| Index: src/a64/macro-assembler-a64.h
|
| diff --git a/src/a64/macro-assembler-a64.h b/src/a64/macro-assembler-a64.h
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..c36a2e801612b8dd6b7ffc4de8ba2eca006aac7a
|
| --- /dev/null
|
| +++ b/src/a64/macro-assembler-a64.h
|
| @@ -0,0 +1,2192 @@
|
| +// Copyright 2013 the V8 project authors. All rights reserved.
|
| +// Redistribution and use in source and binary forms, with or without
|
| +// modification, are permitted provided that the following conditions are
|
| +// met:
|
| +//
|
| +// * Redistributions of source code must retain the above copyright
|
| +// notice, this list of conditions and the following disclaimer.
|
| +// * Redistributions in binary form must reproduce the above
|
| +// copyright notice, this list of conditions and the following
|
| +// disclaimer in the documentation and/or other materials provided
|
| +// with the distribution.
|
| +// * Neither the name of Google Inc. nor the names of its
|
| +// contributors may be used to endorse or promote products derived
|
| +// from this software without specific prior written permission.
|
| +//
|
| +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
| +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
| +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
| +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
| +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
| +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
| +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
| +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
| +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| +
|
| +#ifndef V8_A64_MACRO_ASSEMBLER_A64_H_
|
| +#define V8_A64_MACRO_ASSEMBLER_A64_H_
|
| +
|
| +#include "v8globals.h"
|
| +#include "globals.h"
|
| +
|
| +#include "a64/assembler-a64-inl.h"
|
| +
|
| +namespace v8 {
|
| +namespace internal {
|
| +
|
| +#define LS_MACRO_LIST(V) \
|
| + V(Ldrb, Register&, rt, LDRB_w) \
|
| + V(Strb, Register&, rt, STRB_w) \
|
| + V(Ldrsb, Register&, rt, rt.Is64Bits() ? LDRSB_x : LDRSB_w) \
|
| + V(Ldrh, Register&, rt, LDRH_w) \
|
| + V(Strh, Register&, rt, STRH_w) \
|
| + V(Ldrsh, Register&, rt, rt.Is64Bits() ? LDRSH_x : LDRSH_w) \
|
| + V(Ldr, CPURegister&, rt, LoadOpFor(rt)) \
|
| + V(Str, CPURegister&, rt, StoreOpFor(rt)) \
|
| + V(Ldrsw, Register&, rt, LDRSW_x)
|
| +
|
| +
|
| +// ----------------------------------------------------------------------------
|
| +// Static helper functions
|
| +
|
| +// Generate a MemOperand for loading a field from an object.
|
| +inline MemOperand FieldMemOperand(Register object, int offset);
|
| +inline MemOperand UntagSmiFieldMemOperand(Register object, int offset);
|
| +
|
| +// Generate a MemOperand for loading a SMI from memory.
|
| +inline MemOperand UntagSmiMemOperand(Register object, int offset);
|
| +
|
| +
|
| +// ----------------------------------------------------------------------------
|
| +// MacroAssembler
|
| +
|
| +enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
|
| +enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
|
| +enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
|
| +enum TargetAddressStorageMode {
|
| + CAN_INLINE_TARGET_ADDRESS,
|
| + NEVER_INLINE_TARGET_ADDRESS
|
| +};
|
| +enum UntagMode { kNotSpeculativeUntag, kSpeculativeUntag };
|
| +enum ArrayHasHoles { kArrayCantHaveHoles, kArrayCanHaveHoles };
|
| +enum CopyHint { kCopyUnknown, kCopyShort, kCopyLong };
|
| +enum DiscardMoveMode { kDontDiscardForSameWReg, kDiscardForSameWReg };
|
| +enum SeqStringSetCharCheckIndexType { kIndexIsSmi, kIndexIsInteger32 };
|
| +
|
| +class MacroAssembler : public Assembler {
|
| + public:
|
| + MacroAssembler(Isolate* isolate, byte * buffer, unsigned buffer_size);
|
| +
|
| + inline Handle<Object> CodeObject();
|
| +
|
| + // Instruction set functions ------------------------------------------------
|
| + // Logical macros.
