Index: src/a64/macro-assembler-a64.cc |
diff --git a/src/a64/macro-assembler-a64.cc b/src/a64/macro-assembler-a64.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..b51e9277c4e4969212417284b84033a4dc60c1e4 |
--- /dev/null |
+++ b/src/a64/macro-assembler-a64.cc |
@@ -0,0 +1,4806 @@ |
+// Copyright 2013 the V8 project authors. All rights reserved. |
+// Redistribution and use in source and binary forms, with or without |
+// modification, are permitted provided that the following conditions are |
+// met: |
+// |
+// * Redistributions of source code must retain the above copyright |
+// notice, this list of conditions and the following disclaimer. |
+// * Redistributions in binary form must reproduce the above |
+// copyright notice, this list of conditions and the following |
+// disclaimer in the documentation and/or other materials provided |
+// with the distribution. |
+// * Neither the name of Google Inc. nor the names of its |
+// contributors may be used to endorse or promote products derived |
+// from this software without specific prior written permission. |
+// |
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
+ |
+#include "v8.h" |
+ |
+#if V8_TARGET_ARCH_A64 |
+ |
+#include "bootstrapper.h" |
+#include "codegen.h" |
+#include "cpu-profiler.h" |
+#include "debug.h" |
+#include "isolate-inl.h" |
+#include "runtime.h" |
+ |
+namespace v8 { |
+namespace internal { |
+ |
+// Define a fake double underscore to use with the ASM_UNIMPLEMENTED macros. |
+#define __ |
+ |
+ |
+MacroAssembler::MacroAssembler(Isolate* arg_isolate, |
+ byte * buffer, |
+ unsigned buffer_size) |
+ : Assembler(arg_isolate, buffer, buffer_size), |
+ generating_stub_(false), |
+#if DEBUG |
+ allow_macro_instructions_(true), |
+#endif |
+ has_frame_(false), |
+ use_real_aborts_(true), |
+ sp_(jssp), tmp0_(ip0), tmp1_(ip1), fptmp0_(fp_scratch) { |
+ if (isolate() != NULL) { |
+ code_object_ = Handle<Object>(isolate()->heap()->undefined_value(), |
+ isolate()); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::LogicalMacro(const Register& rd, |
+ const Register& rn, |
+ const Operand& operand, |
+ LogicalOp op) { |
+ if (operand.NeedsRelocation()) { |
+ LoadRelocated(Tmp0(), operand); |
+ Logical(rd, rn, Tmp0(), op); |
+ |
+ } else if (operand.IsImmediate()) { |
+ int64_t immediate = operand.immediate(); |
+ unsigned reg_size = rd.SizeInBits(); |
+ ASSERT(rd.Is64Bits() || is_uint32(immediate)); |
+ |
+ // If the operation is NOT, invert the operation and immediate. |
+ if ((op & NOT) == NOT) { |
+ op = static_cast<LogicalOp>(op & ~NOT); |
+ immediate = ~immediate; |
+ if (rd.Is32Bits()) { |
+ immediate &= kWRegMask; |
+ } |
+ } |
+ |
+ // Special cases for all set or all clear immediates. |
+ if (immediate == 0) { |
+ switch (op) { |
+ case AND: |
+ Mov(rd, 0); |
+ return; |
+ case ORR: // Fall through. |
+ case EOR: |
+ Mov(rd, rn); |
+ return; |
+ case ANDS: // Fall through. |
+ case BICS: |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ } |
+ } else if ((rd.Is64Bits() && (immediate == -1L)) || |
+ (rd.Is32Bits() && (immediate == 0xffffffffL))) { |
+ switch (op) { |
+ case AND: |
+ Mov(rd, rn); |
+ return; |
+ case ORR: |
+ Mov(rd, immediate); |
+ return; |
+ case EOR: |
+ Mvn(rd, rn); |
+ return; |
+ case ANDS: // Fall through. |
+ case BICS: |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ } |
+ } |
+ |
+ unsigned n, imm_s, imm_r; |
+ if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) { |
+ // Immediate can be encoded in the instruction. |
+ LogicalImmediate(rd, rn, n, imm_s, imm_r, op); |
+ } else { |
+ // Immediate can't be encoded: synthesize using move immediate. |
+ Register temp = AppropriateTempFor(rn); |
+ Mov(temp, immediate); |
+ if (rd.Is(csp)) { |
+ // If rd is the stack pointer we cannot use it as the destination |
+ // register so we use the temp register as an intermediate again. |
+ Logical(temp, rn, temp, op); |
+ Mov(csp, temp); |
+ } else { |
+ Logical(rd, rn, temp, op); |
+ } |
+ } |
+ |
+ } else if (operand.IsExtendedRegister()) { |
+ ASSERT(operand.reg().SizeInBits() <= rd.SizeInBits()); |
+ // Add/sub extended supports shift <= 4. We want to support exactly the |
+ // same modes here. |
+ ASSERT(operand.shift_amount() <= 4); |
+ ASSERT(operand.reg().Is64Bits() || |
+ ((operand.extend() != UXTX) && (operand.extend() != SXTX))); |
+ Register temp = AppropriateTempFor(rn, operand.reg()); |
+ EmitExtendShift(temp, operand.reg(), operand.extend(), |
+ operand.shift_amount()); |
+ Logical(rd, rn, temp, op); |
+ |
+ } else { |
+ // The operand can be encoded in the instruction. |
+ ASSERT(operand.IsShiftedRegister()); |
+ Logical(rd, rn, operand, op); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::Mov(const Register& rd, uint64_t imm) { |
+ ASSERT(allow_macro_instructions_); |
+ ASSERT(is_uint32(imm) || is_int32(imm) || rd.Is64Bits()); |
+ ASSERT(!rd.IsZero()); |
+ |
+ // TODO(all) extend to support more immediates. |
+ // |
+ // Immediates on Aarch64 can be produced using an initial value, and zero to |
+ // three move keep operations. |
+ // |
+ // Initial values can be generated with: |
+ // 1. 64-bit move zero (movz). |
+ // 2. 32-bit move inverted (movn). |
+ // 3. 64-bit move inverted. |
+ // 4. 32-bit orr immediate. |
+ // 5. 64-bit orr immediate. |
+ // Move-keep may then be used to modify each of the 16-bit half-words. |
+ // |
+ // The code below supports all five initial value generators, and |
+ // applying move-keep operations to move-zero and move-inverted initial |
+ // values. |
+ |
+ unsigned reg_size = rd.SizeInBits(); |
+ unsigned n, imm_s, imm_r; |
+ if (IsImmMovz(imm, reg_size) && !rd.IsSP()) { |
+ // Immediate can be represented in a move zero instruction. Movz can't |
+ // write to the stack pointer. |
+ movz(rd, imm); |
+ } else if (IsImmMovn(imm, reg_size) && !rd.IsSP()) { |
+ // Immediate can be represented in a move inverted instruction. Movn can't |
+ // write to the stack pointer. |
+ movn(rd, rd.Is64Bits() ? ~imm : (~imm & kWRegMask)); |
+ } else if (IsImmLogical(imm, reg_size, &n, &imm_s, &imm_r)) { |
+ // Immediate can be represented in a logical orr instruction. |
+ LogicalImmediate(rd, AppropriateZeroRegFor(rd), n, imm_s, imm_r, ORR); |
+ } else { |
+ // Generic immediate case. Imm will be represented by |
+ // [imm3, imm2, imm1, imm0], where each imm is 16 bits. |
+ // A move-zero or move-inverted is generated for the first non-zero or |
+ // non-0xffff immX, and a move-keep for subsequent non-zero immX. |
+ |
+ uint64_t ignored_halfword = 0; |
+ bool invert_move = false; |
+ // If the number of 0xffff halfwords is greater than the number of 0x0000 |
+ // halfwords, it's more efficient to use move-inverted. |
+ if (CountClearHalfWords(~imm, reg_size) > |
+ CountClearHalfWords(imm, reg_size)) { |
+ ignored_halfword = 0xffffL; |
+ invert_move = true; |
+ } |
+ |
+ // Mov instructions can't move value into the stack pointer, so set up a |
+ // temporary register, if needed. |
+ Register temp = rd.IsSP() ? AppropriateTempFor(rd) : rd; |
+ |
+ // Iterate through the halfwords. Use movn/movz for the first non-ignored |
+ // halfword, and movk for subsequent halfwords. |
+ ASSERT((reg_size % 16) == 0); |
+ bool first_mov_done = false; |
+ for (unsigned i = 0; i < (rd.SizeInBits() / 16); i++) { |
+ uint64_t imm16 = (imm >> (16 * i)) & 0xffffL; |
+ if (imm16 != ignored_halfword) { |
+ if (!first_mov_done) { |
+ if (invert_move) { |
+ movn(temp, (~imm16) & 0xffffL, 16 * i); |
+ } else { |
+ movz(temp, imm16, 16 * i); |
+ } |
+ first_mov_done = true; |
+ } else { |
+ // Construct a wider constant. |
+ movk(temp, imm16, 16 * i); |
+ } |
+ } |
+ } |
+ ASSERT(first_mov_done); |
+ |
+ // Move the temporary if the original destination register was the stack |
+ // pointer. |
+ if (rd.IsSP()) { |
+ mov(rd, temp); |
+ } |
+ } |
+} |
+ |
+ |
+void MacroAssembler::Mov(const Register& rd, |
+ const Operand& operand, |
+ DiscardMoveMode discard_mode) { |
+ ASSERT(allow_macro_instructions_); |
+ ASSERT(!rd.IsZero()); |
+ // Provide a swap register for instructions that need to write into the |
+ // system stack pointer (and can't do this inherently). |
+ Register dst = (rd.Is(csp)) ? (Tmp1()) : (rd); |
+ |
+ if (operand.NeedsRelocation()) { |
+ LoadRelocated(dst, operand); |
+ |
+ } else if (operand.IsImmediate()) { |
+ // Call the macro assembler for generic immediates. |
+ Mov(dst, operand.immediate()); |
+ |
+ } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) { |
+ // Emit a shift instruction if moving a shifted register. This operation |
+ // could also be achieved using an orr instruction (like orn used by Mvn), |
+ // but using a shift instruction makes the disassembly clearer. |
+ EmitShift(dst, operand.reg(), operand.shift(), operand.shift_amount()); |
+ |
+ } else if (operand.IsExtendedRegister()) { |
+ // Emit an extend instruction if moving an extended register. This handles |
+ // extend with post-shift operations, too. |
+ EmitExtendShift(dst, operand.reg(), operand.extend(), |
+ operand.shift_amount()); |
+ |
+ } else { |
+ // Otherwise, emit a register move only if the registers are distinct, or |
+ // if they are not X registers. |
+ // |
+ // Note that mov(w0, w0) is not a no-op because it clears the top word of |
+ // x0. A flag is provided (kDiscardForSameWReg) if a move between the same W |
+ // registers is not required to clear the top word of the X register. In |
+ // this case, the instruction is discarded. |
+ // |
+ // If csp is an operand, add #0 is emitted, otherwise, orr #0. |
+ if (!rd.Is(operand.reg()) || (rd.Is32Bits() && |
+ (discard_mode == kDontDiscardForSameWReg))) { |
+ Assembler::mov(rd, operand.reg()); |
+ } |
+ // This case can handle writes into the system stack pointer directly. |
+ dst = rd; |
+ } |
+ |
+ // Copy the result to the system stack pointer. |
+ if (!dst.Is(rd)) { |
+ ASSERT(rd.IsZero()); |
+ ASSERT(dst.Is(Tmp1())); |
+ Assembler::mov(rd, dst); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::Mvn(const Register& rd, const Operand& operand) { |
+ ASSERT(allow_macro_instructions_); |
+ |
+ if (operand.NeedsRelocation()) { |
+ LoadRelocated(Tmp0(), operand); |
+ Mvn(rd, Tmp0()); |
+ |
+ } else if (operand.IsImmediate()) { |
+ // Call the macro assembler for generic immediates. |
+ Mov(rd, ~operand.immediate()); |
+ |
+ } else if (operand.IsExtendedRegister()) { |
+ // Emit two instructions for the extend case. This differs from Mov, as |
+ // the extend and invert can't be achieved in one instruction. |
+ Register temp = AppropriateTempFor(rd, operand.reg()); |
+ EmitExtendShift(temp, operand.reg(), operand.extend(), |
+ operand.shift_amount()); |
+ mvn(rd, temp); |
+ |
+ } else { |
+ // Otherwise, emit a register move only if the registers are distinct. |
+ // If the jssp is an operand, add #0 is emitted, otherwise, orr #0. |
+ mvn(rd, operand); |
+ } |
+} |
+ |
+ |
+unsigned MacroAssembler::CountClearHalfWords(uint64_t imm, unsigned reg_size) { |
+ ASSERT((reg_size % 8) == 0); |
+ int count = 0; |
+ for (unsigned i = 0; i < (reg_size / 16); i++) { |
+ if ((imm & 0xffff) == 0) { |
+ count++; |
+ } |
+ imm >>= 16; |
+ } |
+ return count; |
+} |
+ |
+ |
+// The movz instruction can generate immediates containing an arbitrary 16-bit |
+// half-word, with remaining bits clear, eg. 0x00001234, 0x0000123400000000. |
+bool MacroAssembler::IsImmMovz(uint64_t imm, unsigned reg_size) { |
+ ASSERT((reg_size == kXRegSize) || (reg_size == kWRegSize)); |
+ return CountClearHalfWords(imm, reg_size) >= ((reg_size / 16) - 1); |
+} |
+ |
+ |
+// The movn instruction can generate immediates containing an arbitrary 16-bit |
+// half-word, with remaining bits set, eg. 0xffff1234, 0xffff1234ffffffff. |
+bool MacroAssembler::IsImmMovn(uint64_t imm, unsigned reg_size) { |
+ return IsImmMovz(~imm, reg_size); |
+} |
+ |
+ |
+void MacroAssembler::ConditionalCompareMacro(const Register& rn, |
+ const Operand& operand, |
+ StatusFlags nzcv, |
+ Condition cond, |
+ ConditionalCompareOp op) { |
+ ASSERT((cond != al) && (cond != nv)); |
+ if (operand.NeedsRelocation()) { |
+ LoadRelocated(Tmp0(), operand); |
+ ConditionalCompareMacro(rn, Tmp0(), nzcv, cond, op); |
+ |
+ } else if ((operand.IsShiftedRegister() && (operand.shift_amount() == 0)) || |
+ (operand.IsImmediate() && IsImmConditionalCompare(operand.immediate()))) { |
+ // The immediate can be encoded in the instruction, or the operand is an |
+ // unshifted register: call the assembler. |
+ ConditionalCompare(rn, operand, nzcv, cond, op); |
+ |
+ } else { |
+ // The operand isn't directly supported by the instruction: perform the |
+ // operation on a temporary register. |
+ Register temp = AppropriateTempFor(rn); |
+ Mov(temp, operand); |
+ ConditionalCompare(rn, temp, nzcv, cond, op); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::Csel(const Register& rd, |
+ const Register& rn, |
+ const Operand& operand, |
+ Condition cond) { |
+ ASSERT(allow_macro_instructions_); |
+ ASSERT(!rd.IsZero()); |
+ ASSERT((cond != al) && (cond != nv)); |
+ if (operand.IsImmediate()) { |
+ // Immediate argument. Handle special cases of 0, 1 and -1 using zero |
+ // register. |
+ int64_t imm = operand.immediate(); |
+ Register zr = AppropriateZeroRegFor(rn); |
+ if (imm == 0) { |
+ csel(rd, rn, zr, cond); |
+ } else if (imm == 1) { |
+ csinc(rd, rn, zr, cond); |
+ } else if (imm == -1) { |
+ csinv(rd, rn, zr, cond); |
+ } else { |
+ Register temp = AppropriateTempFor(rn); |
+ Mov(temp, operand.immediate()); |
+ csel(rd, rn, temp, cond); |
+ } |
+ } else if (operand.IsShiftedRegister() && (operand.shift_amount() == 0)) { |
+ // Unshifted register argument. |
+ csel(rd, rn, operand.reg(), cond); |
+ } else { |
+ // All other arguments. |
+ Register temp = AppropriateTempFor(rn); |
+ Mov(temp, operand); |
+ csel(rd, rn, temp, cond); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::AddSubMacro(const Register& rd, |
+ const Register& rn, |
+ const Operand& operand, |
+ FlagsUpdate S, |
+ AddSubOp op) { |
+ if (operand.IsZero() && rd.Is(rn) && rd.Is64Bits() && rn.Is64Bits() && |
+ !operand.NeedsRelocation() && (S == LeaveFlags)) { |
+ // The instruction would be a nop. Avoid generating useless code. |
+ return; |
+ } |
+ |
+ if (operand.NeedsRelocation()) { |
+ LoadRelocated(Tmp0(), operand); |
+ AddSubMacro(rd, rn, Tmp0(), S, op); |
+ } else if ((operand.IsImmediate() && !IsImmAddSub(operand.immediate())) || |
+ (rn.IsZero() && !operand.IsShiftedRegister()) || |
+ (operand.IsShiftedRegister() && (operand.shift() == ROR))) { |
+ Register temp = AppropriateTempFor(rn); |
+ Mov(temp, operand); |
+ AddSub(rd, rn, temp, S, op); |
+ } else { |
+ AddSub(rd, rn, operand, S, op); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::AddSubWithCarryMacro(const Register& rd, |
+ const Register& rn, |
+ const Operand& operand, |
+ FlagsUpdate S, |
+ AddSubWithCarryOp op) { |
+ ASSERT(rd.SizeInBits() == rn.SizeInBits()); |
+ |
+ if (operand.NeedsRelocation()) { |
+ LoadRelocated(Tmp0(), operand); |
+ AddSubWithCarryMacro(rd, rn, Tmp0(), S, op); |
+ |
+ } else if (operand.IsImmediate() || |
+ (operand.IsShiftedRegister() && (operand.shift() == ROR))) { |
+ // Add/sub with carry (immediate or ROR shifted register.) |
+ Register temp = AppropriateTempFor(rn); |
+ Mov(temp, operand); |
+ AddSubWithCarry(rd, rn, temp, S, op); |
+ } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) { |
+ // Add/sub with carry (shifted register). |
+ ASSERT(operand.reg().SizeInBits() == rd.SizeInBits()); |
+ ASSERT(operand.shift() != ROR); |
+ ASSERT(is_uintn(operand.shift_amount(), |
+ rd.SizeInBits() == kXRegSize ? kXRegSizeLog2 : kWRegSizeLog2)); |
+ Register temp = AppropriateTempFor(rn, operand.reg()); |
+ EmitShift(temp, operand.reg(), operand.shift(), operand.shift_amount()); |
+ AddSubWithCarry(rd, rn, temp, S, op); |
+ |
+ } else if (operand.IsExtendedRegister()) { |
+ // Add/sub with carry (extended register). |
+ ASSERT(operand.reg().SizeInBits() <= rd.SizeInBits()); |
+ // Add/sub extended supports a shift <= 4. We want to support exactly the |
+ // same modes. |
+ ASSERT(operand.shift_amount() <= 4); |
+ ASSERT(operand.reg().Is64Bits() || |
+ ((operand.extend() != UXTX) && (operand.extend() != SXTX))); |
+ Register temp = AppropriateTempFor(rn, operand.reg()); |
+ EmitExtendShift(temp, operand.reg(), operand.extend(), |
+ operand.shift_amount()); |
+ AddSubWithCarry(rd, rn, temp, S, op); |
+ |
+ } else { |
+ // The addressing mode is directly supported by the instruction. |
+ AddSubWithCarry(rd, rn, operand, S, op); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::LoadStoreMacro(const CPURegister& rt, |
+ const MemOperand& addr, |
+ LoadStoreOp op) { |
+ int64_t offset = addr.offset(); |
+ LSDataSize size = CalcLSDataSize(op); |
+ |
+ // Check if an immediate offset fits in the immediate field of the |
+ // appropriate instruction. If not, emit two instructions to perform |
+ // the operation. |
+ if (addr.IsImmediateOffset() && !IsImmLSScaled(offset, size) && |
+ !IsImmLSUnscaled(offset)) { |
+ // Immediate offset that can't be encoded using unsigned or unscaled |
+ // addressing modes. |
+ Register temp = AppropriateTempFor(addr.base()); |
+ Mov(temp, addr.offset()); |
+ LoadStore(rt, MemOperand(addr.base(), temp), op); |
+ } else if (addr.IsPostIndex() && !IsImmLSUnscaled(offset)) { |
+ // Post-index beyond unscaled addressing range. |
+ LoadStore(rt, MemOperand(addr.base()), op); |
+ add(addr.base(), addr.base(), offset); |
+ } else if (addr.IsPreIndex() && !IsImmLSUnscaled(offset)) { |
+ // Pre-index beyond unscaled addressing range. |
+ add(addr.base(), addr.base(), offset); |
+ LoadStore(rt, MemOperand(addr.base()), op); |
+ } else { |
+ // Encodable in one load/store instruction. |
+ LoadStore(rt, addr, op); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::Load(const Register& rt, |
+ const MemOperand& addr, |
+ Representation r) { |
+ ASSERT(!r.IsDouble()); |
+ |
+ if (r.IsInteger8()) { |
+ Ldrsb(rt, addr); |
+ } else if (r.IsUInteger8()) { |
+ Ldrb(rt, addr); |
+ } else if (r.IsInteger16()) { |
+ Ldrsh(rt, addr); |
+ } else if (r.IsUInteger16()) { |
+ Ldrh(rt, addr); |
+ } else if (r.IsInteger32()) { |
+ Ldr(rt.W(), addr); |
+ } else { |
+ ASSERT(rt.Is64Bits()); |
+ Ldr(rt, addr); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::Store(const Register& rt, |
+ const MemOperand& addr, |
+ Representation r) { |
+ ASSERT(!r.IsDouble()); |
+ |
+ if (r.IsInteger8() || r.IsUInteger8()) { |
+ Strb(rt, addr); |
+ } else if (r.IsInteger16() || r.IsUInteger16()) { |
+ Strh(rt, addr); |
+ } else if (r.IsInteger32()) { |
+ Str(rt.W(), addr); |
+ } else { |
+ ASSERT(rt.Is64Bits()); |
+ Str(rt, addr); |
+ } |
+} |
+ |
+ |
+// Pseudo-instructions. |
+ |
+ |
+void MacroAssembler::Abs(const Register& rd, const Register& rm, |
+ Label* is_not_representable, |
+ Label* is_representable) { |
+ ASSERT(allow_macro_instructions_); |
+ ASSERT(AreSameSizeAndType(rd, rm)); |
+ |
+ Cmp(rm, 1); |
+ Cneg(rd, rm, lt); |
+ |
+ // If the comparison sets the v flag, the input was the smallest value |
+ // representable by rm, and the mathematical result of abs(rm) is not |
+ // representable using two's complement. |
+ if ((is_not_representable != NULL) && (is_representable != NULL)) { |
+ B(is_not_representable, vs); |
+ B(is_representable); |
+ } else if (is_not_representable != NULL) { |
+ B(is_not_representable, vs); |
+ } else if (is_representable != NULL) { |
+ B(is_representable, vc); |
+ } |
+} |
+ |
+ |
+// Abstracted stack operations. |
+ |
+ |
+void MacroAssembler::Push(const CPURegister& src0, const CPURegister& src1, |
+ const CPURegister& src2, const CPURegister& src3) { |
+ ASSERT(AreSameSizeAndType(src0, src1, src2, src3)); |
+ ASSERT(src0.IsValid()); |
+ |
+ int count = 1 + src1.IsValid() + src2.IsValid() + src3.IsValid(); |
+ int size = src0.SizeInBytes(); |
+ |
+ PrepareForPush(count, size); |
+ PushHelper(count, size, src0, src1, src2, src3); |
+} |
+ |
+ |
+void MacroAssembler::Pop(const CPURegister& dst0, const CPURegister& dst1, |
+ const CPURegister& dst2, const CPURegister& dst3) { |
