratch1, Operand(ExternalReference(Isolate::kHandlerAddress,
|
| + isolate())));
|
| + Ldr(jssp, MemOperand(scratch1));
|
| +
|
| + // Unwind the handlers until the ENTRY handler is found.
|
| + Label fetch_next, check_kind;
|
| + B(&check_kind);
|
| + Bind(&fetch_next);
|
| + Peek(jssp, StackHandlerConstants::kNextOffset);
|
| +
|
| + Bind(&check_kind);
|
| + STATIC_ASSERT(StackHandler::JS_ENTRY == 0);
|
| + Peek(scratch2, StackHandlerConstants::kStateOffset);
|
| + TestAndBranchIfAnySet(scratch2, StackHandler::KindField::kMask, &fetch_next);
|
| +
|
| + // Set the top handler address to next handler past the top ENTRY handler.
|
| + Pop(scratch2);
|
| + Str(scratch2, MemOperand(scratch1));
|
| +
|
| + // Get the code object and state. Clear the context and frame pointer (0 was
|
| + // saved in the handler).
|
| + Register object = scratch1;
|
| + Register state = scratch2;
|
| + Pop(object, state, cp, fp);
|
| +
|
| + JumpToHandlerEntry(value, object, state, scratch3, scratch4);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::Throw(BailoutReason reason) {
|
| + Label throw_start;
|
| + Bind(&throw_start);
|
| +#ifdef DEBUG
|
| + const char* msg = GetBailoutReason(reason);
|
| + RecordComment("Throw message: ");
|
| + RecordComment((msg != NULL) ? msg : "UNKNOWN");
|
| +#endif
|
| +
|
| + Mov(x0, Operand(Smi::FromInt(reason)));
|
| + Push(x0);
|
| +
|
| + // Disable stub call restrictions to always allow calls to throw.
|
| + if (!has_frame_) {
|
| + // We don't actually want to generate a pile of code for this, so just
|
| + // claim there is a stack frame, without generating one.
|
| + FrameScope scope(this, StackFrame::NONE);
|
| + CallRuntime(Runtime::kThrowMessage, 1);
|
| + } else {
|
| + CallRuntime(Runtime::kThrowMessage, 1);
|
| + }
|
| + // ThrowMessage should not return here.
|
| + Unreachable();
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::ThrowIf(Condition cc, BailoutReason reason) {
|
| + Label ok;
|
| + B(InvertCondition(cc), &ok);
|
| + Throw(reason);
|
| + Bind(&ok);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::ThrowIfSmi(const Register& value, BailoutReason reason) {
|
| + Label ok;
|
| + JumpIfNotSmi(value, &ok);
|
| + Throw(reason);
|
| + Bind(&ok);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::SmiAbs(const Register& smi, Label* slow) {
|
| + ASSERT(smi.Is64Bits());
|
| + Abs(smi, smi, slow);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::AssertSmi(Register object, BailoutReason reason) {
|
| + if (emit_debug_code()) {
|
| + STATIC_ASSERT(kSmiTag == 0);
|
| + Tst(object, kSmiTagMask);
|
| + Check(eq, reason);
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::AssertNotSmi(Register object, BailoutReason reason) {
|
| + if (emit_debug_code()) {
|
| + STATIC_ASSERT(kSmiTag == 0);
|
| + Tst(object, kSmiTagMask);
|
| + Check(ne, reason);
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::AssertName(Register object) {
|
| + if (emit_debug_code()) {
|
| + STATIC_ASSERT(kSmiTag == 0);
|
| + // TODO(jbramley): Add AbortIfSmi and related functions.
|
| + Label not_smi;
|
| + JumpIfNotSmi(object, ¬_smi);
|
| + Abort(kOperandIsASmiAndNotAName);
|
| + Bind(¬_smi);
|
| +
|
| + Ldr(Tmp1(), FieldMemOperand(object, HeapObject::kMapOffset));
|
| + CompareInstanceType(Tmp1(), Tmp1(), LAST_NAME_TYPE);
|
| + Check(ls, kOperandIsNotAName);
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::AssertString(Register object) {
|
| + if (emit_debug_code()) {
|
| + Register temp = Tmp1();
|
| + STATIC_ASSERT(kSmiTag == 0);
|
| + Tst(object, kSmiTagMask);
|
| + Check(ne, kOperandIsASmiAndNotAString);
|
| + Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
|
| + CompareInstanceType(temp, temp, FIRST_NONSTRING_TYPE);
|
| + Check(lo, kOperandIsNotAString);
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id) {
|
| + ASSERT(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs.
|
| + Call(stub->GetCode(isolate()), RelocInfo::CODE_TARGET, ast_id);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::TailCallStub(CodeStub* stub) {
|
| + Jump(stub->GetCode(isolate()), RelocInfo::CODE_TARGET);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::CallRuntime(const Runtime::Function* f,
|
| + int num_arguments,
|
| + SaveFPRegsMode save_doubles) {
|
| + // All arguments must be on the stack before this function is called.
|
| + // x0 holds the return value after the call.
|
| +
|
| + // Check that the number of arguments matches what the function expects.
|
| + // If f->nargs is -1, the function can accept a variable number of arguments.
|
| + if (f->nargs >= 0 && f->nargs != num_arguments) {
|
| + // Illegal operation: drop the stack arguments and return undefined.
|
| + if (num_arguments > 0) {
|
| + Drop(num_arguments);
|
| + }
|
| + LoadRoot(x0, Heap::kUndefinedValueRootIndex);
|
| + return;
|
| + }
|
| +
|
| + // Place the necessary arguments.
|
| + Mov(x0, num_arguments);
|
| + Mov(x1, Operand(ExternalReference(f, isolate())));
|
| +
|
| + CEntryStub stub(1, save_doubles);
|
| + CallStub(&stub);
|
| +}
|
| +
|
| +
|
| +static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
|
| + return ref0.address() - ref1.address();
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::CallApiFunctionAndReturn(
|
| + Register function_address,
|
| + ExternalReference thunk_ref,
|
| + int stack_space,
|
| + int spill_offset,
|
| + MemOperand return_value_operand,
|
| + MemOperand* context_restore_operand) {
|
| + ASM_LOCATION("CallApiFunctionAndReturn");
|
| + ExternalReference next_address =
|
| + ExternalReference::handle_scope_next_address(isolate());
|
| + const int kNextOffset = 0;
|
| + const int kLimitOffset = AddressOffset(
|
| + ExternalReference::handle_scope_limit_address(isolate()),
|
| + next_address);
|
| + const int kLevelOffset = AddressOffset(
|
| + ExternalReference::handle_scope_level_address(isolate()),
|
| + next_address);
|
| +
|
| + ASSERT(function_address.is(x1) || function_address.is(x2));
|
| +
|
| + Label profiler_disabled;
|
| + Label end_profiler_check;
|
| + bool* is_profiling_flag = isolate()->cpu_profiler()->is_profiling_address();
|
| + STATIC_ASSERT(sizeof(*is_profiling_flag) == 1);
|
| + Mov(x10, reinterpret_cast<uintptr_t>(is_profiling_flag));
|
| + Ldrb(w10, MemOperand(x10));
|
| + Cbz(w10, &profiler_disabled);
|
| + Mov(x3, Operand(thunk_ref));
|
| + B(&end_profiler_check);
|
| +
|
| + Bind(&profiler_disabled);
|
| + Mov(x3, function_address);
|
| + Bind(&end_profiler_check);
|
| +
|
| + // Save the callee-save registers we are going to use.
|
| + // TODO(all): Is this necessary? ARM doesn't do it.
|
| + STATIC_ASSERT(kCallApiFunctionSpillSpace == 4);
|
| + Poke(x19, (spill_offset + 0) * kXRegSizeInBytes);
|
| + Poke(x20, (spill_offset + 1) * kXRegSizeInBytes);
|
| + Poke(x21, (spill_offset + 2) * kXRegSizeInBytes);
|
| + Poke(x22, (spill_offset + 3) * kXRegSizeInBytes);
|
| +
|
| + // Allocate HandleScope in callee-save registers.
|
| + // We will need to restore the HandleScope after the call to the API function,
|
| + // by allocating it in callee-save registers they will be preserved by C code.
|
| + Register handle_scope_base = x22;
|
| + Register next_address_reg = x19;
|
| + Register limit_reg = x20;
|
| + Register level_reg = w21;
|
| +
|
| + Mov(handle_scope_base, Operand(next_address));
|
| + Ldr(next_address_reg, MemOperand(handle_scope_base, kNextOffset));
|
| + Ldr(limit_reg, MemOperand(handle_scope_base, kLimitOffset));
|
| + Ldr(level_reg, MemOperand(handle_scope_base, kLevelOffset));
|
| + Add(level_reg, level_reg, 1);
|
| + Str(level_reg, MemOperand(handle_scope_base, kLevelOffset));
|
| +
|
| + if (FLAG_log_timer_events) {
|
| + FrameScope frame(this, StackFrame::MANUAL);
|
| + PushSafepointRegisters();
|
| + Mov(x0, Operand(ExternalReference::isolate_address(isolate())));
|
| + CallCFunction(ExternalReference::log_enter_external_function(isolate()), 1);
|
| + PopSafepointRegisters();
|
| + }
|
| +
|
| + // Native call returns to the DirectCEntry stub which redirects to the
|
| + // return address pushed on stack (could have moved after GC).
|
| + // DirectCEntry stub itself is generated early and never moves.
|
| + DirectCEntryStub stub;
|
| + stub.GenerateCall(this, x3);
|
| +
|
| + if (FLAG_log_timer_events) {
|
| + FrameScope frame(this, StackFrame::MANUAL);
|
| + PushSafepointRegisters();
|
| + Mov(x0, Operand(ExternalReference::isolate_address(isolate())));
|
| + CallCFunction(ExternalReference::log_leave_external_function(isolate()), 1);
|
| + PopSafepointRegisters();
|
| + }
|
| +
|
| + Label promote_scheduled_exception;
|
| + Label exception_handled;
|
| + Label delete_allocated_handles;
|
| + Label leave_exit_frame;
|
| + Label return_value_loaded;
|
| +
|
| + // Load value from ReturnValue.
|
| + Ldr(x0, return_value_operand);
|
| + Bind(&return_value_loaded);
|
| + // No more valid handles (the result handle was the last one). Restore
|
| + // previous handle scope.
|
| + Str(next_address_reg, MemOperand(handle_scope_base, kNextOffset));
|
| + if (emit_debug_code()) {
|
| + Ldr(w1, MemOperand(handle_scope_base, kLevelOffset));
|
| + Cmp(w1, level_reg);
|
| + Check(eq, kUnexpectedLevelAfterReturnFromApiCall);
|
| + }
|
| + Sub(level_reg, level_reg, 1);
|
| + Str(level_reg, MemOperand(handle_scope_base, kLevelOffset));
|
| + Ldr(x1, MemOperand(handle_scope_base, kLimitOffset));
|
| + Cmp(limit_reg, x1);
|
| + B(ne, &delete_allocated_handles);
|
| +
|
| + Bind(&leave_exit_frame);
|
| + // Restore callee-saved registers.
|
| + Peek(x19, (spill_offset + 0) * kXRegSizeInBytes);
|
| + Peek(x20, (spill_offset + 1) * kXRegSizeInBytes);
|
| + Peek(x21, (spill_offset + 2) * kXRegSizeInBytes);
|
| + Peek(x22, (spill_offset + 3) * kXRegSizeInBytes);
|
| +
|
| + // Check if the function scheduled an exception.
|
| + Mov(x5, Operand(ExternalReference::scheduled_exception_address(isolate())));
|
| + Ldr(x5, MemOperand(x5));
|
| + JumpIfNotRoot(x5, Heap::kTheHoleValueRootIndex, &promote_scheduled_exception);
|
| + Bind(&exception_handled);
|
| +
|
| + bool restore_context = context_restore_operand != NULL;
|
| + if (restore_context) {
|
| + Ldr(cp, *context_restore_operand);
|
| + }
|
| +
|
| + LeaveExitFrame(false, x1, !restore_context);
|
| + Drop(stack_space);
|
| + Ret();
|
| +
|
| + Bind(&promote_scheduled_exception);
|
| + {
|
| + FrameScope frame(this, StackFrame::INTERNAL);
|
| + CallExternalReference(
|
| + ExternalReference(Runtime::kPromoteScheduledException, isolate()), 0);
|
| + }
|
| + B(&exception_handled);
|
| +
|
| + // HandleScope limit has changed. Delete allocated extensions.
|
| + Bind(&delete_allocated_handles);
|
| + Str(limit_reg, MemOperand(handle_scope_base, kLimitOffset));
|
| + // Save the return value in a callee-save register.
|
| + Register saved_result = x19;
|
| + Mov(saved_result, x0);
|
| + Mov(x0, Operand(ExternalReference::isolate_address(isolate())));
|
| + CallCFunction(
|
| + ExternalReference::delete_handle_scope_extensions(isolate()), 1);
|
| + Mov(x0, saved_result);
|
| + B(&leave_exit_frame);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::CallExternalReference(const ExternalReference& ext,
|
| + int num_arguments) {
|
| + Mov(x0, num_arguments);
|
| + Mov(x1, Operand(ext));
|
| +
|
| + CEntryStub stub(1);
|
| + CallStub(&stub);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin) {
|
| + Mov(x1, Operand(builtin));
|
| + CEntryStub stub(1);
|
| + Jump(stub.GetCode(isolate()), RelocInfo::CODE_TARGET);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::GetBuiltinFunction(Register target,
|
| + Builtins::JavaScript id) {
|
| + // Load the builtins object into target register.
|
| + Ldr(target, GlobalObjectMemOperand());
|
| + Ldr(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset));
|
| + // Load the JavaScript builtin function from the builtins object.
|
| + Ldr(target, FieldMemOperand(target,
|
| + JSBuiltinsObject::OffsetOfFunctionWithId(id)));
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
|
| + ASSERT(!target.is(x1));
|
| + GetBuiltinFunction(x1, id);
|
| + // Load the code entry point from the builtins object.
|
| + Ldr(target, FieldMemOperand(x1, JSFunction::kCodeEntryOffset));
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
|
| + InvokeFlag flag,
|
| + const CallWrapper& call_wrapper) {
|
| + ASM_LOCATION("MacroAssembler::InvokeBuiltin");
|
| + // You can't call a builtin without a valid frame.
|
| + ASSERT(flag == JUMP_FUNCTION || has_frame());
|
| +
|
| + GetBuiltinEntry(x2, id);
|
| + if (flag == CALL_FUNCTION) {
|
| + call_wrapper.BeforeCall(CallSize(x2));
|
| + Call(x2);
|
| + call_wrapper.AfterCall();
|
| + } else {
|
| + ASSERT(flag == JUMP_FUNCTION);
|
| + Jump(x2);
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
|
| + int num_arguments,
|
| + int result_size) {
|
| + // TODO(1236192): Most runtime routines don't need the number of
|
| + // arguments passed in because it is constant. At some point we
|
| + // should remove this need and make the runtime routine entry code
|
| + // smarter.
|
| + Mov(x0, num_arguments);
|
| + JumpToExternalReference(ext);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
|
| + int num_arguments,
|
| + int result_size) {
|
| + TailCallExternalReference(ExternalReference(fid, isolate()),
|
| + num_arguments,
|
| + result_size);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::InitializeNewString(Register string,
|
| + Register length,
|
| + Heap::RootListIndex map_index,
|
| + Register scratch1,
|
| + Register scratch2) {
|
| + ASSERT(!AreAliased(string, length, scratch1, scratch2));
|
| + LoadRoot(scratch2, map_index);
|
| + SmiTag(scratch1, length);
|
| + Str(scratch2, FieldMemOperand(string, HeapObject::kMapOffset));
|
| +
|
| + Mov(scratch2, String::kEmptyHashField);
|
| + Str(scratch1, FieldMemOperand(string, String::kLengthOffset));
|
| + Str(scratch2, FieldMemOperand(string, String::kHashFieldOffset));
|
| +}
|
| +
|
| +
|
| +int MacroAssembler::ActivationFrameAlignment() {
|
| +#if V8_HOST_ARCH_A64
|
| + // Running on the real platform. Use the alignment as mandated by the local
|
| + // environment.
|
| + // Note: This will break if we ever start generating snapshots on one ARM
|
| + // platform for another ARM platform with a different alignment.
|
| + return OS::ActivationFrameAlignment();
|
| +#else // V8_HOST_ARCH_A64
|
| + // If we are using the simulator then we should always align to the expected
|
| + // alignment. As the simulator is used to generate snapshots we do not know
|
| + // if the target platform will need alignment, so this is controlled from a
|
| + // flag.
|
| + return FLAG_sim_stack_alignment;
|
| +#endif // V8_HOST_ARCH_A64
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::CallCFunction(ExternalReference function,
|
| + int num_of_reg_args) {
|
| + CallCFunction(function, num_of_reg_args, 0);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::CallCFunction(ExternalReference function,
|
| + int num_of_reg_args,
|
| + int num_of_double_args) {
|
| + Mov(Tmp0(), Operand(function));
|
| + CallCFunction(Tmp0(), num_of_reg_args, num_of_double_args);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::CallCFunction(Register function,
|
| + int num_of_reg_args,
|
| + int num_of_double_args) {
|
| + ASSERT(has_frame());
|
| + // We can pass 8 integer arguments in registers. If we need to pass more than
|
| + // that, we'll need to implement support for passing them on the stack.
|
| + ASSERT(num_of_reg_args <= 8);
|
| +
|
| + // If we're passing doubles, we're limited to the following prototypes
|
| + // (defined by ExternalReference::Type):
|
| + // BUILTIN_COMPARE_CALL: int f(double, double)
|
| + // BUILTIN_FP_FP_CALL: double f(double, double)
|
| + // BUILTIN_FP_CALL: double f(double)
|
| + // BUILTIN_FP_INT_CALL: double f(double, int)
|
| + if (num_of_double_args > 0) {
|
| + ASSERT(num_of_reg_args <= 1);
|
| + ASSERT((num_of_double_args + num_of_reg_args) <= 2);
|
| + }
|
| +
|
| +
|
| + // If the stack pointer is not csp, we need to derive an aligned csp from the
|
| + // current stack pointer.