|
| + inline void And(const Register& rd,
|
| + const Register& rn,
|
| + const Operand& operand);
|
| + inline void Ands(const Register& rd,
|
| + const Register& rn,
|
| + const Operand& operand);
|
| + inline void Bic(const Register& rd,
|
| + const Register& rn,
|
| + const Operand& operand);
|
| + inline void Bics(const Register& rd,
|
| + const Register& rn,
|
| + const Operand& operand);
|
| + inline void Orr(const Register& rd,
|
| + const Register& rn,
|
| + const Operand& operand);
|
| + inline void Orn(const Register& rd,
|
| + const Register& rn,
|
| + const Operand& operand);
|
| + inline void Eor(const Register& rd,
|
| + const Register& rn,
|
| + const Operand& operand);
|
| + inline void Eon(const Register& rd,
|
| + const Register& rn,
|
| + const Operand& operand);
|
| + inline void Tst(const Register& rn, const Operand& operand);
|
| + void LogicalMacro(const Register& rd,
|
| + const Register& rn,
|
| + const Operand& operand,
|
| + LogicalOp op);
|
| +
|
| + // Add and sub macros.
|
| + inline void Add(const Register& rd,
|
| + const Register& rn,
|
| + const Operand& operand);
|
| + inline void Adds(const Register& rd,
|
| + const Register& rn,
|
| + const Operand& operand);
|
| + inline void Sub(const Register& rd,
|
| + const Register& rn,
|
| + const Operand& operand);
|
| + inline void Subs(const Register& rd,
|
| + const Register& rn,
|
| + const Operand& operand);
|
| + inline void Cmn(const Register& rn, const Operand& operand);
|
| + inline void Cmp(const Register& rn, const Operand& operand);
|
| + inline void Neg(const Register& rd,
|
| + const Operand& operand);
|
| + inline void Negs(const Register& rd,
|
| + const Operand& operand);
|
| +
|
| + void AddSubMacro(const Register& rd,
|
| + const Register& rn,
|
| + const Operand& operand,
|
| + FlagsUpdate S,
|
| + AddSubOp op);
|
| +
|
| + // Add/sub with carry macros.
|
| + inline void Adc(const Register& rd,
|
| + const Register& rn,
|
| + const Operand& operand);
|
| + inline void Adcs(const Register& rd,
|
| + const Register& rn,
|
| + const Operand& operand);
|
| + inline void Sbc(const Register& rd,
|
| + const Register& rn,
|
| + const Operand& operand);
|
| + inline void Sbcs(const Register& rd,
|
| + const Register& rn,
|
| + const Operand& operand);
|
| + inline void Ngc(const Register& rd,
|
| + const Operand& operand);
|
| + inline void Ngcs(const Register& rd,
|
| + const Operand& operand);
|
| + void AddSubWithCarryMacro(const Register& rd,
|
| + const Register& rn,
|
| + const Operand& operand,
|
| + FlagsUpdate S,
|
| + AddSubWithCarryOp op);
|
| +
|
| + // Move macros.
|
| + void Mov(const Register& rd,
|
| + const Operand& operand,
|
| + DiscardMoveMode discard_mode = kDontDiscardForSameWReg);
|
| + void Mov(const Register& rd, uint64_t imm);
|
| + inline void Mvn(const Register& rd, uint64_t imm);
|
| + void Mvn(const Register& rd, const Operand& operand);
|
| + static bool IsImmMovn(uint64_t imm, unsigned reg_size);
|
| + static bool IsImmMovz(uint64_t imm, unsigned reg_size);
|
| + static unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size);
|
| +
|
| + // Conditional macros.
|
| + inline void Ccmp(const Register& rn,
|
| + const Operand& operand,
|
| + StatusFlags nzcv,
|
| + Condition cond);
|
| + inline void Ccmn(const Register& rn,
|
| + const Operand& operand,
|
| + StatusFlags nzcv,
|
| + Condition cond);
|
| + void ConditionalCompareMacro(const Register& rn,
|
| + const Operand& operand,
|
| + StatusFlags nzcv,
|
| + Condition cond,
|
| + ConditionalCompareOp op);
|
| + void Csel(const Register& rd,
|
| + const Register& rn,
|
| + const Operand& operand,
|
| + Condition cond);
|
| +
|
| + // Load/store macros.