+ // It is not valid to pop into the same register more than once in one |
+ // instruction, not even into the zero register. |
+ ASSERT(!AreAliased(dst0, dst1, dst2, dst3)); |
+ ASSERT(AreSameSizeAndType(dst0, dst1, dst2, dst3)); |
+ ASSERT(dst0.IsValid()); |
+ |
+ int count = 1 + dst1.IsValid() + dst2.IsValid() + dst3.IsValid(); |
+ int size = dst0.SizeInBytes(); |
+ |
+ PrepareForPop(count, size); |
+ PopHelper(count, size, dst0, dst1, dst2, dst3); |
+ |
+ if (!csp.Is(StackPointer()) && emit_debug_code()) { |
+ // It is safe to leave csp where it is when unwinding the JavaScript stack, |
+ // but if we keep it matching StackPointer, the simulator can detect memory |
+ // accesses in the now-free part of the stack. |
+ Mov(csp, StackPointer()); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::PushCPURegList(CPURegList registers) { |
+ int size = registers.RegisterSizeInBytes(); |
+ |
+ PrepareForPush(registers.Count(), size); |
+ // Push up to four registers at a time because if the current stack pointer is |
+ // csp and reg_size is 32, registers must be pushed in blocks of four in order |
+ // to maintain the 16-byte alignment for csp. |
+ while (!registers.IsEmpty()) { |
+ int count_before = registers.Count(); |
+ const CPURegister& src0 = registers.PopHighestIndex(); |
+ const CPURegister& src1 = registers.PopHighestIndex(); |
+ const CPURegister& src2 = registers.PopHighestIndex(); |
+ const CPURegister& src3 = registers.PopHighestIndex(); |
+ int count = count_before - registers.Count(); |
+ PushHelper(count, size, src0, src1, src2, src3); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::PopCPURegList(CPURegList registers) { |
+ int size = registers.RegisterSizeInBytes(); |
+ |
+ PrepareForPop(registers.Count(), size); |
+ // Pop up to four registers at a time because if the current stack pointer is |
+ // csp and reg_size is 32, registers must be pushed in blocks of four in |
+ // order to maintain the 16-byte alignment for csp. |
+ while (!registers.IsEmpty()) { |
+ int count_before = registers.Count(); |
+ const CPURegister& dst0 = registers.PopLowestIndex(); |
+ const CPURegister& dst1 = registers.PopLowestIndex(); |
+ const CPURegister& dst2 = registers.PopLowestIndex(); |
+ const CPURegister& dst3 = registers.PopLowestIndex(); |
+ int count = count_before - registers.Count(); |
+ PopHelper(count, size, dst0, dst1, dst2, dst3); |
+ } |
+ |
+ if (!csp.Is(StackPointer()) && emit_debug_code()) { |
+ // It is safe to leave csp where it is when unwinding the JavaScript stack, |
+ // but if we keep it matching StackPointer, the simulator can detect memory |
+ // accesses in the now-free part of the stack. |
+ Mov(csp, StackPointer()); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::PushMultipleTimes(int count, Register src) { |
+ int size = src.SizeInBytes(); |
+ |
+ PrepareForPush(count, size); |
+ |
+ if (FLAG_optimize_for_size && count > 8) { |
+ Label loop; |
+ __ Mov(Tmp0(), count / 2); |
+ __ Bind(&loop); |
+ PushHelper(2, size, src, src, NoReg, NoReg); |
+ __ Subs(Tmp0(), Tmp0(), 1); |
+ __ B(ne, &loop); |
+ |
+ count %= 2; |
+ } |
+ |
+ // Push up to four registers at a time if possible because if the current |
+ // stack pointer is csp and the register size is 32, registers must be pushed |
+ // in blocks of four in order to maintain the 16-byte alignment for csp. |
+ while (count >= 4) { |
+ PushHelper(4, size, src, src, src, src); |
+ count -= 4; |
+ } |
+ if (count >= 2) { |
+ PushHelper(2, size, src, src, NoReg, NoReg); |
+ count -= 2; |
+ } |
+ if (count == 1) { |
+ PushHelper(1, size, src, NoReg, NoReg, NoReg); |
+ count -= 1; |
+ } |
+ ASSERT(count == 0); |
+} |
+ |
+ |
+void MacroAssembler::PushHelper(int count, int size, |
+ const CPURegister& src0, |
+ const CPURegister& src1, |
+ const CPURegister& src2, |
+ const CPURegister& src3) { |
+ // Ensure that we don't unintentially modify scratch or debug registers. |
+ InstructionAccurateScope scope(this); |
+ |
+ ASSERT(AreSameSizeAndType(src0, src1, src2, src3)); |
+ ASSERT(size == src0.SizeInBytes()); |
+ |
+ // When pushing multiple registers, the store order is chosen such that |
+ // Push(a, b) is equivalent to Push(a) followed by Push(b). |
+ switch (count) { |
+ case 1: |
+ ASSERT(src1.IsNone() && src2.IsNone() && src3.IsNone()); |
+ str(src0, MemOperand(StackPointer(), -1 * size, PreIndex)); |
+ break; |
+ case 2: |
+ ASSERT(src2.IsNone() && src3.IsNone()); |
+ stp(src1, src0, MemOperand(StackPointer(), -2 * size, PreIndex)); |
+ break; |
+ case 3: |
+ ASSERT(src3.IsNone()); |
+ stp(src2, src1, MemOperand(StackPointer(), -3 * size, PreIndex)); |
+ str(src0, MemOperand(StackPointer(), 2 * size)); |
+ break; |
+ case 4: |
+ // Skip over 4 * size, then fill in the gap. This allows four W registers |
+ // to be pushed using csp, whilst maintaining 16-byte alignment for csp |
+ // at all times. |
+ stp(src3, src2, MemOperand(StackPointer(), -4 * size, PreIndex)); |
+ stp(src1, src0, MemOperand(StackPointer(), 2 * size)); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::PopHelper(int count, int size, |
+ const CPURegister& dst0, |
+ const CPURegister& dst1, |
+ const CPURegister& dst2, |
+ const CPURegister& dst3) { |
+ // Ensure that we don't unintentially modify scratch or debug registers. |
+ InstructionAccurateScope scope(this); |
+ |
+ ASSERT(AreSameSizeAndType(dst0, dst1, dst2, dst3)); |
+ ASSERT(size == dst0.SizeInBytes()); |
+ |
+ // When popping multiple registers, the load order is chosen such that |
+ // Pop(a, b) is equivalent to Pop(a) followed by Pop(b). |
+ switch (count) { |
+ case 1: |
+ ASSERT(dst1.IsNone() && dst2.IsNone() && dst3.IsNone()); |
+ ldr(dst0, MemOperand(StackPointer(), 1 * size, PostIndex)); |
+ break; |
+ case 2: |
+ ASSERT(dst2.IsNone() && dst3.IsNone()); |
+ ldp(dst0, dst1, MemOperand(StackPointer(), 2 * size, PostIndex)); |
+ break; |
+ case 3: |
+ ASSERT(dst3.IsNone()); |
+ ldr(dst2, MemOperand(StackPointer(), 2 * size)); |
+ ldp(dst0, dst1, MemOperand(StackPointer(), 3 * size, PostIndex)); |
+ break; |
+ case 4: |
+ // Load the higher addresses first, then load the lower addresses and |
+ // skip the whole block in the second instruction. This allows four W |
+ // registers to be popped using csp, whilst maintaining 16-byte alignment |
+ // for csp at all times. |
+ ldp(dst2, dst3, MemOperand(StackPointer(), 2 * size)); |
+ ldp(dst0, dst1, MemOperand(StackPointer(), 4 * size, PostIndex)); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::PrepareForPush(int count, int size) { |
+ // TODO(jbramley): Use AssertStackConsistency here, if possible. See the |
+ // AssertStackConsistency for details of why we can't at the moment. |
+ if (csp.Is(StackPointer())) { |
+ // If the current stack pointer is csp, then it must be aligned to 16 bytes |
+ // on entry and the total size of the specified registers must also be a |
+ // multiple of 16 bytes. |
+ ASSERT((count * size) % 16 == 0); |
+ } else { |
+ // Even if the current stack pointer is not the system stack pointer (csp), |
+ // the system stack pointer will still be modified in order to comply with |
+ // ABI rules about accessing memory below the system stack pointer. |
+ BumpSystemStackPointer(count * size); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::PrepareForPop(int count, int size) { |
+ AssertStackConsistency(); |
+ if (csp.Is(StackPointer())) { |
+ // If the current stack pointer is csp, then it must be aligned to 16 bytes |
+ // on entry and the total size of the specified registers must also be a |
+ // multiple of 16 bytes. |
+ ASSERT((count * size) % 16 == 0); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::Poke(const CPURegister& src, const Operand& offset) { |
+ if (offset.IsImmediate()) { |
+ ASSERT(offset.immediate() >= 0); |
+ } else if (emit_debug_code()) { |
+ Cmp(xzr, offset); |
+ Check(le, kStackAccessBelowStackPointer); |
+ } |
+ |
+ Str(src, MemOperand(StackPointer(), offset)); |
+} |
+ |
+ |
+void MacroAssembler::Peek(const CPURegister& dst, const Operand& offset) { |
+ if (offset.IsImmediate()) { |
+ ASSERT(offset.immediate() >= 0); |
+ } else if (emit_debug_code()) { |
+ Cmp(xzr, offset); |
+ Check(le, kStackAccessBelowStackPointer); |
+ } |
+ |
+ Ldr(dst, MemOperand(StackPointer(), offset)); |
+} |
+ |
+ |
+void MacroAssembler::PokePair(const CPURegister& src1, |
+ const CPURegister& src2, |
+ int offset) { |
+ ASSERT(AreSameSizeAndType(src1, src2)); |
+ ASSERT((offset >= 0) && ((offset % src1.SizeInBytes()) == 0)); |
+ Stp(src1, src2, MemOperand(StackPointer(), offset)); |
+} |
+ |
+ |
+void MacroAssembler::PeekPair(const CPURegister& dst1, |
+ const CPURegister& dst2, |
+ int offset) { |
+ ASSERT(AreSameSizeAndType(dst1, dst2)); |
+ ASSERT((offset >= 0) && ((offset % dst1.SizeInBytes()) == 0)); |
+ Ldp(dst1, dst2, MemOperand(StackPointer(), offset)); |
+} |
+ |
+ |
+void MacroAssembler::PushCalleeSavedRegisters() { |
+ // Ensure that the macro-assembler doesn't use any scratch registers. |
+ InstructionAccurateScope scope(this); |
+ |
+ // This method must not be called unless the current stack pointer is the |
+ // system stack pointer (csp). |
+ ASSERT(csp.Is(StackPointer())); |
+ |
+ MemOperand tos(csp, -2 * kXRegSizeInBytes, PreIndex); |
+ |
+ stp(d14, d15, tos); |
+ stp(d12, d13, tos); |
+ stp(d10, d11, tos); |
+ stp(d8, d9, tos); |
+ |
+ stp(x29, x30, tos); |
+ stp(x27, x28, tos); // x28 = jssp |
+ stp(x25, x26, tos); |
+ stp(x23, x24, tos); |
+ stp(x21, x22, tos); |
+ stp(x19, x20, tos); |
+} |
+ |
+ |
+void MacroAssembler::PopCalleeSavedRegisters() { |
+ // Ensure that the macro-assembler doesn't use any scratch registers. |
+ InstructionAccurateScope scope(this); |
+ |
+ // This method must not be called unless the current stack pointer is the |
+ // system stack pointer (csp). |
+ ASSERT(csp.Is(StackPointer())); |
+ |
+ MemOperand tos(csp, 2 * kXRegSizeInBytes, PostIndex); |
+ |
+ ldp(x19, x20, tos); |
+ ldp(x21, x22, tos); |
+ ldp(x23, x24, tos); |
+ ldp(x25, x26, tos); |
+ ldp(x27, x28, tos); // x28 = jssp |
+ ldp(x29, x30, tos); |
+ |
+ ldp(d8, d9, tos); |
+ ldp(d10, d11, tos); |
+ ldp(d12, d13, tos); |
+ ldp(d14, d15, tos); |
+} |
+ |
+ |
+void MacroAssembler::AssertStackConsistency() { |
+ if (emit_debug_code() && !csp.Is(StackPointer())) { |
+ if (csp.Is(StackPointer())) { |
+ // TODO(jbramley): Check for csp alignment if it is the stack pointer. |
+ } else { |
+ // TODO(jbramley): Currently we cannot use this assertion in Push because |
+ // some calling code assumes that the flags are preserved. For an example, |
+ // look at Builtins::Generate_ArgumentsAdaptorTrampoline. |
+ Cmp(csp, StackPointer()); |
+ Check(ls, kTheCurrentStackPointerIsBelowCsp); |
+ } |
+ } |
+} |
+ |
+ |
+void MacroAssembler::LoadRoot(Register destination, |
+ Heap::RootListIndex index) { |
+ // TODO(jbramley): Most root values are constants, and can be synthesized |
+ // without a load. Refer to the ARM back end for details. |
+ Ldr(destination, MemOperand(root, index << kPointerSizeLog2)); |
+} |
+ |
+ |
+void MacroAssembler::StoreRoot(Register source, |
+ Heap::RootListIndex index) { |
+ Str(source, MemOperand(root, index << kPointerSizeLog2)); |
+} |
+ |
+ |
+void MacroAssembler::LoadTrueFalseRoots(Register true_root, |
+ Register false_root) { |
+ STATIC_ASSERT((Heap::kTrueValueRootIndex + 1) == Heap::kFalseValueRootIndex); |
+ Ldp(true_root, false_root, |
+ MemOperand(root, Heap::kTrueValueRootIndex << kPointerSizeLog2)); |
+} |
+ |
+ |
+void MacroAssembler::LoadHeapObject(Register result, |
+ Handle<HeapObject> object) { |
+ AllowDeferredHandleDereference using_raw_address; |
+ if (isolate()->heap()->InNewSpace(*object)) { |
+ Handle<Cell> cell = isolate()->factory()->NewCell(object); |
+ Mov(result, Operand(cell)); |
+ Ldr(result, FieldMemOperand(result, Cell::kValueOffset)); |
+ } else { |
+ Mov(result, Operand(object)); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::LoadInstanceDescriptors(Register map, |
+ Register descriptors) { |
+ Ldr(descriptors, FieldMemOperand(map, Map::kDescriptorsOffset)); |
+} |
+ |
+ |
+void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) { |
+ Ldr(dst, FieldMemOperand(map, Map::kBitField3Offset)); |
+ DecodeField<Map::NumberOfOwnDescriptorsBits>(dst); |
+} |
+ |
+ |
+void MacroAssembler::EnumLengthUntagged(Register dst, Register map) { |
+ STATIC_ASSERT(Map::EnumLengthBits::kShift == 0); |
+ Ldrsw(dst, UntagSmiFieldMemOperand(map, Map::kBitField3Offset)); |
+ And(dst, dst, Map::EnumLengthBits::kMask); |
+} |
+ |
+ |
+void MacroAssembler::EnumLengthSmi(Register dst, Register map) { |
+ STATIC_ASSERT(Map::EnumLengthBits::kShift == 0); |
+ Ldr(dst, FieldMemOperand(map, Map::kBitField3Offset)); |
+ And(dst, dst, Operand(Smi::FromInt(Map::EnumLengthBits::kMask))); |
+} |
+ |
+ |
+void MacroAssembler::CheckEnumCache(Register object, |
+ Register null_value, |
+ Register scratch0, |
+ Register scratch1, |
+ Register scratch2, |
+ Register scratch3, |
+ Label* call_runtime) { |
+ ASSERT(!AreAliased(object, null_value, scratch0, scratch1, scratch2, |
+ scratch3)); |
+ |
+ Register empty_fixed_array_value = scratch0; |
+ Register current_object = scratch1; |
+ |
+ LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex); |
+ Label next, start; |
+ |
+ Mov(current_object, object); |
+ |
+ // Check if the enum length field is properly initialized, indicating that |
+ // there is an enum cache. |
+ Register map = scratch2; |
+ Register enum_length = scratch3; |
+ Ldr(map, FieldMemOperand(current_object, HeapObject::kMapOffset)); |
+ |
+ EnumLengthUntagged(enum_length, map); |
+ Cmp(enum_length, kInvalidEnumCacheSentinel); |
+ B(eq, call_runtime); |
+ |
+ B(&start); |
+ |
+ Bind(&next); |
+ Ldr(map, FieldMemOperand(current_object, HeapObject::kMapOffset)); |
+ |
+ // For all objects but the receiver, check that the cache is empty. |
+ EnumLengthUntagged(enum_length, map); |
+ Cbnz(enum_length, call_runtime); |
+ |
+ Bind(&start); |
+ |
+ // Check that there are no elements. Register current_object contains the |
+ // current JS object we've reached through the prototype chain. |
+ Label no_elements; |
+ Ldr(current_object, FieldMemOperand(current_object, |
+ JSObject::kElementsOffset)); |
+ Cmp(current_object, empty_fixed_array_value); |
+ B(eq, &no_elements); |
+ |
+ // Second chance, the object may be using the empty slow element dictionary. |
+ CompareRoot(current_object, Heap::kEmptySlowElementDictionaryRootIndex); |
+ B(ne, call_runtime); |
+ |
+ Bind(&no_elements); |
+ Ldr(current_object, FieldMemOperand(map, Map::kPrototypeOffset)); |
+ Cmp(current_object, null_value); |
+ B(ne, &next); |
+} |
+ |
+ |
+void MacroAssembler::TestJSArrayForAllocationMemento(Register receiver, |
+ Register scratch1, |
+ Register scratch2, |
+ Label* no_memento_found) { |
+ ExternalReference new_space_start = |
+ ExternalReference::new_space_start(isolate()); |
+ ExternalReference new_space_allocation_top = |
+ ExternalReference::new_space_allocation_top_address(isolate()); |
+ |
+ Add(scratch1, receiver, |
+ JSArray::kSize + AllocationMemento::kSize - kHeapObjectTag); |
+ Cmp(scratch1, Operand(new_space_start)); |
+ B(lt, no_memento_found); |
+ |
+ Mov(scratch2, Operand(new_space_allocation_top)); |
+ Ldr(scratch2, MemOperand(scratch2)); |
+ Cmp(scratch1, scratch2); |
+ B(gt, no_memento_found); |
+ |
+ Ldr(scratch1, MemOperand(scratch1, -AllocationMemento::kSize)); |
+ Cmp(scratch1, |
+ Operand(isolate()->factory()->allocation_memento_map())); |
+} |
+ |
+ |
+void MacroAssembler::JumpToHandlerEntry(Register exception, |
+ Register object, |
+ Register state, |
+ Register scratch1, |
+ Register scratch2) { |
+ // Handler expects argument in x0. |
+ ASSERT(exception.Is(x0)); |
+ |
+ // Compute the handler entry address and jump to it. The handler table is |
+ // a fixed array of (smi-tagged) code offsets. |
+ Ldr(scratch1, FieldMemOperand(object, Code::kHandlerTableOffset)); |
+ Add(scratch1, scratch1, FixedArray::kHeaderSize - kHeapObjectTag); |
+ STATIC_ASSERT(StackHandler::kKindWidth < kPointerSizeLog2); |
+ Lsr(scratch2, state, StackHandler::kKindWidth); |
+ Ldr(scratch2, MemOperand(scratch1, scratch2, LSL, kPointerSizeLog2)); |
+ Add(scratch1, object, Code::kHeaderSize - kHeapObjectTag); |
+ Add(scratch1, scratch1, Operand::UntagSmi(scratch2)); |
+ Br(scratch1); |
+} |
+ |
+ |
+void MacroAssembler::InNewSpace(Register object, |
+ Condition cond, |
+ Label* branch) { |
+ ASSERT(cond == eq || cond == ne); |
+ // Use Tmp1() to have a different destination register, as Tmp0() will be used |
+ // for relocation. |
+ And(Tmp1(), object, Operand(ExternalReference::new_space_mask(isolate()))); |
+ Cmp(Tmp1(), Operand(ExternalReference::new_space_start(isolate()))); |
+ B(cond, branch); |
+} |
+ |
+ |
+void MacroAssembler::Throw(Register value, |
+ Register scratch1, |
+ Register scratch2, |
+ Register scratch3, |
+ Register scratch4) { |
+ // Adjust this code if not the case. |
+ STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); |
+ STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
+ STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); |
+ STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); |
+ STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); |
+ STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); |
+ |
+ // The handler expects the exception in x0. |
+ ASSERT(value.Is(x0)); |
+ |
+ // Drop the stack pointer to the top of the top handler. |
+ ASSERT(jssp.Is(StackPointer())); |
+ Mov(scratch1, Operand(ExternalReference(Isolate::kHandlerAddress, |
+ isolate()))); |
+ Ldr(jssp, MemOperand(scratch1)); |
+ // Restore the next handler. |
+ Pop(scratch2); |
+ Str(scratch2, MemOperand(scratch1)); |
+ |
+ // Get the code object and state. Restore the context and frame pointer. |
+ Register object = scratch1; |
+ Register state = scratch2; |
+ Pop(object, state, cp, fp); |
+ |
+ // If the handler is a JS frame, restore the context to the frame. |
+ // (kind == ENTRY) == (fp == 0) == (cp == 0), so we could test either fp |
+ // or cp. |
+ Label not_js_frame; |
+ Cbz(cp, ¬_js_frame); |
+ Str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
+ Bind(¬_js_frame); |
+ |
+ JumpToHandlerEntry(value, object, state, scratch3, scratch4); |
+} |
+ |
+ |
+void MacroAssembler::ThrowUncatchable(Register value, |
+ Register scratch1, |
+ Register scratch2, |
+ Register scratch3, |
+ Register scratch4) { |
+ // Adjust this code if not the case. |
+ STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); |
+ STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize); |
+ STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); |
+ STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); |
+ STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); |
+ STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); |
+ |
+ // The handler expects the exception in x0. |
+ ASSERT(value.Is(x0)); |
+ |
+ // Drop the stack pointer to the top of the top stack handler. |
+ ASSERT(jssp.Is(StackPointer())); |
+ Mov(scratch1, Operand(ExternalReference(Isolate::kHandlerAddress, |
+ isolate()))); |
+ Ldr(jssp, MemOperand(scratch1)); |
+ |
+ // Unwind the handlers until the ENTRY handler is found. |
+ Label fetch_next, check_kind; |
+ B(&check_kind); |
+ Bind(&fetch_next); |
+ Peek(jssp, StackHandlerConstants::kNextOffset); |
+ |
+ Bind(&check_kind); |
+ STATIC_ASSERT(StackHandler::JS_ENTRY == 0); |
+ Peek(scratch2, StackHandlerConstants::kStateOffset); |
+ TestAndBranchIfAnySet(scratch2, StackHandler::KindField::kMask, &fetch_next); |
+ |
+ // Set the top handler address to next handler past the top ENTRY handler. |
+ Pop(scratch2); |
+ Str(scratch2, MemOperand(scratch1)); |
+ |
+ // Get the code object and state. Clear the context and frame pointer (0 was |
+ // saved in the handler). |
+ Register object = scratch1; |
+ Register state = scratch2; |
+ Pop(object, state, cp, fp); |
+ |
+ JumpToHandlerEntry(value, object, state, scratch3, scratch4); |
+} |
+ |
+ |
+void MacroAssembler::Throw(BailoutReason reason) { |
+ Label throw_start; |
+ Bind(&throw_start); |
+#ifdef DEBUG |
+ const char* msg = GetBailoutReason(reason); |