|
| + const Register old_stack_pointer = StackPointer();
|
| + if (!csp.Is(old_stack_pointer)) {
|
| + AssertStackConsistency();
|
| +
|
| + int sp_alignment = ActivationFrameAlignment();
|
| + // The ABI mandates at least 16-byte alignment.
|
| + ASSERT(sp_alignment >= 16);
|
| + ASSERT(IsPowerOf2(sp_alignment));
|
| +
|
| + // The current stack pointer is a callee saved register, and is preserved
|
| + // across the call.
|
| + ASSERT(kCalleeSaved.IncludesAliasOf(old_stack_pointer));
|
| +
|
| + // Align and synchronize the system stack pointer with jssp.
|
| + Bic(csp, old_stack_pointer, sp_alignment - 1);
|
| + SetStackPointer(csp);
|
| + }
|
| +
|
| + // Call directly. The function called cannot cause a GC, or allow preemption,
|
| + // so the return address in the link register stays correct.
|
| + Call(function);
|
| +
|
| + if (!csp.Is(old_stack_pointer)) {
|
| + if (emit_debug_code()) {
|
| + // Because the stack pointer must be aligned on a 16-byte boundary, the
|
| + // aligned csp can be up to 12 bytes below the jssp. This is the case
|
| + // where we only pushed one W register on top of an aligned jssp.
|
| + Register temp = Tmp1();
|
| + ASSERT(ActivationFrameAlignment() == 16);
|
| + Sub(temp, csp, old_stack_pointer);
|
| + // We want temp <= 0 && temp >= -12.
|
| + Cmp(temp, 0);
|
| + Ccmp(temp, -12, NFlag, le);
|
| + Check(ge, kTheStackWasCorruptedByMacroAssemblerCall);
|
| + }
|
| + SetStackPointer(old_stack_pointer);
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::Jump(Register target) {
|
| + Br(target);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode) {
|
| + Mov(Tmp0(), Operand(target, rmode));
|
| + Br(Tmp0());
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::Jump(Address target, RelocInfo::Mode rmode) {
|
| + ASSERT(!RelocInfo::IsCodeTarget(rmode));
|
| + Jump(reinterpret_cast<intptr_t>(target), rmode);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode) {
|
| + ASSERT(RelocInfo::IsCodeTarget(rmode));
|
| + AllowDeferredHandleDereference embedding_raw_address;
|
| + Jump(reinterpret_cast<intptr_t>(code.location()), rmode);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::Call(Register target) {
|
| + BlockConstPoolScope scope(this);
|
| +#ifdef DEBUG
|
| + Label start_call;
|
| + Bind(&start_call);
|
| +#endif
|
| +
|
| + Blr(target);
|
| +
|
| +#ifdef DEBUG
|
| + AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target));
|
| +#endif
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::Call(Label* target) {
|
| + BlockConstPoolScope scope(this);
|
| +#ifdef DEBUG
|
| + Label start_call;
|
| + Bind(&start_call);
|
| +#endif
|
| +
|
| + Bl(target);
|
| +
|
| +#ifdef DEBUG
|
| + AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target));
|
| +#endif
|
| +}
|
| +
|
| +
|
| +// MacroAssembler::CallSize is sensitive to changes in this function, as it
|
| +// requires to know how many instructions are used to branch to the target.
|
| +void MacroAssembler::Call(Address target, RelocInfo::Mode rmode) {
|
| + BlockConstPoolScope scope(this);
|
| +#ifdef DEBUG
|
| + Label start_call;
|
| + Bind(&start_call);
|
| +#endif
|
| + // Statement positions are expected to be recorded when the target
|
| + // address is loaded.
|
| + positions_recorder()->WriteRecordedPositions();
|
| +
|
| + // Addresses always have 64 bits, so we shouldn't encounter NONE32.
|
| + ASSERT(rmode != RelocInfo::NONE32);
|
| +
|
| + if (rmode == RelocInfo::NONE64) {
|
| + uint64_t imm = reinterpret_cast<uint64_t>(target);
|
| + movz(Tmp0(), (imm >> 0) & 0xffff, 0);
|
| + movk(Tmp0(), (imm >> 16) & 0xffff, 16);
|
| + movk(Tmp0(), (imm >> 32) & 0xffff, 32);
|
| + movk(Tmp0(), (imm >> 48) & 0xffff, 48);
|
| + } else {
|
| + LoadRelocated(Tmp0(), Operand(reinterpret_cast<intptr_t>(target), rmode));
|
| + }
|
| + Blr(Tmp0());
|
| +#ifdef DEBUG
|
| + AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target, rmode));
|
| +#endif
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::Call(Handle<Code> code,
|
| + RelocInfo::Mode rmode,
|
| + TypeFeedbackId ast_id) {
|
| +#ifdef DEBUG
|
| + Label start_call;
|
| + Bind(&start_call);
|
| +#endif
|
| +
|
| + if ((rmode == RelocInfo::CODE_TARGET) && (!ast_id.IsNone())) {
|
| + SetRecordedAstId(ast_id);
|
| + rmode = RelocInfo::CODE_TARGET_WITH_ID;
|
| + }
|
| +
|
| + AllowDeferredHandleDereference embedding_raw_address;
|
| + Call(reinterpret_cast<Address>(code.location()), rmode);
|
| +
|
| +#ifdef DEBUG
|
| + // Check the size of the code generated.
|
| + AssertSizeOfCodeGeneratedSince(&start_call, CallSize(code, rmode, ast_id));
|
| +#endif
|
| +}
|
| +
|
| +
|
| +int MacroAssembler::CallSize(Register target) {
|
| + USE(target);
|
| + return kInstructionSize;
|
| +}
|
| +
|
| +
|
| +int MacroAssembler::CallSize(Label* target) {
|
| + USE(target);
|
| + return kInstructionSize;
|
| +}
|
| +
|
| +
|
| +int MacroAssembler::CallSize(Address target, RelocInfo::Mode rmode) {
|
| + USE(target);
|
| +
|
| + // Addresses always have 64 bits, so we shouldn't encounter NONE32.
|
| + ASSERT(rmode != RelocInfo::NONE32);
|
| +
|
| + if (rmode == RelocInfo::NONE64) {
|
| + return kCallSizeWithoutRelocation;
|
| + } else {
|
| + return kCallSizeWithRelocation;
|
| + }
|
| +}
|
| +
|
| +
|
| +int MacroAssembler::CallSize(Handle<Code> code,
|
| + RelocInfo::Mode rmode,
|
| + TypeFeedbackId ast_id) {
|
| + USE(code);
|
| + USE(ast_id);
|
| +
|
| + // Addresses always have 64 bits, so we shouldn't encounter NONE32.
|
| + ASSERT(rmode != RelocInfo::NONE32);
|
| +
|
| + if (rmode == RelocInfo::NONE64) {
|
| + return kCallSizeWithoutRelocation;
|
| + } else {
|
| + return kCallSizeWithRelocation;
|
| + }
|
| +}
|
| +
|
| +
|
| +
|
| +
|
| +
|
| +void MacroAssembler::JumpForHeapNumber(Register object,
|
| + Register heap_number_map,
|
| + Label* on_heap_number,
|
| + Label* on_not_heap_number) {
|
| + ASSERT(on_heap_number || on_not_heap_number);
|
| + // Tmp0() is used as a scratch register.
|
| + ASSERT(!AreAliased(Tmp0(), heap_number_map));
|
| + AssertNotSmi(object);
|
| +
|
| + // Load the HeapNumber map if it is not passed.
|
| + if (heap_number_map.Is(NoReg)) {
|
| + heap_number_map = Tmp1();
|
| + LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
|
| + } else {
|
| + // This assert clobbers Tmp0(), so do it before loading Tmp0() with the map.
|
| + AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
|
| + }
|
| +
|
| + Ldr(Tmp0(), FieldMemOperand(object, HeapObject::kMapOffset));
|
| + Cmp(Tmp0(), heap_number_map);
|
| +
|
| + if (on_heap_number) {
|
| + B(eq, on_heap_number);
|
| + }
|
| + if (on_not_heap_number) {
|
| + B(ne, on_not_heap_number);
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::JumpIfHeapNumber(Register object,
|
| + Label* on_heap_number,
|
| + Register heap_number_map) {
|
| + JumpForHeapNumber(object,
|
| + heap_number_map,
|
| + on_heap_number,
|
| + NULL);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::JumpIfNotHeapNumber(Register object,
|
| + Label* on_not_heap_number,
|
| + Register heap_number_map) {
|
| + JumpForHeapNumber(object,
|
| + heap_number_map,
|
| + NULL,
|
| + on_not_heap_number);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::LookupNumberStringCache(Register object,
|
| + Register result,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Register scratch3,
|
| + Label* not_found) {
|
| + ASSERT(!AreAliased(object, result, scratch1, scratch2, scratch3));
|
| +
|
| + // Use of registers. Register result is used as a temporary.
|
| + Register number_string_cache = result;
|
| + Register mask = scratch3;
|
| +
|
| + // Load the number string cache.
|
| + LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
|
| +
|
| + // Make the hash mask from the length of the number string cache. It
|
| + // contains two elements (number and string) for each cache entry.
|
| + Ldrsw(mask, UntagSmiFieldMemOperand(number_string_cache,
|
| + FixedArray::kLengthOffset));
|
| + Asr(mask, mask, 1); // Divide length by two.
|
| + Sub(mask, mask, 1); // Make mask.
|
| +
|
| + // Calculate the entry in the number string cache. The hash value in the
|
| + // number string cache for smis is just the smi value, and the hash for
|
| + // doubles is the xor of the upper and lower words. See
|
| + // Heap::GetNumberStringCache.
|
| + Label is_smi;
|
| + Label load_result_from_cache;
|
| +
|
| + JumpIfSmi(object, &is_smi);
|
| + CheckMap(object, scratch1, Heap::kHeapNumberMapRootIndex, not_found,
|
| + DONT_DO_SMI_CHECK);
|
| +
|
| + STATIC_ASSERT(kDoubleSize == (kWRegSizeInBytes * 2));
|
| + Add(scratch1, object, HeapNumber::kValueOffset - kHeapObjectTag);
|
| + Ldp(scratch1.W(), scratch2.W(), MemOperand(scratch1));
|
| + Eor(scratch1, scratch1, scratch2);
|
| + And(scratch1, scratch1, mask);
|
| +
|
| + // Calculate address of entry in string cache: each entry consists of two
|
| + // pointer sized fields.
|
| + Add(scratch1, number_string_cache,
|
| + Operand(scratch1, LSL, kPointerSizeLog2 + 1));
|
| +
|
| + Register probe = mask;
|
| + Ldr(probe, FieldMemOperand(scratch1, FixedArray::kHeaderSize));
|
| + JumpIfSmi(probe, not_found);
|
| + Ldr(d0, FieldMemOperand(object, HeapNumber::kValueOffset));
|
| + Ldr(d1, FieldMemOperand(probe, HeapNumber::kValueOffset));
|
| + Fcmp(d0, d1);
|
| + B(ne, not_found);
|
| + B(&load_result_from_cache);
|
| +
|
| + Bind(&is_smi);
|
| + Register scratch = scratch1;
|
| + And(scratch, mask, Operand::UntagSmi(object));
|
| + // Calculate address of entry in string cache: each entry consists
|
| + // of two pointer sized fields.
|
| + Add(scratch, number_string_cache,
|
| + Operand(scratch, LSL, kPointerSizeLog2 + 1));
|
| +
|
| + // Check if the entry is the smi we are looking for.
|
| + Ldr(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize));
|
| + Cmp(object, probe);
|
| + B(ne, not_found);
|
| +
|
| + // Get the result from the cache.
|
| + Bind(&load_result_from_cache);
|
| + Ldr(result, FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize));
|
| + IncrementCounter(isolate()->counters()->number_to_string_native(), 1,
|
| + scratch1, scratch2);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::TryConvertDoubleToInt(Register as_int,
|
| + FPRegister value,
|
| + FPRegister scratch_d,
|
| + Label* on_successful_conversion,
|
| + Label* on_failed_conversion) {
|
| + // Convert to an int and back again, then compare with the original value.
|
| + Fcvtzs(as_int, value);
|
| + Scvtf(scratch_d, as_int);
|
| + Fcmp(value, scratch_d);
|
| +
|
| + if (on_successful_conversion) {
|
| + B(on_successful_conversion, eq);
|
| + }
|
| + if (on_failed_conversion) {
|
| + B(on_failed_conversion, ne);
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::JumpIfMinusZero(DoubleRegister input,
|
| + Label* on_negative_zero) {
|
| + // Floating point -0.0 is kMinInt as an integer, so subtracting 1 (cmp) will
|
| + // cause overflow.
|
| + Fmov(Tmp0(), input);
|
| + Cmp(Tmp0(), 1);
|
| + B(vs, on_negative_zero);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::ClampInt32ToUint8(Register output, Register input) {
|
| + // Clamp the value to [0..255].
|
| + Cmp(input.W(), Operand(input.W(), UXTB));
|
| + // If input < input & 0xff, it must be < 0, so saturate to 0.
|
| + Csel(output.W(), wzr, input.W(), lt);
|
| + // Create a constant 0xff.
|
| + Mov(WTmp0(), 255);
|
| + // If input > input & 0xff, it must be > 255, so saturate to 255.
|
| + Csel(output.W(), WTmp0(), output.W(), gt);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::ClampInt32ToUint8(Register in_out) {
|
| + ClampInt32ToUint8(in_out, in_out);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::ClampDoubleToUint8(Register output,
|
| + DoubleRegister input,
|
| + DoubleRegister dbl_scratch) {
|
| + // This conversion follows the WebIDL "[Clamp]" rules for PIXEL types:
|
| + // - Inputs lower than 0 (including -infinity) produce 0.
|
| + // - Inputs higher than 255 (including +infinity) produce 255.
|
| + // Also, it seems that PIXEL types use round-to-nearest rather than
|
| + // round-towards-zero.
|
| +
|
| + // Squash +infinity before the conversion, since Fcvtnu will normally
|
| + // convert it to 0.
|
| + Fmov(dbl_scratch, 255);
|
| + Fmin(dbl_scratch, dbl_scratch, input);
|
| +
|
| + // Convert double to unsigned integer. Values less than zero become zero.
|
| + // Values greater than 255 have already been clamped to 255.
|
| + Fcvtnu(output, dbl_scratch);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::CopyFieldsLoopPairsHelper(Register dst,
|
| + Register src,
|
| + unsigned count,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Register scratch3) {
|
| + // Untag src and dst into scratch registers.
|
| + // Copy src->dst in a tight loop.
|
| + ASSERT(!AreAliased(dst, src, scratch1, scratch2, scratch3, Tmp0(), Tmp1()));
|
| + ASSERT(count >= 2);
|
| +
|
| + const Register& remaining = scratch3;
|
| + Mov(remaining, count / 2);
|
| +
|
| + // Only use the Assembler, so we can use Tmp0() and Tmp1().
|
| + InstructionAccurateScope scope(this);
|
| +
|
| + const Register& dst_untagged = scratch1;
|
| + const Register& src_untagged = scratch2;
|
| + sub(dst_untagged, dst, kHeapObjectTag);
|
| + sub(src_untagged, src, kHeapObjectTag);
|
| +
|
| + // Copy fields in pairs.
|
| + Label loop;
|
| + bind(&loop);
|
| + ldp(Tmp0(), Tmp1(), MemOperand(src_untagged, kXRegSizeInBytes * 2,
|
| + PostIndex));
|
| + stp(Tmp0(), Tmp1(), MemOperand(dst_untagged, kXRegSizeInBytes * 2,
|
| + PostIndex));
|
| + sub(remaining, remaining, 1);
|
| + cbnz(remaining, &loop);
|
| +
|
| + // Handle the leftovers.
|
| + if (count & 1) {
|
| + ldr(Tmp0(), MemOperand(src_untagged));
|
| + str(Tmp0(), MemOperand(dst_untagged));
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::CopyFieldsUnrolledPairsHelper(Register dst,
|
| + Register src,
|
| + unsigned count,
|
| + Register scratch1,
|
| + Register scratch2) {
|
| + // Untag src and dst into scratch registers.
|
| + // Copy src->dst in an unrolled loop.
|
| + ASSERT(!AreAliased(dst, src, scratch1, scratch2, Tmp0(), Tmp1()));
|
| +
|
| + // Only use the Assembler, so we can use Tmp0() and Tmp1().
|
| + InstructionAccurateScope scope(this);
|
| +
|
| + const Register& dst_untagged = scratch1;
|
| + const Register& src_untagged = scratch2;
|
| + sub(dst_untagged, dst, kHeapObjectTag);
|
| + sub(src_untagged, src, kHeapObjectTag);
|
| +
|
| + // Copy fields in pairs.
|
| + for (unsigned i = 0; i < count / 2; i++) {
|
| + ldp(Tmp0(), Tmp1(), MemOperand(src_untagged, kXRegSizeInBytes * 2,
|
| + PostIndex));
|
| + stp(Tmp0(), Tmp1(), MemOperand(dst_untagged, kXRegSizeInBytes * 2,
|
| + PostIndex));
|
| + }
|
| +
|
| + // Handle the leftovers.
|
| + if (count & 1) {
|
| + ldr(Tmp0(), MemOperand(src_untagged));
|
| + str(Tmp0(), MemOperand(dst_untagged));
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::CopyFieldsUnrolledHelper(Register dst,
|
| + Register src,
|
| + unsigned count,
|
| + Register scratch1) {
|
| + // Untag src and dst into scratch registers.
|
| + // Copy src->dst in an unrolled loop.
|
| + ASSERT(!AreAliased(dst, src, scratch1, Tmp0(), Tmp1()));
|
| +
|
| + // Only use the Assembler, so we can use Tmp0() and Tmp1().
|
| + InstructionAccurateScope scope(this);
|
| +
|
| + const Register& dst_untagged = scratch1;
|
| + const Register& src_untagged = Tmp1();
|
| + sub(dst_untagged, dst, kHeapObjectTag);
|
| + sub(src_untagged, src, kHeapObjectTag);
|
| +
|
| + // Copy fields one by one.