|
| +#define DECLARE_FUNCTION(FN, REGTYPE, REG, OP) \
|
| + inline void FN(const REGTYPE REG, const MemOperand& addr);
|
| + LS_MACRO_LIST(DECLARE_FUNCTION)
|
| +#undef DECLARE_FUNCTION
|
| +
|
| + void LoadStoreMacro(const CPURegister& rt,
|
| + const MemOperand& addr,
|
| + LoadStoreOp op);
|
| +
|
| + // V8-specific load/store helpers.
|
| + void Load(const Register& rt, const MemOperand& addr, Representation r);
|
| + void Store(const Register& rt, const MemOperand& addr, Representation r);
|
| +
|
| + // Remaining instructions are simple pass-through calls to the assembler.
|
| + inline void Adr(const Register& rd, Label* label);
|
| + inline void Asr(const Register& rd, const Register& rn, unsigned shift);
|
| + inline void Asr(const Register& rd, const Register& rn, const Register& rm);
|
| + inline void B(Label* label);
|
| + inline void B(Condition cond, Label* label);
|
| + inline void B(Label* label, Condition cond);
|
| + inline void Bfi(const Register& rd,
|
| + const Register& rn,
|
| + unsigned lsb,
|
| + unsigned width);
|
| + inline void Bfxil(const Register& rd,
|
| + const Register& rn,
|
| + unsigned lsb,
|
| + unsigned width);
|
| + inline void Bind(Label* label);
|
| + inline void Bl(Label* label);
|
| + inline void Blr(const Register& xn);
|
| + inline void Br(const Register& xn);
|
| + inline void Brk(int code);
|
| + inline void Cbnz(const Register& rt, Label* label);
|
| + inline void Cbz(const Register& rt, Label* label);
|
| + inline void Cinc(const Register& rd, const Register& rn, Condition cond);
|
| + inline void Cinv(const Register& rd, const Register& rn, Condition cond);
|
| + inline void Cls(const Register& rd, const Register& rn);
|
| + inline void Clz(const Register& rd, const Register& rn);
|
| + inline void Cneg(const Register& rd, const Register& rn, Condition cond);
|
| + inline void CzeroX(const Register& rd, Condition cond);
|
| + inline void CmovX(const Register& rd, const Register& rn, Condition cond);
|
| + inline void Cset(const Register& rd, Condition cond);
|
| + inline void Csetm(const Register& rd, Condition cond);
|
| + inline void Csinc(const Register& rd,
|
| + const Register& rn,
|
| + const Register& rm,
|
| + Condition cond);
|
| + inline void Csinv(const Register& rd,
|
| + const Register& rn,
|
| + const Register& rm,
|
| + Condition cond);
|
| + inline void Csneg(const Register& rd,
|
| + const Register& rn,
|
| + const Register& rm,
|
| + Condition cond);
|
| + inline void Dmb(BarrierDomain domain, BarrierType type);
|
| + inline void Dsb(BarrierDomain domain, BarrierType type);
|
| + inline void Debug(const char* message, uint32_t code, Instr params = BREAK);
|
| + inline void Extr(const Register& rd,
|
| + const Register& rn,
|
| + const Register& rm,
|
| + unsigned lsb);
|
| + inline void Fabs(const FPRegister& fd, const FPRegister& fn);
|
| + inline void Fadd(const FPRegister& fd,
|
| + const FPRegister& fn,
|
| + const FPRegister& fm);
|
| + inline void Fccmp(const FPRegister& fn,
|
| + const FPRegister& fm,
|
| + StatusFlags nzcv,
|
| + Condition cond);
|
| + inline void Fcmp(const FPRegister& fn, const FPRegister& fm);
|
| + inline void Fcmp(const FPRegister& fn, double value);
|
| + inline void Fcsel(const FPRegister& fd,
|
| + const FPRegister& fn,
|
| + const FPRegister& fm,
|
| + Condition cond);
|
| + inline void Fcvt(const FPRegister& fd, const FPRegister& fn);
|
| + inline void Fcvtas(const Register& rd, const FPRegister& fn);
|