+ RecordComment("Throw message: "); |
+ RecordComment((msg != NULL) ? msg : "UNKNOWN"); |
+#endif |
+ |
+ Mov(x0, Operand(Smi::FromInt(reason))); |
+ Push(x0); |
+ |
+ // Disable stub call restrictions to always allow calls to throw. |
+ if (!has_frame_) { |
+ // We don't actually want to generate a pile of code for this, so just |
+ // claim there is a stack frame, without generating one. |
+ FrameScope scope(this, StackFrame::NONE); |
+ CallRuntime(Runtime::kThrowMessage, 1); |
+ } else { |
+ CallRuntime(Runtime::kThrowMessage, 1); |
+ } |
+ // ThrowMessage should not return here. |
+ Unreachable(); |
+} |
+ |
+ |
+void MacroAssembler::ThrowIf(Condition cc, BailoutReason reason) { |
+ Label ok; |
+ B(InvertCondition(cc), &ok); |
+ Throw(reason); |
+ Bind(&ok); |
+} |
+ |
+ |
+void MacroAssembler::ThrowIfSmi(const Register& value, BailoutReason reason) { |
+ Label ok; |
+ JumpIfNotSmi(value, &ok); |
+ Throw(reason); |
+ Bind(&ok); |
+} |
+ |
+ |
+void MacroAssembler::SmiAbs(const Register& smi, Label* slow) { |
+ ASSERT(smi.Is64Bits()); |
+ Abs(smi, smi, slow); |
+} |
+ |
+ |
+void MacroAssembler::AssertSmi(Register object, BailoutReason reason) { |
+ if (emit_debug_code()) { |
+ STATIC_ASSERT(kSmiTag == 0); |
+ Tst(object, kSmiTagMask); |
+ Check(eq, reason); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::AssertNotSmi(Register object, BailoutReason reason) { |
+ if (emit_debug_code()) { |
+ STATIC_ASSERT(kSmiTag == 0); |
+ Tst(object, kSmiTagMask); |
+ Check(ne, reason); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::AssertName(Register object) { |
+ if (emit_debug_code()) { |
+ STATIC_ASSERT(kSmiTag == 0); |
+ // TODO(jbramley): Add AbortIfSmi and related functions. |
+ Label not_smi; |
+ JumpIfNotSmi(object, ¬_smi); |
+ Abort(kOperandIsASmiAndNotAName); |
+ Bind(¬_smi); |
+ |
+ Ldr(Tmp1(), FieldMemOperand(object, HeapObject::kMapOffset)); |
+ CompareInstanceType(Tmp1(), Tmp1(), LAST_NAME_TYPE); |
+ Check(ls, kOperandIsNotAName); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::AssertString(Register object) { |
+ if (emit_debug_code()) { |
+ Register temp = Tmp1(); |
+ STATIC_ASSERT(kSmiTag == 0); |
+ Tst(object, kSmiTagMask); |
+ Check(ne, kOperandIsASmiAndNotAString); |
+ Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset)); |
+ CompareInstanceType(temp, temp, FIRST_NONSTRING_TYPE); |
+ Check(lo, kOperandIsNotAString); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id) { |
+ ASSERT(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs. |
+ Call(stub->GetCode(isolate()), RelocInfo::CODE_TARGET, ast_id); |
+} |
+ |
+ |
+void MacroAssembler::TailCallStub(CodeStub* stub) { |
+ Jump(stub->GetCode(isolate()), RelocInfo::CODE_TARGET); |
+} |
+ |
+ |
+void MacroAssembler::CallRuntime(const Runtime::Function* f, |
+ int num_arguments, |
+ SaveFPRegsMode save_doubles) { |
+ // All arguments must be on the stack before this function is called. |
+ // x0 holds the return value after the call. |
+ |
+ // Check that the number of arguments matches what the function expects. |
+ // If f->nargs is -1, the function can accept a variable number of arguments. |
+ if (f->nargs >= 0 && f->nargs != num_arguments) { |
+ // Illegal operation: drop the stack arguments and return undefined. |
+ if (num_arguments > 0) { |
+ Drop(num_arguments); |
+ } |
+ LoadRoot(x0, Heap::kUndefinedValueRootIndex); |
+ return; |
+ } |
+ |
+ // Place the necessary arguments. |
+ Mov(x0, num_arguments); |
+ Mov(x1, Operand(ExternalReference(f, isolate()))); |
+ |
+ CEntryStub stub(1, save_doubles); |
+ CallStub(&stub); |
+} |
+ |
+ |
+static int AddressOffset(ExternalReference ref0, ExternalReference ref1) { |
+ return ref0.address() - ref1.address(); |
+} |
+ |
+ |
+void MacroAssembler::CallApiFunctionAndReturn( |
+ Register function_address, |
+ ExternalReference thunk_ref, |
+ int stack_space, |
+ int spill_offset, |
+ MemOperand return_value_operand, |
+ MemOperand* context_restore_operand) { |
+ ASM_LOCATION("CallApiFunctionAndReturn"); |
+ ExternalReference next_address = |
+ ExternalReference::handle_scope_next_address(isolate()); |
+ const int kNextOffset = 0; |
+ const int kLimitOffset = AddressOffset( |
+ ExternalReference::handle_scope_limit_address(isolate()), |
+ next_address); |
+ const int kLevelOffset = AddressOffset( |
+ ExternalReference::handle_scope_level_address(isolate()), |
+ next_address); |
+ |
+ ASSERT(function_address.is(x1) || function_address.is(x2)); |
+ |
+ Label profiler_disabled; |
+ Label end_profiler_check; |
+ bool* is_profiling_flag = isolate()->cpu_profiler()->is_profiling_address(); |
+ STATIC_ASSERT(sizeof(*is_profiling_flag) == 1); |
+ Mov(x10, reinterpret_cast<uintptr_t>(is_profiling_flag)); |
+ Ldrb(w10, MemOperand(x10)); |
+ Cbz(w10, &profiler_disabled); |
+ Mov(x3, Operand(thunk_ref)); |
+ B(&end_profiler_check); |
+ |
+ Bind(&profiler_disabled); |
+ Mov(x3, function_address); |
+ Bind(&end_profiler_check); |
+ |
+ // Save the callee-save registers we are going to use. |
+ // TODO(all): Is this necessary? ARM doesn't do it. |
+ STATIC_ASSERT(kCallApiFunctionSpillSpace == 4); |
+ Poke(x19, (spill_offset + 0) * kXRegSizeInBytes); |
+ Poke(x20, (spill_offset + 1) * kXRegSizeInBytes); |
+ Poke(x21, (spill_offset + 2) * kXRegSizeInBytes); |
+ Poke(x22, (spill_offset + 3) * kXRegSizeInBytes); |
+ |
+ // Allocate HandleScope in callee-save registers. |
+ // We will need to restore the HandleScope after the call to the API function, |
+ // by allocating it in callee-save registers they will be preserved by C code. |
+ Register handle_scope_base = x22; |
+ Register next_address_reg = x19; |
+ Register limit_reg = x20; |
+ Register level_reg = w21; |
+ |
+ Mov(handle_scope_base, Operand(next_address)); |
+ Ldr(next_address_reg, MemOperand(handle_scope_base, kNextOffset)); |
+ Ldr(limit_reg, MemOperand(handle_scope_base, kLimitOffset)); |
+ Ldr(level_reg, MemOperand(handle_scope_base, kLevelOffset)); |
+ Add(level_reg, level_reg, 1); |
+ Str(level_reg, MemOperand(handle_scope_base, kLevelOffset)); |
+ |
+ if (FLAG_log_timer_events) { |
+ FrameScope frame(this, StackFrame::MANUAL); |
+ PushSafepointRegisters(); |
+ Mov(x0, Operand(ExternalReference::isolate_address(isolate()))); |
+ CallCFunction(ExternalReference::log_enter_external_function(isolate()), 1); |
+ PopSafepointRegisters(); |
+ } |
+ |
+ // Native call returns to the DirectCEntry stub which redirects to the |
+ // return address pushed on stack (could have moved after GC). |
+ // DirectCEntry stub itself is generated early and never moves. |
+ DirectCEntryStub stub; |
+ stub.GenerateCall(this, x3); |
+ |
+ if (FLAG_log_timer_events) { |
+ FrameScope frame(this, StackFrame::MANUAL); |
+ PushSafepointRegisters(); |
+ Mov(x0, Operand(ExternalReference::isolate_address(isolate()))); |
+ CallCFunction(ExternalReference::log_leave_external_function(isolate()), 1); |
+ PopSafepointRegisters(); |
+ } |
+ |
+ Label promote_scheduled_exception; |
+ Label exception_handled; |
+ Label delete_allocated_handles; |
+ Label leave_exit_frame; |
+ Label return_value_loaded; |
+ |
+ // Load value from ReturnValue. |
+ Ldr(x0, return_value_operand); |
+ Bind(&return_value_loaded); |
+ // No more valid handles (the result handle was the last one). Restore |
+ // previous handle scope. |
+ Str(next_address_reg, MemOperand(handle_scope_base, kNextOffset)); |
+ if (emit_debug_code()) { |
+ Ldr(w1, MemOperand(handle_scope_base, kLevelOffset)); |
+ Cmp(w1, level_reg); |
+ Check(eq, kUnexpectedLevelAfterReturnFromApiCall); |
+ } |
+ Sub(level_reg, level_reg, 1); |
+ Str(level_reg, MemOperand(handle_scope_base, kLevelOffset)); |
+ Ldr(x1, MemOperand(handle_scope_base, kLimitOffset)); |
+ Cmp(limit_reg, x1); |
+ B(ne, &delete_allocated_handles); |
+ |
+ Bind(&leave_exit_frame); |
+ // Restore callee-saved registers. |
+ Peek(x19, (spill_offset + 0) * kXRegSizeInBytes); |
+ Peek(x20, (spill_offset + 1) * kXRegSizeInBytes); |
+ Peek(x21, (spill_offset + 2) * kXRegSizeInBytes); |
+ Peek(x22, (spill_offset + 3) * kXRegSizeInBytes); |
+ |
+ // Check if the function scheduled an exception. |
+ Mov(x5, Operand(ExternalReference::scheduled_exception_address(isolate()))); |
+ Ldr(x5, MemOperand(x5)); |
+ JumpIfNotRoot(x5, Heap::kTheHoleValueRootIndex, &promote_scheduled_exception); |
+ Bind(&exception_handled); |
+ |
+ bool restore_context = context_restore_operand != NULL; |
+ if (restore_context) { |
+ Ldr(cp, *context_restore_operand); |
+ } |
+ |
+ LeaveExitFrame(false, x1, !restore_context); |
+ Drop(stack_space); |
+ Ret(); |
+ |
+ Bind(&promote_scheduled_exception); |
+ { |
+ FrameScope frame(this, StackFrame::INTERNAL); |
+ CallExternalReference( |
+ ExternalReference(Runtime::kPromoteScheduledException, isolate()), 0); |
+ } |
+ B(&exception_handled); |
+ |
+ // HandleScope limit has changed. Delete allocated extensions. |
+ Bind(&delete_allocated_handles); |
+ Str(limit_reg, MemOperand(handle_scope_base, kLimitOffset)); |
+ // Save the return value in a callee-save register. |
+ Register saved_result = x19; |
+ Mov(saved_result, x0); |
+ Mov(x0, Operand(ExternalReference::isolate_address(isolate()))); |
+ CallCFunction( |
+ ExternalReference::delete_handle_scope_extensions(isolate()), 1); |
+ Mov(x0, saved_result); |
+ B(&leave_exit_frame); |
+} |
+ |
+ |
+void MacroAssembler::CallExternalReference(const ExternalReference& ext, |
+ int num_arguments) { |
+ Mov(x0, num_arguments); |
+ Mov(x1, Operand(ext)); |
+ |
+ CEntryStub stub(1); |
+ CallStub(&stub); |
+} |
+ |
+ |
+void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin) { |
+ Mov(x1, Operand(builtin)); |
+ CEntryStub stub(1); |
+ Jump(stub.GetCode(isolate()), RelocInfo::CODE_TARGET); |
+} |
+ |
+ |
+void MacroAssembler::GetBuiltinFunction(Register target, |
+ Builtins::JavaScript id) { |
+ // Load the builtins object into target register. |
+ Ldr(target, GlobalObjectMemOperand()); |
+ Ldr(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset)); |
+ // Load the JavaScript builtin function from the builtins object. |
+ Ldr(target, FieldMemOperand(target, |
+ JSBuiltinsObject::OffsetOfFunctionWithId(id))); |
+} |
+ |
+ |
+void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) { |
+ ASSERT(!target.is(x1)); |
+ GetBuiltinFunction(x1, id); |
+ // Load the code entry point from the builtins object. |
+ Ldr(target, FieldMemOperand(x1, JSFunction::kCodeEntryOffset)); |
+} |
+ |
+ |
+void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id, |
+ InvokeFlag flag, |
+ const CallWrapper& call_wrapper) { |
+ ASM_LOCATION("MacroAssembler::InvokeBuiltin"); |
+ // You can't call a builtin without a valid frame. |
+ ASSERT(flag == JUMP_FUNCTION || has_frame()); |
+ |
+ GetBuiltinEntry(x2, id); |
+ if (flag == CALL_FUNCTION) { |
+ call_wrapper.BeforeCall(CallSize(x2)); |
+ Call(x2); |
+ call_wrapper.AfterCall(); |
+ } else { |
+ ASSERT(flag == JUMP_FUNCTION); |
+ Jump(x2); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::TailCallExternalReference(const ExternalReference& ext, |
+ int num_arguments, |
+ int result_size) { |
+ // TODO(1236192): Most runtime routines don't need the number of |
+ // arguments passed in because it is constant. At some point we |
+ // should remove this need and make the runtime routine entry code |
+ // smarter. |
+ Mov(x0, num_arguments); |
+ JumpToExternalReference(ext); |
+} |
+ |
+ |
+void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid, |
+ int num_arguments, |
+ int result_size) { |
+ TailCallExternalReference(ExternalReference(fid, isolate()), |
+ num_arguments, |
+ result_size); |
+} |
+ |
+ |
+void MacroAssembler::InitializeNewString(Register string, |
+ Register length, |
+ Heap::RootListIndex map_index, |
+ Register scratch1, |
+ Register scratch2) { |
+ ASSERT(!AreAliased(string, length, scratch1, scratch2)); |
+ LoadRoot(scratch2, map_index); |
+ SmiTag(scratch1, length); |
+ Str(scratch2, FieldMemOperand(string, HeapObject::kMapOffset)); |
+ |
+ Mov(scratch2, String::kEmptyHashField); |
+ Str(scratch1, FieldMemOperand(string, String::kLengthOffset)); |
+ Str(scratch2, FieldMemOperand(string, String::kHashFieldOffset)); |
+} |
+ |
+ |
+int MacroAssembler::ActivationFrameAlignment() { |
+#if V8_HOST_ARCH_A64 |
+ // Running on the real platform. Use the alignment as mandated by the local |
+ // environment. |
+ // Note: This will break if we ever start generating snapshots on one ARM |
+ // platform for another ARM platform with a different alignment. |
+ return OS::ActivationFrameAlignment(); |
+#else // V8_HOST_ARCH_A64 |
+ // If we are using the simulator then we should always align to the expected |
+ // alignment. As the simulator is used to generate snapshots we do not know |
+ // if the target platform will need alignment, so this is controlled from a |
+ // flag. |
+ return FLAG_sim_stack_alignment; |
+#endif // V8_HOST_ARCH_A64 |
+} |
+ |
+ |
+void MacroAssembler::CallCFunction(ExternalReference function, |
+ int num_of_reg_args) { |
+ CallCFunction(function, num_of_reg_args, 0); |
+} |
+ |
+ |
+void MacroAssembler::CallCFunction(ExternalReference function, |
+ int num_of_reg_args, |
+ int num_of_double_args) { |
+ Mov(Tmp0(), Operand(function)); |
+ CallCFunction(Tmp0(), num_of_reg_args, num_of_double_args); |
+} |
+ |
+ |
+void MacroAssembler::CallCFunction(Register function, |
+ int num_of_reg_args, |
+ int num_of_double_args) { |
+ ASSERT(has_frame()); |
+ // We can pass 8 integer arguments in registers. If we need to pass more than |
+ // that, we'll need to implement support for passing them on the stack. |
+ ASSERT(num_of_reg_args <= 8); |
+ |
+ // If we're passing doubles, we're limited to the following prototypes |
+ // (defined by ExternalReference::Type): |
+ // BUILTIN_COMPARE_CALL: int f(double, double) |
+ // BUILTIN_FP_FP_CALL: double f(double, double) |
+ // BUILTIN_FP_CALL: double f(double) |
+ // BUILTIN_FP_INT_CALL: double f(double, int) |
+ if (num_of_double_args > 0) { |
+ ASSERT(num_of_reg_args <= 1); |
+ ASSERT((num_of_double_args + num_of_reg_args) <= 2); |
+ } |
+ |
+ |
+ // If the stack pointer is not csp, we need to derive an aligned csp from the |
+ // current stack pointer. |
+ const Register old_stack_pointer = StackPointer(); |
+ if (!csp.Is(old_stack_pointer)) { |
+ AssertStackConsistency(); |
+ |
+ int sp_alignment = ActivationFrameAlignment(); |
+ // The ABI mandates at least 16-byte alignment. |
+ ASSERT(sp_alignment >= 16); |
+ ASSERT(IsPowerOf2(sp_alignment)); |
+ |
+ // The current stack pointer is a callee saved register, and is preserved |
+ // across the call. |
+ ASSERT(kCalleeSaved.IncludesAliasOf(old_stack_pointer)); |
+ |
+ // Align and synchronize the system stack pointer with jssp. |
+ Bic(csp, old_stack_pointer, sp_alignment - 1); |
+ SetStackPointer(csp); |
+ } |
+ |
+ // Call directly. The function called cannot cause a GC, or allow preemption, |
+ // so the return address in the link register stays correct. |
+ Call(function); |
+ |
+ if (!csp.Is(old_stack_pointer)) { |
+ if (emit_debug_code()) { |
+ // Because the stack pointer must be aligned on a 16-byte boundary, the |
+ // aligned csp can be up to 12 bytes below the jssp. This is the case |
+ // where we only pushed one W register on top of an aligned jssp. |
+ Register temp = Tmp1(); |
+ ASSERT(ActivationFrameAlignment() == 16); |
+ Sub(temp, csp, old_stack_pointer); |
+ // We want temp <= 0 && temp >= -12. |
+ Cmp(temp, 0); |
+ Ccmp(temp, -12, NFlag, le); |
+ Check(ge, kTheStackWasCorruptedByMacroAssemblerCall); |
+ } |
+ SetStackPointer(old_stack_pointer); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::Jump(Register target) { |
+ Br(target); |
+} |
+ |
+ |
+void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode) { |
+ Mov(Tmp0(), Operand(target, rmode)); |
+ Br(Tmp0()); |
+} |
+ |
+ |
+void MacroAssembler::Jump(Address target, RelocInfo::Mode rmode) { |
+ ASSERT(!RelocInfo::IsCodeTarget(rmode)); |
+ Jump(reinterpret_cast<intptr_t>(target), rmode); |
+} |
+ |
+ |
+void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode) { |
+ ASSERT(RelocInfo::IsCodeTarget(rmode)); |
+ AllowDeferredHandleDereference embedding_raw_address; |
+ Jump(reinterpret_cast<intptr_t>(code.location()), rmode); |
+} |
+ |
+ |
+void MacroAssembler::Call(Register target) { |
+ BlockConstPoolScope scope(this); |
+#ifdef DEBUG |
+ Label start_call; |
+ Bind(&start_call); |
+#endif |
+ |
+ Blr(target); |
+ |
+#ifdef DEBUG |
+ AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target)); |
+#endif |
+} |
+ |
+ |
+void MacroAssembler::Call(Label* target) { |
+ BlockConstPoolScope scope(this); |
+#ifdef DEBUG |
+ Label start_call; |
+ Bind(&start_call); |
+#endif |
+ |
+ Bl(target); |
+ |
+#ifdef DEBUG |
+ AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target)); |
+#endif |
+} |
+ |
+ |
+// MacroAssembler::CallSize is sensitive to changes in this function, as it |
+// requires to know how many instructions are used to branch to the target. |
+void MacroAssembler::Call(Address target, RelocInfo::Mode rmode) { |
+ BlockConstPoolScope scope(this); |
+#ifdef DEBUG |
+ Label start_call; |
+ Bind(&start_call); |
+#endif |
+ // Statement positions are expected to be recorded when the target |
+ // address is loaded. |
+ positions_recorder()->WriteRecordedPositions(); |
+ |
+ // Addresses always have 64 bits, so we shouldn't encounter NONE32. |
+ ASSERT(rmode != RelocInfo::NONE32); |
+ |
+ if (rmode == RelocInfo::NONE64) { |
+ uint64_t imm = reinterpret_cast<uint64_t>(target); |
+ movz(Tmp0(), (imm >> 0) & 0xffff, 0); |
+ movk(Tmp0(), (imm >> 16) & 0xffff, 16); |
+ movk(Tmp0(), (imm >> 32) & 0xffff, 32); |
+ movk(Tmp0(), (imm >> 48) & 0xffff, 48); |
+ } else { |
+ LoadRelocated(Tmp0(), Operand(reinterpret_cast<intptr_t>(target), rmode)); |
+ } |
+ Blr(Tmp0()); |
+#ifdef DEBUG |
+ AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target, rmode)); |
+#endif |
+} |
+ |
+ |
+void MacroAssembler::Call(Handle<Code> code, |
+ RelocInfo::Mode rmode, |
+ TypeFeedbackId ast_id) { |
+#ifdef DEBUG |
+ Label start_call; |
+ Bind(&start_call); |
+#endif |
+ |
+ if ((rmode == RelocInfo::CODE_TARGET) && (!ast_id.IsNone())) { |
+ SetRecordedAstId(ast_id); |
+ rmode = RelocInfo::CODE_TARGET_WITH_ID; |
+ } |
+ |
+ AllowDeferredHandleDereference embedding_raw_address; |
+ Call(reinterpret_cast<Address>(code.location()), rmode); |
+ |
+#ifdef DEBUG |
+ // Check the size of the code generated. |
+ AssertSizeOfCodeGeneratedSince(&start_call, CallSize(code, rmode, ast_id)); |
+#endif |
+} |
+ |
+ |
+int MacroAssembler::CallSize(Register target) { |
+ USE(target); |
+ return kInstructionSize; |
+} |
+ |
+ |
+int MacroAssembler::CallSize(Label* target) { |
+ USE(target); |
+ return kInstructionSize; |
+} |
+ |
+ |
+int MacroAssembler::CallSize(Address target, RelocInfo::Mode rmode) { |
+ USE(target); |
+ |
+ // Addresses always have 64 bits, so we shouldn't encounter NONE32. |
+ ASSERT(rmode != RelocInfo::NONE32); |
+ |
+ if (rmode == RelocInfo::NONE64) { |
+ return kCallSizeWithoutRelocation; |
+ } else { |
+ return kCallSizeWithRelocation; |
+ } |
+} |
+ |
+ |
+int MacroAssembler::CallSize(Handle<Code> code, |
+ RelocInfo::Mode rmode, |
+ TypeFeedbackId ast_id) { |
+ USE(code); |
+ USE(ast_id); |
+ |
+ // Addresses always have 64 bits, so we shouldn't encounter NONE32. |
+ ASSERT(rmode != RelocInfo::NONE32); |
+ |
+ if (rmode == RelocInfo::NONE64) { |
+ return kCallSizeWithoutRelocation; |
+ } else { |
+ return kCallSizeWithRelocation; |
+ } |
+} |
+ |
+ |
+ |
+ |
+ |
+void MacroAssembler::JumpForHeapNumber(Register object, |
+ Register heap_number_map, |
+ Label* on_heap_number, |
+ Label* on_not_heap_number) { |
+ ASSERT(on_heap_number || on_not_heap_number); |
+ // Tmp0() is used as a scratch register. |
+ ASSERT(!AreAliased(Tmp0(), heap_number_map)); |
+ AssertNotSmi(object); |
+ |
+ // Load the HeapNumber map if it is not passed. |
+ if (heap_number_map.Is(NoReg)) { |
+ heap_number_map = Tmp1(); |
+ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
+ } else { |
+ // This assert clobbers Tmp0(), so do it before loading Tmp0() with the map. |
+ AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