|
| + for (unsigned i = 0; i < count; i++) {
|
| + ldr(Tmp0(), MemOperand(src_untagged, kXRegSizeInBytes, PostIndex));
|
| + str(Tmp0(), MemOperand(dst_untagged, kXRegSizeInBytes, PostIndex));
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::CopyFields(Register dst, Register src, CPURegList temps,
|
| + unsigned count) {
|
| + // One of two methods is used:
|
| + //
|
| + // For high 'count' values where many scratch registers are available:
|
| + // Untag src and dst into scratch registers.
|
| + // Copy src->dst in a tight loop.
|
| + //
|
| + // For low 'count' values or where few scratch registers are available:
|
| + // Untag src and dst into scratch registers.
|
| + // Copy src->dst in an unrolled loop.
|
| + //
|
| + // In both cases, fields are copied in pairs if possible, and left-overs are
|
| + // handled separately.
|
| + ASSERT(!temps.IncludesAliasOf(dst));
|
| + ASSERT(!temps.IncludesAliasOf(src));
|
| + ASSERT(!temps.IncludesAliasOf(Tmp0()));
|
| + ASSERT(!temps.IncludesAliasOf(Tmp1()));
|
| + ASSERT(!temps.IncludesAliasOf(xzr));
|
| + ASSERT(!AreAliased(dst, src, Tmp0(), Tmp1()));
|
| +
|
| + if (emit_debug_code()) {
|
| + Cmp(dst, src);
|
| + Check(ne, kTheSourceAndDestinationAreTheSame);
|
| + }
|
| +
|
| + // The value of 'count' at which a loop will be generated (if there are
|
| + // enough scratch registers).
|
| + static const unsigned kLoopThreshold = 8;
|
| +
|
| + ASSERT(!temps.IsEmpty());
|
| + Register scratch1 = Register(temps.PopLowestIndex());
|
| + Register scratch2 = Register(temps.PopLowestIndex());
|
| + Register scratch3 = Register(temps.PopLowestIndex());
|
| +
|
| + if (scratch3.IsValid() && (count >= kLoopThreshold)) {
|
| + CopyFieldsLoopPairsHelper(dst, src, count, scratch1, scratch2, scratch3);
|
| + } else if (scratch2.IsValid()) {
|
| + CopyFieldsUnrolledPairsHelper(dst, src, count, scratch1, scratch2);
|
| + } else if (scratch1.IsValid()) {
|
| + CopyFieldsUnrolledHelper(dst, src, count, scratch1);
|
| + } else {
|
| + UNREACHABLE();
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::CopyBytes(Register dst,
|
| + Register src,
|
| + Register length,
|
| + Register scratch,
|
| + CopyHint hint) {
|
| + ASSERT(!AreAliased(src, dst, length, scratch));
|
| +
|
| + // TODO(all): Implement a faster copy function, and use hint to determine
|
| + // which algorithm to use for copies.
|
| + if (emit_debug_code()) {
|
| + // Check copy length.
|
| + Cmp(length, 0);
|
| + Assert(ge, kUnexpectedNegativeValue);
|
| +
|
| + // Check src and dst buffers don't overlap.
|
| + Add(scratch, src, length); // Calculate end of src buffer.
|
| + Cmp(scratch, dst);
|
| + Add(scratch, dst, length); // Calculate end of dst buffer.
|
| + Ccmp(scratch, src, ZFlag, gt);
|
| + Assert(le, kCopyBuffersOverlap);
|
| + }
|
| +
|
| + Label loop, done;
|
| + Cbz(length, &done);
|
| +
|
| + Bind(&loop);
|
| + Sub(length, length, 1);
|
| + Ldrb(scratch, MemOperand(src, 1, PostIndex));
|
| + Strb(scratch, MemOperand(dst, 1, PostIndex));
|
| + Cbnz(length, &loop);
|
| + Bind(&done);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::InitializeFieldsWithFiller(Register start_offset,
|
| + Register end_offset,
|
| + Register filler) {
|
| + Label loop, entry;
|
| + B(&entry);
|
| + Bind(&loop);
|
| + // TODO(all): consider using stp here.
|
| + Str(filler, MemOperand(start_offset, kPointerSize, PostIndex));
|
| + Bind(&entry);
|
| + Cmp(start_offset, end_offset);
|
| + B(lt, &loop);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::JumpIfEitherIsNotSequentialAsciiStrings(
|
| + Register first,
|
| + Register second,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Label* failure,
|
| + SmiCheckType smi_check) {
|
| +
|
| + if (smi_check == DO_SMI_CHECK) {
|
| + JumpIfEitherSmi(first, second, failure);
|
| + } else if (emit_debug_code()) {
|
| + ASSERT(smi_check == DONT_DO_SMI_CHECK);
|
| + Label not_smi;
|
| + JumpIfEitherSmi(first, second, NULL, ¬_smi);
|
| +
|
| + // At least one input is a smi, but the flags indicated a smi check wasn't
|
| + // needed.
|
| + Abort(kUnexpectedSmi);
|
| +
|
| + Bind(¬_smi);
|
| + }
|
| +
|
| + // Test that both first and second are sequential ASCII strings.
|
| + Ldr(scratch1, FieldMemOperand(first, HeapObject::kMapOffset));
|
| + Ldr(scratch2, FieldMemOperand(second, HeapObject::kMapOffset));
|
| + Ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
|
| + Ldrb(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset));
|
| +
|
| + JumpIfEitherInstanceTypeIsNotSequentialAscii(scratch1,
|
| + scratch2,
|
| + scratch1,
|
| + scratch2,
|
| + failure);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::JumpIfEitherInstanceTypeIsNotSequentialAscii(
|
| + Register first,
|
| + Register second,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Label* failure) {
|
| + ASSERT(!AreAliased(scratch1, second));
|
| + ASSERT(!AreAliased(scratch1, scratch2));
|
| + static const int kFlatAsciiStringMask =
|
| + kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
|
| + static const int kFlatAsciiStringTag = ASCII_STRING_TYPE;
|
| + And(scratch1, first, kFlatAsciiStringMask);
|
| + And(scratch2, second, kFlatAsciiStringMask);
|
| + Cmp(scratch1, kFlatAsciiStringTag);
|
| + Ccmp(scratch2, kFlatAsciiStringTag, NoFlag, eq);
|
| + B(ne, failure);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(Register type,
|
| + Register scratch,
|
| + Label* failure) {
|
| + const int kFlatAsciiStringMask =
|
| + kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
|
| + const int kFlatAsciiStringTag =
|
| + kStringTag | kOneByteStringTag | kSeqStringTag;
|
| + And(scratch, type, kFlatAsciiStringMask);
|
| + Cmp(scratch, kFlatAsciiStringTag);
|
| + B(ne, failure);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialAscii(
|
| + Register first,
|
| + Register second,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Label* failure) {
|
| + ASSERT(!AreAliased(first, second, scratch1, scratch2));
|
| + const int kFlatAsciiStringMask =
|
| + kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
|
| + const int kFlatAsciiStringTag =
|
| + kStringTag | kOneByteStringTag | kSeqStringTag;
|
| + And(scratch1, first, kFlatAsciiStringMask);
|
| + And(scratch2, second, kFlatAsciiStringMask);
|
| + Cmp(scratch1, kFlatAsciiStringTag);
|
| + Ccmp(scratch2, kFlatAsciiStringTag, NoFlag, eq);
|
| + B(ne, failure);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::JumpIfNotUniqueName(Register type,
|
| + Label* not_unique_name) {
|
| + STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0));
|
| + // if ((type is string && type is internalized) || type == SYMBOL_TYPE) {
|
| + // continue
|
| + // } else {
|
| + // goto not_unique_name
|
| + // }
|
| + Tst(type, kIsNotStringMask | kIsNotInternalizedMask);
|
| + Ccmp(type, SYMBOL_TYPE, ZFlag, ne);
|
| + B(ne, not_unique_name);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::InvokePrologue(const ParameterCount& expected,
|
| + const ParameterCount& actual,
|
| + Handle<Code> code_constant,
|
| + Register code_reg,
|
| + Label* done,
|
| + InvokeFlag flag,
|
| + bool* definitely_mismatches,
|
| + const CallWrapper& call_wrapper) {
|
| + bool definitely_matches = false;
|
| + *definitely_mismatches = false;
|
| + Label regular_invoke;
|
| +
|
| + // Check whether the expected and actual arguments count match. If not,
|
| + // setup registers according to contract with ArgumentsAdaptorTrampoline:
|
| + // x0: actual arguments count.
|
| + // x1: function (passed through to callee).
|
| + // x2: expected arguments count.
|
| +
|
| + // The code below is made a lot easier because the calling code already sets
|
| + // up actual and expected registers according to the contract if values are
|
| + // passed in registers.
|
| + ASSERT(actual.is_immediate() || actual.reg().is(x0));
|
| + ASSERT(expected.is_immediate() || expected.reg().is(x2));
|
| + ASSERT((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(x3));
|
| +
|
| + if (expected.is_immediate()) {
|
| + ASSERT(actual.is_immediate());
|
| + if (expected.immediate() == actual.immediate()) {
|
| + definitely_matches = true;
|
| +
|
| + } else {
|
| + Mov(x0, actual.immediate());
|
| + if (expected.immediate() ==
|
| + SharedFunctionInfo::kDontAdaptArgumentsSentinel) {
|
| + // Don't worry about adapting arguments for builtins that
|
| + // don't want that done. Skip adaption code by making it look
|
| + // like we have a match between expected and actual number of
|
| + // arguments.
|
| + definitely_matches = true;
|
| + } else {
|
| + *definitely_mismatches = true;
|
| + // Set up x2 for the argument adaptor.
|
| + Mov(x2, expected.immediate());
|
| + }
|
| + }
|
| +
|
| + } else { // expected is a register.
|
| + Operand actual_op = actual.is_immediate() ? Operand(actual.immediate())
|
| + : Operand(actual.reg());
|
| + // If actual == expected perform a regular invocation.
|
| + Cmp(expected.reg(), actual_op);
|
| + B(eq, ®ular_invoke);
|
| + // Otherwise set up x0 for the argument adaptor.
|
| + Mov(x0, actual_op);
|
| + }
|
| +
|
| + // If the argument counts may mismatch, generate a call to the argument
|
| + // adaptor.
|
| + if (!definitely_matches) {
|
| + if (!code_constant.is_null()) {
|
| + Mov(x3, Operand(code_constant));
|
| + Add(x3, x3, Code::kHeaderSize - kHeapObjectTag);
|
| + }
|
| +
|
| + Handle<Code> adaptor =
|
| + isolate()->builtins()->ArgumentsAdaptorTrampoline();
|
| + if (flag == CALL_FUNCTION) {
|
| + call_wrapper.BeforeCall(CallSize(adaptor));
|
| + Call(adaptor);
|
| + call_wrapper.AfterCall();
|
| + if (!*definitely_mismatches) {
|
| + // If the arg counts don't match, no extra code is emitted by
|
| + // MAsm::InvokeCode and we can just fall through.
|
| + B(done);
|
| + }
|
| + } else {
|
| + Jump(adaptor, RelocInfo::CODE_TARGET);
|
| + }
|
| + }
|
| + Bind(®ular_invoke);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::InvokeCode(Register code,
|
| + const ParameterCount& expected,
|
| + const ParameterCount& actual,
|
| + InvokeFlag flag,
|
| + const CallWrapper& call_wrapper) {
|
| + // You can't call a function without a valid frame.
|
| + ASSERT(flag == JUMP_FUNCTION || has_frame());
|
| +
|
| + Label done;
|
| +
|
| + bool definitely_mismatches = false;
|
| + InvokePrologue(expected, actual, Handle<Code>::null(), code, &done, flag,
|
| + &definitely_mismatches, call_wrapper);
|
| +
|
| + // If we are certain that actual != expected, then we know InvokePrologue will
|
| + // have handled the call through the argument adaptor mechanism.
|
| + // The called function expects the call kind in x5.
|
| + if (!definitely_mismatches) {
|
| + if (flag == CALL_FUNCTION) {
|
| + call_wrapper.BeforeCall(CallSize(code));
|
| + Call(code);
|
| + call_wrapper.AfterCall();
|
| + } else {
|
| + ASSERT(flag == JUMP_FUNCTION);
|
| + Jump(code);
|
| + }
|
| + }
|
| +
|
| + // Continue here if InvokePrologue does handle the invocation due to
|
| + // mismatched parameter counts.
|
| + Bind(&done);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::InvokeFunction(Register function,
|
| + const ParameterCount& actual,
|
| + InvokeFlag flag,
|
| + const CallWrapper& call_wrapper) {
|
| + // You can't call a function without a valid frame.
|
| + ASSERT(flag == JUMP_FUNCTION || has_frame());
|
| +
|
| + // Contract with called JS functions requires that function is passed in x1.
|
| + // (See FullCodeGenerator::Generate().)
|
| + ASSERT(function.is(x1));
|
| +
|
| + Register expected_reg = x2;
|
| + Register code_reg = x3;
|
| +
|
| + Ldr(cp, FieldMemOperand(function, JSFunction::kContextOffset));
|
| + // The number of arguments is stored as an int32_t, and -1 is a marker
|
| + // (SharedFunctionInfo::kDontAdaptArgumentsSentinel), so we need sign
|
| + // extension to correctly handle it.
|
| + Ldr(expected_reg, FieldMemOperand(function,
|
| + JSFunction::kSharedFunctionInfoOffset));
|
| + Ldrsw(expected_reg,
|
| + FieldMemOperand(expected_reg,
|
| + SharedFunctionInfo::kFormalParameterCountOffset));
|
| + Ldr(code_reg,
|
| + FieldMemOperand(function, JSFunction::kCodeEntryOffset));
|
| +
|
| + ParameterCount expected(expected_reg);
|
| + InvokeCode(code_reg, expected, actual, flag, call_wrapper);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::InvokeFunction(Register function,
|
| + const ParameterCount& expected,
|
| + const ParameterCount& actual,
|
| + InvokeFlag flag,
|
| + const CallWrapper& call_wrapper) {
|
| + // You can't call a function without a valid frame.
|
| + ASSERT(flag == JUMP_FUNCTION || has_frame());
|
| +
|
| + // Contract with called JS functions requires that function is passed in x1.
|
| + // (See FullCodeGenerator::Generate().)
|
| + ASSERT(function.Is(x1));
|
| +
|
| + Register code_reg = x3;
|
| +
|
| + // Set up the context.
|
| + Ldr(cp, FieldMemOperand(function, JSFunction::kContextOffset));
|
| +
|
| + // We call indirectly through the code field in the function to
|
| + // allow recompilation to take effect without changing any of the
|
| + // call sites.
|
| + Ldr(code_reg, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
|
| + InvokeCode(code_reg, expected, actual, flag, call_wrapper);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
|
| + const ParameterCount& expected,
|
| + const ParameterCount& actual,
|
| + InvokeFlag flag,
|
| + const CallWrapper& call_wrapper) {
|
| + // Contract with called JS functions requires that function is passed in x1.
|
| + // (See FullCodeGenerator::Generate().)
|
| + __ LoadObject(x1, function);
|
| + InvokeFunction(x1, expected, actual, flag, call_wrapper);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::ECMA262ToInt32(Register result,
|
| + DoubleRegister input,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + ECMA262ToInt32Result format) {
|
| + ASSERT(!AreAliased(result, scratch1, scratch2));
|
| + ASSERT(result.Is64Bits() && scratch1.Is64Bits() && scratch2.Is64Bits());
|
| + STATIC_ASSERT(kSmiTag == 0);
|
| + STATIC_ASSERT(kSmiValueSize == 32);
|
| +
|
| + Label done, tag, manual_conversion;
|
| +
|
| + // 1. Try to convert with a FPU convert instruction. It's trivial to compute
|
| + // the modulo operation on an integer register so we convert to a 64-bit
|
| + // integer, then find the 32-bit result from that.
|
| + //
|
| + // Fcvtzs will saturate to INT64_MIN (0x800...00) or INT64_MAX (0x7ff...ff)
|
| + // when the double is out of range. NaNs and infinities will be converted to 0
|
| + // (as ECMA-262 requires).
|
| + Fcvtzs(result, input);
|
| +
|
| + // The values INT64_MIN (0x800...00) or INT64_MAX (0x7ff...ff) are not
|
| + // representable using a double, so if the result is one of those then we know
|
| + // that saturation occured, and we need to manually handle the conversion.
|
| + //
|
| + // It is easy to detect INT64_MIN and INT64_MAX because adding or subtracting
|
| + // 1 will cause signed overflow.
|
| + Cmp(result, 1);
|
| + Ccmp(result, -1, VFlag, vc);
|
| + B(vc, &tag);
|
| +
|
| + // 2. Manually convert the input to an int32.
|
| + Fmov(result, input);
|
| +
|
| + // Extract the exponent.
|
| + Register exponent = scratch1;
|
| + Ubfx(exponent, result, HeapNumber::kMantissaBits, HeapNumber::kExponentBits);
|
| +
|
| + // It the exponent is >= 84 (kMantissaBits + 32), the result is always 0 since
|
| + // the mantissa gets shifted completely out of the int32_t result.
|
| + Cmp(exponent, HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 32);
|
| + CzeroX(result, ge);
|
| + B(ge, &done);
|
| +
|
| + // The Fcvtzs sequence handles all cases except where the conversion causes
|
| + // signed overflow in the int64_t target. Since we've already handled
|
| + // exponents >= 84, we can guarantee that 63 <= exponent < 84.
|
| +
|
| + if (emit_debug_code()) {
|
| + Cmp(exponent, HeapNumber::kExponentBias + 63);
|
| + // Exponents less than this should have been handled by the Fcvt case.
|
| + Check(ge, kUnexpectedValue);
|
| + }
|
| +
|
| + // Isolate the mantissa bits, and set the implicit '1'.
|
| + Register mantissa = scratch2;
|
| + Ubfx(mantissa, result, 0, HeapNumber::kMantissaBits);
|
| + Orr(mantissa, mantissa, 1UL << HeapNumber::kMantissaBits);
|
| +
|
| + // Negate the mantissa if necessary.