| + inline void Fcvtau(const Register& rd, const FPRegister& fn);
|
| + inline void Fcvtms(const Register& rd, const FPRegister& fn);
|
| + inline void Fcvtmu(const Register& rd, const FPRegister& fn);
|
| + inline void Fcvtns(const Register& rd, const FPRegister& fn);
|
| + inline void Fcvtnu(const Register& rd, const FPRegister& fn);
|
| + inline void Fcvtzs(const Register& rd, const FPRegister& fn);
|
| + inline void Fcvtzu(const Register& rd, const FPRegister& fn);
|
| + inline void Fdiv(const FPRegister& fd,
|
| + const FPRegister& fn,
|
| + const FPRegister& fm);
|
| + inline void Fmadd(const FPRegister& fd,
|
| + const FPRegister& fn,
|
| + const FPRegister& fm,
|
| + const FPRegister& fa);
|
| + inline void Fmax(const FPRegister& fd,
|
| + const FPRegister& fn,
|
| + const FPRegister& fm);
|
| + inline void Fmaxnm(const FPRegister& fd,
|
| + const FPRegister& fn,
|
| + const FPRegister& fm);
|
| + inline void Fmin(const FPRegister& fd,
|
| + const FPRegister& fn,
|
| + const FPRegister& fm);
|
| + inline void Fminnm(const FPRegister& fd,
|
| + const FPRegister& fn,
|
| + const FPRegister& fm);
|
| + inline void Fmov(FPRegister fd, FPRegister fn);
|
| + inline void Fmov(FPRegister fd, Register rn);
|
| + inline void Fmov(FPRegister fd, double imm);
|
| + inline void Fmov(Register rd, FPRegister fn);
|
| + inline void Fmsub(const FPRegister& fd,
|
| + const FPRegister& fn,
|
| + const FPRegister& fm,
|
| + const FPRegister& fa);
|
| + inline void Fmul(const FPRegister& fd,
|
| + const FPRegister& fn,
|
| + const FPRegister& fm);
|
| + inline void Fneg(const FPRegister& fd, const FPRegister& fn);
|
| + inline void Fnmadd(const FPRegister& fd,
|
| + const FPRegister& fn,
|
| + const FPRegister& fm,
|
| + const FPRegister& fa);
|
| + inline void Fnmsub(const FPRegister& fd,
|
| + const FPRegister& fn,
|
| + const FPRegister& fm,
|
| + const FPRegister& fa);
|
| + inline void Frinta(const FPRegister& fd, const FPRegister& fn);
|
| + inline void Frintn(const FPRegister& fd, const FPRegister& fn);
|
| + inline void Frintz(const FPRegister& fd, const FPRegister& fn);
|
| + inline void Fsqrt(const FPRegister& fd, const FPRegister& fn);
|
| + inline void Fsub(const FPRegister& fd,
|
| + const FPRegister& fn,
|
| + const FPRegister& fm);
|
| + inline void Hint(SystemHint code);
|
| + inline void Hlt(int code);
|
| + inline void Isb();
|
| + inline void Ldnp(const CPURegister& rt,
|
| + const CPURegister& rt2,
|
| + const MemOperand& src);
|
| + inline void Ldp(const CPURegister& rt,
|
| + const CPURegister& rt2,
|
| + const MemOperand& src);
|
| + inline void Ldpsw(const Register& rt,
|
| + const Register& rt2,
|
| + const MemOperand& src);
|
| + inline void Ldr(const FPRegister& ft, double imm);
|
| + inline void Ldr(const Register& rt, uint64_t imm);
|
| + inline void Lsl(const Register& rd, const Register& rn, unsigned shift);
|
| + inline void Lsl(const Register& rd, const Register& rn, const Register& rm);
|
| + inline void Lsr(const Register& rd, const Register& rn, unsigned shift);
|
| + inline void Lsr(const Register& rd, const Register& rn, const Register& rm);
|
| + inline void Madd(const Register& rd,
|
| + const Register& rn,
|
| + const Register& rm,
|
| + const Register& ra);
|
| + inline void Mneg(const Register& rd, const Register& rn, const Register& rm);
|
| + inline void Mov(const Register& rd, const Register& rm);
|
| + inline void Movk(const Register& rd, uint64_t imm, int shift = -1);
|