+ } |
+ |
+ Ldr(Tmp0(), FieldMemOperand(object, HeapObject::kMapOffset)); |
+ Cmp(Tmp0(), heap_number_map); |
+ |
+ if (on_heap_number) { |
+ B(eq, on_heap_number); |
+ } |
+ if (on_not_heap_number) { |
+ B(ne, on_not_heap_number); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::JumpIfHeapNumber(Register object, |
+ Label* on_heap_number, |
+ Register heap_number_map) { |
+ JumpForHeapNumber(object, |
+ heap_number_map, |
+ on_heap_number, |
+ NULL); |
+} |
+ |
+ |
+void MacroAssembler::JumpIfNotHeapNumber(Register object, |
+ Label* on_not_heap_number, |
+ Register heap_number_map) { |
+ JumpForHeapNumber(object, |
+ heap_number_map, |
+ NULL, |
+ on_not_heap_number); |
+} |
+ |
+ |
+void MacroAssembler::LookupNumberStringCache(Register object, |
+ Register result, |
+ Register scratch1, |
+ Register scratch2, |
+ Register scratch3, |
+ Label* not_found) { |
+ ASSERT(!AreAliased(object, result, scratch1, scratch2, scratch3)); |
+ |
+ // Use of registers. Register result is used as a temporary. |
+ Register number_string_cache = result; |
+ Register mask = scratch3; |
+ |
+ // Load the number string cache. |
+ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex); |
+ |
+ // Make the hash mask from the length of the number string cache. It |
+ // contains two elements (number and string) for each cache entry. |
+ Ldrsw(mask, UntagSmiFieldMemOperand(number_string_cache, |
+ FixedArray::kLengthOffset)); |
+ Asr(mask, mask, 1); // Divide length by two. |
+ Sub(mask, mask, 1); // Make mask. |
+ |
+ // Calculate the entry in the number string cache. The hash value in the |
+ // number string cache for smis is just the smi value, and the hash for |
+ // doubles is the xor of the upper and lower words. See |
+ // Heap::GetNumberStringCache. |
+ Label is_smi; |
+ Label load_result_from_cache; |
+ |
+ JumpIfSmi(object, &is_smi); |
+ CheckMap(object, scratch1, Heap::kHeapNumberMapRootIndex, not_found, |
+ DONT_DO_SMI_CHECK); |
+ |
+ STATIC_ASSERT(kDoubleSize == (kWRegSizeInBytes * 2)); |
+ Add(scratch1, object, HeapNumber::kValueOffset - kHeapObjectTag); |
+ Ldp(scratch1.W(), scratch2.W(), MemOperand(scratch1)); |
+ Eor(scratch1, scratch1, scratch2); |
+ And(scratch1, scratch1, mask); |
+ |
+ // Calculate address of entry in string cache: each entry consists of two |
+ // pointer sized fields. |
+ Add(scratch1, number_string_cache, |
+ Operand(scratch1, LSL, kPointerSizeLog2 + 1)); |
+ |
+ Register probe = mask; |
+ Ldr(probe, FieldMemOperand(scratch1, FixedArray::kHeaderSize)); |
+ JumpIfSmi(probe, not_found); |
+ Ldr(d0, FieldMemOperand(object, HeapNumber::kValueOffset)); |
+ Ldr(d1, FieldMemOperand(probe, HeapNumber::kValueOffset)); |
+ Fcmp(d0, d1); |
+ B(ne, not_found); |
+ B(&load_result_from_cache); |
+ |
+ Bind(&is_smi); |
+ Register scratch = scratch1; |
+ And(scratch, mask, Operand::UntagSmi(object)); |
+ // Calculate address of entry in string cache: each entry consists |
+ // of two pointer sized fields. |
+ Add(scratch, number_string_cache, |
+ Operand(scratch, LSL, kPointerSizeLog2 + 1)); |
+ |
+ // Check if the entry is the smi we are looking for. |
+ Ldr(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize)); |
+ Cmp(object, probe); |
+ B(ne, not_found); |
+ |
+ // Get the result from the cache. |
+ Bind(&load_result_from_cache); |
+ Ldr(result, FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize)); |
+ IncrementCounter(isolate()->counters()->number_to_string_native(), 1, |
+ scratch1, scratch2); |
+} |
+ |
+ |
+void MacroAssembler::TryConvertDoubleToInt(Register as_int, |
+ FPRegister value, |
+ FPRegister scratch_d, |
+ Label* on_successful_conversion, |
+ Label* on_failed_conversion) { |
+ // Convert to an int and back again, then compare with the original value. |
+ Fcvtzs(as_int, value); |
+ Scvtf(scratch_d, as_int); |
+ Fcmp(value, scratch_d); |
+ |
+ if (on_successful_conversion) { |
+ B(on_successful_conversion, eq); |
+ } |
+ if (on_failed_conversion) { |
+ B(on_failed_conversion, ne); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::JumpIfMinusZero(DoubleRegister input, |
+ Label* on_negative_zero) { |
+ // Floating point -0.0 is kMinInt as an integer, so subtracting 1 (cmp) will |
+ // cause overflow. |
+ Fmov(Tmp0(), input); |
+ Cmp(Tmp0(), 1); |
+ B(vs, on_negative_zero); |
+} |
+ |
+ |
+void MacroAssembler::ClampInt32ToUint8(Register output, Register input) { |
+ // Clamp the value to [0..255]. |
+ Cmp(input.W(), Operand(input.W(), UXTB)); |
+ // If input < input & 0xff, it must be < 0, so saturate to 0. |
+ Csel(output.W(), wzr, input.W(), lt); |
+ // Create a constant 0xff. |
+ Mov(WTmp0(), 255); |
+ // If input > input & 0xff, it must be > 255, so saturate to 255. |
+ Csel(output.W(), WTmp0(), output.W(), gt); |
+} |
+ |
+ |
+void MacroAssembler::ClampInt32ToUint8(Register in_out) { |
+ ClampInt32ToUint8(in_out, in_out); |
+} |
+ |
+ |
+void MacroAssembler::ClampDoubleToUint8(Register output, |
+ DoubleRegister input, |
+ DoubleRegister dbl_scratch) { |
+ // This conversion follows the WebIDL "[Clamp]" rules for PIXEL types: |
+ // - Inputs lower than 0 (including -infinity) produce 0. |
+ // - Inputs higher than 255 (including +infinity) produce 255. |
+ // Also, it seems that PIXEL types use round-to-nearest rather than |
+ // round-towards-zero. |
+ |
+ // Squash +infinity before the conversion, since Fcvtnu will normally |
+ // convert it to 0. |
+ Fmov(dbl_scratch, 255); |
+ Fmin(dbl_scratch, dbl_scratch, input); |
+ |
+ // Convert double to unsigned integer. Values less than zero become zero. |
+ // Values greater than 255 have already been clamped to 255. |
+ Fcvtnu(output, dbl_scratch); |
+} |
+ |
+ |
+void MacroAssembler::CopyFieldsLoopPairsHelper(Register dst, |
+ Register src, |
+ unsigned count, |
+ Register scratch1, |
+ Register scratch2, |
+ Register scratch3) { |
+ // Untag src and dst into scratch registers. |
+ // Copy src->dst in a tight loop. |
+ ASSERT(!AreAliased(dst, src, scratch1, scratch2, scratch3, Tmp0(), Tmp1())); |
+ ASSERT(count >= 2); |
+ |
+ const Register& remaining = scratch3; |
+ Mov(remaining, count / 2); |
+ |
+ // Only use the Assembler, so we can use Tmp0() and Tmp1(). |
+ InstructionAccurateScope scope(this); |
+ |
+ const Register& dst_untagged = scratch1; |
+ const Register& src_untagged = scratch2; |
+ sub(dst_untagged, dst, kHeapObjectTag); |
+ sub(src_untagged, src, kHeapObjectTag); |
+ |
+ // Copy fields in pairs. |
+ Label loop; |
+ bind(&loop); |
+ ldp(Tmp0(), Tmp1(), MemOperand(src_untagged, kXRegSizeInBytes * 2, |
+ PostIndex)); |
+ stp(Tmp0(), Tmp1(), MemOperand(dst_untagged, kXRegSizeInBytes * 2, |
+ PostIndex)); |
+ sub(remaining, remaining, 1); |
+ cbnz(remaining, &loop); |
+ |
+ // Handle the leftovers. |
+ if (count & 1) { |
+ ldr(Tmp0(), MemOperand(src_untagged)); |
+ str(Tmp0(), MemOperand(dst_untagged)); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::CopyFieldsUnrolledPairsHelper(Register dst, |
+ Register src, |
+ unsigned count, |
+ Register scratch1, |
+ Register scratch2) { |
+ // Untag src and dst into scratch registers. |
+ // Copy src->dst in an unrolled loop. |
+ ASSERT(!AreAliased(dst, src, scratch1, scratch2, Tmp0(), Tmp1())); |
+ |
+ // Only use the Assembler, so we can use Tmp0() and Tmp1(). |
+ InstructionAccurateScope scope(this); |
+ |
+ const Register& dst_untagged = scratch1; |
+ const Register& src_untagged = scratch2; |
+ sub(dst_untagged, dst, kHeapObjectTag); |
+ sub(src_untagged, src, kHeapObjectTag); |
+ |
+ // Copy fields in pairs. |
+ for (unsigned i = 0; i < count / 2; i++) { |
+ ldp(Tmp0(), Tmp1(), MemOperand(src_untagged, kXRegSizeInBytes * 2, |
+ PostIndex)); |
+ stp(Tmp0(), Tmp1(), MemOperand(dst_untagged, kXRegSizeInBytes * 2, |
+ PostIndex)); |
+ } |
+ |
+ // Handle the leftovers. |
+ if (count & 1) { |
+ ldr(Tmp0(), MemOperand(src_untagged)); |
+ str(Tmp0(), MemOperand(dst_untagged)); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::CopyFieldsUnrolledHelper(Register dst, |
+ Register src, |
+ unsigned count, |
+ Register scratch1) { |
+ // Untag src and dst into scratch registers. |
+ // Copy src->dst in an unrolled loop. |
+ ASSERT(!AreAliased(dst, src, scratch1, Tmp0(), Tmp1())); |
+ |
+ // Only use the Assembler, so we can use Tmp0() and Tmp1(). |
+ InstructionAccurateScope scope(this); |
+ |
+ const Register& dst_untagged = scratch1; |
+ const Register& src_untagged = Tmp1(); |
+ sub(dst_untagged, dst, kHeapObjectTag); |
+ sub(src_untagged, src, kHeapObjectTag); |
+ |
+ // Copy fields one by one. |
+ for (unsigned i = 0; i < count; i++) { |
+ ldr(Tmp0(), MemOperand(src_untagged, kXRegSizeInBytes, PostIndex)); |
+ str(Tmp0(), MemOperand(dst_untagged, kXRegSizeInBytes, PostIndex)); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::CopyFields(Register dst, Register src, CPURegList temps, |
+ unsigned count) { |
+ // One of two methods is used: |
+ // |
+ // For high 'count' values where many scratch registers are available: |
+ // Untag src and dst into scratch registers. |
+ // Copy src->dst in a tight loop. |
+ // |
+ // For low 'count' values or where few scratch registers are available: |
+ // Untag src and dst into scratch registers. |
+ // Copy src->dst in an unrolled loop. |
+ // |
+ // In both cases, fields are copied in pairs if possible, and left-overs are |
+ // handled separately. |
+ ASSERT(!temps.IncludesAliasOf(dst)); |
+ ASSERT(!temps.IncludesAliasOf(src)); |
+ ASSERT(!temps.IncludesAliasOf(Tmp0())); |
+ ASSERT(!temps.IncludesAliasOf(Tmp1())); |
+ ASSERT(!temps.IncludesAliasOf(xzr)); |
+ ASSERT(!AreAliased(dst, src, Tmp0(), Tmp1())); |
+ |
+ if (emit_debug_code()) { |
+ Cmp(dst, src); |
+ Check(ne, kTheSourceAndDestinationAreTheSame); |
+ } |
+ |
+ // The value of 'count' at which a loop will be generated (if there are |
+ // enough scratch registers). |
+ static const unsigned kLoopThreshold = 8; |
+ |
+ ASSERT(!temps.IsEmpty()); |
+ Register scratch1 = Register(temps.PopLowestIndex()); |
+ Register scratch2 = Register(temps.PopLowestIndex()); |
+ Register scratch3 = Register(temps.PopLowestIndex()); |
+ |
+ if (scratch3.IsValid() && (count >= kLoopThreshold)) { |
+ CopyFieldsLoopPairsHelper(dst, src, count, scratch1, scratch2, scratch3); |
+ } else if (scratch2.IsValid()) { |
+ CopyFieldsUnrolledPairsHelper(dst, src, count, scratch1, scratch2); |
+ } else if (scratch1.IsValid()) { |
+ CopyFieldsUnrolledHelper(dst, src, count, scratch1); |
+ } else { |
+ UNREACHABLE(); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::CopyBytes(Register dst, |
+ Register src, |
+ Register length, |
+ Register scratch, |
+ CopyHint hint) { |
+ ASSERT(!AreAliased(src, dst, length, scratch)); |
+ |
+ // TODO(all): Implement a faster copy function, and use hint to determine |
+ // which algorithm to use for copies. |
+ if (emit_debug_code()) { |
+ // Check copy length. |
+ Cmp(length, 0); |
+ Assert(ge, kUnexpectedNegativeValue); |
+ |
+ // Check src and dst buffers don't overlap. |
+ Add(scratch, src, length); // Calculate end of src buffer. |
+ Cmp(scratch, dst); |
+ Add(scratch, dst, length); // Calculate end of dst buffer. |
+ Ccmp(scratch, src, ZFlag, gt); |
+ Assert(le, kCopyBuffersOverlap); |
+ } |
+ |
+ Label loop, done; |
+ Cbz(length, &done); |
+ |
+ Bind(&loop); |
+ Sub(length, length, 1); |
+ Ldrb(scratch, MemOperand(src, 1, PostIndex)); |
+ Strb(scratch, MemOperand(dst, 1, PostIndex)); |
+ Cbnz(length, &loop); |
+ Bind(&done); |
+} |
+ |
+ |
+void MacroAssembler::InitializeFieldsWithFiller(Register start_offset, |
+ Register end_offset, |
+ Register filler) { |
+ Label loop, entry; |
+ B(&entry); |
+ Bind(&loop); |
+ // TODO(all): consider using stp here. |
+ Str(filler, MemOperand(start_offset, kPointerSize, PostIndex)); |
+ Bind(&entry); |
+ Cmp(start_offset, end_offset); |
+ B(lt, &loop); |
+} |
+ |
+ |
+void MacroAssembler::JumpIfEitherIsNotSequentialAsciiStrings( |
+ Register first, |
+ Register second, |
+ Register scratch1, |
+ Register scratch2, |
+ Label* failure, |
+ SmiCheckType smi_check) { |
+ |
+ if (smi_check == DO_SMI_CHECK) { |
+ JumpIfEitherSmi(first, second, failure); |
+ } else if (emit_debug_code()) { |
+ ASSERT(smi_check == DONT_DO_SMI_CHECK); |
+ Label not_smi; |
+ JumpIfEitherSmi(first, second, NULL, ¬_smi); |
+ |
+ // At least one input is a smi, but the flags indicated a smi check wasn't |
+ // needed. |
+ Abort(kUnexpectedSmi); |
+ |
+ Bind(¬_smi); |
+ } |
+ |
+ // Test that both first and second are sequential ASCII strings. |
+ Ldr(scratch1, FieldMemOperand(first, HeapObject::kMapOffset)); |
+ Ldr(scratch2, FieldMemOperand(second, HeapObject::kMapOffset)); |
+ Ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset)); |
+ Ldrb(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset)); |
+ |
+ JumpIfEitherInstanceTypeIsNotSequentialAscii(scratch1, |
+ scratch2, |
+ scratch1, |
+ scratch2, |
+ failure); |
+} |
+ |
+ |
+void MacroAssembler::JumpIfEitherInstanceTypeIsNotSequentialAscii( |
+ Register first, |
+ Register second, |
+ Register scratch1, |
+ Register scratch2, |
+ Label* failure) { |
+ ASSERT(!AreAliased(scratch1, second)); |
+ ASSERT(!AreAliased(scratch1, scratch2)); |
+ static const int kFlatAsciiStringMask = |
+ kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask; |
+ static const int kFlatAsciiStringTag = ASCII_STRING_TYPE; |
+ And(scratch1, first, kFlatAsciiStringMask); |
+ And(scratch2, second, kFlatAsciiStringMask); |
+ Cmp(scratch1, kFlatAsciiStringTag); |
+ Ccmp(scratch2, kFlatAsciiStringTag, NoFlag, eq); |
+ B(ne, failure); |
+} |
+ |
+ |
+void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(Register type, |
+ Register scratch, |
+ Label* failure) { |
+ const int kFlatAsciiStringMask = |
+ kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask; |
+ const int kFlatAsciiStringTag = |
+ kStringTag | kOneByteStringTag | kSeqStringTag; |
+ And(scratch, type, kFlatAsciiStringMask); |
+ Cmp(scratch, kFlatAsciiStringTag); |
+ B(ne, failure); |
+} |
+ |
+ |
+void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialAscii( |
+ Register first, |
+ Register second, |
+ Register scratch1, |
+ Register scratch2, |
+ Label* failure) { |
+ ASSERT(!AreAliased(first, second, scratch1, scratch2)); |
+ const int kFlatAsciiStringMask = |
+ kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask; |
+ const int kFlatAsciiStringTag = |
+ kStringTag | kOneByteStringTag | kSeqStringTag; |
+ And(scratch1, first, kFlatAsciiStringMask); |
+ And(scratch2, second, kFlatAsciiStringMask); |
+ Cmp(scratch1, kFlatAsciiStringTag); |
+ Ccmp(scratch2, kFlatAsciiStringTag, NoFlag, eq); |
+ B(ne, failure); |
+} |
+ |
+ |
+void MacroAssembler::JumpIfNotUniqueName(Register type, |
+ Label* not_unique_name) { |
+ STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0)); |
+ // if ((type is string && type is internalized) || type == SYMBOL_TYPE) { |
+ // continue |
+ // } else { |
+ // goto not_unique_name |
+ // } |
+ Tst(type, kIsNotStringMask | kIsNotInternalizedMask); |
+ Ccmp(type, SYMBOL_TYPE, ZFlag, ne); |
+ B(ne, not_unique_name); |
+} |
+ |
+ |
+void MacroAssembler::InvokePrologue(const ParameterCount& expected, |
+ const ParameterCount& actual, |
+ Handle<Code> code_constant, |
+ Register code_reg, |
+ Label* done, |
+ InvokeFlag flag, |
+ bool* definitely_mismatches, |
+ const CallWrapper& call_wrapper) { |
+ bool definitely_matches = false; |
+ *definitely_mismatches = false; |
+ Label regular_invoke; |
+ |
+ // Check whether the expected and actual arguments count match. If not, |
+ // setup registers according to contract with ArgumentsAdaptorTrampoline: |
+ // x0: actual arguments count. |
+ // x1: function (passed through to callee). |
+ // x2: expected arguments count. |
+ |
+ // The code below is made a lot easier because the calling code already sets |
+ // up actual and expected registers according to the contract if values are |
+ // passed in registers. |
+ ASSERT(actual.is_immediate() || actual.reg().is(x0)); |
+ ASSERT(expected.is_immediate() || expected.reg().is(x2)); |
+ ASSERT((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(x3)); |
+ |
+ if (expected.is_immediate()) { |
+ ASSERT(actual.is_immediate()); |
+ if (expected.immediate() == actual.immediate()) { |
+ definitely_matches = true; |
+ |
+ } else { |
+ Mov(x0, actual.immediate()); |
+ if (expected.immediate() == |
+ SharedFunctionInfo::kDontAdaptArgumentsSentinel) { |
+ // Don't worry about adapting arguments for builtins that |
+ // don't want that done. Skip adaption code by making it look |
+ // like we have a match between expected and actual number of |
+ // arguments. |
+ definitely_matches = true; |
+ } else { |
+ *definitely_mismatches = true; |
+ // Set up x2 for the argument adaptor. |
+ Mov(x2, expected.immediate()); |
+ } |
+ } |
+ |
+ } else { // expected is a register. |
+ Operand actual_op = actual.is_immediate() ? Operand(actual.immediate()) |
+ : Operand(actual.reg()); |
+ // If actual == expected perform a regular invocation. |
+ Cmp(expected.reg(), actual_op); |
+ B(eq, ®ular_invoke); |
+ // Otherwise set up x0 for the argument adaptor. |
+ Mov(x0, actual_op); |
+ } |
+ |
+ // If the argument counts may mismatch, generate a call to the argument |
+ // adaptor. |
+ if (!definitely_matches) { |
+ if (!code_constant.is_null()) { |
+ Mov(x3, Operand(code_constant)); |
+ Add(x3, x3, Code::kHeaderSize - kHeapObjectTag); |
+ } |
+ |
+ Handle<Code> adaptor = |
+ isolate()->builtins()->ArgumentsAdaptorTrampoline(); |
+ if (flag == CALL_FUNCTION) { |
+ call_wrapper.BeforeCall(CallSize(adaptor)); |
+ Call(adaptor); |
+ call_wrapper.AfterCall(); |
+ if (!*definitely_mismatches) { |
+ // If the arg counts don't match, no extra code is emitted by |
+ // MAsm::InvokeCode and we can just fall through. |
+ B(done); |
+ } |
+ } else { |
+ Jump(adaptor, RelocInfo::CODE_TARGET); |
+ } |
+ } |
+ Bind(®ular_invoke); |
+} |
+ |
+ |
+void MacroAssembler::InvokeCode(Register code, |
+ const ParameterCount& expected, |
+ const ParameterCount& actual, |
+ InvokeFlag flag, |
+ const CallWrapper& call_wrapper) { |
+ // You can't call a function without a valid frame. |
+ ASSERT(flag == JUMP_FUNCTION || has_frame()); |
+ |
+ Label done; |
+ |
+ bool definitely_mismatches = false; |
+ InvokePrologue(expected, actual, Handle<Code>::null(), code, &done, flag, |
+ &definitely_mismatches, call_wrapper); |
+ |
+ // If we are certain that actual != expected, then we know InvokePrologue will |
+ // have handled the call through the argument adaptor mechanism. |
+ // The called function expects the call kind in x5. |
+ if (!definitely_mismatches) { |
+ if (flag == CALL_FUNCTION) { |
+ call_wrapper.BeforeCall(CallSize(code)); |
+ Call(code); |
+ call_wrapper.AfterCall(); |
+ } else { |
+ ASSERT(flag == JUMP_FUNCTION); |
+ Jump(code); |
+ } |
+ } |
+ |
+ // Continue here if InvokePrologue does handle the invocation due to |
+ // mismatched parameter counts. |
+ Bind(&done); |
+} |
+ |
+ |
+void MacroAssembler::InvokeFunction(Register function, |
+ const ParameterCount& actual, |
+ InvokeFlag flag, |
+ const CallWrapper& call_wrapper) { |
+ // You can't call a function without a valid frame. |
+ ASSERT(flag == JUMP_FUNCTION || has_frame()); |
+ |
+ // Contract with called JS functions requires that function is passed in x1. |
+ // (See FullCodeGenerator::Generate().) |
+ ASSERT(function.is(x1)); |
+ |
+ Register expected_reg = x2; |
+ Register code_reg = x3; |
+ |
+ Ldr(cp, FieldMemOperand(function, JSFunction::kContextOffset)); |
+ // The number of arguments is stored as an int32_t, and -1 is a marker |
+ // (SharedFunctionInfo::kDontAdaptArgumentsSentinel), so we need sign |
+ // extension to correctly handle it. |
+ Ldr(expected_reg, FieldMemOperand(function, |
+ JSFunction::kSharedFunctionInfoOffset)); |
+ Ldrsw(expected_reg, |
+ FieldMemOperand(expected_reg, |
+ SharedFunctionInfo::kFormalParameterCountOffset)); |
+ Ldr(code_reg, |
+ FieldMemOperand(function, JSFunction::kCodeEntryOffset)); |
+ |
+ ParameterCount expected(expected_reg); |
+ InvokeCode(code_reg, expected, actual, flag, call_wrapper); |
+} |
+ |
+ |
+void MacroAssembler::InvokeFunction(Register function, |