|
| + Tst(result, kXSignMask);
|
| + Cneg(mantissa, mantissa, ne);
|
| +
|
| + // Shift the mantissa bits in the correct place. We know that we have to shift
|
| + // it left here, because exponent >= 63 >= kMantissaBits.
|
| + Sub(exponent, exponent,
|
| + HeapNumber::kExponentBias + HeapNumber::kMantissaBits);
|
| + Lsl(result, mantissa, exponent);
|
| +
|
| + Bind(&tag);
|
| + switch (format) {
|
| + case INT32_IN_W:
|
| + // There is nothing to do; the upper 32 bits are undefined.
|
| + if (emit_debug_code()) {
|
| + __ Mov(scratch1, 0x55555555);
|
| + __ Bfi(result, scratch1, 32, 32);
|
| + }
|
| + break;
|
| + case INT32_IN_X:
|
| + Sxtw(result, result);
|
| + break;
|
| + case SMI:
|
| + SmiTag(result);
|
| + break;
|
| + }
|
| +
|
| + Bind(&done);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::HeapNumberECMA262ToInt32(Register result,
|
| + Register heap_number,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + DoubleRegister double_scratch,
|
| + ECMA262ToInt32Result format) {
|
| + if (emit_debug_code()) {
|
| + // Verify we indeed have a HeapNumber.
|
| + Label ok;
|
| + JumpIfHeapNumber(heap_number, &ok);
|
| + Abort(kExpectedHeapNumber);
|
| + Bind(&ok);
|
| + }
|
| +
|
| + Ldr(double_scratch, FieldMemOperand(heap_number, HeapNumber::kValueOffset));
|
| + ECMA262ToInt32(result, double_scratch, scratch1, scratch2, format);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::Prologue(PrologueFrameMode frame_mode) {
|
| + if (frame_mode == BUILD_STUB_FRAME) {
|
| + ASSERT(StackPointer().Is(jssp));
|
| + // TODO(jbramley): Does x1 contain a JSFunction here, or does it already
|
| + // have the special STUB smi?
|
| + __ Mov(Tmp0(), Operand(Smi::FromInt(StackFrame::STUB)));
|
| + // Compiled stubs don't age, and so they don't need the predictable code
|
| + // ageing sequence.
|
| + __ Push(lr, fp, cp, Tmp0());
|
| + __ Add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp);
|
| + } else {
|
| + if (isolate()->IsCodePreAgingActive()) {
|
| + Code* stub = Code::GetPreAgedCodeAgeStub(isolate());
|
| + __ EmitCodeAgeSequence(stub);
|
| + } else {
|
| + __ EmitFrameSetupForCodeAgePatching();
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::EnterFrame(StackFrame::Type type) {
|
| + ASSERT(jssp.Is(StackPointer()));
|
| + Push(lr, fp, cp);
|
| + Mov(Tmp1(), Operand(Smi::FromInt(type)));
|
| + Mov(Tmp0(), Operand(CodeObject()));
|
| + Push(Tmp1(), Tmp0());
|
| + // jssp[4] : lr
|
| + // jssp[3] : fp
|
| + // jssp[2] : cp
|
| + // jssp[1] : type
|
| + // jssp[0] : code object
|
| +
|
| + // Adjust FP to point to saved FP.
|
| + add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::LeaveFrame(StackFrame::Type type) {
|
| + ASSERT(jssp.Is(StackPointer()));
|
| + // Drop the execution stack down to the frame pointer and restore
|
| + // the caller frame pointer and return address.
|
| + Mov(jssp, fp);
|
| + AssertStackConsistency();
|
| + Pop(fp, lr);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::ExitFramePreserveFPRegs() {
|
| + PushCPURegList(kCallerSavedFP);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::ExitFrameRestoreFPRegs() {
|
| + // Read the registers from the stack without popping them. The stack pointer
|
| + // will be reset as part of the unwinding process.
|
| + CPURegList saved_fp_regs = kCallerSavedFP;
|
| + ASSERT(saved_fp_regs.Count() % 2 == 0);
|
| +
|
| + int offset = ExitFrameConstants::kLastExitFrameField;
|
| + while (!saved_fp_regs.IsEmpty()) {
|
| + const CPURegister& dst0 = saved_fp_regs.PopHighestIndex();
|
| + const CPURegister& dst1 = saved_fp_regs.PopHighestIndex();
|
| + offset -= 2 * kDRegSizeInBytes;
|
| + Ldp(dst1, dst0, MemOperand(fp, offset));
|
| + }
|
| +}
|
| +
|
| +
|
| +// TODO(jbramley): Check that we're handling the frame pointer correctly.
|
| +void MacroAssembler::EnterExitFrame(bool save_doubles,
|
| + const Register& scratch,
|
| + int extra_space) {
|
| + ASSERT(jssp.Is(StackPointer()));
|
| +
|
| + // Set up the new stack frame.
|
| + Mov(scratch, Operand(CodeObject()));
|
| + Push(lr, fp);
|
| + Mov(fp, StackPointer());
|
| + Push(xzr, scratch);
|
| + // fp[8]: CallerPC (lr)
|
| + // fp -> fp[0]: CallerFP (old fp)
|
| + // fp[-8]: Space reserved for SPOffset.
|
| + // jssp -> fp[-16]: CodeObject()
|
| + STATIC_ASSERT((2 * kPointerSize) ==
|
| + ExitFrameConstants::kCallerSPDisplacement);
|
| + STATIC_ASSERT((1 * kPointerSize) == ExitFrameConstants::kCallerPCOffset);
|
| + STATIC_ASSERT((0 * kPointerSize) == ExitFrameConstants::kCallerFPOffset);
|
| + STATIC_ASSERT((-1 * kPointerSize) == ExitFrameConstants::kSPOffset);
|
| + STATIC_ASSERT((-2 * kPointerSize) == ExitFrameConstants::kCodeOffset);
|
| +
|
| + // Save the frame pointer and context pointer in the top frame.
|
| + Mov(scratch, Operand(ExternalReference(Isolate::kCEntryFPAddress,
|
| + isolate())));
|
| + Str(fp, MemOperand(scratch));
|
| + Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress,
|
| + isolate())));
|
| + Str(cp, MemOperand(scratch));
|
| +
|
| + STATIC_ASSERT((-2 * kPointerSize) ==
|
| + ExitFrameConstants::kLastExitFrameField);
|
| + if (save_doubles) {
|
| + ExitFramePreserveFPRegs();
|
| + }
|
| +
|
| + // Reserve space for the return address and for user requested memory.
|
| + // We do this before aligning to make sure that we end up correctly
|
| + // aligned with the minimum of wasted space.
|
| + Claim(extra_space + 1, kXRegSizeInBytes);
|
| + // fp[8]: CallerPC (lr)
|
| + // fp -> fp[0]: CallerFP (old fp)
|
| + // fp[-8]: Space reserved for SPOffset.
|
| + // fp[-16]: CodeObject()
|
| + // jssp[-16 - fp_size]: Saved doubles (if save_doubles is true).
|
| + // jssp[8]: Extra space reserved for caller (if extra_space != 0).
|
| + // jssp -> jssp[0]: Space reserved for the return address.
|
| +
|
| + // Align and synchronize the system stack pointer with jssp.
|
| + AlignAndSetCSPForFrame();
|
| + ASSERT(csp.Is(StackPointer()));
|
| +
|
| + // fp[8]: CallerPC (lr)
|
| + // fp -> fp[0]: CallerFP (old fp)
|
| + // fp[-8]: Space reserved for SPOffset.
|
| + // fp[-16]: CodeObject()
|
| + // csp[...]: Saved doubles, if saved_doubles is true.
|
| + // csp[8]: Memory reserved for the caller if extra_space != 0.
|
| + // Alignment padding, if necessary.
|
| + // csp -> csp[0]: Space reserved for the return address.
|
| +
|
| + // ExitFrame::GetStateForFramePointer expects to find the return address at
|
| + // the memory address immediately below the pointer stored in SPOffset.
|
| + // It is not safe to derive much else from SPOffset, because the size of the
|
| + // padding can vary.
|
| + Add(scratch, csp, kXRegSizeInBytes);
|
| + Str(scratch, MemOperand(fp, ExitFrameConstants::kSPOffset));
|
| +}
|
| +
|
| +
|
| +// Leave the current exit frame.
|
| +void MacroAssembler::LeaveExitFrame(bool restore_doubles,
|
| + const Register& scratch,
|
| + bool restore_context) {
|
| + ASSERT(csp.Is(StackPointer()));
|
| +
|
| + if (restore_doubles) {
|
| + ExitFrameRestoreFPRegs();
|
| + }
|
| +
|
| + // Restore the context pointer from the top frame.
|
| + if (restore_context) {
|
| + Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress,
|
| + isolate())));
|
| + Ldr(cp, MemOperand(scratch));
|
| + }
|
| +
|
| + if (emit_debug_code()) {
|
| + // Also emit debug code to clear the cp in the top frame.
|
| + Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress,
|
| + isolate())));
|
| + Str(xzr, MemOperand(scratch));
|
| + }
|
| + // Clear the frame pointer from the top frame.
|
| + Mov(scratch, Operand(ExternalReference(Isolate::kCEntryFPAddress,
|
| + isolate())));
|
| + Str(xzr, MemOperand(scratch));
|
| +
|
| + // Pop the exit frame.
|
| + // fp[8]: CallerPC (lr)
|
| + // fp -> fp[0]: CallerFP (old fp)
|
| + // fp[...]: The rest of the frame.
|
| + Mov(jssp, fp);
|
| + SetStackPointer(jssp);
|
| + AssertStackConsistency();
|
| + Pop(fp, lr);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::SetCounter(StatsCounter* counter, int value,
|
| + Register scratch1, Register scratch2) {
|
| + if (FLAG_native_code_counters && counter->Enabled()) {
|
| + Mov(scratch1, value);
|
| + Mov(scratch2, Operand(ExternalReference(counter)));
|
| + Str(scratch1, MemOperand(scratch2));
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
|
| + Register scratch1, Register scratch2) {
|
| + ASSERT(value != 0);
|
| + if (FLAG_native_code_counters && counter->Enabled()) {
|
| + Mov(scratch2, Operand(ExternalReference(counter)));
|
| + Ldr(scratch1, MemOperand(scratch2));
|
| + Add(scratch1, scratch1, value);
|
| + Str(scratch1, MemOperand(scratch2));
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
|
| + Register scratch1, Register scratch2) {
|
| + IncrementCounter(counter, -value, scratch1, scratch2);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
|
| + if (context_chain_length > 0) {
|
| + // Move up the chain of contexts to the context containing the slot.
|
| + Ldr(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX)));
|
| + for (int i = 1; i < context_chain_length; i++) {
|
| + Ldr(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
|
| + }
|
| + } else {
|
| + // Slot is in the current function context. Move it into the
|
| + // destination register in case we store into it (the write barrier
|
| + // cannot be allowed to destroy the context in cp).
|
| + Mov(dst, cp);
|
| + }
|
| +}
|
| +
|
| +
|
| +#ifdef ENABLE_DEBUGGER_SUPPORT
|
| +void MacroAssembler::DebugBreak() {
|
| + Mov(x0, 0);
|
| + Mov(x1, Operand(ExternalReference(Runtime::kDebugBreak, isolate())));
|
| + CEntryStub ces(1);
|
| + ASSERT(AllowThisStubCall(&ces));
|
| + Call(ces.GetCode(isolate()), RelocInfo::DEBUG_BREAK);
|
| +}
|
| +#endif
|
| +
|
| +
|
| +void MacroAssembler::PushTryHandler(StackHandler::Kind kind,
|
| + int handler_index) {
|
| + ASSERT(jssp.Is(StackPointer()));
|
| + // Adjust this code if the asserts don't hold.
|
| + STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
|
| + STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
|
| + STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
|
| + STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
|
| + STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
|
| + STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
|
| +
|
| + // For the JSEntry handler, we must preserve the live registers x0-x4.
|
| + // (See JSEntryStub::GenerateBody().)
|
| +
|
| + unsigned state =
|
| + StackHandler::IndexField::encode(handler_index) |
|
| + StackHandler::KindField::encode(kind);
|
| +
|
| + // Set up the code object and the state for pushing.
|
| + Mov(x10, Operand(CodeObject()));
|
| + Mov(x11, state);
|
| +
|
| + // Push the frame pointer, context, state, and code object.
|
| + if (kind == StackHandler::JS_ENTRY) {
|
| + ASSERT(Smi::FromInt(0) == 0);
|
| + Push(xzr, xzr, x11, x10);
|
| + } else {
|
| + Push(fp, cp, x11, x10);
|
| + }
|
| +
|
| + // Link the current handler as the next handler.
|
| + Mov(x11, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
|
| + Ldr(x10, MemOperand(x11));
|
| + Push(x10);
|
| + // Set this new handler as the current one.
|
| + Str(jssp, MemOperand(x11));
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::PopTryHandler() {
|
| + STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
|
| + Pop(x10);
|
| + Mov(x11, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
|
| + Drop(StackHandlerConstants::kSize - kXRegSizeInBytes, kByteSizeInBytes);
|
| + Str(x10, MemOperand(x11));
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::Allocate(int object_size,
|
| + Register result,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Label* gc_required,
|
| + AllocationFlags flags) {
|
| + ASSERT(object_size <= Page::kMaxRegularHeapObjectSize);
|
| + if (!FLAG_inline_new) {
|
| + if (emit_debug_code()) {
|
| + // Trash the registers to simulate an allocation failure.
|
| + // We apply salt to the original zap value to easily spot the values.
|
| + Mov(result, (kDebugZapValue & ~0xffL) | 0x11L);
|
| + Mov(scratch1, (kDebugZapValue & ~0xffL) | 0x21L);
|
| + Mov(scratch2, (kDebugZapValue & ~0xffL) | 0x21L);
|
| + }
|
| + B(gc_required);
|
| + return;
|
| + }
|
| +
|
| + ASSERT(!AreAliased(result, scratch1, scratch2, Tmp0(), Tmp1()));
|
| + ASSERT(result.Is64Bits() && scratch1.Is64Bits() && scratch2.Is64Bits() &&
|
| + Tmp0().Is64Bits() && Tmp1().Is64Bits());
|
| +
|
| + // Make object size into bytes.
|
| + if ((flags & SIZE_IN_WORDS) != 0) {
|
| + object_size *= kPointerSize;
|
| + }
|
| + ASSERT(0 == (object_size & kObjectAlignmentMask));
|
| +
|
| + // Check relative positions of allocation top and limit addresses.
|
| + // The values must be adjacent in memory to allow the use of LDP.
|
| + ExternalReference heap_allocation_top =
|
| + AllocationUtils::GetAllocationTopReference(isolate(), flags);
|
| + ExternalReference heap_allocation_limit =
|
| + AllocationUtils::GetAllocationLimitReference(isolate(), flags);
|
| + intptr_t top = reinterpret_cast<intptr_t>(heap_allocation_top.address());
|
| + intptr_t limit = reinterpret_cast<intptr_t>(heap_allocation_limit.address());
|
| + ASSERT((limit - top) == kPointerSize);
|
| +
|
| + // Set up allocation top address and object size registers.
|
| + Register top_address = scratch1;
|
| + Register allocation_limit = scratch2;
|
| + Mov(top_address, Operand(heap_allocation_top));
|
| +
|
| + if ((flags & RESULT_CONTAINS_TOP) == 0) {
|
| + // Load allocation top into result and the allocation limit.
|
| + Ldp(result, allocation_limit, MemOperand(top_address));
|
| + } else {
|
| + if (emit_debug_code()) {
|
| + // Assert that result actually contains top on entry.
|
| + Ldr(Tmp0(), MemOperand(top_address));
|
| + Cmp(result, Tmp0());
|
| + Check(eq, kUnexpectedAllocationTop);
|
| + }
|
| + // Load the allocation limit. 'result' already contains the allocation top.
|
| + Ldr(allocation_limit, MemOperand(top_address, limit - top));
|
| + }
|
| +
|
| + // We can ignore DOUBLE_ALIGNMENT flags here because doubles and pointers have
|
| + // the same alignment on A64.
|
| + STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
|
| +
|
| + // Calculate new top and bail out if new space is exhausted.
|
| + Adds(Tmp1(), result, object_size);
|
| + B(vs, gc_required);
|
| + Cmp(Tmp1(), allocation_limit);
|
| + B(hi, gc_required);
|
| + Str(Tmp1(), MemOperand(top_address));
|
| +
|
| + // Tag the object if requested.
|
| + if ((flags & TAG_OBJECT) != 0) {
|
| + Orr(result, result, kHeapObjectTag);
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::Allocate(Register object_size,
|
| + Register result,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Label* gc_required,
|
| + AllocationFlags flags) {
|
| + if (!FLAG_inline_new) {
|
| + if (emit_debug_code()) {
|
| + // Trash the registers to simulate an allocation failure.
|
| + // We apply salt to the original zap value to easily spot the values.
|
| + Mov(result, (kDebugZapValue & ~0xffL) | 0x11L);
|
| + Mov(scratch1, (kDebugZapValue & ~0xffL) | 0x21L);
|
| + Mov(scratch2, (kDebugZapValue & ~0xffL) | 0x21L);
|
| + }
|
| + B(gc_required);
|
| + return;
|
| + }
|
| +
|
| + ASSERT(!AreAliased(object_size, result, scratch1, scratch2, Tmp0(), Tmp1()));
|
| + ASSERT(object_size.Is64Bits() && result.Is64Bits() && scratch1.Is64Bits() &&
|
| + scratch2.Is64Bits() && Tmp0().Is64Bits() && Tmp1().Is64Bits());
|
| +
|
| + // Check relative positions of allocation top and limit addresses.
|
| + // The values must be adjacent in memory to allow the use of LDP.
|
| + ExternalReference heap_allocation_top =
|
| + AllocationUtils::GetAllocationTopReference(isolate(), flags);
|
| + ExternalReference heap_allocation_limit =
|
| + AllocationUtils::GetAllocationLimitReference(isolate(), flags);
|
| + intptr_t top = reinterpret_cast<intptr_t>(heap_allocation_top.address());
|
| + intptr_t limit = reinterpret_cast<intptr_t>(heap_allocation_limit.address());
|
| + ASSERT((limit - top) == kPointerSize);
|
| +
|
| + // Set up allocation top address and object size registers.