| + inline void Mrs(const Register& rt, SystemRegister sysreg);
|
| + inline void Msr(SystemRegister sysreg, const Register& rt);
|
| + inline void Msub(const Register& rd,
|
| + const Register& rn,
|
| + const Register& rm,
|
| + const Register& ra);
|
| + inline void Mul(const Register& rd, const Register& rn, const Register& rm);
|
| + inline void Nop() { nop(); }
|
| + inline void Rbit(const Register& rd, const Register& rn);
|
| + inline void Ret(const Register& xn = lr);
|
| + inline void Rev(const Register& rd, const Register& rn);
|
| + inline void Rev16(const Register& rd, const Register& rn);
|
| + inline void Rev32(const Register& rd, const Register& rn);
|
| + inline void Ror(const Register& rd, const Register& rs, unsigned shift);
|
| + inline void Ror(const Register& rd, const Register& rn, const Register& rm);
|
| + inline void Sbfiz(const Register& rd,
|
| + const Register& rn,
|
| + unsigned lsb,
|
| + unsigned width);
|
| + inline void Sbfx(const Register& rd,
|
| + const Register& rn,
|
| + unsigned lsb,
|
| + unsigned width);
|
| + inline void Scvtf(const FPRegister& fd,
|
| + const Register& rn,
|
| + unsigned fbits = 0);
|
| + inline void Sdiv(const Register& rd, const Register& rn, const Register& rm);
|
| + inline void Smaddl(const Register& rd,
|
| + const Register& rn,
|
| + const Register& rm,
|
| + const Register& ra);
|
| + inline void Smsubl(const Register& rd,
|
| + const Register& rn,
|
| + const Register& rm,
|
| + const Register& ra);
|
| + inline void Smull(const Register& rd,
|
| + const Register& rn,
|
| + const Register& rm);
|
| + inline void Smulh(const Register& rd,
|
| + const Register& rn,
|
| + const Register& rm);
|
| + inline void Stnp(const CPURegister& rt,
|
| + const CPURegister& rt2,
|
| + const MemOperand& dst);
|
| + inline void Stp(const CPURegister& rt,
|
| + const CPURegister& rt2,
|
| + const MemOperand& dst);
|
| + inline void Sxtb(const Register& rd, const Register& rn);
|
| + inline void Sxth(const Register& rd, const Register& rn);
|
| + inline void Sxtw(const Register& rd, const Register& rn);
|
| + inline void Tbnz(const Register& rt, unsigned bit_pos, Label* label);
|
| + inline void Tbz(const Register& rt, unsigned bit_pos, Label* label);
|
| + inline void Ubfiz(const Register& rd,
|
| + const Register& rn,
|
| + unsigned lsb,
|
| + unsigned width);
|
| + inline void Ubfx(const Register& rd,
|
| + const Register& rn,
|
| + unsigned lsb,
|
| + unsigned width);
|
| + inline void Ucvtf(const FPRegister& fd,
|
| + const Register& rn,
|
| + unsigned fbits = 0);
|
| + inline void Udiv(const Register& rd, const Register& rn, const Register& rm);
|
| + inline void Umaddl(const Register& rd,
|
| + const Register& rn,
|
| + const Register& rm,
|
| + const Register& ra);
|
| + inline void Umsubl(const Register& rd,
|
| + const Register& rn,
|
| + const Register& rm,
|
| + const Register& ra);
|
| + inline void Unreachable();
|
| + inline void Uxtb(const Register& rd, const Register& rn);
|
| + inline void Uxth(const Register& rd, const Register& rn);
|
| + inline void Uxtw(const Register& rd, const Register& rn);
|
| +
|
| + // Pseudo-instructions ------------------------------------------------------
|
| +
|
| + // Compute rd = abs(rm).
|
| + // This function clobbers the condition flags.
|
| + //
|
| + // If rm is the minimum representable value, the result is not representable.
|
| + // Handlers for each case can be specified using the relevant labels.