+ const ParameterCount& expected, |
+ const ParameterCount& actual, |
+ InvokeFlag flag, |
+ const CallWrapper& call_wrapper) { |
+ // You can't call a function without a valid frame. |
+ ASSERT(flag == JUMP_FUNCTION || has_frame()); |
+ |
+ // Contract with called JS functions requires that function is passed in x1. |
+ // (See FullCodeGenerator::Generate().) |
+ ASSERT(function.Is(x1)); |
+ |
+ Register code_reg = x3; |
+ |
+ // Set up the context. |
+ Ldr(cp, FieldMemOperand(function, JSFunction::kContextOffset)); |
+ |
+ // We call indirectly through the code field in the function to |
+ // allow recompilation to take effect without changing any of the |
+ // call sites. |
+ Ldr(code_reg, FieldMemOperand(function, JSFunction::kCodeEntryOffset)); |
+ InvokeCode(code_reg, expected, actual, flag, call_wrapper); |
+} |
+ |
+ |
+void MacroAssembler::InvokeFunction(Handle<JSFunction> function, |
+ const ParameterCount& expected, |
+ const ParameterCount& actual, |
+ InvokeFlag flag, |
+ const CallWrapper& call_wrapper) { |
+ // Contract with called JS functions requires that function is passed in x1. |
+ // (See FullCodeGenerator::Generate().) |
+ __ LoadObject(x1, function); |
+ InvokeFunction(x1, expected, actual, flag, call_wrapper); |
+} |
+ |
+ |
+void MacroAssembler::ECMA262ToInt32(Register result, |
+ DoubleRegister input, |
+ Register scratch1, |
+ Register scratch2, |
+ ECMA262ToInt32Result format) { |
+ ASSERT(!AreAliased(result, scratch1, scratch2)); |
+ ASSERT(result.Is64Bits() && scratch1.Is64Bits() && scratch2.Is64Bits()); |
+ STATIC_ASSERT(kSmiTag == 0); |
+ STATIC_ASSERT(kSmiValueSize == 32); |
+ |
+ Label done, tag, manual_conversion; |
+ |
+ // 1. Try to convert with a FPU convert instruction. It's trivial to compute |
+ // the modulo operation on an integer register so we convert to a 64-bit |
+ // integer, then find the 32-bit result from that. |
+ // |
+ // Fcvtzs will saturate to INT64_MIN (0x800...00) or INT64_MAX (0x7ff...ff) |
+ // when the double is out of range. NaNs and infinities will be converted to 0 |
+ // (as ECMA-262 requires). |
+ Fcvtzs(result, input); |
+ |
+ // The values INT64_MIN (0x800...00) or INT64_MAX (0x7ff...ff) are not |
+ // representable using a double, so if the result is one of those then we know |
+ // that saturation occured, and we need to manually handle the conversion. |
+ // |
+ // It is easy to detect INT64_MIN and INT64_MAX because adding or subtracting |
+ // 1 will cause signed overflow. |
+ Cmp(result, 1); |
+ Ccmp(result, -1, VFlag, vc); |
+ B(vc, &tag); |
+ |
+ // 2. Manually convert the input to an int32. |
+ Fmov(result, input); |
+ |
+ // Extract the exponent. |
+ Register exponent = scratch1; |
+ Ubfx(exponent, result, HeapNumber::kMantissaBits, HeapNumber::kExponentBits); |
+ |
+ // It the exponent is >= 84 (kMantissaBits + 32), the result is always 0 since |
+ // the mantissa gets shifted completely out of the int32_t result. |
+ Cmp(exponent, HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 32); |
+ CzeroX(result, ge); |
+ B(ge, &done); |
+ |
+ // The Fcvtzs sequence handles all cases except where the conversion causes |
+ // signed overflow in the int64_t target. Since we've already handled |
+ // exponents >= 84, we can guarantee that 63 <= exponent < 84. |
+ |
+ if (emit_debug_code()) { |
+ Cmp(exponent, HeapNumber::kExponentBias + 63); |
+ // Exponents less than this should have been handled by the Fcvt case. |
+ Check(ge, kUnexpectedValue); |
+ } |
+ |
+ // Isolate the mantissa bits, and set the implicit '1'. |
+ Register mantissa = scratch2; |
+ Ubfx(mantissa, result, 0, HeapNumber::kMantissaBits); |
+ Orr(mantissa, mantissa, 1UL << HeapNumber::kMantissaBits); |
+ |
+ // Negate the mantissa if necessary. |
+ Tst(result, kXSignMask); |
+ Cneg(mantissa, mantissa, ne); |
+ |
+ // Shift the mantissa bits in the correct place. We know that we have to shift |
+ // it left here, because exponent >= 63 >= kMantissaBits. |
+ Sub(exponent, exponent, |
+ HeapNumber::kExponentBias + HeapNumber::kMantissaBits); |
+ Lsl(result, mantissa, exponent); |
+ |
+ Bind(&tag); |
+ switch (format) { |
+ case INT32_IN_W: |
+ // There is nothing to do; the upper 32 bits are undefined. |
+ if (emit_debug_code()) { |
+ __ Mov(scratch1, 0x55555555); |
+ __ Bfi(result, scratch1, 32, 32); |
+ } |
+ break; |
+ case INT32_IN_X: |
+ Sxtw(result, result); |
+ break; |
+ case SMI: |
+ SmiTag(result); |
+ break; |
+ } |
+ |
+ Bind(&done); |
+} |
+ |
+ |
+void MacroAssembler::HeapNumberECMA262ToInt32(Register result, |
+ Register heap_number, |
+ Register scratch1, |
+ Register scratch2, |
+ DoubleRegister double_scratch, |
+ ECMA262ToInt32Result format) { |
+ if (emit_debug_code()) { |
+ // Verify we indeed have a HeapNumber. |
+ Label ok; |
+ JumpIfHeapNumber(heap_number, &ok); |
+ Abort(kExpectedHeapNumber); |
+ Bind(&ok); |
+ } |
+ |
+ Ldr(double_scratch, FieldMemOperand(heap_number, HeapNumber::kValueOffset)); |
+ ECMA262ToInt32(result, double_scratch, scratch1, scratch2, format); |
+} |
+ |
+ |
+void MacroAssembler::Prologue(PrologueFrameMode frame_mode) { |
+ if (frame_mode == BUILD_STUB_FRAME) { |
+ ASSERT(StackPointer().Is(jssp)); |
+ // TODO(jbramley): Does x1 contain a JSFunction here, or does it already |
+ // have the special STUB smi? |
+ __ Mov(Tmp0(), Operand(Smi::FromInt(StackFrame::STUB))); |
+ // Compiled stubs don't age, and so they don't need the predictable code |
+ // ageing sequence. |
+ __ Push(lr, fp, cp, Tmp0()); |
+ __ Add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp); |
+ } else { |
+ if (isolate()->IsCodePreAgingActive()) { |
+ Code* stub = Code::GetPreAgedCodeAgeStub(isolate()); |
+ __ EmitCodeAgeSequence(stub); |
+ } else { |
+ __ EmitFrameSetupForCodeAgePatching(); |
+ } |
+ } |
+} |
+ |
+ |
+void MacroAssembler::EnterFrame(StackFrame::Type type) { |
+ ASSERT(jssp.Is(StackPointer())); |
+ Push(lr, fp, cp); |
+ Mov(Tmp1(), Operand(Smi::FromInt(type))); |
+ Mov(Tmp0(), Operand(CodeObject())); |
+ Push(Tmp1(), Tmp0()); |
+ // jssp[4] : lr |
+ // jssp[3] : fp |
+ // jssp[2] : cp |
+ // jssp[1] : type |
+ // jssp[0] : code object |
+ |
+ // Adjust FP to point to saved FP. |
+ add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize); |
+} |
+ |
+ |
+void MacroAssembler::LeaveFrame(StackFrame::Type type) { |
+ ASSERT(jssp.Is(StackPointer())); |
+ // Drop the execution stack down to the frame pointer and restore |
+ // the caller frame pointer and return address. |
+ Mov(jssp, fp); |
+ AssertStackConsistency(); |
+ Pop(fp, lr); |
+} |
+ |
+ |
+void MacroAssembler::ExitFramePreserveFPRegs() { |
+ PushCPURegList(kCallerSavedFP); |
+} |
+ |
+ |
+void MacroAssembler::ExitFrameRestoreFPRegs() { |
+ // Read the registers from the stack without popping them. The stack pointer |
+ // will be reset as part of the unwinding process. |
+ CPURegList saved_fp_regs = kCallerSavedFP; |
+ ASSERT(saved_fp_regs.Count() % 2 == 0); |
+ |
+ int offset = ExitFrameConstants::kLastExitFrameField; |
+ while (!saved_fp_regs.IsEmpty()) { |
+ const CPURegister& dst0 = saved_fp_regs.PopHighestIndex(); |
+ const CPURegister& dst1 = saved_fp_regs.PopHighestIndex(); |
+ offset -= 2 * kDRegSizeInBytes; |
+ Ldp(dst1, dst0, MemOperand(fp, offset)); |
+ } |
+} |
+ |
+ |
+// TODO(jbramley): Check that we're handling the frame pointer correctly. |
+void MacroAssembler::EnterExitFrame(bool save_doubles, |
+ const Register& scratch, |
+ int extra_space) { |
+ ASSERT(jssp.Is(StackPointer())); |
+ |
+ // Set up the new stack frame. |
+ Mov(scratch, Operand(CodeObject())); |
+ Push(lr, fp); |
+ Mov(fp, StackPointer()); |
+ Push(xzr, scratch); |
+ // fp[8]: CallerPC (lr) |
+ // fp -> fp[0]: CallerFP (old fp) |
+ // fp[-8]: Space reserved for SPOffset. |
+ // jssp -> fp[-16]: CodeObject() |
+ STATIC_ASSERT((2 * kPointerSize) == |
+ ExitFrameConstants::kCallerSPDisplacement); |
+ STATIC_ASSERT((1 * kPointerSize) == ExitFrameConstants::kCallerPCOffset); |
+ STATIC_ASSERT((0 * kPointerSize) == ExitFrameConstants::kCallerFPOffset); |
+ STATIC_ASSERT((-1 * kPointerSize) == ExitFrameConstants::kSPOffset); |
+ STATIC_ASSERT((-2 * kPointerSize) == ExitFrameConstants::kCodeOffset); |
+ |
+ // Save the frame pointer and context pointer in the top frame. |
+ Mov(scratch, Operand(ExternalReference(Isolate::kCEntryFPAddress, |
+ isolate()))); |
+ Str(fp, MemOperand(scratch)); |
+ Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress, |
+ isolate()))); |
+ Str(cp, MemOperand(scratch)); |
+ |
+ STATIC_ASSERT((-2 * kPointerSize) == |
+ ExitFrameConstants::kLastExitFrameField); |
+ if (save_doubles) { |
+ ExitFramePreserveFPRegs(); |
+ } |
+ |
+ // Reserve space for the return address and for user requested memory. |
+ // We do this before aligning to make sure that we end up correctly |
+ // aligned with the minimum of wasted space. |
+ Claim(extra_space + 1, kXRegSizeInBytes); |
+ // fp[8]: CallerPC (lr) |
+ // fp -> fp[0]: CallerFP (old fp) |
+ // fp[-8]: Space reserved for SPOffset. |
+ // fp[-16]: CodeObject() |
+ // jssp[-16 - fp_size]: Saved doubles (if save_doubles is true). |
+ // jssp[8]: Extra space reserved for caller (if extra_space != 0). |
+ // jssp -> jssp[0]: Space reserved for the return address. |
+ |
+ // Align and synchronize the system stack pointer with jssp. |
+ AlignAndSetCSPForFrame(); |
+ ASSERT(csp.Is(StackPointer())); |
+ |
+ // fp[8]: CallerPC (lr) |
+ // fp -> fp[0]: CallerFP (old fp) |
+ // fp[-8]: Space reserved for SPOffset. |
+ // fp[-16]: CodeObject() |
+ // csp[...]: Saved doubles, if saved_doubles is true. |
+ // csp[8]: Memory reserved for the caller if extra_space != 0. |
+ // Alignment padding, if necessary. |
+ // csp -> csp[0]: Space reserved for the return address. |
+ |
+ // ExitFrame::GetStateForFramePointer expects to find the return address at |
+ // the memory address immediately below the pointer stored in SPOffset. |
+ // It is not safe to derive much else from SPOffset, because the size of the |
+ // padding can vary. |
+ Add(scratch, csp, kXRegSizeInBytes); |
+ Str(scratch, MemOperand(fp, ExitFrameConstants::kSPOffset)); |
+} |
+ |
+ |
+// Leave the current exit frame. |
+void MacroAssembler::LeaveExitFrame(bool restore_doubles, |
+ const Register& scratch, |
+ bool restore_context) { |
+ ASSERT(csp.Is(StackPointer())); |
+ |
+ if (restore_doubles) { |
+ ExitFrameRestoreFPRegs(); |
+ } |
+ |
+ // Restore the context pointer from the top frame. |
+ if (restore_context) { |
+ Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress, |
+ isolate()))); |
+ Ldr(cp, MemOperand(scratch)); |
+ } |
+ |
+ if (emit_debug_code()) { |
+ // Also emit debug code to clear the cp in the top frame. |
+ Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress, |
+ isolate()))); |
+ Str(xzr, MemOperand(scratch)); |
+ } |
+ // Clear the frame pointer from the top frame. |
+ Mov(scratch, Operand(ExternalReference(Isolate::kCEntryFPAddress, |
+ isolate()))); |
+ Str(xzr, MemOperand(scratch)); |
+ |
+ // Pop the exit frame. |
+ // fp[8]: CallerPC (lr) |
+ // fp -> fp[0]: CallerFP (old fp) |
+ // fp[...]: The rest of the frame. |
+ Mov(jssp, fp); |
+ SetStackPointer(jssp); |
+ AssertStackConsistency(); |
+ Pop(fp, lr); |
+} |
+ |
+ |
+void MacroAssembler::SetCounter(StatsCounter* counter, int value, |
+ Register scratch1, Register scratch2) { |
+ if (FLAG_native_code_counters && counter->Enabled()) { |
+ Mov(scratch1, value); |
+ Mov(scratch2, Operand(ExternalReference(counter))); |
+ Str(scratch1, MemOperand(scratch2)); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::IncrementCounter(StatsCounter* counter, int value, |
+ Register scratch1, Register scratch2) { |
+ ASSERT(value != 0); |
+ if (FLAG_native_code_counters && counter->Enabled()) { |
+ Mov(scratch2, Operand(ExternalReference(counter))); |
+ Ldr(scratch1, MemOperand(scratch2)); |
+ Add(scratch1, scratch1, value); |
+ Str(scratch1, MemOperand(scratch2)); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::DecrementCounter(StatsCounter* counter, int value, |
+ Register scratch1, Register scratch2) { |
+ IncrementCounter(counter, -value, scratch1, scratch2); |
+} |
+ |
+ |
+void MacroAssembler::LoadContext(Register dst, int context_chain_length) { |
+ if (context_chain_length > 0) { |
+ // Move up the chain of contexts to the context containing the slot. |
+ Ldr(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX))); |
+ for (int i = 1; i < context_chain_length; i++) { |
+ Ldr(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX))); |
+ } |
+ } else { |
+ // Slot is in the current function context. Move it into the |
+ // destination register in case we store into it (the write barrier |
+ // cannot be allowed to destroy the context in cp). |
+ Mov(dst, cp); |
+ } |
+} |
+ |
+ |
+#ifdef ENABLE_DEBUGGER_SUPPORT |
+void MacroAssembler::DebugBreak() { |
+ Mov(x0, 0); |
+ Mov(x1, Operand(ExternalReference(Runtime::kDebugBreak, isolate()))); |
+ CEntryStub ces(1); |
+ ASSERT(AllowThisStubCall(&ces)); |
+ Call(ces.GetCode(isolate()), RelocInfo::DEBUG_BREAK); |
+} |
+#endif |
+ |
+ |
+void MacroAssembler::PushTryHandler(StackHandler::Kind kind, |
+ int handler_index) { |
+ ASSERT(jssp.Is(StackPointer())); |
+ // Adjust this code if the asserts don't hold. |
+ STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); |
+ STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize); |
+ STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); |
+ STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); |
+ STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); |
+ STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); |
+ |
+ // For the JSEntry handler, we must preserve the live registers x0-x4. |
+ // (See JSEntryStub::GenerateBody().) |
+ |
+ unsigned state = |
+ StackHandler::IndexField::encode(handler_index) | |
+ StackHandler::KindField::encode(kind); |
+ |
+ // Set up the code object and the state for pushing. |
+ Mov(x10, Operand(CodeObject())); |
+ Mov(x11, state); |
+ |
+ // Push the frame pointer, context, state, and code object. |
+ if (kind == StackHandler::JS_ENTRY) { |
+ ASSERT(Smi::FromInt(0) == 0); |
+ Push(xzr, xzr, x11, x10); |
+ } else { |
+ Push(fp, cp, x11, x10); |
+ } |
+ |
+ // Link the current handler as the next handler. |
+ Mov(x11, Operand(ExternalReference(Isolate::kHandlerAddress, isolate()))); |
+ Ldr(x10, MemOperand(x11)); |
+ Push(x10); |
+ // Set this new handler as the current one. |
+ Str(jssp, MemOperand(x11)); |
+} |
+ |
+ |
+void MacroAssembler::PopTryHandler() { |
+ STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
+ Pop(x10); |
+ Mov(x11, Operand(ExternalReference(Isolate::kHandlerAddress, isolate()))); |
+ Drop(StackHandlerConstants::kSize - kXRegSizeInBytes, kByteSizeInBytes); |
+ Str(x10, MemOperand(x11)); |
+} |
+ |
+ |
+void MacroAssembler::Allocate(int object_size, |
+ Register result, |
+ Register scratch1, |
+ Register scratch2, |
+ Label* gc_required, |
+ AllocationFlags flags) { |
+ ASSERT(object_size <= Page::kMaxRegularHeapObjectSize); |
+ if (!FLAG_inline_new) { |
+ if (emit_debug_code()) { |
+ // Trash the registers to simulate an allocation failure. |
+ // We apply salt to the original zap value to easily spot the values. |
+ Mov(result, (kDebugZapValue & ~0xffL) | 0x11L); |
+ Mov(scratch1, (kDebugZapValue & ~0xffL) | 0x21L); |
+ Mov(scratch2, (kDebugZapValue & ~0xffL) | 0x21L); |
+ } |
+ B(gc_required); |
+ return; |
+ } |
+ |
+ ASSERT(!AreAliased(result, scratch1, scratch2, Tmp0(), Tmp1())); |
+ ASSERT(result.Is64Bits() && scratch1.Is64Bits() && scratch2.Is64Bits() && |
+ Tmp0().Is64Bits() && Tmp1().Is64Bits()); |
+ |
+ // Make object size into bytes. |
+ if ((flags & SIZE_IN_WORDS) != 0) { |
+ object_size *= kPointerSize; |
+ } |
+ ASSERT(0 == (object_size & kObjectAlignmentMask)); |
+ |
+ // Check relative positions of allocation top and limit addresses. |
+ // The values must be adjacent in memory to allow the use of LDP. |
+ ExternalReference heap_allocation_top = |
+ AllocationUtils::GetAllocationTopReference(isolate(), flags); |
+ ExternalReference heap_allocation_limit = |
+ AllocationUtils::GetAllocationLimitReference(isolate(), flags); |
+ intptr_t top = reinterpret_cast<intptr_t>(heap_allocation_top.address()); |
+ intptr_t limit = reinterpret_cast<intptr_t>(heap_allocation_limit.address()); |
+ ASSERT((limit - top) == kPointerSize); |
+ |
+ // Set up allocation top address and object size registers. |
+ Register top_address = scratch1; |
+ Register allocation_limit = scratch2; |
+ Mov(top_address, Operand(heap_allocation_top)); |
+ |
+ if ((flags & RESULT_CONTAINS_TOP) == 0) { |
+ // Load allocation top into result and the allocation limit. |
+ Ldp(result, allocation_limit, MemOperand(top_address)); |
+ } else { |
+ if (emit_debug_code()) { |
+ // Assert that result actually contains top on entry. |
+ Ldr(Tmp0(), MemOperand(top_address)); |
+ Cmp(result, Tmp0()); |
+ Check(eq, kUnexpectedAllocationTop); |
+ } |
+ // Load the allocation limit. 'result' already contains the allocation top. |
+ Ldr(allocation_limit, MemOperand(top_address, limit - top)); |
+ } |
+ |
+ // We can ignore DOUBLE_ALIGNMENT flags here because doubles and pointers have |
+ // the same alignment on A64. |
+ STATIC_ASSERT(kPointerAlignment == kDoubleAlignment); |
+ |
+ // Calculate new top and bail out if new space is exhausted. |
+ Adds(Tmp1(), result, object_size); |
+ B(vs, gc_required); |
+ Cmp(Tmp1(), allocation_limit); |
+ B(hi, gc_required); |
+ Str(Tmp1(), MemOperand(top_address)); |
+ |
+ // Tag the object if requested. |
+ if ((flags & TAG_OBJECT) != 0) { |
+ Orr(result, result, kHeapObjectTag); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::Allocate(Register object_size, |
+ Register result, |
+ Register scratch1, |
+ Register scratch2, |
+ Label* gc_required, |
+ AllocationFlags flags) { |
+ if (!FLAG_inline_new) { |
+ if (emit_debug_code()) { |
+ // Trash the registers to simulate an allocation failure. |
+ // We apply salt to the original zap value to easily spot the values. |
+ Mov(result, (kDebugZapValue & ~0xffL) | 0x11L); |
+ Mov(scratch1, (kDebugZapValue & ~0xffL) | 0x21L); |
+ Mov(scratch2, (kDebugZapValue & ~0xffL) | 0x21L); |
+ } |
+ B(gc_required); |
+ return; |
+ } |
+ |
+ ASSERT(!AreAliased(object_size, result, scratch1, scratch2, Tmp0(), Tmp1())); |
+ ASSERT(object_size.Is64Bits() && result.Is64Bits() && scratch1.Is64Bits() && |
+ scratch2.Is64Bits() && Tmp0().Is64Bits() && Tmp1().Is64Bits()); |
+ |
+ // Check relative positions of allocation top and limit addresses. |
+ // The values must be adjacent in memory to allow the use of LDP. |
+ ExternalReference heap_allocation_top = |
+ AllocationUtils::GetAllocationTopReference(isolate(), flags); |
+ ExternalReference heap_allocation_limit = |
+ AllocationUtils::GetAllocationLimitReference(isolate(), flags); |
+ intptr_t top = reinterpret_cast<intptr_t>(heap_allocation_top.address()); |
+ intptr_t limit = reinterpret_cast<intptr_t>(heap_allocation_limit.address()); |
+ ASSERT((limit - top) == kPointerSize); |
+ |
+ // Set up allocation top address and object size registers. |
+ Register top_address = scratch1; |
+ Register allocation_limit = scratch2; |
+ Mov(top_address, Operand(heap_allocation_top)); |
+ |
+ if ((flags & RESULT_CONTAINS_TOP) == 0) { |
+ // Load allocation top into result and the allocation limit. |
+ Ldp(result, allocation_limit, MemOperand(top_address)); |
+ } else { |
+ if (emit_debug_code()) { |
+ // Assert that result actually contains top on entry. |
+ Ldr(Tmp0(), MemOperand(top_address)); |
+ Cmp(result, Tmp0()); |
+ Check(eq, kUnexpectedAllocationTop); |
+ } |
+ // Load the allocation limit. 'result' already contains the allocation top. |
+ Ldr(allocation_limit, MemOperand(top_address, limit - top)); |
+ } |
+ |
+ // We can ignore DOUBLE_ALIGNMENT flags here because doubles and pointers have |
+ // the same alignment on A64. |
+ STATIC_ASSERT(kPointerAlignment == kDoubleAlignment); |
+ |
+ // Calculate new top and bail out if new space is exhausted |
+ if ((flags & SIZE_IN_WORDS) != 0) { |
+ Adds(Tmp1(), result, Operand(object_size, LSL, kPointerSizeLog2)); |