|
| + Register top_address = scratch1;
|
| + Register allocation_limit = scratch2;
|
| + Mov(top_address, Operand(heap_allocation_top));
|
| +
|
| + if ((flags & RESULT_CONTAINS_TOP) == 0) {
|
| + // Load allocation top into result and the allocation limit.
|
| + Ldp(result, allocation_limit, MemOperand(top_address));
|
| + } else {
|
| + if (emit_debug_code()) {
|
| + // Assert that result actually contains top on entry.
|
| + Ldr(Tmp0(), MemOperand(top_address));
|
| + Cmp(result, Tmp0());
|
| + Check(eq, kUnexpectedAllocationTop);
|
| + }
|
| + // Load the allocation limit. 'result' already contains the allocation top.
|
| + Ldr(allocation_limit, MemOperand(top_address, limit - top));
|
| + }
|
| +
|
| + // We can ignore DOUBLE_ALIGNMENT flags here because doubles and pointers have
|
| + // the same alignment on A64.
|
| + STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
|
| +
|
| + // Calculate new top and bail out if new space is exhausted
|
| + if ((flags & SIZE_IN_WORDS) != 0) {
|
| + Adds(Tmp1(), result, Operand(object_size, LSL, kPointerSizeLog2));
|
| + } else {
|
| + Adds(Tmp1(), result, object_size);
|
| + }
|
| +
|
| + if (emit_debug_code()) {
|
| + Tst(Tmp1(), kObjectAlignmentMask);
|
| + Check(eq, kUnalignedAllocationInNewSpace);
|
| + }
|
| +
|
| + B(vs, gc_required);
|
| + Cmp(Tmp1(), allocation_limit);
|
| + B(hi, gc_required);
|
| + Str(Tmp1(), MemOperand(top_address));
|
| +
|
| + // Tag the object if requested.
|
| + if ((flags & TAG_OBJECT) != 0) {
|
| + Orr(result, result, kHeapObjectTag);
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::UndoAllocationInNewSpace(Register object,
|
| + Register scratch) {
|
| + ExternalReference new_space_allocation_top =
|
| + ExternalReference::new_space_allocation_top_address(isolate());
|
| +
|
| + // Make sure the object has no tag before resetting top.
|
| + Bic(object, object, kHeapObjectTagMask);
|
| +#ifdef DEBUG
|
| + // Check that the object un-allocated is below the current top.
|
| + Mov(scratch, Operand(new_space_allocation_top));
|
| + Ldr(scratch, MemOperand(scratch));
|
| + Cmp(object, scratch);
|
| + Check(lt, kUndoAllocationOfNonAllocatedMemory);
|
| +#endif
|
| + // Write the address of the object to un-allocate as the current top.
|
| + Mov(scratch, Operand(new_space_allocation_top));
|
| + Str(object, MemOperand(scratch));
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::AllocateTwoByteString(Register result,
|
| + Register length,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Register scratch3,
|
| + Label* gc_required) {
|
| + ASSERT(!AreAliased(result, length, scratch1, scratch2, scratch3));
|
| + // Calculate the number of bytes needed for the characters in the string while
|
| + // observing object alignment.
|
| + STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
|
| + Add(scratch1, length, length); // Length in bytes, not chars.
|
| + Add(scratch1, scratch1, kObjectAlignmentMask + SeqTwoByteString::kHeaderSize);
|
| + Bic(scratch1, scratch1, kObjectAlignmentMask);
|
| +
|
| + // Allocate two-byte string in new space.
|
| + Allocate(scratch1,
|
| + result,
|
| + scratch2,
|
| + scratch3,
|
| + gc_required,
|
| + TAG_OBJECT);
|
| +
|
| + // Set the map, length and hash field.
|
| + InitializeNewString(result,
|
| + length,
|
| + Heap::kStringMapRootIndex,
|
| + scratch1,
|
| + scratch2);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::AllocateAsciiString(Register result,
|
| + Register length,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Register scratch3,
|
| + Label* gc_required) {
|
| + ASSERT(!AreAliased(result, length, scratch1, scratch2, scratch3));
|
| + // Calculate the number of bytes needed for the characters in the string while
|
| + // observing object alignment.
|
| + STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
|
| + STATIC_ASSERT(kCharSize == 1);
|
| + Add(scratch1, length, kObjectAlignmentMask + SeqOneByteString::kHeaderSize);
|
| + Bic(scratch1, scratch1, kObjectAlignmentMask);
|
| +
|
| + // Allocate ASCII string in new space.
|
| + Allocate(scratch1,
|
| + result,
|
| + scratch2,
|
| + scratch3,
|
| + gc_required,
|
| + TAG_OBJECT);
|
| +
|
| + // Set the map, length and hash field.
|
| + InitializeNewString(result,
|
| + length,
|
| + Heap::kAsciiStringMapRootIndex,
|
| + scratch1,
|
| + scratch2);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::AllocateTwoByteConsString(Register result,
|
| + Register length,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Label* gc_required) {
|
| + Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
|
| + TAG_OBJECT);
|
| +
|
| + InitializeNewString(result,
|
| + length,
|
| + Heap::kConsStringMapRootIndex,
|
| + scratch1,
|
| + scratch2);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::AllocateAsciiConsString(Register result,
|
| + Register length,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Label* gc_required) {
|
| + Label allocate_new_space, install_map;
|
| + AllocationFlags flags = TAG_OBJECT;
|
| +
|
| + ExternalReference high_promotion_mode = ExternalReference::
|
| + new_space_high_promotion_mode_active_address(isolate());
|
| + Mov(scratch1, Operand(high_promotion_mode));
|
| + Ldr(scratch1, MemOperand(scratch1));
|
| + Cbz(scratch1, &allocate_new_space);
|
| +
|
| + Allocate(ConsString::kSize,
|
| + result,
|
| + scratch1,
|
| + scratch2,
|
| + gc_required,
|
| + static_cast<AllocationFlags>(flags | PRETENURE_OLD_POINTER_SPACE));
|
| +
|
| + B(&install_map);
|
| +
|
| + Bind(&allocate_new_space);
|
| + Allocate(ConsString::kSize,
|
| + result,
|
| + scratch1,
|
| + scratch2,
|
| + gc_required,
|
| + flags);
|
| +
|
| + Bind(&install_map);
|
| +
|
| + InitializeNewString(result,
|
| + length,
|
| + Heap::kConsAsciiStringMapRootIndex,
|
| + scratch1,
|
| + scratch2);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::AllocateTwoByteSlicedString(Register result,
|
| + Register length,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Label* gc_required) {
|
| + ASSERT(!AreAliased(result, length, scratch1, scratch2));
|
| + Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
|
| + TAG_OBJECT);
|
| +
|
| + InitializeNewString(result,
|
| + length,
|
| + Heap::kSlicedStringMapRootIndex,
|
| + scratch1,
|
| + scratch2);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::AllocateAsciiSlicedString(Register result,
|
| + Register length,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Label* gc_required) {
|
| + ASSERT(!AreAliased(result, length, scratch1, scratch2));
|
| + Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
|
| + TAG_OBJECT);
|
| +
|
| + InitializeNewString(result,
|
| + length,
|
| + Heap::kSlicedAsciiStringMapRootIndex,
|
| + scratch1,
|
| + scratch2);
|
| +}
|
| +
|
| +
|
| +// Allocates a heap number or jumps to the need_gc label if the young space
|
| +// is full and a scavenge is needed.
|
| +void MacroAssembler::AllocateHeapNumber(Register result,
|
| + Label* gc_required,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Register heap_number_map) {
|
| + // Allocate an object in the heap for the heap number and tag it as a heap
|
| + // object.
|
| + Allocate(HeapNumber::kSize, result, scratch1, scratch2, gc_required,
|
| + TAG_OBJECT);
|
| +
|
| + // Store heap number map in the allocated object.
|
| + if (heap_number_map.Is(NoReg)) {
|
| + heap_number_map = scratch1;
|
| + LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
|
| + }
|
| + AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
|
| + Str(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset));
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::AllocateHeapNumberWithValue(Register result,
|
| + DoubleRegister value,
|
| + Label* gc_required,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Register heap_number_map) {
|
| + // TODO(all): Check if it would be more efficient to use STP to store both
|
| + // the map and the value.
|
| + AllocateHeapNumber(result, gc_required, scratch1, scratch2, heap_number_map);
|
| + Str(value, FieldMemOperand(result, HeapNumber::kValueOffset));
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::JumpIfObjectType(Register object,
|
| + Register map,
|
| + Register type_reg,
|
| + InstanceType type,
|
| + Label* if_cond_pass,
|
| + Condition cond) {
|
| + CompareObjectType(object, map, type_reg, type);
|
| + B(cond, if_cond_pass);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::JumpIfNotObjectType(Register object,
|
| + Register map,
|
| + Register type_reg,
|
| + InstanceType type,
|
| + Label* if_not_object) {
|
| + JumpIfObjectType(object, map, type_reg, type, if_not_object, ne);
|
| +}
|
| +
|
| +
|
| +// Sets condition flags based on comparison, and returns type in type_reg.
|
| +void MacroAssembler::CompareObjectType(Register object,
|
| + Register map,
|
| + Register type_reg,
|
| + InstanceType type) {
|
| + Ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
|
| + CompareInstanceType(map, type_reg, type);
|
| +}
|
| +
|
| +
|
| +// Sets condition flags based on comparison, and returns type in type_reg.
|
| +void MacroAssembler::CompareInstanceType(Register map,
|
| + Register type_reg,
|
| + InstanceType type) {
|
| + Ldrb(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
|
| + Cmp(type_reg, type);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::CompareMap(Register obj,
|
| + Register scratch,
|
| + Handle<Map> map,
|
| + Label* early_success) {
|
| + // TODO(jbramley): The early_success label isn't used. Remove it.
|
| + Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
|
| + CompareMap(scratch, map, early_success);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::CompareMap(Register obj_map,
|
| + Handle<Map> map,
|
| + Label* early_success) {
|
| + // TODO(jbramley): The early_success label isn't used. Remove it.
|
| + Cmp(obj_map, Operand(map));
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::CheckMap(Register obj,
|
| + Register scratch,
|
| + Handle<Map> map,
|
| + Label* fail,
|
| + SmiCheckType smi_check_type) {
|
| + if (smi_check_type == DO_SMI_CHECK) {
|
| + JumpIfSmi(obj, fail);
|
| + }
|
| +
|
| + Label success;
|
| + CompareMap(obj, scratch, map, &success);
|
| + B(ne, fail);
|
| + Bind(&success);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::CheckMap(Register obj,
|
| + Register scratch,
|
| + Heap::RootListIndex index,
|
| + Label* fail,
|
| + SmiCheckType smi_check_type) {
|
| + if (smi_check_type == DO_SMI_CHECK) {
|
| + JumpIfSmi(obj, fail);
|
| + }
|
| + Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
|
| + JumpIfNotRoot(scratch, index, fail);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::CheckMap(Register obj_map,
|
| + Handle<Map> map,
|
| + Label* fail,
|
| + SmiCheckType smi_check_type) {
|
| + if (smi_check_type == DO_SMI_CHECK) {
|
| + JumpIfSmi(obj_map, fail);
|
| + }
|
| + Label success;
|
| + CompareMap(obj_map, map, &success);
|
| + B(ne, fail);
|
| + Bind(&success);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::DispatchMap(Register obj,
|
| + Register scratch,
|
| + Handle<Map> map,
|
| + Handle<Code> success,
|
| + SmiCheckType smi_check_type) {
|
| + Label fail;
|
| + if (smi_check_type == DO_SMI_CHECK) {
|
| + JumpIfSmi(obj, &fail);
|
| + }
|
| + Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
|
| + Cmp(scratch, Operand(map));
|
| + B(ne, &fail);
|
| + Jump(success, RelocInfo::CODE_TARGET);
|
| + Bind(&fail);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::TestMapBitfield(Register object, uint64_t mask) {
|
| + Ldr(Tmp0(), FieldMemOperand(object, HeapObject::kMapOffset));
|
| + Ldrb(Tmp0(), FieldMemOperand(Tmp0(), Map::kBitFieldOffset));
|
| + Tst(Tmp0(), mask);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::LoadElementsKind(Register result, Register object) {
|
| + // Load map.
|
| + __ Ldr(result, FieldMemOperand(object, HeapObject::kMapOffset));
|
| + // Load the map's "bit field 2".
|
| + __ Ldrb(result, FieldMemOperand(result, Map::kBitField2Offset));
|
| + // Retrieve elements_kind from bit field 2.
|
| + __ Ubfx(result, result, Map::kElementsKindShift, Map::kElementsKindBitCount);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::TryGetFunctionPrototype(Register function,
|
| + Register result,
|
| + Register scratch,
|
| + Label* miss,
|
| + BoundFunctionAction action) {
|
| + ASSERT(!AreAliased(function, result, scratch));
|
| +
|
| + // Check that the receiver isn't a smi.
|
| + JumpIfSmi(function, miss);
|
| +
|
| + // Check that the function really is a function. Load map into result reg.
|
| + JumpIfNotObjectType(function, result, scratch, JS_FUNCTION_TYPE, miss);
|
| +
|
| + if (action == kMissOnBoundFunction) {
|
| + Register scratch_w = scratch.W();
|
| + Ldr(scratch,
|
| + FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
|
| + // On 64-bit platforms, compiler hints field is not a smi. See definition of
|
| + // kCompilerHintsOffset in src/objects.h.
|
| + Ldr(scratch_w,
|
| + FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset));
|
| + Tbnz(scratch, SharedFunctionInfo::kBoundFunction, miss);
|
| + }
|
| +
|
| + // Make sure that the function has an instance prototype.
|
| + Label non_instance;
|
| + Ldrb(scratch, FieldMemOperand(result, Map::kBitFieldOffset));
|
| + Tbnz(scratch, Map::kHasNonInstancePrototype, &non_instance);
|
| +
|
| + // Get the prototype or initial map from the function.
|
| + Ldr(result,
|
| + FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
|
| +
|
| + // If the prototype or initial map is the hole, don't return it and simply
|
| + // miss the cache instead. This will allow us to allocate a prototype object
|
| + // on-demand in the runtime system.
|
| + JumpIfRoot(result, Heap::kTheHoleValueRootIndex, miss);
|
| +
|
| + // If the function does not have an initial map, we're done.
|
| + Label done;
|
| + JumpIfNotObjectType(result, scratch, scratch, MAP_TYPE, &done);
|
| +
|
| + // Get the prototype from the initial map.
|
| + Ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
|
| + B(&done);
|
| +
|
| + // Non-instance prototype: fetch prototype from constructor field in initial
|
| + // map.
|
| + Bind(&non_instance);
|
| + Ldr(result, FieldMemOperand(result, Map::kConstructorOffset));
|
| +
|
| + // All done.
|
| + Bind(&done);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::CompareRoot(const Register& obj,
|
| + Heap::RootListIndex index) {
|
| + ASSERT(!AreAliased(obj, Tmp0()));
|
| + LoadRoot(Tmp0(), index);
|
| + Cmp(obj, Tmp0());
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::JumpIfRoot(const Register& obj,
|
| + Heap::RootListIndex index,
|
| + Label* if_equal) {
|
| + CompareRoot(obj, index);
|
| + B(eq, if_equal);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::JumpIfNotRoot(const Register& obj,
|
| + Heap::RootListIndex index,
|
| + Label* if_not_equal) {
|
| + CompareRoot(obj, index);
|
| + B(ne, if_not_equal);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::CompareAndSplit(const Register& lhs,
|
| + const Operand& rhs,
|
| + Condition cond,
|
| + Label* if_true,
|
| + Label* if_false,
|
| + Label* fall_through) {
|
| + if ((if_true == if_false) && (if_false == fall_through)) {
|
| + // Fall through.
|
| + } else if (if_true == if_false) {
|
| + B(if_true);
|
| + } else if (if_false == fall_through) {
|
| + CompareAndBranch(lhs, rhs, cond, if_true);
|
| + } else if (if_true == fall_through) {
|
| + CompareAndBranch(lhs, rhs, InvertCondition(cond), if_false);
|
| + } else {
|
| + CompareAndBranch(lhs, rhs, cond, if_true);
|
| + B(if_false);
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::TestAndSplit(const Register& reg,
|
| + uint64_t bit_pattern,
|
| + Label* if_all_clear,
|
| + Label* if_any_set,
|
| + Label* fall_through) {
|
| + if ((if_all_clear == if_any_set) && (if_any_set == fall_through)) {
|
| + // Fall through.
|
| + } else if (if_all_clear == if_any_set) {
|
| + B(if_all_clear);
|
| + } else if (if_all_clear == fall_through) {
|
| + TestAndBranchIfAnySet(reg, bit_pattern, if_any_set);
|
| + } else if (if_any_set == fall_through) {
|
| + TestAndBranchIfAllClear(reg, bit_pattern, if_all_clear);
|
| + } else {
|
| + TestAndBranchIfAnySet(reg, bit_pattern, if_any_set);
|
| + B(if_all_clear);
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::CheckFastElements(Register map,
|
| + Register scratch,
|
| + Label* fail) {
|
| + STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
|
| + STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
|
| + STATIC_ASSERT(FAST_ELEMENTS == 2);
|
| + STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
|
| + Ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset));
|
| + Cmp(scratch, Map::kMaximumBitField2FastHoleyElementValue);
|
| + B(hi, fail);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::CheckFastObjectElements(Register map,
|
| + Register scratch,
|
| + Label* fail) {
|
| + STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
|
| + STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
|
| + STATIC_ASSERT(FAST_ELEMENTS == 2);
|
| + STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
|
| + Ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset));
|
| + Cmp(scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue));
|
| + // If cond==ls, set cond=hi, otherwise compare.