|
| + void Abs(const Register& rd, const Register& rm,
|
| + Label * is_not_representable = NULL,
|
| + Label * is_representable = NULL);
|
| +
|
| + // Push or pop up to 4 registers of the same width to or from the stack,
|
| + // using the current stack pointer as set by SetStackPointer.
|
| + //
|
| + // If an argument register is 'NoReg', all further arguments are also assumed
|
| + // to be 'NoReg', and are thus not pushed or popped.
|
| + //
|
| + // Arguments are ordered such that "Push(a, b);" is functionally equivalent
|
| + // to "Push(a); Push(b);".
|
| + //
|
| + // It is valid to push the same register more than once, and there is no
|
| + // restriction on the order in which registers are specified.
|
| + //
|
| + // It is not valid to pop into the same register more than once in one
|
| + // operation, not even into the zero register.
|
| + //
|
| + // If the current stack pointer (as set by SetStackPointer) is csp, then it
|
| + // must be aligned to 16 bytes on entry and the total size of the specified
|
| + // registers must also be a multiple of 16 bytes.
|
| + //
|
| + // Even if the current stack pointer is not the system stack pointer (csp),
|
| + // Push (and derived methods) will still modify the system stack pointer in
|
| + // order to comply with ABI rules about accessing memory below the system
|
| + // stack pointer.
|
| + //
|
| + // Other than the registers passed into Pop, the stack pointer and (possibly)
|
| + // the system stack pointer, these methods do not modify any other registers.
|
| + // Scratch registers such as Tmp0() and Tmp1() are preserved.
|
| + void Push(const CPURegister& src0, const CPURegister& src1 = NoReg,
|
| + const CPURegister& src2 = NoReg, const CPURegister& src3 = NoReg);
|
| + void Pop(const CPURegister& dst0, const CPURegister& dst1 = NoReg,
|
| + const CPURegister& dst2 = NoReg, const CPURegister& dst3 = NoReg);
|
| +
|
| + // Alternative forms of Push and Pop, taking a RegList or CPURegList that
|
| + // specifies the registers that are to be pushed or popped. Higher-numbered
|
| + // registers are associated with higher memory addresses (as in the A32 push
|
| + // and pop instructions).
|
| + //
|
| + // (Push|Pop)SizeRegList allow you to specify the register size as a
|
| + // parameter. Only kXRegSize, kWRegSize, kDRegSize and kSRegSize are
|
| + // supported.
|
| + //
|
| + // Otherwise, (Push|Pop)(CPU|X|W|D|S)RegList is preferred.
|
| + void PushCPURegList(CPURegList registers);
|
| + void PopCPURegList(CPURegList registers);
|
| +
|
| + inline void PushSizeRegList(RegList registers, unsigned reg_size,
|
| + CPURegister::RegisterType type = CPURegister::kRegister) {
|
| + PushCPURegList(CPURegList(type, reg_size, registers));
|
| + }
|
| + inline void PopSizeRegList(RegList registers, unsigned reg_size,
|
| + CPURegister::RegisterType type = CPURegister::kRegister) {
|
| + PopCPURegList(CPURegList(type, reg_size, registers));
|
| + }
|
| + inline void PushXRegList(RegList regs) {
|
| + PushSizeRegList(regs, kXRegSize);
|
| + }
|
| + inline void PopXRegList(RegList regs) {
|
| + PopSizeRegList(regs, kXRegSize);
|
| + }
|
| + inline void PushWRegList(RegList regs) {
|
| + PushSizeRegList(regs, kWRegSize);
|
| + }
|
| + inline void PopWRegList(RegList regs) {
|
| + PopSizeRegList(regs, kWRegSize);
|
| + }
|
| + inline void PushDRegList(RegList regs) {
|
| + PushSizeRegList(regs, kDRegSize, CPURegister::kFPRegister);
|
| + }
|
| + inline void PopDRegList(RegList regs) {
|
| + PopSizeRegList(regs, kDRegSize, CPURegister::kFPRegister);
|
| + }
|
| + inline void PushSRegList(RegList regs) {
|
| + PushSizeRegList(regs, kSRegSize, CPURegister::kFPRegister);
|
| + }
|
| + inline void PopSRegList(RegList regs) {
|
| + PopSizeRegList(regs, kSRegSize, CPURegister::kFPRegister);
|
| + }
|
| +
|
| + // Push the specified register 'count' times.