+ } else { |
+ Adds(Tmp1(), result, object_size); |
+ } |
+ |
+ if (emit_debug_code()) { |
+ Tst(Tmp1(), kObjectAlignmentMask); |
+ Check(eq, kUnalignedAllocationInNewSpace); |
+ } |
+ |
+ B(vs, gc_required); |
+ Cmp(Tmp1(), allocation_limit); |
+ B(hi, gc_required); |
+ Str(Tmp1(), MemOperand(top_address)); |
+ |
+ // Tag the object if requested. |
+ if ((flags & TAG_OBJECT) != 0) { |
+ Orr(result, result, kHeapObjectTag); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::UndoAllocationInNewSpace(Register object, |
+ Register scratch) { |
+ ExternalReference new_space_allocation_top = |
+ ExternalReference::new_space_allocation_top_address(isolate()); |
+ |
+ // Make sure the object has no tag before resetting top. |
+ Bic(object, object, kHeapObjectTagMask); |
+#ifdef DEBUG |
+ // Check that the object un-allocated is below the current top. |
+ Mov(scratch, Operand(new_space_allocation_top)); |
+ Ldr(scratch, MemOperand(scratch)); |
+ Cmp(object, scratch); |
+ Check(lt, kUndoAllocationOfNonAllocatedMemory); |
+#endif |
+ // Write the address of the object to un-allocate as the current top. |
+ Mov(scratch, Operand(new_space_allocation_top)); |
+ Str(object, MemOperand(scratch)); |
+} |
+ |
+ |
+void MacroAssembler::AllocateTwoByteString(Register result, |
+ Register length, |
+ Register scratch1, |
+ Register scratch2, |
+ Register scratch3, |
+ Label* gc_required) { |
+ ASSERT(!AreAliased(result, length, scratch1, scratch2, scratch3)); |
+ // Calculate the number of bytes needed for the characters in the string while |
+ // observing object alignment. |
+ STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); |
+ Add(scratch1, length, length); // Length in bytes, not chars. |
+ Add(scratch1, scratch1, kObjectAlignmentMask + SeqTwoByteString::kHeaderSize); |
+ Bic(scratch1, scratch1, kObjectAlignmentMask); |
+ |
+ // Allocate two-byte string in new space. |
+ Allocate(scratch1, |
+ result, |
+ scratch2, |
+ scratch3, |
+ gc_required, |
+ TAG_OBJECT); |
+ |
+ // Set the map, length and hash field. |
+ InitializeNewString(result, |
+ length, |
+ Heap::kStringMapRootIndex, |
+ scratch1, |
+ scratch2); |
+} |
+ |
+ |
+void MacroAssembler::AllocateAsciiString(Register result, |
+ Register length, |
+ Register scratch1, |
+ Register scratch2, |
+ Register scratch3, |
+ Label* gc_required) { |
+ ASSERT(!AreAliased(result, length, scratch1, scratch2, scratch3)); |
+ // Calculate the number of bytes needed for the characters in the string while |
+ // observing object alignment. |
+ STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0); |
+ STATIC_ASSERT(kCharSize == 1); |
+ Add(scratch1, length, kObjectAlignmentMask + SeqOneByteString::kHeaderSize); |
+ Bic(scratch1, scratch1, kObjectAlignmentMask); |
+ |
+ // Allocate ASCII string in new space. |
+ Allocate(scratch1, |
+ result, |
+ scratch2, |
+ scratch3, |
+ gc_required, |
+ TAG_OBJECT); |
+ |
+ // Set the map, length and hash field. |
+ InitializeNewString(result, |
+ length, |
+ Heap::kAsciiStringMapRootIndex, |
+ scratch1, |
+ scratch2); |
+} |
+ |
+ |
+void MacroAssembler::AllocateTwoByteConsString(Register result, |
+ Register length, |
+ Register scratch1, |
+ Register scratch2, |
+ Label* gc_required) { |
+ Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required, |
+ TAG_OBJECT); |
+ |
+ InitializeNewString(result, |
+ length, |
+ Heap::kConsStringMapRootIndex, |
+ scratch1, |
+ scratch2); |
+} |
+ |
+ |
+void MacroAssembler::AllocateAsciiConsString(Register result, |
+ Register length, |
+ Register scratch1, |
+ Register scratch2, |
+ Label* gc_required) { |
+ Label allocate_new_space, install_map; |
+ AllocationFlags flags = TAG_OBJECT; |
+ |
+ ExternalReference high_promotion_mode = ExternalReference:: |
+ new_space_high_promotion_mode_active_address(isolate()); |
+ Mov(scratch1, Operand(high_promotion_mode)); |
+ Ldr(scratch1, MemOperand(scratch1)); |
+ Cbz(scratch1, &allocate_new_space); |
+ |
+ Allocate(ConsString::kSize, |
+ result, |
+ scratch1, |
+ scratch2, |
+ gc_required, |
+ static_cast<AllocationFlags>(flags | PRETENURE_OLD_POINTER_SPACE)); |
+ |
+ B(&install_map); |
+ |
+ Bind(&allocate_new_space); |
+ Allocate(ConsString::kSize, |
+ result, |
+ scratch1, |
+ scratch2, |
+ gc_required, |
+ flags); |
+ |
+ Bind(&install_map); |
+ |
+ InitializeNewString(result, |
+ length, |
+ Heap::kConsAsciiStringMapRootIndex, |
+ scratch1, |
+ scratch2); |
+} |
+ |
+ |
+void MacroAssembler::AllocateTwoByteSlicedString(Register result, |
+ Register length, |
+ Register scratch1, |
+ Register scratch2, |
+ Label* gc_required) { |
+ ASSERT(!AreAliased(result, length, scratch1, scratch2)); |
+ Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required, |
+ TAG_OBJECT); |
+ |
+ InitializeNewString(result, |
+ length, |
+ Heap::kSlicedStringMapRootIndex, |
+ scratch1, |
+ scratch2); |
+} |
+ |
+ |
+void MacroAssembler::AllocateAsciiSlicedString(Register result, |
+ Register length, |
+ Register scratch1, |
+ Register scratch2, |
+ Label* gc_required) { |
+ ASSERT(!AreAliased(result, length, scratch1, scratch2)); |
+ Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required, |
+ TAG_OBJECT); |
+ |
+ InitializeNewString(result, |
+ length, |
+ Heap::kSlicedAsciiStringMapRootIndex, |
+ scratch1, |
+ scratch2); |
+} |
+ |
+ |
+// Allocates a heap number or jumps to the need_gc label if the young space |
+// is full and a scavenge is needed. |
+void MacroAssembler::AllocateHeapNumber(Register result, |
+ Label* gc_required, |
+ Register scratch1, |
+ Register scratch2, |
+ Register heap_number_map) { |
+ // Allocate an object in the heap for the heap number and tag it as a heap |
+ // object. |
+ Allocate(HeapNumber::kSize, result, scratch1, scratch2, gc_required, |
+ TAG_OBJECT); |
+ |
+ // Store heap number map in the allocated object. |
+ if (heap_number_map.Is(NoReg)) { |
+ heap_number_map = scratch1; |
+ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
+ } |
+ AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
+ Str(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset)); |
+} |
+ |
+ |
+void MacroAssembler::AllocateHeapNumberWithValue(Register result, |
+ DoubleRegister value, |
+ Label* gc_required, |
+ Register scratch1, |
+ Register scratch2, |
+ Register heap_number_map) { |
+ // TODO(all): Check if it would be more efficient to use STP to store both |
+ // the map and the value. |
+ AllocateHeapNumber(result, gc_required, scratch1, scratch2, heap_number_map); |
+ Str(value, FieldMemOperand(result, HeapNumber::kValueOffset)); |
+} |
+ |
+ |
+void MacroAssembler::JumpIfObjectType(Register object, |
+ Register map, |
+ Register type_reg, |
+ InstanceType type, |
+ Label* if_cond_pass, |
+ Condition cond) { |
+ CompareObjectType(object, map, type_reg, type); |
+ B(cond, if_cond_pass); |
+} |
+ |
+ |
+void MacroAssembler::JumpIfNotObjectType(Register object, |
+ Register map, |
+ Register type_reg, |
+ InstanceType type, |
+ Label* if_not_object) { |
+ JumpIfObjectType(object, map, type_reg, type, if_not_object, ne); |
+} |
+ |
+ |
+// Sets condition flags based on comparison, and returns type in type_reg. |
+void MacroAssembler::CompareObjectType(Register object, |
+ Register map, |
+ Register type_reg, |
+ InstanceType type) { |
+ Ldr(map, FieldMemOperand(object, HeapObject::kMapOffset)); |
+ CompareInstanceType(map, type_reg, type); |
+} |
+ |
+ |
+// Sets condition flags based on comparison, and returns type in type_reg. |
+void MacroAssembler::CompareInstanceType(Register map, |
+ Register type_reg, |
+ InstanceType type) { |
+ Ldrb(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset)); |
+ Cmp(type_reg, type); |
+} |
+ |
+ |
+void MacroAssembler::CompareMap(Register obj, |
+ Register scratch, |
+ Handle<Map> map, |
+ Label* early_success) { |
+ // TODO(jbramley): The early_success label isn't used. Remove it. |
+ Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); |
+ CompareMap(scratch, map, early_success); |
+} |
+ |
+ |
+void MacroAssembler::CompareMap(Register obj_map, |
+ Handle<Map> map, |
+ Label* early_success) { |
+ // TODO(jbramley): The early_success label isn't used. Remove it. |
+ Cmp(obj_map, Operand(map)); |
+} |
+ |
+ |
+void MacroAssembler::CheckMap(Register obj, |
+ Register scratch, |
+ Handle<Map> map, |
+ Label* fail, |
+ SmiCheckType smi_check_type) { |
+ if (smi_check_type == DO_SMI_CHECK) { |
+ JumpIfSmi(obj, fail); |
+ } |
+ |
+ Label success; |
+ CompareMap(obj, scratch, map, &success); |
+ B(ne, fail); |
+ Bind(&success); |
+} |
+ |
+ |
+void MacroAssembler::CheckMap(Register obj, |
+ Register scratch, |
+ Heap::RootListIndex index, |
+ Label* fail, |
+ SmiCheckType smi_check_type) { |
+ if (smi_check_type == DO_SMI_CHECK) { |
+ JumpIfSmi(obj, fail); |
+ } |
+ Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); |
+ JumpIfNotRoot(scratch, index, fail); |
+} |
+ |
+ |
+void MacroAssembler::CheckMap(Register obj_map, |
+ Handle<Map> map, |
+ Label* fail, |
+ SmiCheckType smi_check_type) { |
+ if (smi_check_type == DO_SMI_CHECK) { |
+ JumpIfSmi(obj_map, fail); |
+ } |
+ Label success; |
+ CompareMap(obj_map, map, &success); |
+ B(ne, fail); |
+ Bind(&success); |
+} |
+ |
+ |
+void MacroAssembler::DispatchMap(Register obj, |
+ Register scratch, |
+ Handle<Map> map, |
+ Handle<Code> success, |
+ SmiCheckType smi_check_type) { |
+ Label fail; |
+ if (smi_check_type == DO_SMI_CHECK) { |
+ JumpIfSmi(obj, &fail); |
+ } |
+ Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); |
+ Cmp(scratch, Operand(map)); |
+ B(ne, &fail); |
+ Jump(success, RelocInfo::CODE_TARGET); |
+ Bind(&fail); |
+} |
+ |
+ |
+void MacroAssembler::TestMapBitfield(Register object, uint64_t mask) { |
+ Ldr(Tmp0(), FieldMemOperand(object, HeapObject::kMapOffset)); |
+ Ldrb(Tmp0(), FieldMemOperand(Tmp0(), Map::kBitFieldOffset)); |
+ Tst(Tmp0(), mask); |
+} |
+ |
+ |
+void MacroAssembler::LoadElementsKind(Register result, Register object) { |
+ // Load map. |
+ __ Ldr(result, FieldMemOperand(object, HeapObject::kMapOffset)); |
+ // Load the map's "bit field 2". |
+ __ Ldrb(result, FieldMemOperand(result, Map::kBitField2Offset)); |
+ // Retrieve elements_kind from bit field 2. |
+ __ Ubfx(result, result, Map::kElementsKindShift, Map::kElementsKindBitCount); |
+} |
+ |
+ |
+void MacroAssembler::TryGetFunctionPrototype(Register function, |
+ Register result, |
+ Register scratch, |
+ Label* miss, |
+ BoundFunctionAction action) { |
+ ASSERT(!AreAliased(function, result, scratch)); |
+ |
+ // Check that the receiver isn't a smi. |
+ JumpIfSmi(function, miss); |
+ |
+ // Check that the function really is a function. Load map into result reg. |
+ JumpIfNotObjectType(function, result, scratch, JS_FUNCTION_TYPE, miss); |
+ |
+ if (action == kMissOnBoundFunction) { |
+ Register scratch_w = scratch.W(); |
+ Ldr(scratch, |
+ FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset)); |
+ // On 64-bit platforms, compiler hints field is not a smi. See definition of |
+ // kCompilerHintsOffset in src/objects.h. |
+ Ldr(scratch_w, |
+ FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset)); |
+ Tbnz(scratch, SharedFunctionInfo::kBoundFunction, miss); |
+ } |
+ |
+ // Make sure that the function has an instance prototype. |
+ Label non_instance; |
+ Ldrb(scratch, FieldMemOperand(result, Map::kBitFieldOffset)); |
+ Tbnz(scratch, Map::kHasNonInstancePrototype, &non_instance); |
+ |
+ // Get the prototype or initial map from the function. |
+ Ldr(result, |
+ FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); |
+ |
+ // If the prototype or initial map is the hole, don't return it and simply |
+ // miss the cache instead. This will allow us to allocate a prototype object |
+ // on-demand in the runtime system. |
+ JumpIfRoot(result, Heap::kTheHoleValueRootIndex, miss); |
+ |
+ // If the function does not have an initial map, we're done. |
+ Label done; |
+ JumpIfNotObjectType(result, scratch, scratch, MAP_TYPE, &done); |
+ |
+ // Get the prototype from the initial map. |
+ Ldr(result, FieldMemOperand(result, Map::kPrototypeOffset)); |
+ B(&done); |
+ |
+ // Non-instance prototype: fetch prototype from constructor field in initial |
+ // map. |
+ Bind(&non_instance); |
+ Ldr(result, FieldMemOperand(result, Map::kConstructorOffset)); |
+ |
+ // All done. |
+ Bind(&done); |
+} |
+ |
+ |
+void MacroAssembler::CompareRoot(const Register& obj, |
+ Heap::RootListIndex index) { |
+ ASSERT(!AreAliased(obj, Tmp0())); |
+ LoadRoot(Tmp0(), index); |
+ Cmp(obj, Tmp0()); |
+} |
+ |
+ |
+void MacroAssembler::JumpIfRoot(const Register& obj, |
+ Heap::RootListIndex index, |
+ Label* if_equal) { |
+ CompareRoot(obj, index); |
+ B(eq, if_equal); |
+} |
+ |
+ |
+void MacroAssembler::JumpIfNotRoot(const Register& obj, |
+ Heap::RootListIndex index, |
+ Label* if_not_equal) { |
+ CompareRoot(obj, index); |
+ B(ne, if_not_equal); |
+} |
+ |
+ |
+void MacroAssembler::CompareAndSplit(const Register& lhs, |
+ const Operand& rhs, |
+ Condition cond, |
+ Label* if_true, |
+ Label* if_false, |
+ Label* fall_through) { |
+ if ((if_true == if_false) && (if_false == fall_through)) { |
+ // Fall through. |
+ } else if (if_true == if_false) { |
+ B(if_true); |
+ } else if (if_false == fall_through) { |
+ CompareAndBranch(lhs, rhs, cond, if_true); |
+ } else if (if_true == fall_through) { |
+ CompareAndBranch(lhs, rhs, InvertCondition(cond), if_false); |
+ } else { |
+ CompareAndBranch(lhs, rhs, cond, if_true); |
+ B(if_false); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::TestAndSplit(const Register& reg, |
+ uint64_t bit_pattern, |
+ Label* if_all_clear, |
+ Label* if_any_set, |
+ Label* fall_through) { |
+ if ((if_all_clear == if_any_set) && (if_any_set == fall_through)) { |
+ // Fall through. |
+ } else if (if_all_clear == if_any_set) { |
+ B(if_all_clear); |
+ } else if (if_all_clear == fall_through) { |
+ TestAndBranchIfAnySet(reg, bit_pattern, if_any_set); |
+ } else if (if_any_set == fall_through) { |
+ TestAndBranchIfAllClear(reg, bit_pattern, if_all_clear); |
+ } else { |
+ TestAndBranchIfAnySet(reg, bit_pattern, if_any_set); |
+ B(if_all_clear); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::CheckFastElements(Register map, |
+ Register scratch, |
+ Label* fail) { |
+ STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); |
+ STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); |
+ STATIC_ASSERT(FAST_ELEMENTS == 2); |
+ STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); |
+ Ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset)); |
+ Cmp(scratch, Map::kMaximumBitField2FastHoleyElementValue); |
+ B(hi, fail); |
+} |
+ |
+ |
+void MacroAssembler::CheckFastObjectElements(Register map, |
+ Register scratch, |
+ Label* fail) { |
+ STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); |
+ STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); |
+ STATIC_ASSERT(FAST_ELEMENTS == 2); |
+ STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); |
+ Ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset)); |
+ Cmp(scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue)); |
+ // If cond==ls, set cond=hi, otherwise compare. |
+ Ccmp(scratch, |
+ Operand(Map::kMaximumBitField2FastHoleyElementValue), CFlag, hi); |
+ B(hi, fail); |
+} |
+ |
+ |
+void MacroAssembler::CheckFastSmiElements(Register map, |
+ Register scratch, |
+ Label* fail) { |
+ STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); |
+ STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); |
+ Ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset)); |
+ Cmp(scratch, Map::kMaximumBitField2FastHoleySmiElementValue); |
+ B(hi, fail); |
+} |
+ |
+ |
+// Note: The ARM version of this clobbers elements_reg, but this version does |
+// not. Some uses of this in A64 assume that elements_reg will be preserved. |
+void MacroAssembler::StoreNumberToDoubleElements(Register value_reg, |
+ Register key_reg, |
+ Register elements_reg, |
+ Register scratch1, |
+ FPRegister fpscratch1, |
+ FPRegister fpscratch2, |
+ Label* fail, |
+ int elements_offset) { |
+ ASSERT(!AreAliased(value_reg, key_reg, elements_reg, scratch1)); |
+ Label store_num; |
+ |
+ // Speculatively convert the smi to a double - all smis can be exactly |
+ // represented as a double. |
+ SmiUntagToDouble(fpscratch1, value_reg, kSpeculativeUntag); |
+ |
+ // If value_reg is a smi, we're done. |
+ JumpIfSmi(value_reg, &store_num); |
+ |
+ // Ensure that the object is a heap number. |
+ CheckMap(value_reg, scratch1, isolate()->factory()->heap_number_map(), |
+ fail, DONT_DO_SMI_CHECK); |
+ |
+ Ldr(fpscratch1, FieldMemOperand(value_reg, HeapNumber::kValueOffset)); |
+ Fmov(fpscratch2, FixedDoubleArray::canonical_not_the_hole_nan_as_double()); |
+ |
+ // Check for NaN by comparing the number to itself: NaN comparison will |
+ // report unordered, indicated by the overflow flag being set. |
+ Fcmp(fpscratch1, fpscratch1); |
+ Fcsel(fpscratch1, fpscratch2, fpscratch1, vs); |
+ |
+ // Store the result. |
+ Bind(&store_num); |
+ Add(scratch1, elements_reg, |
+ Operand::UntagSmiAndScale(key_reg, kDoubleSizeLog2)); |
+ Str(fpscratch1, |
+ FieldMemOperand(scratch1, |
+ FixedDoubleArray::kHeaderSize - elements_offset)); |
+} |
+ |
+ |
+bool MacroAssembler::AllowThisStubCall(CodeStub* stub) { |
+ return has_frame_ || !stub->SometimesSetsUpAFrame(); |
+} |
+ |
+ |
+void MacroAssembler::IndexFromHash(Register hash, Register index) { |
+ // If the hash field contains an array index pick it out. The assert checks |
+ // that the constants for the maximum number of digits for an array index |
+ // cached in the hash field and the number of bits reserved for it does not |
+ // conflict. |
+ ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) < |
+ (1 << String::kArrayIndexValueBits)); |
+ // We want the smi-tagged index in key. kArrayIndexValueMask has zeros in |
+ // the low kHashShift bits. |
+ STATIC_ASSERT(kSmiTag == 0); |
+ Ubfx(hash, hash, String::kHashShift, String::kArrayIndexValueBits); |
+ SmiTag(index, hash); |
+} |
+ |
+ |
+void MacroAssembler::EmitSeqStringSetCharCheck( |
+ Register string, |
+ Register index, |
+ SeqStringSetCharCheckIndexType index_type, |
+ Register scratch, |
+ uint32_t encoding_mask) { |
+ ASSERT(!AreAliased(string, index, scratch)); |
+ |
+ if (index_type == kIndexIsSmi) { |
+ AssertSmi(index); |
+ } |
+ |
+ // Check that string is an object. |
+ AssertNotSmi(string, kNonObject); |
+ |
+ // Check that string has an appropriate map. |
+ Ldr(scratch, FieldMemOperand(string, HeapObject::kMapOffset)); |
+ Ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); |
+ |
+ And(scratch, scratch, kStringRepresentationMask | kStringEncodingMask); |
+ Cmp(scratch, encoding_mask); |
+ Check(eq, kUnexpectedStringType); |
+ |
+ Ldr(scratch, FieldMemOperand(string, String::kLengthOffset)); |
+ Cmp(index, index_type == kIndexIsSmi ? scratch : Operand::UntagSmi(scratch)); |
+ Check(lt, kIndexIsTooLarge); |
+ |
+ ASSERT_EQ(0, Smi::FromInt(0)); |
+ Cmp(index, 0); |
+ Check(ge, kIndexIsNegative); |
+} |
+ |
+ |
+void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg, |
+ Register scratch, |
+ Label* miss) { |
+ // TODO(jbramley): Sort out the uses of Tmp0() and Tmp1() in this function. |
+ // The ARM version takes two scratch registers, and that should be enough for |
+ // all of the checks. |
+ |
+ Label same_contexts; |
+ |
+ ASSERT(!AreAliased(holder_reg, scratch)); |
+ |
+ // Load current lexical context from the stack frame. |
+ Ldr(scratch, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
+ // In debug mode, make sure the lexical context is set. |
+#ifdef DEBUG |
+ Cmp(scratch, 0); |
+ Check(ne, kWeShouldNotHaveAnEmptyLexicalContext); |
+#endif |
+ |
+ // Load the native context of the current context. |
+ int offset = |
+ Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize; |
+ Ldr(scratch, FieldMemOperand(scratch, offset)); |
+ Ldr(scratch, FieldMemOperand(scratch, GlobalObject::kNativeContextOffset)); |
+ |
+ // Check the context is a native context. |
+ if (emit_debug_code()) { |
+ // Read the first word and compare to the global_context_map. |
+ Register temp = Tmp1(); |