|
| + Ccmp(scratch,
|
| + Operand(Map::kMaximumBitField2FastHoleyElementValue), CFlag, hi);
|
| + B(hi, fail);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::CheckFastSmiElements(Register map,
|
| + Register scratch,
|
| + Label* fail) {
|
| + STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
|
| + STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
|
| + Ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset));
|
| + Cmp(scratch, Map::kMaximumBitField2FastHoleySmiElementValue);
|
| + B(hi, fail);
|
| +}
|
| +
|
| +
|
| +// Note: The ARM version of this clobbers elements_reg, but this version does
|
| +// not. Some uses of this in A64 assume that elements_reg will be preserved.
|
| +void MacroAssembler::StoreNumberToDoubleElements(Register value_reg,
|
| + Register key_reg,
|
| + Register elements_reg,
|
| + Register scratch1,
|
| + FPRegister fpscratch1,
|
| + FPRegister fpscratch2,
|
| + Label* fail,
|
| + int elements_offset) {
|
| + ASSERT(!AreAliased(value_reg, key_reg, elements_reg, scratch1));
|
| + Label store_num;
|
| +
|
| + // Speculatively convert the smi to a double - all smis can be exactly
|
| + // represented as a double.
|
| + SmiUntagToDouble(fpscratch1, value_reg, kSpeculativeUntag);
|
| +
|
| + // If value_reg is a smi, we're done.
|
| + JumpIfSmi(value_reg, &store_num);
|
| +
|
| + // Ensure that the object is a heap number.
|
| + CheckMap(value_reg, scratch1, isolate()->factory()->heap_number_map(),
|
| + fail, DONT_DO_SMI_CHECK);
|
| +
|
| + Ldr(fpscratch1, FieldMemOperand(value_reg, HeapNumber::kValueOffset));
|
| + Fmov(fpscratch2, FixedDoubleArray::canonical_not_the_hole_nan_as_double());
|
| +
|
| + // Check for NaN by comparing the number to itself: NaN comparison will
|
| + // report unordered, indicated by the overflow flag being set.
|
| + Fcmp(fpscratch1, fpscratch1);
|
| + Fcsel(fpscratch1, fpscratch2, fpscratch1, vs);
|
| +
|
| + // Store the result.
|
| + Bind(&store_num);
|
| + Add(scratch1, elements_reg,
|
| + Operand::UntagSmiAndScale(key_reg, kDoubleSizeLog2));
|
| + Str(fpscratch1,
|
| + FieldMemOperand(scratch1,
|
| + FixedDoubleArray::kHeaderSize - elements_offset));
|
| +}
|
| +
|
| +
|
| +bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
|
| + return has_frame_ || !stub->SometimesSetsUpAFrame();
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::IndexFromHash(Register hash, Register index) {
|
| + // If the hash field contains an array index pick it out. The assert checks
|
| + // that the constants for the maximum number of digits for an array index
|
| + // cached in the hash field and the number of bits reserved for it does not
|
| + // conflict.
|
| + ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) <
|
| + (1 << String::kArrayIndexValueBits));
|
| + // We want the smi-tagged index in key. kArrayIndexValueMask has zeros in
|
| + // the low kHashShift bits.
|
| + STATIC_ASSERT(kSmiTag == 0);
|
| + Ubfx(hash, hash, String::kHashShift, String::kArrayIndexValueBits);
|
| + SmiTag(index, hash);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::EmitSeqStringSetCharCheck(
|
| + Register string,
|
| + Register index,
|
| + SeqStringSetCharCheckIndexType index_type,
|
| + Register scratch,
|
| + uint32_t encoding_mask) {
|
| + ASSERT(!AreAliased(string, index, scratch));
|
| +
|
| + if (index_type == kIndexIsSmi) {
|
| + AssertSmi(index);
|
| + }
|
| +
|
| + // Check that string is an object.
|
| + AssertNotSmi(string, kNonObject);
|
| +
|
| + // Check that string has an appropriate map.
|
| + Ldr(scratch, FieldMemOperand(string, HeapObject::kMapOffset));
|
| + Ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
|
| +
|
| + And(scratch, scratch, kStringRepresentationMask | kStringEncodingMask);
|
| + Cmp(scratch, encoding_mask);
|
| + Check(eq, kUnexpectedStringType);
|
| +
|
| + Ldr(scratch, FieldMemOperand(string, String::kLengthOffset));
|
| + Cmp(index, index_type == kIndexIsSmi ? scratch : Operand::UntagSmi(scratch));
|
| + Check(lt, kIndexIsTooLarge);
|
| +
|
| + ASSERT_EQ(0, Smi::FromInt(0));
|
| + Cmp(index, 0);
|
| + Check(ge, kIndexIsNegative);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
|
| + Register scratch,
|
| + Label* miss) {
|
| + // TODO(jbramley): Sort out the uses of Tmp0() and Tmp1() in this function.
|
| + // The ARM version takes two scratch registers, and that should be enough for
|
| + // all of the checks.
|
| +
|
| + Label same_contexts;
|
| +
|
| + ASSERT(!AreAliased(holder_reg, scratch));
|
| +
|
| + // Load current lexical context from the stack frame.
|
| + Ldr(scratch, MemOperand(fp, StandardFrameConstants::kContextOffset));
|
| + // In debug mode, make sure the lexical context is set.
|
| +#ifdef DEBUG
|
| + Cmp(scratch, 0);
|
| + Check(ne, kWeShouldNotHaveAnEmptyLexicalContext);
|
| +#endif
|
| +
|
| + // Load the native context of the current context.
|
| + int offset =
|
| + Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
|
| + Ldr(scratch, FieldMemOperand(scratch, offset));
|
| + Ldr(scratch, FieldMemOperand(scratch, GlobalObject::kNativeContextOffset));
|
| +
|
| + // Check the context is a native context.
|
| + if (emit_debug_code()) {
|
| + // Read the first word and compare to the global_context_map.
|
| + Register temp = Tmp1();
|
| + Ldr(temp, FieldMemOperand(scratch, HeapObject::kMapOffset));
|
| + CompareRoot(temp, Heap::kNativeContextMapRootIndex);
|
| + Check(eq, kExpectedNativeContext);
|
| + }
|
| +
|
| + // Check if both contexts are the same.
|
| + ldr(Tmp0(), FieldMemOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
|
| + cmp(scratch, Tmp0());
|
| + b(&same_contexts, eq);
|
| +
|
| + // Check the context is a native context.
|
| + if (emit_debug_code()) {
|
| + // Move Tmp0() into a different register, as CompareRoot will use it.
|
| + Register temp = Tmp1();
|
| + mov(temp, Tmp0());
|
| + CompareRoot(temp, Heap::kNullValueRootIndex);
|
| + Check(ne, kExpectedNonNullContext);
|
| +
|
| + Ldr(temp, FieldMemOperand(temp, HeapObject::kMapOffset));
|
| + CompareRoot(temp, Heap::kNativeContextMapRootIndex);
|
| + Check(eq, kExpectedNativeContext);
|
| +
|
| + // Let's consider that Tmp0() has been cloberred by the MacroAssembler.
|
| + // We reload it with its value.
|
| + ldr(Tmp0(), FieldMemOperand(holder_reg,
|
| + JSGlobalProxy::kNativeContextOffset));
|
| + }
|
| +
|
| + // Check that the security token in the calling global object is
|
| + // compatible with the security token in the receiving global
|
| + // object.
|
| + int token_offset = Context::kHeaderSize +
|
| + Context::SECURITY_TOKEN_INDEX * kPointerSize;
|
| +
|
| + ldr(scratch, FieldMemOperand(scratch, token_offset));
|
| + ldr(Tmp0(), FieldMemOperand(Tmp0(), token_offset));
|
| + cmp(scratch, Tmp0());
|
| + b(miss, ne);
|
| +
|
| + bind(&same_contexts);
|
| +}
|
| +
|
| +
|
| +// Compute the hash code from the untagged key. This must be kept in sync with
|
| +// ComputeIntegerHash in utils.h and KeyedLoadGenericElementStub in
|
| +// code-stub-hydrogen.cc
|
| +void MacroAssembler::GetNumberHash(Register key, Register scratch) {
|
| + ASSERT(!AreAliased(key, scratch));
|
| +
|
| + // Xor original key with a seed.
|
| + LoadRoot(scratch, Heap::kHashSeedRootIndex);
|
| + Eor(key, key, Operand::UntagSmi(scratch));
|
| +
|
| + // The algorithm uses 32-bit integer values.
|
| + key = key.W();
|
| + scratch = scratch.W();
|
| +
|
| + // Compute the hash code from the untagged key. This must be kept in sync
|
| + // with ComputeIntegerHash in utils.h.
|
| + //
|
| + // hash = ~hash + (hash <<1 15);
|
| + Mvn(scratch, key);
|
| + Add(key, scratch, Operand(key, LSL, 15));
|
| + // hash = hash ^ (hash >> 12);
|
| + Eor(key, key, Operand(key, LSR, 12));
|
| + // hash = hash + (hash << 2);
|
| + Add(key, key, Operand(key, LSL, 2));
|
| + // hash = hash ^ (hash >> 4);
|
| + Eor(key, key, Operand(key, LSR, 4));
|
| + // hash = hash * 2057;
|
| + Mov(scratch, Operand(key, LSL, 11));
|
| + Add(key, key, Operand(key, LSL, 3));
|
| + Add(key, key, scratch);
|
| + // hash = hash ^ (hash >> 16);
|
| + Eor(key, key, Operand(key, LSR, 16));
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::LoadFromNumberDictionary(Label* miss,
|
| + Register elements,
|
| + Register key,
|
| + Register result,
|
| + Register scratch0,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Register scratch3) {
|
| + ASSERT(!AreAliased(elements, key, scratch0, scratch1, scratch2, scratch3));
|
| +
|
| + Label done;
|
| +
|
| + SmiUntag(scratch0, key);
|
| + GetNumberHash(scratch0, scratch1);
|
| +
|
| + // Compute the capacity mask.
|
| + Ldrsw(scratch1,
|
| + UntagSmiFieldMemOperand(elements,
|
| + SeededNumberDictionary::kCapacityOffset));
|
| + Sub(scratch1, scratch1, 1);
|
| +
|
| + // Generate an unrolled loop that performs a few probes before giving up.
|
| + for (int i = 0; i < kNumberDictionaryProbes; i++) {
|
| + // Compute the masked index: (hash + i + i * i) & mask.
|
| + if (i > 0) {
|
| + Add(scratch2, scratch0, SeededNumberDictionary::GetProbeOffset(i));
|
| + } else {
|
| + Mov(scratch2, scratch0);
|
| + }
|
| + And(scratch2, scratch2, scratch1);
|
| +
|
| + // Scale the index by multiplying by the element size.
|
| + ASSERT(SeededNumberDictionary::kEntrySize == 3);
|
| + Add(scratch2, scratch2, Operand(scratch2, LSL, 1));
|
| +
|
| + // Check if the key is identical to the name.
|
| + Add(scratch2, elements, Operand(scratch2, LSL, kPointerSizeLog2));
|
| + Ldr(scratch3,
|
| + FieldMemOperand(scratch2,
|
| + SeededNumberDictionary::kElementsStartOffset));
|
| + Cmp(key, scratch3);
|
| + if (i != (kNumberDictionaryProbes - 1)) {
|
| + B(eq, &done);
|
| + } else {
|
| + B(ne, miss);
|
| + }
|
| + }
|
| +
|
| + Bind(&done);
|
| + // Check that the value is a normal property.
|
| + const int kDetailsOffset =
|
| + SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
|
| + Ldrsw(scratch1, UntagSmiFieldMemOperand(scratch2, kDetailsOffset));
|
| + TestAndBranchIfAnySet(scratch1, PropertyDetails::TypeField::kMask, miss);
|
| +
|
| + // Get the value at the masked, scaled index and return.
|
| + const int kValueOffset =
|
| + SeededNumberDictionary::kElementsStartOffset + kPointerSize;
|
| + Ldr(result, FieldMemOperand(scratch2, kValueOffset));
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::RememberedSetHelper(Register object, // For debug tests.
|
| + Register address,
|
| + Register scratch,
|
| + SaveFPRegsMode fp_mode,
|
| + RememberedSetFinalAction and_then) {
|
| + ASSERT(!AreAliased(object, address, scratch));
|
| + Label done, store_buffer_overflow;
|
| + if (emit_debug_code()) {
|
| + Label ok;
|
| + JumpIfNotInNewSpace(object, &ok);
|
| + Abort(kRememberedSetPointerInNewSpace);
|
| + bind(&ok);
|
| + }
|
| + // Load store buffer top.
|
| + Mov(Tmp0(), Operand(ExternalReference::store_buffer_top(isolate())));
|
| + Ldr(scratch, MemOperand(Tmp0()));
|
| + // Store pointer to buffer and increment buffer top.
|
| + Str(address, MemOperand(scratch, kPointerSize, PostIndex));
|
| + // Write back new top of buffer.
|
| + Str(scratch, MemOperand(Tmp0()));
|
| + // Call stub on end of buffer.
|
| + // Check for end of buffer.
|
| + ASSERT(StoreBuffer::kStoreBufferOverflowBit ==
|
| + (1 << (14 + kPointerSizeLog2)));
|
| + if (and_then == kFallThroughAtEnd) {
|
| + Tbz(scratch, (14 + kPointerSizeLog2), &done);
|
| + } else {
|
| + ASSERT(and_then == kReturnAtEnd);
|
| + Tbnz(scratch, (14 + kPointerSizeLog2), &store_buffer_overflow);
|
| + Ret();
|
| + }
|
| +
|
| + Bind(&store_buffer_overflow);
|
| + Push(lr);
|
| + StoreBufferOverflowStub store_buffer_overflow_stub =
|
| + StoreBufferOverflowStub(fp_mode);
|
| + CallStub(&store_buffer_overflow_stub);
|
| + Pop(lr);
|
| +
|
| + Bind(&done);
|
| + if (and_then == kReturnAtEnd) {
|
| + Ret();
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::PopSafepointRegisters() {
|
| + const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
|
| + PopXRegList(kSafepointSavedRegisters);
|
| + Drop(num_unsaved);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::PushSafepointRegisters() {
|
| + // Safepoints expect a block of kNumSafepointRegisters values on the stack, so
|
| + // adjust the stack for unsaved registers.
|
| + const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
|
| + ASSERT(num_unsaved >= 0);
|
| + Claim(num_unsaved);
|
| + PushXRegList(kSafepointSavedRegisters);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::PushSafepointFPRegisters() {
|
| + PushCPURegList(CPURegList(CPURegister::kFPRegister, kDRegSize,
|
| + FPRegister::kAllocatableFPRegisters));
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::PopSafepointFPRegisters() {
|
| + PopCPURegList(CPURegList(CPURegister::kFPRegister, kDRegSize,
|
| + FPRegister::kAllocatableFPRegisters));
|
| +}
|
| +
|
| +
|
| +int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
|
| + // Make sure the safepoint registers list is what we expect.
|
| + ASSERT(CPURegList::GetSafepointSavedRegisters().list() == 0x6ffcffff);
|
| +
|
| + // Safepoint registers are stored contiguously on the stack, but not all the
|
| + // registers are saved. The following registers are excluded:
|
| + // - x16 and x17 (ip0 and ip1) because they shouldn't be preserved outside of
|
| + // the macro assembler.
|
| + // - x28 (jssp) because JS stack pointer doesn't need to be included in
|
| + // safepoint registers.
|
| + // - x31 (csp) because the system stack pointer doesn't need to be included
|
| + // in safepoint registers.
|
| + //
|
| + // This function implements the mapping of register code to index into the
|
| + // safepoint register slots.
|
| + if ((reg_code >= 0) && (reg_code <= 15)) {
|
| + return reg_code;
|
| + } else if ((reg_code >= 18) && (reg_code <= 27)) {
|
| + // Skip ip0 and ip1.
|
| + return reg_code - 2;
|
| + } else if ((reg_code == 29) || (reg_code == 30)) {
|
| + // Also skip jssp.
|
| + return reg_code - 3;
|
| + } else {
|
| + // This register has no safepoint register slot.
|
| + UNREACHABLE();
|
| + return -1;
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::CheckPageFlagSet(const Register& object,
|
| + const Register& scratch,
|
| + int mask,
|
| + Label* if_any_set) {
|
| + And(scratch, object, ~Page::kPageAlignmentMask);
|
| + Ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
|
| + TestAndBranchIfAnySet(scratch, mask, if_any_set);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::CheckPageFlagClear(const Register& object,
|
| + const Register& scratch,
|
| + int mask,
|
| + Label* if_all_clear) {
|
| + And(scratch, object, ~Page::kPageAlignmentMask);
|
| + Ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
|
| + TestAndBranchIfAllClear(scratch, mask, if_all_clear);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::RecordWriteField(
|
| + Register object,
|
| + int offset,
|
| + Register value,
|
| + Register scratch,
|
| + LinkRegisterStatus lr_status,
|
| + SaveFPRegsMode save_fp,
|
| + RememberedSetAction remembered_set_action,
|
| + SmiCheck smi_check) {
|
| + // First, check if a write barrier is even needed. The tests below
|
| + // catch stores of Smis.
|
| + Label done;
|
| +
|
| + // Skip the barrier if writing a smi.
|
| + if (smi_check == INLINE_SMI_CHECK) {
|
| + JumpIfSmi(value, &done);
|
| + }
|
| +
|
| + // Although the object register is tagged, the offset is relative to the start
|
| + // of the object, so offset must be a multiple of kPointerSize.
|
| + ASSERT(IsAligned(offset, kPointerSize));
|
| +
|
| + Add(scratch, object, offset - kHeapObjectTag);
|
| + if (emit_debug_code()) {
|
| + Label ok;
|
| + Tst(scratch, (1 << kPointerSizeLog2) - 1);
|
| + B(eq, &ok);
|
| + Abort(kUnalignedCellInWriteBarrier);
|
| + Bind(&ok);
|
| + }
|
| +
|
| + RecordWrite(object,
|
| + scratch,
|
| + value,
|
| + lr_status,
|
| + save_fp,
|
| + remembered_set_action,
|
| + OMIT_SMI_CHECK);
|
| +
|
| + Bind(&done);
|
| +
|
| + // Clobber clobbered input registers when running with the debug-code flag
|
| + // turned on to provoke errors.