|
| + void PushMultipleTimes(int count, Register src);
|
| +
|
| + // This is a convenience method for pushing a single Handle<Object>.
|
| + inline void Push(Handle<Object> handle);
|
| + void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
|
| +
|
| + // Aliases of Push and Pop, required for V8 compatibility.
|
| + inline void push(Register src) {
|
| + Push(src);
|
| + }
|
| + inline void pop(Register dst) {
|
| + Pop(dst);
|
| + }
|
| +
|
| + // Poke 'src' onto the stack. The offset is in bytes.
|
| + //
|
| + // If the current stack pointer (according to StackPointer()) is csp, then
|
| + // csp must be aligned to 16 bytes.
|
| + void Poke(const CPURegister& src, const Operand& offset);
|
| +
|
| + // Peek at a value on the stack, and put it in 'dst'. The offset is in bytes.
|
| + //
|
| + // If the current stack pointer (according to StackPointer()) is csp, then
|
| + // csp must be aligned to 16 bytes.
|
| + void Peek(const CPURegister& dst, const Operand& offset);
|
| +
|
| + // Poke 'src1' and 'src2' onto the stack. The values written will be adjacent
|
| + // with 'src2' at a higher address than 'src1'. The offset is in bytes.
|
| + //
|
| + // If the current stack pointer (according to StackPointer()) is csp, then
|
| + // csp must be aligned to 16 bytes.
|
| + void PokePair(const CPURegister& src1, const CPURegister& src2, int offset);
|
| +
|
| + // Peek at two values on the stack, and put them in 'dst1' and 'dst2'. The
|
| + // values peeked will be adjacent, with the value in 'dst2' being from a
|
| + // higher address than 'dst1'. The offset is in bytes.
|
| + //
|
| + // If the current stack pointer (according to StackPointer()) is csp, then
|
| + // csp must be aligned to 16 bytes.
|
| + void PeekPair(const CPURegister& dst1, const CPURegister& dst2, int offset);
|
| +
|
| + // Claim or drop stack space without actually accessing memory.
|
| + //
|
| + // In debug mode, both of these will write invalid data into the claimed or
|
| + // dropped space.
|
| + //
|
| + // If the current stack pointer (according to StackPointer()) is csp, then it
|
| + // must be aligned to 16 bytes and the size claimed or dropped must be a
|
| + // multiple of 16 bytes.
|
| + //
|
| + // Note that unit_size must be specified in bytes. For variants which take a
|
| + // Register count, the unit size must be a power of two.
|
| + inline void Claim(uint64_t count, uint64_t unit_size = kXRegSizeInBytes);
|
| + inline void Claim(const Register& count,
|
| + uint64_t unit_size = kXRegSizeInBytes);
|
| + inline void Drop(uint64_t count, uint64_t unit_size = kXRegSizeInBytes);
|
| + inline void Drop(const Register& count,
|
| + uint64_t unit_size = kXRegSizeInBytes);
|
| +
|
| + // Variants of Claim and Drop, where the 'count' parameter is a SMI held in a
|
| + // register.
|
| + inline void ClaimBySMI(const Register& count_smi,
|
| + uint64_t unit_size = kXRegSizeInBytes);
|
| + inline void DropBySMI(const Register& count_smi,
|
| + uint64_t unit_size = kXRegSizeInBytes);
|
| +
|
| + // Compare a register with an operand, and branch to label depending on the
|
| + // condition. May corrupt the status flags.
|
| + inline void CompareAndBranch(const Register& lhs,
|
| + const Operand& rhs,
|
| + Condition cond,
|
| + Label* label);
|
| +
|
| + // Test the bits of register defined by bit_pattern, and branch if ANY of
|
| + // those bits are set. May corrupt the status flags.
|
| + inline void TestAndBranchIfAnySet(const Register& reg,
|
| + const uint64_t bit_pattern,
|
| + Label* label);
|
| +
|
| + // Test the bits of register defined by bit_pattern, and branch if ALL of
|
| + // those bits are clear (ie. not set.) May corrupt the status flags.