+ Ldr(temp, FieldMemOperand(scratch, HeapObject::kMapOffset)); |
+ CompareRoot(temp, Heap::kNativeContextMapRootIndex); |
+ Check(eq, kExpectedNativeContext); |
+ } |
+ |
+ // Check if both contexts are the same. |
+ ldr(Tmp0(), FieldMemOperand(holder_reg, JSGlobalProxy::kNativeContextOffset)); |
+ cmp(scratch, Tmp0()); |
+ b(&same_contexts, eq); |
+ |
+ // Check the context is a native context. |
+ if (emit_debug_code()) { |
+ // Move Tmp0() into a different register, as CompareRoot will use it. |
+ Register temp = Tmp1(); |
+ mov(temp, Tmp0()); |
+ CompareRoot(temp, Heap::kNullValueRootIndex); |
+ Check(ne, kExpectedNonNullContext); |
+ |
+ Ldr(temp, FieldMemOperand(temp, HeapObject::kMapOffset)); |
+ CompareRoot(temp, Heap::kNativeContextMapRootIndex); |
+ Check(eq, kExpectedNativeContext); |
+ |
+ // Let's consider that Tmp0() has been cloberred by the MacroAssembler. |
+ // We reload it with its value. |
+ ldr(Tmp0(), FieldMemOperand(holder_reg, |
+ JSGlobalProxy::kNativeContextOffset)); |
+ } |
+ |
+ // Check that the security token in the calling global object is |
+ // compatible with the security token in the receiving global |
+ // object. |
+ int token_offset = Context::kHeaderSize + |
+ Context::SECURITY_TOKEN_INDEX * kPointerSize; |
+ |
+ ldr(scratch, FieldMemOperand(scratch, token_offset)); |
+ ldr(Tmp0(), FieldMemOperand(Tmp0(), token_offset)); |
+ cmp(scratch, Tmp0()); |
+ b(miss, ne); |
+ |
+ bind(&same_contexts); |
+} |
+ |
+ |
+// Compute the hash code from the untagged key. This must be kept in sync with |
+// ComputeIntegerHash in utils.h and KeyedLoadGenericElementStub in |
+// code-stub-hydrogen.cc |
+void MacroAssembler::GetNumberHash(Register key, Register scratch) { |
+ ASSERT(!AreAliased(key, scratch)); |
+ |
+ // Xor original key with a seed. |
+ LoadRoot(scratch, Heap::kHashSeedRootIndex); |
+ Eor(key, key, Operand::UntagSmi(scratch)); |
+ |
+ // The algorithm uses 32-bit integer values. |
+ key = key.W(); |
+ scratch = scratch.W(); |
+ |
+ // Compute the hash code from the untagged key. This must be kept in sync |
+ // with ComputeIntegerHash in utils.h. |
+ // |
+ // hash = ~hash + (hash <<1 15); |
+ Mvn(scratch, key); |
+ Add(key, scratch, Operand(key, LSL, 15)); |
+ // hash = hash ^ (hash >> 12); |
+ Eor(key, key, Operand(key, LSR, 12)); |
+ // hash = hash + (hash << 2); |
+ Add(key, key, Operand(key, LSL, 2)); |
+ // hash = hash ^ (hash >> 4); |
+ Eor(key, key, Operand(key, LSR, 4)); |
+ // hash = hash * 2057; |
+ Mov(scratch, Operand(key, LSL, 11)); |
+ Add(key, key, Operand(key, LSL, 3)); |
+ Add(key, key, scratch); |
+ // hash = hash ^ (hash >> 16); |
+ Eor(key, key, Operand(key, LSR, 16)); |
+} |
+ |
+ |
+void MacroAssembler::LoadFromNumberDictionary(Label* miss, |
+ Register elements, |
+ Register key, |
+ Register result, |
+ Register scratch0, |
+ Register scratch1, |
+ Register scratch2, |
+ Register scratch3) { |
+ ASSERT(!AreAliased(elements, key, scratch0, scratch1, scratch2, scratch3)); |
+ |
+ Label done; |
+ |
+ SmiUntag(scratch0, key); |
+ GetNumberHash(scratch0, scratch1); |
+ |
+ // Compute the capacity mask. |
+ Ldrsw(scratch1, |
+ UntagSmiFieldMemOperand(elements, |
+ SeededNumberDictionary::kCapacityOffset)); |
+ Sub(scratch1, scratch1, 1); |
+ |
+ // Generate an unrolled loop that performs a few probes before giving up. |
+ for (int i = 0; i < kNumberDictionaryProbes; i++) { |
+ // Compute the masked index: (hash + i + i * i) & mask. |
+ if (i > 0) { |
+ Add(scratch2, scratch0, SeededNumberDictionary::GetProbeOffset(i)); |
+ } else { |
+ Mov(scratch2, scratch0); |
+ } |
+ And(scratch2, scratch2, scratch1); |
+ |
+ // Scale the index by multiplying by the element size. |
+ ASSERT(SeededNumberDictionary::kEntrySize == 3); |
+ Add(scratch2, scratch2, Operand(scratch2, LSL, 1)); |
+ |
+ // Check if the key is identical to the name. |
+ Add(scratch2, elements, Operand(scratch2, LSL, kPointerSizeLog2)); |
+ Ldr(scratch3, |
+ FieldMemOperand(scratch2, |
+ SeededNumberDictionary::kElementsStartOffset)); |
+ Cmp(key, scratch3); |
+ if (i != (kNumberDictionaryProbes - 1)) { |
+ B(eq, &done); |
+ } else { |
+ B(ne, miss); |
+ } |
+ } |
+ |
+ Bind(&done); |
+ // Check that the value is a normal property. |
+ const int kDetailsOffset = |
+ SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize; |
+ Ldrsw(scratch1, UntagSmiFieldMemOperand(scratch2, kDetailsOffset)); |
+ TestAndBranchIfAnySet(scratch1, PropertyDetails::TypeField::kMask, miss); |
+ |
+ // Get the value at the masked, scaled index and return. |
+ const int kValueOffset = |
+ SeededNumberDictionary::kElementsStartOffset + kPointerSize; |
+ Ldr(result, FieldMemOperand(scratch2, kValueOffset)); |
+} |
+ |
+ |
+void MacroAssembler::RememberedSetHelper(Register object, // For debug tests. |
+ Register address, |
+ Register scratch, |
+ SaveFPRegsMode fp_mode, |
+ RememberedSetFinalAction and_then) { |
+ ASSERT(!AreAliased(object, address, scratch)); |
+ Label done, store_buffer_overflow; |
+ if (emit_debug_code()) { |
+ Label ok; |
+ JumpIfNotInNewSpace(object, &ok); |
+ Abort(kRememberedSetPointerInNewSpace); |
+ bind(&ok); |
+ } |
+ // Load store buffer top. |
+ Mov(Tmp0(), Operand(ExternalReference::store_buffer_top(isolate()))); |
+ Ldr(scratch, MemOperand(Tmp0())); |
+ // Store pointer to buffer and increment buffer top. |
+ Str(address, MemOperand(scratch, kPointerSize, PostIndex)); |
+ // Write back new top of buffer. |
+ Str(scratch, MemOperand(Tmp0())); |
+ // Call stub on end of buffer. |
+ // Check for end of buffer. |
+ ASSERT(StoreBuffer::kStoreBufferOverflowBit == |
+ (1 << (14 + kPointerSizeLog2))); |
+ if (and_then == kFallThroughAtEnd) { |
+ Tbz(scratch, (14 + kPointerSizeLog2), &done); |
+ } else { |
+ ASSERT(and_then == kReturnAtEnd); |
+ Tbnz(scratch, (14 + kPointerSizeLog2), &store_buffer_overflow); |
+ Ret(); |
+ } |
+ |
+ Bind(&store_buffer_overflow); |
+ Push(lr); |
+ StoreBufferOverflowStub store_buffer_overflow_stub = |
+ StoreBufferOverflowStub(fp_mode); |
+ CallStub(&store_buffer_overflow_stub); |
+ Pop(lr); |
+ |
+ Bind(&done); |
+ if (and_then == kReturnAtEnd) { |
+ Ret(); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::PopSafepointRegisters() { |
+ const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters; |
+ PopXRegList(kSafepointSavedRegisters); |
+ Drop(num_unsaved); |
+} |
+ |
+ |
+void MacroAssembler::PushSafepointRegisters() { |
+ // Safepoints expect a block of kNumSafepointRegisters values on the stack, so |
+ // adjust the stack for unsaved registers. |
+ const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters; |
+ ASSERT(num_unsaved >= 0); |
+ Claim(num_unsaved); |
+ PushXRegList(kSafepointSavedRegisters); |
+} |
+ |
+ |
+void MacroAssembler::PushSafepointFPRegisters() { |
+ PushCPURegList(CPURegList(CPURegister::kFPRegister, kDRegSize, |
+ FPRegister::kAllocatableFPRegisters)); |
+} |
+ |
+ |
+void MacroAssembler::PopSafepointFPRegisters() { |
+ PopCPURegList(CPURegList(CPURegister::kFPRegister, kDRegSize, |
+ FPRegister::kAllocatableFPRegisters)); |
+} |
+ |
+ |
+int MacroAssembler::SafepointRegisterStackIndex(int reg_code) { |
+ // Make sure the safepoint registers list is what we expect. |
+ ASSERT(CPURegList::GetSafepointSavedRegisters().list() == 0x6ffcffff); |
+ |
+ // Safepoint registers are stored contiguously on the stack, but not all the |
+ // registers are saved. The following registers are excluded: |
+ // - x16 and x17 (ip0 and ip1) because they shouldn't be preserved outside of |
+ // the macro assembler. |
+ // - x28 (jssp) because JS stack pointer doesn't need to be included in |
+ // safepoint registers. |
+ // - x31 (csp) because the system stack pointer doesn't need to be included |
+ // in safepoint registers. |
+ // |
+ // This function implements the mapping of register code to index into the |
+ // safepoint register slots. |
+ if ((reg_code >= 0) && (reg_code <= 15)) { |
+ return reg_code; |
+ } else if ((reg_code >= 18) && (reg_code <= 27)) { |
+ // Skip ip0 and ip1. |
+ return reg_code - 2; |
+ } else if ((reg_code == 29) || (reg_code == 30)) { |
+ // Also skip jssp. |
+ return reg_code - 3; |
+ } else { |
+ // This register has no safepoint register slot. |
+ UNREACHABLE(); |
+ return -1; |
+ } |
+} |
+ |
+ |
+void MacroAssembler::CheckPageFlagSet(const Register& object, |
+ const Register& scratch, |
+ int mask, |
+ Label* if_any_set) { |
+ And(scratch, object, ~Page::kPageAlignmentMask); |
+ Ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset)); |
+ TestAndBranchIfAnySet(scratch, mask, if_any_set); |
+} |
+ |
+ |
+void MacroAssembler::CheckPageFlagClear(const Register& object, |
+ const Register& scratch, |
+ int mask, |
+ Label* if_all_clear) { |
+ And(scratch, object, ~Page::kPageAlignmentMask); |
+ Ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset)); |
+ TestAndBranchIfAllClear(scratch, mask, if_all_clear); |
+} |
+ |
+ |
+void MacroAssembler::RecordWriteField( |
+ Register object, |
+ int offset, |
+ Register value, |
+ Register scratch, |
+ LinkRegisterStatus lr_status, |
+ SaveFPRegsMode save_fp, |
+ RememberedSetAction remembered_set_action, |
+ SmiCheck smi_check) { |
+ // First, check if a write barrier is even needed. The tests below |
+ // catch stores of Smis. |
+ Label done; |
+ |
+ // Skip the barrier if writing a smi. |
+ if (smi_check == INLINE_SMI_CHECK) { |
+ JumpIfSmi(value, &done); |
+ } |
+ |
+ // Although the object register is tagged, the offset is relative to the start |
+ // of the object, so offset must be a multiple of kPointerSize. |
+ ASSERT(IsAligned(offset, kPointerSize)); |
+ |
+ Add(scratch, object, offset - kHeapObjectTag); |
+ if (emit_debug_code()) { |
+ Label ok; |
+ Tst(scratch, (1 << kPointerSizeLog2) - 1); |
+ B(eq, &ok); |
+ Abort(kUnalignedCellInWriteBarrier); |
+ Bind(&ok); |
+ } |
+ |
+ RecordWrite(object, |
+ scratch, |
+ value, |
+ lr_status, |
+ save_fp, |
+ remembered_set_action, |
+ OMIT_SMI_CHECK); |
+ |
+ Bind(&done); |
+ |
+ // Clobber clobbered input registers when running with the debug-code flag |
+ // turned on to provoke errors. |
+ if (emit_debug_code()) { |
+ Mov(value, Operand(BitCast<int64_t>(kZapValue + 4))); |
+ Mov(scratch, Operand(BitCast<int64_t>(kZapValue + 8))); |
+ } |
+} |
+ |
+ |
+// Will clobber: object, address, value, Tmp0(), Tmp1(). |
+// If lr_status is kLRHasBeenSaved, lr will also be clobbered. |
+// |
+// The register 'object' contains a heap object pointer. The heap object tag is |
+// shifted away. |
+void MacroAssembler::RecordWrite(Register object, |
+ Register address, |
+ Register value, |
+ LinkRegisterStatus lr_status, |
+ SaveFPRegsMode fp_mode, |
+ RememberedSetAction remembered_set_action, |
+ SmiCheck smi_check) { |
+ ASM_LOCATION("MacroAssembler::RecordWrite"); |
+ ASSERT(!AreAliased(object, value)); |
+ |
+ if (emit_debug_code()) { |
+ Ldr(Tmp0(), MemOperand(address)); |
+ Cmp(Tmp0(), value); |
+ Check(eq, kWrongAddressOrValuePassedToRecordWrite); |
+ } |
+ |
+ // Count number of write barriers in generated code. |
+ isolate()->counters()->write_barriers_static()->Increment(); |
+ // TODO(mstarzinger): Dynamic counter missing. |
+ |
+ // First, check if a write barrier is even needed. The tests below |
+ // catch stores of smis and stores into the young generation. |
+ Label done; |
+ |
+ if (smi_check == INLINE_SMI_CHECK) { |
+ ASSERT_EQ(0, kSmiTag); |
+ JumpIfSmi(value, &done); |
+ } |
+ |
+ CheckPageFlagClear(value, |
+ value, // Used as scratch. |
+ MemoryChunk::kPointersToHereAreInterestingMask, |
+ &done); |
+ CheckPageFlagClear(object, |
+ value, // Used as scratch. |
+ MemoryChunk::kPointersFromHereAreInterestingMask, |
+ &done); |
+ |
+ // Record the actual write. |
+ if (lr_status == kLRHasNotBeenSaved) { |
+ Push(lr); |
+ } |
+ RecordWriteStub stub(object, value, address, remembered_set_action, fp_mode); |
+ CallStub(&stub); |
+ if (lr_status == kLRHasNotBeenSaved) { |
+ Pop(lr); |
+ } |
+ |
+ Bind(&done); |
+ |
+ // Clobber clobbered registers when running with the debug-code flag |
+ // turned on to provoke errors. |
+ if (emit_debug_code()) { |
+ Mov(address, Operand(BitCast<int64_t>(kZapValue + 12))); |
+ Mov(value, Operand(BitCast<int64_t>(kZapValue + 16))); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::AssertHasValidColor(const Register& reg) { |
+ if (emit_debug_code()) { |
+ // The bit sequence is backward. The first character in the string |
+ // represents the least significant bit. |
+ ASSERT(strcmp(Marking::kImpossibleBitPattern, "01") == 0); |
+ |
+ Label color_is_valid; |
+ Tbnz(reg, 0, &color_is_valid); |
+ Tbz(reg, 1, &color_is_valid); |
+ Abort(kUnexpectedColorFound); |
+ Bind(&color_is_valid); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::GetMarkBits(Register addr_reg, |
+ Register bitmap_reg, |
+ Register shift_reg) { |
+ ASSERT(!AreAliased(addr_reg, bitmap_reg, shift_reg, no_reg)); |
+ // addr_reg is divided into fields: |
+ // |63 page base 20|19 high 8|7 shift 3|2 0| |
+ // 'high' gives the index of the cell holding color bits for the object. |
+ // 'shift' gives the offset in the cell for this object's color. |
+ const int kShiftBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2; |
+ Ubfx(Tmp0(), addr_reg, kShiftBits, kPageSizeBits - kShiftBits); |
+ Bic(bitmap_reg, addr_reg, Page::kPageAlignmentMask); |
+ Add(bitmap_reg, bitmap_reg, Operand(Tmp0(), LSL, Bitmap::kBytesPerCellLog2)); |
+ // bitmap_reg: |
+ // |63 page base 20|19 zeros 15|14 high 3|2 0| |
+ Ubfx(shift_reg, addr_reg, kPointerSizeLog2, Bitmap::kBitsPerCellLog2); |
+} |
+ |
+ |
+void MacroAssembler::HasColor(Register object, |
+ Register bitmap_scratch, |
+ Register shift_scratch, |
+ Label* has_color, |
+ int first_bit, |
+ int second_bit) { |
+ // See mark-compact.h for color definitions. |
+ ASSERT(!AreAliased(object, bitmap_scratch, shift_scratch)); |
+ |
+ GetMarkBits(object, bitmap_scratch, shift_scratch); |
+ Ldr(bitmap_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); |
+ // Shift the bitmap down to get the color of the object in bits [1:0]. |
+ Lsr(bitmap_scratch, bitmap_scratch, shift_scratch); |
+ |
+ AssertHasValidColor(bitmap_scratch); |
+ |
+ // These bit sequences are backwards. The first character in the string |
+ // represents the least significant bit. |
+ ASSERT(strcmp(Marking::kWhiteBitPattern, "00") == 0); |
+ ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0); |
+ ASSERT(strcmp(Marking::kGreyBitPattern, "11") == 0); |
+ |
+ // Check for the color. |
+ if (first_bit == 0) { |
+ // Checking for white. |
+ ASSERT(second_bit == 0); |
+ // We only need to test the first bit. |
+ Tbz(bitmap_scratch, 0, has_color); |
+ } else { |
+ Label other_color; |
+ // Checking for grey or black. |
+ Tbz(bitmap_scratch, 0, &other_color); |
+ if (second_bit == 0) { |
+ Tbz(bitmap_scratch, 1, has_color); |
+ } else { |
+ Tbnz(bitmap_scratch, 1, has_color); |
+ } |
+ Bind(&other_color); |
+ } |
+ |
+ // Fall through if it does not have the right color. |
+} |
+ |
+ |
+void MacroAssembler::CheckMapDeprecated(Handle<Map> map, |
+ Register scratch, |
+ Label* if_deprecated) { |
+ if (map->CanBeDeprecated()) { |
+ Mov(scratch, Operand(map)); |
+ Ldrsw(scratch, UntagSmiFieldMemOperand(scratch, Map::kBitField3Offset)); |
+ TestAndBranchIfAnySet(scratch, Map::Deprecated::kMask, if_deprecated); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::JumpIfBlack(Register object, |
+ Register scratch0, |
+ Register scratch1, |
+ Label* on_black) { |
+ ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0); |
+ HasColor(object, scratch0, scratch1, on_black, 1, 0); // kBlackBitPattern. |
+} |
+ |
+ |
+void MacroAssembler::JumpIfDictionaryInPrototypeChain( |
+ Register object, |
+ Register scratch0, |
+ Register scratch1, |
+ Label* found) { |
+ ASSERT(!AreAliased(object, scratch0, scratch1)); |
+ Factory* factory = isolate()->factory(); |
+ Register current = scratch0; |
+ Label loop_again; |
+ |
+ // Scratch contains elements pointer. |
+ Mov(current, object); |
+ |
+ // Loop based on the map going up the prototype chain. |
+ Bind(&loop_again); |
+ Ldr(current, FieldMemOperand(current, HeapObject::kMapOffset)); |
+ Ldrb(scratch1, FieldMemOperand(current, Map::kBitField2Offset)); |
+ Ubfx(scratch1, scratch1, Map::kElementsKindShift, Map::kElementsKindBitCount); |
+ CompareAndBranch(scratch1, DICTIONARY_ELEMENTS, eq, found); |
+ Ldr(current, FieldMemOperand(current, Map::kPrototypeOffset)); |
+ CompareAndBranch(current, Operand(factory->null_value()), ne, &loop_again); |
+} |
+ |
+ |
+void MacroAssembler::GetRelocatedValueLocation(Register ldr_location, |
+ Register result) { |
+ ASSERT(!result.Is(ldr_location)); |
+ const uint32_t kLdrLitOffset_lsb = 5; |
+ const uint32_t kLdrLitOffset_width = 19; |
+ Ldr(result, MemOperand(ldr_location)); |
+ if (emit_debug_code()) { |
+ And(result, result, LoadLiteralFMask); |
+ Cmp(result, LoadLiteralFixed); |
+ Check(eq, kTheInstructionToPatchShouldBeAnLdrLiteral); |
+ // The instruction was clobbered. Reload it. |
+ Ldr(result, MemOperand(ldr_location)); |
+ } |
+ Sbfx(result, result, kLdrLitOffset_lsb, kLdrLitOffset_width); |
+ Add(result, ldr_location, Operand(result, LSL, kWordSizeInBytesLog2)); |
+} |
+ |
+ |
+void MacroAssembler::EnsureNotWhite( |
+ Register value, |
+ Register bitmap_scratch, |
+ Register shift_scratch, |
+ Register load_scratch, |
+ Register length_scratch, |
+ Label* value_is_white_and_not_data) { |
+ ASSERT(!AreAliased( |
+ value, bitmap_scratch, shift_scratch, load_scratch, length_scratch)); |
+ |
+ // These bit sequences are backwards. The first character in the string |
+ // represents the least significant bit. |
+ ASSERT(strcmp(Marking::kWhiteBitPattern, "00") == 0); |
+ ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0); |
+ ASSERT(strcmp(Marking::kGreyBitPattern, "11") == 0); |
+ |
+ GetMarkBits(value, bitmap_scratch, shift_scratch); |
+ Ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); |
+ Lsr(load_scratch, load_scratch, shift_scratch); |
+ |
+ AssertHasValidColor(load_scratch); |
+ |
+ // If the value is black or grey we don't need to do anything. |
+ // Since both black and grey have a 1 in the first position and white does |
+ // not have a 1 there we only need to check one bit. |
+ Label done; |
+ Tbnz(load_scratch, 0, &done); |
+ |
+ // Value is white. We check whether it is data that doesn't need scanning. |
+ Register map = load_scratch; // Holds map while checking type. |
+ Label is_data_object; |
+ |
+ // Check for heap-number. |
+ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset)); |
+ Mov(length_scratch, HeapNumber::kSize); |
+ JumpIfRoot(map, Heap::kHeapNumberMapRootIndex, &is_data_object); |
+ |
+ // Check for strings. |
+ ASSERT(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1); |
+ ASSERT(kNotStringTag == 0x80 && kIsNotStringMask == 0x80); |
+ // If it's a string and it's not a cons string then it's an object containing |
+ // no GC pointers. |
+ Register instance_type = load_scratch; |
+ Ldrb(instance_type, FieldMemOperand(map, Map::kInstanceTypeOffset)); |
+ TestAndBranchIfAnySet(instance_type, |
+ kIsIndirectStringMask | kIsNotStringMask, |
+ value_is_white_and_not_data); |
+ |
+ // It's a non-indirect (non-cons and non-slice) string. |
+ // If it's external, the length is just ExternalString::kSize. |
+ // Otherwise it's String::kHeaderSize + string->length() * (1 or 2). |
+ // External strings are the only ones with the kExternalStringTag bit |
+ // set. |
+ ASSERT_EQ(0, kSeqStringTag & kExternalStringTag); |
+ ASSERT_EQ(0, kConsStringTag & kExternalStringTag); |
+ Mov(length_scratch, ExternalString::kSize); |
+ TestAndBranchIfAnySet(instance_type, kExternalStringTag, &is_data_object); |
+ |
+ // Sequential string, either ASCII or UC16. |
+ // For ASCII (char-size of 1) we shift the smi tag away to get the length. |
+ // For UC16 (char-size of 2) we just leave the smi tag in place, thereby |
+ // getting the length multiplied by 2. |
+ ASSERT(kOneByteStringTag == 4 && kStringEncodingMask == 4); |
+ Ldrsw(length_scratch, UntagSmiFieldMemOperand(value, |
+ String::kLengthOffset)); |
+ Tst(instance_type, kStringEncodingMask); |