|
| + if (emit_debug_code()) {
|
| + Mov(value, Operand(BitCast<int64_t>(kZapValue + 4)));
|
| + Mov(scratch, Operand(BitCast<int64_t>(kZapValue + 8)));
|
| + }
|
| +}
|
| +
|
| +
|
| +// Will clobber: object, address, value, Tmp0(), Tmp1().
|
| +// If lr_status is kLRHasBeenSaved, lr will also be clobbered.
|
| +//
|
| +// The register 'object' contains a heap object pointer. The heap object tag is
|
| +// shifted away.
|
| +void MacroAssembler::RecordWrite(Register object,
|
| + Register address,
|
| + Register value,
|
| + LinkRegisterStatus lr_status,
|
| + SaveFPRegsMode fp_mode,
|
| + RememberedSetAction remembered_set_action,
|
| + SmiCheck smi_check) {
|
| + ASM_LOCATION("MacroAssembler::RecordWrite");
|
| + ASSERT(!AreAliased(object, value));
|
| +
|
| + if (emit_debug_code()) {
|
| + Ldr(Tmp0(), MemOperand(address));
|
| + Cmp(Tmp0(), value);
|
| + Check(eq, kWrongAddressOrValuePassedToRecordWrite);
|
| + }
|
| +
|
| + // Count number of write barriers in generated code.
|
| + isolate()->counters()->write_barriers_static()->Increment();
|
| + // TODO(mstarzinger): Dynamic counter missing.
|
| +
|
| + // First, check if a write barrier is even needed. The tests below
|
| + // catch stores of smis and stores into the young generation.
|
| + Label done;
|
| +
|
| + if (smi_check == INLINE_SMI_CHECK) {
|
| + ASSERT_EQ(0, kSmiTag);
|
| + JumpIfSmi(value, &done);
|
| + }
|
| +
|
| + CheckPageFlagClear(value,
|
| + value, // Used as scratch.
|
| + MemoryChunk::kPointersToHereAreInterestingMask,
|
| + &done);
|
| + CheckPageFlagClear(object,
|
| + value, // Used as scratch.
|
| + MemoryChunk::kPointersFromHereAreInterestingMask,
|
| + &done);
|
| +
|
| + // Record the actual write.
|
| + if (lr_status == kLRHasNotBeenSaved) {
|
| + Push(lr);
|
| + }
|
| + RecordWriteStub stub(object, value, address, remembered_set_action, fp_mode);
|
| + CallStub(&stub);
|
| + if (lr_status == kLRHasNotBeenSaved) {
|
| + Pop(lr);
|
| + }
|
| +
|
| + Bind(&done);
|
| +
|
| + // Clobber clobbered registers when running with the debug-code flag
|
| + // turned on to provoke errors.
|
| + if (emit_debug_code()) {
|
| + Mov(address, Operand(BitCast<int64_t>(kZapValue + 12)));
|
| + Mov(value, Operand(BitCast<int64_t>(kZapValue + 16)));
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::AssertHasValidColor(const Register& reg) {
|
| + if (emit_debug_code()) {
|
| + // The bit sequence is backward. The first character in the string
|
| + // represents the least significant bit.
|
| + ASSERT(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
|
| +
|
| + Label color_is_valid;
|
| + Tbnz(reg, 0, &color_is_valid);
|
| + Tbz(reg, 1, &color_is_valid);
|
| + Abort(kUnexpectedColorFound);
|
| + Bind(&color_is_valid);
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::GetMarkBits(Register addr_reg,
|
| + Register bitmap_reg,
|
| + Register shift_reg) {
|
| + ASSERT(!AreAliased(addr_reg, bitmap_reg, shift_reg, no_reg));
|
| + // addr_reg is divided into fields:
|
| + // |63 page base 20|19 high 8|7 shift 3|2 0|
|
| + // 'high' gives the index of the cell holding color bits for the object.
|
| + // 'shift' gives the offset in the cell for this object's color.
|
| + const int kShiftBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2;
|
| + Ubfx(Tmp0(), addr_reg, kShiftBits, kPageSizeBits - kShiftBits);
|
| + Bic(bitmap_reg, addr_reg, Page::kPageAlignmentMask);
|
| + Add(bitmap_reg, bitmap_reg, Operand(Tmp0(), LSL, Bitmap::kBytesPerCellLog2));
|
| + // bitmap_reg:
|
| + // |63 page base 20|19 zeros 15|14 high 3|2 0|
|
| + Ubfx(shift_reg, addr_reg, kPointerSizeLog2, Bitmap::kBitsPerCellLog2);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::HasColor(Register object,
|
| + Register bitmap_scratch,
|
| + Register shift_scratch,
|
| + Label* has_color,
|
| + int first_bit,
|
| + int second_bit) {
|
| + // See mark-compact.h for color definitions.
|
| + ASSERT(!AreAliased(object, bitmap_scratch, shift_scratch));
|
| +
|
| + GetMarkBits(object, bitmap_scratch, shift_scratch);
|
| + Ldr(bitmap_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
|
| + // Shift the bitmap down to get the color of the object in bits [1:0].
|
| + Lsr(bitmap_scratch, bitmap_scratch, shift_scratch);
|
| +
|
| + AssertHasValidColor(bitmap_scratch);
|
| +
|
| + // These bit sequences are backwards. The first character in the string
|
| + // represents the least significant bit.
|
| + ASSERT(strcmp(Marking::kWhiteBitPattern, "00") == 0);
|
| + ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
|
| + ASSERT(strcmp(Marking::kGreyBitPattern, "11") == 0);
|
| +
|
| + // Check for the color.
|
| + if (first_bit == 0) {
|
| + // Checking for white.
|
| + ASSERT(second_bit == 0);
|
| + // We only need to test the first bit.
|
| + Tbz(bitmap_scratch, 0, has_color);
|
| + } else {
|
| + Label other_color;
|
| + // Checking for grey or black.
|
| + Tbz(bitmap_scratch, 0, &other_color);
|
| + if (second_bit == 0) {
|
| + Tbz(bitmap_scratch, 1, has_color);
|
| + } else {
|
| + Tbnz(bitmap_scratch, 1, has_color);
|
| + }
|
| + Bind(&other_color);
|
| + }
|
| +
|
| + // Fall through if it does not have the right color.
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::CheckMapDeprecated(Handle<Map> map,
|
| + Register scratch,
|
| + Label* if_deprecated) {
|
| + if (map->CanBeDeprecated()) {
|
| + Mov(scratch, Operand(map));
|
| + Ldrsw(scratch, UntagSmiFieldMemOperand(scratch, Map::kBitField3Offset));
|
| + TestAndBranchIfAnySet(scratch, Map::Deprecated::kMask, if_deprecated);
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::JumpIfBlack(Register object,
|
| + Register scratch0,
|
| + Register scratch1,
|
| + Label* on_black) {
|
| + ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
|
| + HasColor(object, scratch0, scratch1, on_black, 1, 0); // kBlackBitPattern.
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::JumpIfDictionaryInPrototypeChain(
|
| + Register object,
|
| + Register scratch0,
|
| + Register scratch1,
|
| + Label* found) {
|
| + ASSERT(!AreAliased(object, scratch0, scratch1));
|
| + Factory* factory = isolate()->factory();
|
| + Register current = scratch0;
|
| + Label loop_again;
|
| +
|
| + // Scratch contains elements pointer.
|
| + Mov(current, object);
|
| +
|
| + // Loop based on the map going up the prototype chain.
|
| + Bind(&loop_again);
|
| + Ldr(current, FieldMemOperand(current, HeapObject::kMapOffset));
|
| + Ldrb(scratch1, FieldMemOperand(current, Map::kBitField2Offset));
|
| + Ubfx(scratch1, scratch1, Map::kElementsKindShift, Map::kElementsKindBitCount);
|
| + CompareAndBranch(scratch1, DICTIONARY_ELEMENTS, eq, found);
|
| + Ldr(current, FieldMemOperand(current, Map::kPrototypeOffset));
|
| + CompareAndBranch(current, Operand(factory->null_value()), ne, &loop_again);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::GetRelocatedValueLocation(Register ldr_location,
|
| + Register result) {
|
| + ASSERT(!result.Is(ldr_location));
|
| + const uint32_t kLdrLitOffset_lsb = 5;
|
| + const uint32_t kLdrLitOffset_width = 19;
|
| + Ldr(result, MemOperand(ldr_location));
|
| + if (emit_debug_code()) {
|
| + And(result, result, LoadLiteralFMask);
|
| + Cmp(result, LoadLiteralFixed);
|
| + Check(eq, kTheInstructionToPatchShouldBeAnLdrLiteral);
|
| + // The instruction was clobbered. Reload it.
|
| + Ldr(result, MemOperand(ldr_location));
|
| + }
|
| + Sbfx(result, result, kLdrLitOffset_lsb, kLdrLitOffset_width);
|
| + Add(result, ldr_location, Operand(result, LSL, kWordSizeInBytesLog2));
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::EnsureNotWhite(
|
| + Register value,
|
| + Register bitmap_scratch,
|
| + Register shift_scratch,
|
| + Register load_scratch,
|
| + Register length_scratch,
|
| + Label* value_is_white_and_not_data) {
|
| + ASSERT(!AreAliased(
|
| + value, bitmap_scratch, shift_scratch, load_scratch, length_scratch));
|
| +
|
| + // These bit sequences are backwards. The first character in the string
|
| + // represents the least significant bit.
|
| + ASSERT(strcmp(Marking::kWhiteBitPattern, "00") == 0);
|
| + ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
|
| + ASSERT(strcmp(Marking::kGreyBitPattern, "11") == 0);
|
| +
|
| + GetMarkBits(value, bitmap_scratch, shift_scratch);
|
| + Ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
|
| + Lsr(load_scratch, load_scratch, shift_scratch);
|
| +
|
| + AssertHasValidColor(load_scratch);
|
| +
|
| + // If the value is black or grey we don't need to do anything.
|
| + // Since both black and grey have a 1 in the first position and white does
|
| + // not have a 1 there we only need to check one bit.
|
| + Label done;
|
| + Tbnz(load_scratch, 0, &done);
|
| +
|
| + // Value is white. We check whether it is data that doesn't need scanning.
|
| + Register map = load_scratch; // Holds map while checking type.
|
| + Label is_data_object;
|
| +
|
| + // Check for heap-number.
|
| + Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
|
| + Mov(length_scratch, HeapNumber::kSize);
|
| + JumpIfRoot(map, Heap::kHeapNumberMapRootIndex, &is_data_object);
|
| +
|
| + // Check for strings.
|
| + ASSERT(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
|
| + ASSERT(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
|
| + // If it's a string and it's not a cons string then it's an object containing
|
| + // no GC pointers.
|
| + Register instance_type = load_scratch;
|
| + Ldrb(instance_type, FieldMemOperand(map, Map::kInstanceTypeOffset));
|
| + TestAndBranchIfAnySet(instance_type,
|
| + kIsIndirectStringMask | kIsNotStringMask,
|
| + value_is_white_and_not_data);
|
| +
|
| + // It's a non-indirect (non-cons and non-slice) string.
|
| + // If it's external, the length is just ExternalString::kSize.
|
| + // Otherwise it's String::kHeaderSize + string->length() * (1 or 2).
|
| + // External strings are the only ones with the kExternalStringTag bit
|
| + // set.
|
| + ASSERT_EQ(0, kSeqStringTag & kExternalStringTag);
|
| + ASSERT_EQ(0, kConsStringTag & kExternalStringTag);
|
| + Mov(length_scratch, ExternalString::kSize);
|
| + TestAndBranchIfAnySet(instance_type, kExternalStringTag, &is_data_object);
|
| +
|
| + // Sequential string, either ASCII or UC16.
|
| + // For ASCII (char-size of 1) we shift the smi tag away to get the length.
|
| + // For UC16 (char-size of 2) we just leave the smi tag in place, thereby
|
| + // getting the length multiplied by 2.
|
| + ASSERT(kOneByteStringTag == 4 && kStringEncodingMask == 4);
|
| + Ldrsw(length_scratch, UntagSmiFieldMemOperand(value,
|
| + String::kLengthOffset));
|
| + Tst(instance_type, kStringEncodingMask);
|
| + Cset(load_scratch, eq);
|
| + Lsl(length_scratch, length_scratch, load_scratch);
|
| + Add(length_scratch,
|
| + length_scratch,
|
| + SeqString::kHeaderSize + kObjectAlignmentMask);
|
| + Bic(length_scratch, length_scratch, kObjectAlignmentMask);
|
| +
|
| + Bind(&is_data_object);
|
| + // Value is a data object, and it is white. Mark it black. Since we know
|
| + // that the object is white we can make it black by flipping one bit.
|
| + Register mask = shift_scratch;
|
| + Mov(load_scratch, 1);
|
| + Lsl(mask, load_scratch, shift_scratch);
|
| +
|
| + Ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
|
| + Orr(load_scratch, load_scratch, mask);
|
| + Str(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
|
| +
|
| + Bic(bitmap_scratch, bitmap_scratch, Page::kPageAlignmentMask);
|
| + Ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
|
| + Add(load_scratch, load_scratch, length_scratch);
|
| + Str(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
|
| +
|
| + Bind(&done);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::Assert(Condition cond, BailoutReason reason) {
|
| + if (emit_debug_code()) {
|
| + Check(cond, reason);
|
| + }
|
| +}
|
| +
|
| +
|
| +
|
| +void MacroAssembler::AssertRegisterIsClear(Register reg, BailoutReason reason) {
|
| + if (emit_debug_code()) {
|
| + CheckRegisterIsClear(reg, reason);
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::AssertRegisterIsRoot(Register reg,
|
| + Heap::RootListIndex index,
|
| + BailoutReason reason) {
|
| + // CompareRoot uses Tmp0().
|
| + ASSERT(!reg.Is(Tmp0()));
|
| + if (emit_debug_code()) {
|
| + CompareRoot(reg, index);
|
| + Check(eq, reason);
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::AssertFastElements(Register elements) {
|
| + if (emit_debug_code()) {
|
| + Register temp = Tmp1();
|
| + Label ok;
|
| + Ldr(temp, FieldMemOperand(elements, HeapObject::kMapOffset));
|
| + JumpIfRoot(temp, Heap::kFixedArrayMapRootIndex, &ok);
|
| + JumpIfRoot(temp, Heap::kFixedDoubleArrayMapRootIndex, &ok);
|
| + JumpIfRoot(temp, Heap::kFixedCOWArrayMapRootIndex, &ok);
|
| + Abort(kJSObjectWithFastElementsMapHasSlowElements);
|
| + Bind(&ok);
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::AssertIsString(const Register& object) {
|
| + if (emit_debug_code()) {
|
| + Register temp = Tmp1();
|
| + STATIC_ASSERT(kSmiTag == 0);
|
| + Tst(object, Operand(kSmiTagMask));
|
| + Check(ne, kOperandIsNotAString);
|
| + Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
|
| + CompareInstanceType(temp, temp, FIRST_NONSTRING_TYPE);
|
| + Check(lo, kOperandIsNotAString);
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::Check(Condition cond, BailoutReason reason) {
|
| + Label ok;
|
| + B(cond, &ok);
|
| + Abort(reason);
|
| + // Will not return here.
|
| + Bind(&ok);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::CheckRegisterIsClear(Register reg, BailoutReason reason) {
|
| + Label ok;
|
| + Cbz(reg, &ok);
|
| + Abort(reason);
|
| + // Will not return here.
|
| + Bind(&ok);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::Abort(BailoutReason reason) {
|
| +#ifdef DEBUG
|
| + RecordComment("Abort message: ");
|
| + RecordComment(GetBailoutReason(reason));
|
| +
|
| + if (FLAG_trap_on_abort) {
|
| + Brk(0);
|
| + return;
|
| + }
|
| +#endif
|
| +
|
| + Label msg_address;
|
| + Adr(x0, &msg_address);
|
| +
|
| + if (use_real_aborts()) {
|
| + // Split the message pointer into two SMI to avoid the GC
|
| + // trying to scan the string.
|
| + STATIC_ASSERT((kSmiShift == 32) && (kSmiTag == 0));
|
| + SmiTag(x1, x0);
|
| + Bic(x0, x0, kSmiShiftMask);
|
| +
|
| + Push(x0, x1);
|
| +
|
| + if (!has_frame_) {
|
| + // We don't actually want to generate a pile of code for this, so just
|
| + // claim there is a stack frame, without generating one.
|
| + FrameScope scope(this, StackFrame::NONE);
|
| + CallRuntime(Runtime::kAbort, 2);
|
| + } else {
|
| + CallRuntime(Runtime::kAbort, 2);
|
| + }
|
| + } else {
|
| + // Call Printf directly, to report the error. The message is in x0, which is
|
| + // the first argument to Printf.
|
| + if (!csp.Is(StackPointer())) {
|
| + Bic(csp, StackPointer(), 0xf);
|
| + }
|
| + CallPrintf();
|
| +
|
| + // The CallPrintf will return, so this point is actually reachable in this
|
| + // context. However:
|
| + // - We're already executing an abort (which shouldn't be reachable in
|
| + // valid code).
|
| + // - We need a way to stop execution on both the simulator and real
|
| + // hardware, and Unreachable() is the best option.
|
| + Unreachable();
|
| + }
|
| +
|
| + // Emit the message string directly in the instruction stream.
|
| + {
|
| + BlockConstPoolScope scope(this);
|
| + Bind(&msg_address);
|
| + // TODO(jbramley): Since the reason is an enum, why do we still encode the
|
| + // string (and a pointer to it) in the instruction stream?
|
| + EmitStringData(GetBailoutReason(reason));
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::LoadTransitionedArrayMapConditional(
|
| + ElementsKind expected_kind,
|
| + ElementsKind transitioned_kind,
|
| + Register map_in_out,
|
| + Register scratch,
|
| + Label* no_map_match) {
|
| + // Load the global or builtins object from the current context.
|
| + Ldr(scratch, GlobalObjectMemOperand());
|
| + Ldr(scratch, FieldMemOperand(scratch, GlobalObject::kNativeContextOffset));
|
| +
|
| + // Check that the function's map is the same as the expected cached map.
|
| + Ldr(scratch, ContextMemOperand(scratch, Context::JS_ARRAY_MAPS_INDEX));
|
| + size_t offset = (expected_kind * kPointerSize) + FixedArrayBase::kHeaderSize;
|
| + Ldr(Tmp0(), FieldMemOperand(scratch, offset));
|
| + Cmp(map_in_out, Tmp0());
|
| + B(ne, no_map_match);
|
| +
|
| + // Use the transitioned cached map.
|
| + offset = (transitioned_kind * kPointerSize) + FixedArrayBase::kHeaderSize;
|
| + Ldr(map_in_out, FieldMemOperand(scratch, offset));
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::LoadInitialArrayMap(Register function_in,
|
| + Register scratch,
|
| + Register map_out,
|
| + ArrayHasHoles holes) {
|
| + ASSERT(!AreAliased(function_in, scratch, map_out));
|
| + Label done;
|
| + Ldr(map_out, FieldMemOperand(function_in,
|
| + JSFunction::kPrototypeOrInitialMapOffset));
|
| +
|
| + if (!FLAG_smi_only_arrays) {
|
| + ElementsKind kind = (holes == kArrayCanHaveHoles) ? FAST_HOLEY_ELEMENTS
|
| + : FAST_ELEMENTS;
|
| + LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS, kind, map_out,
|
| + scratch, &done);
|
| + } else if (holes == kArrayCanHaveHoles) {
|
| + LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS,
|
| + FAST_HOLEY_SMI_ELEMENTS, map_out,
|
| + scratch, &done);
|
| + }
|
| + Bind(&done);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::LoadArrayFunction(Register function) {
|
| + // Load the global or builtins object from the current context.
|
| + Ldr(function, GlobalObjectMemOperand());
|
| + // Load the global context from the global or builtins object.
|
| + Ldr(function,
|
| + FieldMemOperand(function, GlobalObject::kGlobalContextOffset));
|
| + // Load the array function from the native context.
|
| + Ldr(function, ContextMemOperand(function, Context::ARRAY_FUNCTION_INDEX));
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::LoadGlobalFunction(int index, Register function) {
|
| + // Load the global or builtins object from the current context.
|
| + Ldr(function, GlobalObjectMemOperand());
|
| + // Load the native context from the global or builtins object.
|
| + Ldr(function, FieldMemOperand(function,
|
| + GlobalObject::kNativeContextOffset));
|
| + // Load the function from the native context.
|
| + Ldr(function, ContextMemOperand(function, index));
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
|
| + Register map,
|
| + Register scratch) {
|
| + // Load the initial map. The global functions all have initial maps.
|
| + Ldr(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
|
| + if (emit_debug_code()) {
|
| + Label ok, fail;
|
| + CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK);
|
| + B(&ok);
|
| + Bind(&fail);
|
| + Abort(kGlobalFunctionsMustHaveInitialMap);
|
| + Bind(&ok);
|
| + }
|
| +}
|
| +
|
| +
|
| +// This is the main Printf implementation. All other Printf variants call
|
| +// PrintfNoPreserve after setting up one or more PreserveRegisterScopes.
|
| +void MacroAssembler::PrintfNoPreserve(const char * format,
|
| + const CPURegister& arg0,
|
| + const CPURegister& arg1,
|
| + const CPURegister& arg2,
|
| + const CPURegister& arg3) {
|
| + // We cannot handle a caller-saved stack pointer. It doesn't make much sense
|
| + // in most cases anyway, so this restriction shouldn't be too serious.
|
| + ASSERT(!kCallerSaved.IncludesAliasOf(__ StackPointer()));
|
| +
|
| + // We cannot print Tmp0() or Tmp1() as they're used internally by the macro
|
| + // assembler. We cannot print the stack pointer because it is typically used
|
| + // to preserve caller-saved registers (using other Printf variants which
|
| + // depend on this helper).
|
| + ASSERT(!AreAliased(Tmp0(), Tmp1(), StackPointer(), arg0));
|
| + ASSERT(!AreAliased(Tmp0(), Tmp1(), StackPointer(), arg1));
|
| + ASSERT(!AreAliased(Tmp0(), Tmp1(), StackPointer(), arg2));
|
| + ASSERT(!AreAliased(Tmp0(), Tmp1(), StackPointer(), arg3));
|
| +
|
| + static const int kMaxArgCount = 4;
|
| + // Assume that we have the maximum number of arguments until we know
|
| + // otherwise.
|
| + int arg_count = kMaxArgCount;
|
| +
|
| + // The provided arguments.
|
| + CPURegister args[kMaxArgCount] = {arg0, arg1, arg2, arg3};
|
| +
|
| + // The PCS registers where the arguments need to end up.
|
| + CPURegister pcs[kMaxArgCount] = {NoCPUReg, NoCPUReg, NoCPUReg, NoCPUReg};
|
| +
|
| + // Promote FP arguments to doubles, and integer arguments to X registers.
|
| + // Note that FP and integer arguments cannot be mixed, but we'll check
|
| + // AreSameSizeAndType once we've processed these promotions.
|
| + for (int i = 0; i < kMaxArgCount; i++) {
|
| + if (args[i].IsRegister()) {
|
| + // Note that we use x1 onwards, because x0 will hold the format string.
|
| + pcs[i] = Register::XRegFromCode(i + 1);
|
| + // For simplicity, we handle all integer arguments as X registers. An X
|
| + // register argument takes the same space as a W register argument in the
|
| + // PCS anyway. The only limitation is that we must explicitly clear the
|
| + // top word for W register arguments as the callee will expect it to be
|
| + // clear.
|
| + if (!args[i].Is64Bits()) {
|
| + const Register& as_x = args[i].X();
|
| + And(as_x, as_x, 0x00000000ffffffff);
|
| + args[i] = as_x;
|
| + }
|
| + } else if (args[i].IsFPRegister()) {
|
| + pcs[i] = FPRegister::DRegFromCode(i);
|
| + // C and C++ varargs functions (such as printf) implicitly promote float
|
| + // arguments to doubles.
|
| + if (!args[i].Is64Bits()) {
|
| + FPRegister s(args[i]);
|
| + const FPRegister& as_d = args[i].D();
|
| + Fcvt(as_d, s);
|
| + args[i] = as_d;
|
| + }
|
| + } else {
|
| + // This is the first empty (NoCPUReg) argument, so use it to set the
|
| + // argument count and bail out.
|
| + arg_count = i;
|
| + break;
|
| + }
|
| + }
|
| + ASSERT((arg_count >= 0) && (arg_count <= kMaxArgCount));
|
| + // Check that every remaining argument is NoCPUReg.
|
| + for (int i = arg_count; i < kMaxArgCount; i++) {
|
| + ASSERT(args[i].IsNone());
|
| + }
|
| + ASSERT((arg_count == 0) || AreSameSizeAndType(args[0], args[1],
|
| + args[2], args[3],
|
| + pcs[0], pcs[1],
|
| + pcs[2], pcs[3]));
|
| +
|
| + // Move the arguments into the appropriate PCS registers.
|
| + //
|
| + // Arranging an arbitrary list of registers into x1-x4 (or d0-d3) is
|
| + // surprisingly complicated.
|
| + //
|
| + // * For even numbers of registers, we push the arguments and then pop them
|
| + // into their final registers. This maintains 16-byte stack alignment in
|
| + // case csp is the stack pointer, since we're only handling X or D
|
| + // registers at this point.
|
| + //
|
| + // * For odd numbers of registers, we push and pop all but one register in
|
| + // the same way, but the left-over register is moved directly, since we
|
| + // can always safely move one register without clobbering any source.
|
| + if (arg_count >= 4) {
|
| + Push(args[3], args[2], args[1], args[0]);
|
| + } else if (arg_count >= 2) {
|
| + Push(args[1], args[0]);
|
| + }
|
| +
|
| + if ((arg_count % 2) != 0) {
|
| + // Move the left-over register directly.
|
| + const CPURegister& leftover_arg = args[arg_count - 1];
|
| + const CPURegister& leftover_pcs = pcs[arg_count - 1];
|
| + if (leftover_arg.IsRegister()) {
|
| + Mov(Register(leftover_pcs), Register(leftover_arg));
|
| + } else {
|
| + Fmov(FPRegister(leftover_pcs), FPRegister(leftover_arg));
|
| + }
|
| + }
|
| +
|
| + if (arg_count >= 4) {
|
| + Pop(pcs[0], pcs[1], pcs[2], pcs[3]);
|
| + } else if (arg_count >= 2) {
|
| + Pop(pcs[0], pcs[1]);
|
| + }
|
| +
|
| + // Load the format string into x0, as per the procedure-call standard.
|
| + //
|
| + // To make the code as portable as possible, the format string is encoded
|
| + // directly in the instruction stream. It might be cleaner to encode it in a
|
| + // literal pool, but since Printf is usually used for debugging, it is
|
| + // beneficial for it to be minimally dependent on other features.
|
| + Label format_address;
|
| + Adr(x0, &format_address);
|
| +
|
| + // Emit the format string directly in the instruction stream.
|
| + { BlockConstPoolScope scope(this);
|
| + Label after_data;
|
| + B(&after_data);
|
| + Bind(&format_address);
|
| + EmitStringData(format);
|
| + Unreachable();
|
| + Bind(&after_data);
|
| + }
|
| +
|
| + // We don't pass any arguments on the stack, but we still need to align the C
|
| + // stack pointer to a 16-byte boundary for PCS compliance.
|
| + if (!csp.Is(StackPointer())) {
|
| + Bic(csp, StackPointer(), 0xf);
|
| + }
|
| +
|
| + CallPrintf(pcs[0].type());
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::CallPrintf(CPURegister::RegisterType type) {
|
| + // A call to printf needs special handling for the simulator, since the system
|
| + // printf function will use a different instruction set and the procedure-call
|
| + // standard will not be compatible.
|
| +#ifdef USE_SIMULATOR
|
| + { InstructionAccurateScope scope(this, kPrintfLength / kInstructionSize);
|
| + hlt(kImmExceptionIsPrintf);
|
| + dc32(type);
|
| + }
|
| +#else
|
| + Call(FUNCTION_ADDR(printf), RelocInfo::EXTERNAL_REFERENCE);
|
| +#endif
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::Printf(const char * format,
|
| + const CPURegister& arg0,
|
| + const CPURegister& arg1,
|
| + const CPURegister& arg2,
|
| + const CPURegister& arg3) {
|
| + // Preserve all caller-saved registers as well as NZCV.
|
| + // If csp is the stack pointer, PushCPURegList asserts that the size of each
|
| + // list is a multiple of 16 bytes.
|
| + PushCPURegList(kCallerSaved);
|
| + PushCPURegList(kCallerSavedFP);
|
| + // Use Tmp0() as a scratch register. It is not accepted by Printf so it will
|
| + // never overlap an argument register.
|
| + Mrs(Tmp0(), NZCV);
|
| + Push(Tmp0(), xzr);
|
| +
|
| + PrintfNoPreserve(format, arg0, arg1, arg2, arg3);
|
| +
|
| + Pop(xzr, Tmp0());
|
| + Msr(NZCV, Tmp0());
|
| + PopCPURegList(kCallerSavedFP);
|
| + PopCPURegList(kCallerSaved);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::EmitFrameSetupForCodeAgePatching() {
|
| + // TODO(jbramley): Other architectures use the internal memcpy to copy the
|
| + // sequence. If this is a performance bottleneck, we should consider caching
|
| + // the sequence and copying it in the same way.
|
| + InstructionAccurateScope scope(this, kCodeAgeSequenceSize / kInstructionSize);
|
| + ASSERT(jssp.Is(StackPointer()));
|
| + EmitFrameSetupForCodeAgePatching(this);
|
| +}
|
| +
|
| +
|
| +
|
| +void MacroAssembler::EmitCodeAgeSequence(Code* stub) {
|
| + InstructionAccurateScope scope(this, kCodeAgeSequenceSize / kInstructionSize);
|
| + ASSERT(jssp.Is(StackPointer()));
|
| + EmitCodeAgeSequence(this, stub);
|
| +}
|
| +
|
| +
|
| +#undef __
|
| +#define __ assm->
|
| +
|
| +
|
| +void MacroAssembler::EmitFrameSetupForCodeAgePatching(Assembler * assm) {
|
| + Label start;
|
| + __ bind(&start);
|
| +
|
| + // We can do this sequence using four instructions, but the code ageing
|
| + // sequence that patches it needs five, so we use the extra space to try to
|
| + // simplify some addressing modes and remove some dependencies (compared to
|
| + // using two stp instructions with write-back).
|
| + __ sub(jssp, jssp, 4 * kXRegSizeInBytes);
|
| + __ sub(csp, csp, 4 * kXRegSizeInBytes);
|
| + __ stp(x1, cp, MemOperand(jssp, 0 * kXRegSizeInBytes));
|
| + __ stp(fp, lr, MemOperand(jssp, 2 * kXRegSizeInBytes));
|
| + __ add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp);
|
| +
|
| + __ AssertSizeOfCodeGeneratedSince(&start, kCodeAgeSequenceSize);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::EmitCodeAgeSequence(Assembler * assm,
|
| + Code * stub) {
|
| + Label start;
|
| + __ bind(&start);
|
| + // When the stub is called, the sequence is replaced with the young sequence
|
| + // (as in EmitFrameSetupForCodeAgePatching). After the code is replaced, the
|
| + // stub jumps to &start, stored in x0. The young sequence does not call the
|
| + // stub so there is no infinite loop here.
|
| + //
|
| + // A branch (br) is used rather than a call (blr) because this code replaces
|
| + // the frame setup code that would normally preserve lr.
|
| + __ LoadLiteral(ip0, kCodeAgeStubEntryOffset);
|
| + __ adr(x0, &start);
|
| + __ br(ip0);
|
| + // IsCodeAgeSequence in codegen-a64.cc assumes that the code generated up
|
| + // until now (kCodeAgeStubEntryOffset) is the same for all code age sequences.
|
| + __ AssertSizeOfCodeGeneratedSince(&start, kCodeAgeStubEntryOffset);
|
| + if (stub) {
|
| + __ dc64(reinterpret_cast<uint64_t>(stub->instruction_start()));
|
| + __ AssertSizeOfCodeGeneratedSince(&start, kCodeAgeSequenceSize);
|
| + }
|
| +}
|
| +
|
| +
|
| +bool MacroAssembler::IsYoungSequence(byte* sequence) {
|
| + // Generate a young sequence to compare with.
|
| + const int length = kCodeAgeSequenceSize / kInstructionSize;
|
| + static bool initialized = false;
|
| + static byte young[kCodeAgeSequenceSize];
|
| + if (!initialized) {
|
| + PatchingAssembler patcher(young, length);
|
| + // The young sequence is the frame setup code for FUNCTION code types. It is
|
| + // generated by FullCodeGenerator::Generate.
|
| + MacroAssembler::EmitFrameSetupForCodeAgePatching(&patcher);
|
| + initialized = true;
|
| + }
|
| +
|
| + bool is_young = (memcmp(sequence, young, kCodeAgeSequenceSize) == 0);
|
| + ASSERT(is_young || IsCodeAgeSequence(sequence));
|
| + return is_young;
|
| +}
|
| +
|
| +
|
| +#ifdef DEBUG
|
| +bool MacroAssembler::IsCodeAgeSequence(byte* sequence) {
|
| + // The old sequence varies depending on the code age. However, the code up
|
| + // until kCodeAgeStubEntryOffset does not change, so we can check that part to
|
| + // get a reasonable level of verification.
|
| + const int length = kCodeAgeStubEntryOffset / kInstructionSize;
|
| + static bool initialized = false;
|
| + static byte old[kCodeAgeStubEntryOffset];
|
| + if (!initialized) {
|
| + PatchingAssembler patcher(old, length);
|
| + MacroAssembler::EmitCodeAgeSequence(&patcher, NULL);
|
| + initialized = true;
|
| + }
|
| + return memcmp(sequence, old, kCodeAgeStubEntryOffset) == 0;
|
| +}
|
| +#endif
|
| +
|
| +
|
| +#undef __
|
| +#define __ masm->
|
| +
|
| +
|
| +void InlineSmiCheckInfo::Emit(MacroAssembler* masm, const Register& reg,
|
| + const Label* smi_check) {
|
| + Assembler::BlockConstPoolScope scope(masm);
|
| + if (reg.IsValid()) {
|
| + ASSERT(smi_check->is_bound());
|
| + ASSERT(reg.Is64Bits());
|
| +
|
| + // Encode the register (x0-x30) in the lowest 5 bits, then the offset to
|
| + // 'check' in the other bits. The possible offset is limited in that we
|
| + // use BitField to pack the data, and the underlying data type is a
|
| + // uint32_t.
|
| + uint32_t delta = __ InstructionsGeneratedSince(smi_check);
|
| + __ InlineData(RegisterBits::encode(reg.code()) | DeltaBits::encode(delta));
|
| + } else {
|
| + ASSERT(!smi_check->is_bound());
|
| +
|
| + // An offset of 0 indicates that there is no patch site.
|
| + __ InlineData(0);
|
| + }
|
| +}
|
| +
|
| +
|
| +InlineSmiCheckInfo::InlineSmiCheckInfo(Address info)
|
| + : reg_(NoReg), smi_check_(NULL) {
|
| + InstructionSequence* inline_data = InstructionSequence::At(info);
|
| + ASSERT(inline_data->IsInlineData());
|
| + if (inline_data->IsInlineData()) {
|
| + uint64_t payload = inline_data->InlineData();
|
| + // We use BitField to decode the payload, and BitField can only handle
|
| + // 32-bit values.
|
| + ASSERT(is_uint32(payload));
|
| + if (payload != 0) {
|
| + int reg_code = RegisterBits::decode(payload);
|
| + reg_ = Register::XRegFromCode(reg_code);
|
| + uint64_t smi_check_delta = DeltaBits::decode(payload);
|
| + ASSERT(smi_check_delta != 0);
|
| + smi_check_ = inline_data - (smi_check_delta * kInstructionSize);
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +#undef __
|
| +
|
| +
|
| +} } // namespace v8::internal
|
| +
|
| +#endif // V8_TARGET_ARCH_A64
|
|
|