+ Cset(load_scratch, eq); |
+ Lsl(length_scratch, length_scratch, load_scratch); |
+ Add(length_scratch, |
+ length_scratch, |
+ SeqString::kHeaderSize + kObjectAlignmentMask); |
+ Bic(length_scratch, length_scratch, kObjectAlignmentMask); |
+ |
+ Bind(&is_data_object); |
+ // Value is a data object, and it is white. Mark it black. Since we know |
+ // that the object is white we can make it black by flipping one bit. |
+ Register mask = shift_scratch; |
+ Mov(load_scratch, 1); |
+ Lsl(mask, load_scratch, shift_scratch); |
+ |
+ Ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); |
+ Orr(load_scratch, load_scratch, mask); |
+ Str(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); |
+ |
+ Bic(bitmap_scratch, bitmap_scratch, Page::kPageAlignmentMask); |
+ Ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset)); |
+ Add(load_scratch, load_scratch, length_scratch); |
+ Str(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset)); |
+ |
+ Bind(&done); |
+} |
+ |
+ |
+void MacroAssembler::Assert(Condition cond, BailoutReason reason) { |
+ if (emit_debug_code()) { |
+ Check(cond, reason); |
+ } |
+} |
+ |
+ |
+ |
+void MacroAssembler::AssertRegisterIsClear(Register reg, BailoutReason reason) { |
+ if (emit_debug_code()) { |
+ CheckRegisterIsClear(reg, reason); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::AssertRegisterIsRoot(Register reg, |
+ Heap::RootListIndex index, |
+ BailoutReason reason) { |
+ // CompareRoot uses Tmp0(). |
+ ASSERT(!reg.Is(Tmp0())); |
+ if (emit_debug_code()) { |
+ CompareRoot(reg, index); |
+ Check(eq, reason); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::AssertFastElements(Register elements) { |
+ if (emit_debug_code()) { |
+ Register temp = Tmp1(); |
+ Label ok; |
+ Ldr(temp, FieldMemOperand(elements, HeapObject::kMapOffset)); |
+ JumpIfRoot(temp, Heap::kFixedArrayMapRootIndex, &ok); |
+ JumpIfRoot(temp, Heap::kFixedDoubleArrayMapRootIndex, &ok); |
+ JumpIfRoot(temp, Heap::kFixedCOWArrayMapRootIndex, &ok); |
+ Abort(kJSObjectWithFastElementsMapHasSlowElements); |
+ Bind(&ok); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::AssertIsString(const Register& object) { |
+ if (emit_debug_code()) { |
+ Register temp = Tmp1(); |
+ STATIC_ASSERT(kSmiTag == 0); |
+ Tst(object, Operand(kSmiTagMask)); |
+ Check(ne, kOperandIsNotAString); |
+ Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset)); |
+ CompareInstanceType(temp, temp, FIRST_NONSTRING_TYPE); |
+ Check(lo, kOperandIsNotAString); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::Check(Condition cond, BailoutReason reason) { |
+ Label ok; |
+ B(cond, &ok); |
+ Abort(reason); |
+ // Will not return here. |
+ Bind(&ok); |
+} |
+ |
+ |
+void MacroAssembler::CheckRegisterIsClear(Register reg, BailoutReason reason) { |
+ Label ok; |
+ Cbz(reg, &ok); |
+ Abort(reason); |
+ // Will not return here. |
+ Bind(&ok); |
+} |
+ |
+ |
+void MacroAssembler::Abort(BailoutReason reason) { |
+#ifdef DEBUG |
+ RecordComment("Abort message: "); |
+ RecordComment(GetBailoutReason(reason)); |
+ |
+ if (FLAG_trap_on_abort) { |
+ Brk(0); |
+ return; |
+ } |
+#endif |
+ |
+ Label msg_address; |
+ Adr(x0, &msg_address); |
+ |
+ if (use_real_aborts()) { |
+ // Split the message pointer into two SMI to avoid the GC |
+ // trying to scan the string. |
+ STATIC_ASSERT((kSmiShift == 32) && (kSmiTag == 0)); |
+ SmiTag(x1, x0); |
+ Bic(x0, x0, kSmiShiftMask); |
+ |
+ Push(x0, x1); |
+ |
+ if (!has_frame_) { |
+ // We don't actually want to generate a pile of code for this, so just |
+ // claim there is a stack frame, without generating one. |
+ FrameScope scope(this, StackFrame::NONE); |
+ CallRuntime(Runtime::kAbort, 2); |
+ } else { |
+ CallRuntime(Runtime::kAbort, 2); |
+ } |
+ } else { |
+ // Call Printf directly, to report the error. The message is in x0, which is |
+ // the first argument to Printf. |
+ if (!csp.Is(StackPointer())) { |
+ Bic(csp, StackPointer(), 0xf); |
+ } |
+ CallPrintf(); |
+ |
+ // The CallPrintf will return, so this point is actually reachable in this |
+ // context. However: |
+ // - We're already executing an abort (which shouldn't be reachable in |
+ // valid code). |
+ // - We need a way to stop execution on both the simulator and real |
+ // hardware, and Unreachable() is the best option. |
+ Unreachable(); |
+ } |
+ |
+ // Emit the message string directly in the instruction stream. |
+ { |
+ BlockConstPoolScope scope(this); |
+ Bind(&msg_address); |
+ // TODO(jbramley): Since the reason is an enum, why do we still encode the |
+ // string (and a pointer to it) in the instruction stream? |
+ EmitStringData(GetBailoutReason(reason)); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::LoadTransitionedArrayMapConditional( |
+ ElementsKind expected_kind, |
+ ElementsKind transitioned_kind, |
+ Register map_in_out, |
+ Register scratch, |
+ Label* no_map_match) { |
+ // Load the global or builtins object from the current context. |
+ Ldr(scratch, GlobalObjectMemOperand()); |
+ Ldr(scratch, FieldMemOperand(scratch, GlobalObject::kNativeContextOffset)); |
+ |
+ // Check that the function's map is the same as the expected cached map. |
+ Ldr(scratch, ContextMemOperand(scratch, Context::JS_ARRAY_MAPS_INDEX)); |
+ size_t offset = (expected_kind * kPointerSize) + FixedArrayBase::kHeaderSize; |
+ Ldr(Tmp0(), FieldMemOperand(scratch, offset)); |
+ Cmp(map_in_out, Tmp0()); |
+ B(ne, no_map_match); |
+ |
+ // Use the transitioned cached map. |
+ offset = (transitioned_kind * kPointerSize) + FixedArrayBase::kHeaderSize; |
+ Ldr(map_in_out, FieldMemOperand(scratch, offset)); |
+} |
+ |
+ |
+void MacroAssembler::LoadInitialArrayMap(Register function_in, |
+ Register scratch, |
+ Register map_out, |
+ ArrayHasHoles holes) { |
+ ASSERT(!AreAliased(function_in, scratch, map_out)); |
+ Label done; |
+ Ldr(map_out, FieldMemOperand(function_in, |
+ JSFunction::kPrototypeOrInitialMapOffset)); |
+ |
+ if (!FLAG_smi_only_arrays) { |
+ ElementsKind kind = (holes == kArrayCanHaveHoles) ? FAST_HOLEY_ELEMENTS |
+ : FAST_ELEMENTS; |
+ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS, kind, map_out, |
+ scratch, &done); |
+ } else if (holes == kArrayCanHaveHoles) { |
+ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS, |
+ FAST_HOLEY_SMI_ELEMENTS, map_out, |
+ scratch, &done); |
+ } |
+ Bind(&done); |
+} |
+ |
+ |
+void MacroAssembler::LoadArrayFunction(Register function) { |
+ // Load the global or builtins object from the current context. |
+ Ldr(function, GlobalObjectMemOperand()); |
+ // Load the global context from the global or builtins object. |
+ Ldr(function, |
+ FieldMemOperand(function, GlobalObject::kGlobalContextOffset)); |
+ // Load the array function from the native context. |
+ Ldr(function, ContextMemOperand(function, Context::ARRAY_FUNCTION_INDEX)); |
+} |
+ |
+ |
+void MacroAssembler::LoadGlobalFunction(int index, Register function) { |
+ // Load the global or builtins object from the current context. |
+ Ldr(function, GlobalObjectMemOperand()); |
+ // Load the native context from the global or builtins object. |
+ Ldr(function, FieldMemOperand(function, |
+ GlobalObject::kNativeContextOffset)); |
+ // Load the function from the native context. |
+ Ldr(function, ContextMemOperand(function, index)); |
+} |
+ |
+ |
+void MacroAssembler::LoadGlobalFunctionInitialMap(Register function, |
+ Register map, |
+ Register scratch) { |
+ // Load the initial map. The global functions all have initial maps. |
+ Ldr(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); |
+ if (emit_debug_code()) { |
+ Label ok, fail; |
+ CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK); |
+ B(&ok); |
+ Bind(&fail); |
+ Abort(kGlobalFunctionsMustHaveInitialMap); |
+ Bind(&ok); |
+ } |
+} |
+ |
+ |
+// This is the main Printf implementation. All other Printf variants call |
+// PrintfNoPreserve after setting up one or more PreserveRegisterScopes. |
+void MacroAssembler::PrintfNoPreserve(const char * format, |
+ const CPURegister& arg0, |
+ const CPURegister& arg1, |
+ const CPURegister& arg2, |
+ const CPURegister& arg3) { |
+ // We cannot handle a caller-saved stack pointer. It doesn't make much sense |
+ // in most cases anyway, so this restriction shouldn't be too serious. |
+ ASSERT(!kCallerSaved.IncludesAliasOf(__ StackPointer())); |
+ |
+ // We cannot print Tmp0() or Tmp1() as they're used internally by the macro |
+ // assembler. We cannot print the stack pointer because it is typically used |
+ // to preserve caller-saved registers (using other Printf variants which |
+ // depend on this helper). |
+ ASSERT(!AreAliased(Tmp0(), Tmp1(), StackPointer(), arg0)); |
+ ASSERT(!AreAliased(Tmp0(), Tmp1(), StackPointer(), arg1)); |
+ ASSERT(!AreAliased(Tmp0(), Tmp1(), StackPointer(), arg2)); |
+ ASSERT(!AreAliased(Tmp0(), Tmp1(), StackPointer(), arg3)); |
+ |
+ static const int kMaxArgCount = 4; |
+ // Assume that we have the maximum number of arguments until we know |
+ // otherwise. |
+ int arg_count = kMaxArgCount; |
+ |
+ // The provided arguments. |
+ CPURegister args[kMaxArgCount] = {arg0, arg1, arg2, arg3}; |
+ |
+ // The PCS registers where the arguments need to end up. |
+ CPURegister pcs[kMaxArgCount] = {NoCPUReg, NoCPUReg, NoCPUReg, NoCPUReg}; |
+ |
+ // Promote FP arguments to doubles, and integer arguments to X registers. |
+ // Note that FP and integer arguments cannot be mixed, but we'll check |
+ // AreSameSizeAndType once we've processed these promotions. |
+ for (int i = 0; i < kMaxArgCount; i++) { |
+ if (args[i].IsRegister()) { |
+ // Note that we use x1 onwards, because x0 will hold the format string. |
+ pcs[i] = Register::XRegFromCode(i + 1); |
+ // For simplicity, we handle all integer arguments as X registers. An X |
+ // register argument takes the same space as a W register argument in the |
+ // PCS anyway. The only limitation is that we must explicitly clear the |
+ // top word for W register arguments as the callee will expect it to be |
+ // clear. |
+ if (!args[i].Is64Bits()) { |
+ const Register& as_x = args[i].X(); |
+ And(as_x, as_x, 0x00000000ffffffff); |
+ args[i] = as_x; |
+ } |
+ } else if (args[i].IsFPRegister()) { |
+ pcs[i] = FPRegister::DRegFromCode(i); |
+ // C and C++ varargs functions (such as printf) implicitly promote float |
+ // arguments to doubles. |
+ if (!args[i].Is64Bits()) { |
+ FPRegister s(args[i]); |
+ const FPRegister& as_d = args[i].D(); |
+ Fcvt(as_d, s); |
+ args[i] = as_d; |
+ } |
+ } else { |
+ // This is the first empty (NoCPUReg) argument, so use it to set the |
+ // argument count and bail out. |
+ arg_count = i; |
+ break; |
+ } |
+ } |
+ ASSERT((arg_count >= 0) && (arg_count <= kMaxArgCount)); |
+ // Check that every remaining argument is NoCPUReg. |
+ for (int i = arg_count; i < kMaxArgCount; i++) { |
+ ASSERT(args[i].IsNone()); |
+ } |
+ ASSERT((arg_count == 0) || AreSameSizeAndType(args[0], args[1], |
+ args[2], args[3], |
+ pcs[0], pcs[1], |
+ pcs[2], pcs[3])); |
+ |
+ // Move the arguments into the appropriate PCS registers. |
+ // |
+ // Arranging an arbitrary list of registers into x1-x4 (or d0-d3) is |
+ // surprisingly complicated. |
+ // |
+ // * For even numbers of registers, we push the arguments and then pop them |
+ // into their final registers. This maintains 16-byte stack alignment in |
+ // case csp is the stack pointer, since we're only handling X or D |
+ // registers at this point. |
+ // |
+ // * For odd numbers of registers, we push and pop all but one register in |
+ // the same way, but the left-over register is moved directly, since we |
+ // can always safely move one register without clobbering any source. |
+ if (arg_count >= 4) { |
+ Push(args[3], args[2], args[1], args[0]); |
+ } else if (arg_count >= 2) { |
+ Push(args[1], args[0]); |
+ } |
+ |
+ if ((arg_count % 2) != 0) { |
+ // Move the left-over register directly. |
+ const CPURegister& leftover_arg = args[arg_count - 1]; |
+ const CPURegister& leftover_pcs = pcs[arg_count - 1]; |
+ if (leftover_arg.IsRegister()) { |
+ Mov(Register(leftover_pcs), Register(leftover_arg)); |
+ } else { |
+ Fmov(FPRegister(leftover_pcs), FPRegister(leftover_arg)); |
+ } |
+ } |
+ |
+ if (arg_count >= 4) { |
+ Pop(pcs[0], pcs[1], pcs[2], pcs[3]); |
+ } else if (arg_count >= 2) { |
+ Pop(pcs[0], pcs[1]); |
+ } |
+ |
+ // Load the format string into x0, as per the procedure-call standard. |
+ // |
+ // To make the code as portable as possible, the format string is encoded |
+ // directly in the instruction stream. It might be cleaner to encode it in a |
+ // literal pool, but since Printf is usually used for debugging, it is |
+ // beneficial for it to be minimally dependent on other features. |
+ Label format_address; |
+ Adr(x0, &format_address); |
+ |
+ // Emit the format string directly in the instruction stream. |
+ { BlockConstPoolScope scope(this); |
+ Label after_data; |
+ B(&after_data); |
+ Bind(&format_address); |
+ EmitStringData(format); |
+ Unreachable(); |
+ Bind(&after_data); |
+ } |
+ |
+ // We don't pass any arguments on the stack, but we still need to align the C |
+ // stack pointer to a 16-byte boundary for PCS compliance. |
+ if (!csp.Is(StackPointer())) { |
+ Bic(csp, StackPointer(), 0xf); |
+ } |
+ |
+ CallPrintf(pcs[0].type()); |
+} |
+ |
+ |
+void MacroAssembler::CallPrintf(CPURegister::RegisterType type) { |
+ // A call to printf needs special handling for the simulator, since the system |
+ // printf function will use a different instruction set and the procedure-call |
+ // standard will not be compatible. |
+#ifdef USE_SIMULATOR |
+ { InstructionAccurateScope scope(this, kPrintfLength / kInstructionSize); |
+ hlt(kImmExceptionIsPrintf); |
+ dc32(type); |
+ } |
+#else |
+ Call(FUNCTION_ADDR(printf), RelocInfo::EXTERNAL_REFERENCE); |
+#endif |
+} |
+ |
+ |
+void MacroAssembler::Printf(const char * format, |
+ const CPURegister& arg0, |
+ const CPURegister& arg1, |
+ const CPURegister& arg2, |
+ const CPURegister& arg3) { |
+ // Preserve all caller-saved registers as well as NZCV. |
+ // If csp is the stack pointer, PushCPURegList asserts that the size of each |
+ // list is a multiple of 16 bytes. |
+ PushCPURegList(kCallerSaved); |
+ PushCPURegList(kCallerSavedFP); |
+ // Use Tmp0() as a scratch register. It is not accepted by Printf so it will |
+ // never overlap an argument register. |
+ Mrs(Tmp0(), NZCV); |
+ Push(Tmp0(), xzr); |
+ |
+ PrintfNoPreserve(format, arg0, arg1, arg2, arg3); |
+ |
+ Pop(xzr, Tmp0()); |
+ Msr(NZCV, Tmp0()); |
+ PopCPURegList(kCallerSavedFP); |
+ PopCPURegList(kCallerSaved); |
+} |
+ |
+ |
+void MacroAssembler::EmitFrameSetupForCodeAgePatching() { |
+ // TODO(jbramley): Other architectures use the internal memcpy to copy the |
+ // sequence. If this is a performance bottleneck, we should consider caching |
+ // the sequence and copying it in the same way. |
+ InstructionAccurateScope scope(this, kCodeAgeSequenceSize / kInstructionSize); |
+ ASSERT(jssp.Is(StackPointer())); |
+ EmitFrameSetupForCodeAgePatching(this); |
+} |
+ |
+ |
+ |
+void MacroAssembler::EmitCodeAgeSequence(Code* stub) { |
+ InstructionAccurateScope scope(this, kCodeAgeSequenceSize / kInstructionSize); |
+ ASSERT(jssp.Is(StackPointer())); |
+ EmitCodeAgeSequence(this, stub); |
+} |
+ |
+ |
+#undef __ |
+#define __ assm-> |
+ |
+ |
+void MacroAssembler::EmitFrameSetupForCodeAgePatching(Assembler * assm) { |
+ Label start; |
+ __ bind(&start); |
+ |
+ // We can do this sequence using four instructions, but the code ageing |
+ // sequence that patches it needs five, so we use the extra space to try to |
+ // simplify some addressing modes and remove some dependencies (compared to |
+ // using two stp instructions with write-back). |
+ __ sub(jssp, jssp, 4 * kXRegSizeInBytes); |
+ __ sub(csp, csp, 4 * kXRegSizeInBytes); |
+ __ stp(x1, cp, MemOperand(jssp, 0 * kXRegSizeInBytes)); |
+ __ stp(fp, lr, MemOperand(jssp, 2 * kXRegSizeInBytes)); |
+ __ add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp); |
+ |
+ __ AssertSizeOfCodeGeneratedSince(&start, kCodeAgeSequenceSize); |
+} |
+ |
+ |
+void MacroAssembler::EmitCodeAgeSequence(Assembler * assm, |
+ Code * stub) { |
+ Label start; |
+ __ bind(&start); |
+ // When the stub is called, the sequence is replaced with the young sequence |
+ // (as in EmitFrameSetupForCodeAgePatching). After the code is replaced, the |
+ // stub jumps to &start, stored in x0. The young sequence does not call the |
+ // stub so there is no infinite loop here. |
+ // |
+ // A branch (br) is used rather than a call (blr) because this code replaces |
+ // the frame setup code that would normally preserve lr. |
+ __ LoadLiteral(ip0, kCodeAgeStubEntryOffset); |
+ __ adr(x0, &start); |
+ __ br(ip0); |
+ // IsCodeAgeSequence in codegen-a64.cc assumes that the code generated up |
+ // until now (kCodeAgeStubEntryOffset) is the same for all code age sequences. |
+ __ AssertSizeOfCodeGeneratedSince(&start, kCodeAgeStubEntryOffset); |
+ if (stub) { |
+ __ dc64(reinterpret_cast<uint64_t>(stub->instruction_start())); |
+ __ AssertSizeOfCodeGeneratedSince(&start, kCodeAgeSequenceSize); |
+ } |
+} |
+ |
+ |
+bool MacroAssembler::IsYoungSequence(byte* sequence) { |
+ // Generate a young sequence to compare with. |
+ const int length = kCodeAgeSequenceSize / kInstructionSize; |
+ static bool initialized = false; |
+ static byte young[kCodeAgeSequenceSize]; |
+ if (!initialized) { |
+ PatchingAssembler patcher(young, length); |
+ // The young sequence is the frame setup code for FUNCTION code types. It is |
+ // generated by FullCodeGenerator::Generate. |
+ MacroAssembler::EmitFrameSetupForCodeAgePatching(&patcher); |
+ initialized = true; |
+ } |
+ |
+ bool is_young = (memcmp(sequence, young, kCodeAgeSequenceSize) == 0); |
+ ASSERT(is_young || IsCodeAgeSequence(sequence)); |
+ return is_young; |
+} |
+ |
+ |
+#ifdef DEBUG |
+bool MacroAssembler::IsCodeAgeSequence(byte* sequence) { |
+ // The old sequence varies depending on the code age. However, the code up |
+ // until kCodeAgeStubEntryOffset does not change, so we can check that part to |
+ // get a reasonable level of verification. |
+ const int length = kCodeAgeStubEntryOffset / kInstructionSize; |
+ static bool initialized = false; |
+ static byte old[kCodeAgeStubEntryOffset]; |
+ if (!initialized) { |
+ PatchingAssembler patcher(old, length); |
+ MacroAssembler::EmitCodeAgeSequence(&patcher, NULL); |
+ initialized = true; |
+ } |
+ return memcmp(sequence, old, kCodeAgeStubEntryOffset) == 0; |
+} |
+#endif |
+ |
+ |
+#undef __ |
+#define __ masm-> |
+ |
+ |
+void InlineSmiCheckInfo::Emit(MacroAssembler* masm, const Register& reg, |
+ const Label* smi_check) { |
+ Assembler::BlockConstPoolScope scope(masm); |
+ if (reg.IsValid()) { |
+ ASSERT(smi_check->is_bound()); |
+ ASSERT(reg.Is64Bits()); |
+ |
+ // Encode the register (x0-x30) in the lowest 5 bits, then the offset to |
+ // 'check' in the other bits. The possible offset is limited in that we |
+ // use BitField to pack the data, and the underlying data type is a |
+ // uint32_t. |
+ uint32_t delta = __ InstructionsGeneratedSince(smi_check); |
+ __ InlineData(RegisterBits::encode(reg.code()) | DeltaBits::encode(delta)); |
+ } else { |
+ ASSERT(!smi_check->is_bound()); |
+ |
+ // An offset of 0 indicates that there is no patch site. |
+ __ InlineData(0); |
+ } |
+} |
+ |
+ |
+InlineSmiCheckInfo::InlineSmiCheckInfo(Address info) |
+ : reg_(NoReg), smi_check_(NULL) { |
+ InstructionSequence* inline_data = InstructionSequence::At(info); |
+ ASSERT(inline_data->IsInlineData()); |
+ if (inline_data->IsInlineData()) { |
+ uint64_t payload = inline_data->InlineData(); |
+ // We use BitField to decode the payload, and BitField can only handle |
+ // 32-bit values. |
+ ASSERT(is_uint32(payload)); |
+ if (payload != 0) { |
+ int reg_code = RegisterBits::decode(payload); |
+ reg_ = Register::XRegFromCode(reg_code); |
+ uint64_t smi_check_delta = DeltaBits::decode(payload); |
+ ASSERT(smi_check_delta != 0); |
+ smi_check_ = inline_data - (smi_check_delta * kInstructionSize); |
+ } |
+ } |
+} |
+ |
+ |
+#undef __ |
+ |
+ |
+} } // namespace v8::internal |
+ |
+#endif // V8_TARGET_ARCH_A64 |