|
| + inline void TestAndBranchIfAllClear(const Register& reg,
|
| + const uint64_t bit_pattern,
|
| + Label* label);
|
| +
|
| + // Insert one or more instructions into the instruction stream that encode
|
| + // some caller-defined data. The instructions used will be executable with no
|
| + // side effects.
|
| + inline void InlineData(uint64_t data);
|
| +
|
| + // Insert an instrumentation enable marker into the instruction stream.
|
| + inline void EnableInstrumentation();
|
| +
|
| + // Insert an instrumentation disable marker into the instruction stream.
|
| + inline void DisableInstrumentation();
|
| +
|
| + // Insert an instrumentation event marker into the instruction stream. These
|
| + // will be picked up by the instrumentation system to annotate an instruction
|
| + // profile. The argument marker_name must be a printable two character string;
|
| + // it will be encoded in the event marker.
|
| + inline void AnnotateInstrumentation(const char* marker_name);
|
| +
|
| + // If emit_debug_code() is true, emit a run-time check to ensure that
|
| + // StackPointer() does not point below the system stack pointer.
|
| + //
|
| + // Whilst it is architecturally legal for StackPointer() to point below csp,
|
| + // it can be evidence of a potential bug because the ABI forbids accesses
|
| + // below csp.
|
| + //
|
| + // If emit_debug_code() is false, this emits no code.
|
| + //
|
| + // If StackPointer() is the system stack pointer, this emits no code.
|
| + void AssertStackConsistency();
|
| +
|
| + // Preserve the callee-saved registers (as defined by AAPCS64).
|
| + //
|
| + // Higher-numbered registers are pushed before lower-numbered registers, and
|
| + // thus get higher addresses.
|
| + // Floating-point registers are pushed before general-purpose registers, and
|
| + // thus get higher addresses.
|
| + //
|
| + // Note that registers are not checked for invalid values. Use this method
|
| + // only if you know that the GC won't try to examine the values on the stack.
|
| + //
|
| + // This method must not be called unless the current stack pointer (as set by
|
| + // SetStackPointer) is the system stack pointer (csp), and is aligned to
|
| + // ActivationFrameAlignment().
|
| + void PushCalleeSavedRegisters();
|
| +
|
| + // Restore the callee-saved registers (as defined by AAPCS64).
|
| + //
|
| + // Higher-numbered registers are popped after lower-numbered registers, and
|
| + // thus come from higher addresses.
|
| + // Floating-point registers are popped after general-purpose registers, and
|
| + // thus come from higher addresses.
|
| + //
|
| + // This method must not be called unless the current stack pointer (as set by
|
| + // SetStackPointer) is the system stack pointer (csp), and is aligned to
|
| + // ActivationFrameAlignment().
|
| + void PopCalleeSavedRegisters();
|
| +
|
| + // Set the current stack pointer, but don't generate any code.
|
| + inline void SetStackPointer(const Register& stack_pointer) {
|
| + ASSERT(!AreAliased(stack_pointer, Tmp0(), Tmp1()));
|
| + sp_ = stack_pointer;
|
| + }
|
| +
|
| + // Return the current stack pointer, as set by SetStackPointer.
|
| + inline const Register& StackPointer() const {
|
| + return sp_;
|
| + }
|
| +
|
| + // Align csp for a frame, as per ActivationFrameAlignment, and make it the
|
| + // current stack pointer.
|
| + inline void AlignAndSetCSPForFrame() {
|
| + int sp_alignment = ActivationFrameAlignment();
|
| + // AAPCS64 mandates at least 16-byte alignment.
|
| + ASSERT(sp_alignment >= 16);
|
| + ASSERT(IsPowerOf2(sp_alignment));
|
| + Bic(csp, StackPointer(), sp_alignment - 1);
|
| + SetStackPointer(csp);
|
| + }
|
| +
|
| + // Push the system stack pointer (csp) down to allow the same to be done to
|
| + // the current stack pointer (according to StackPointer()). This must be
|
| + // called _before_ accessing the memory.
|
| + //
|
| + // This is necessary when pushing or otherwise adding things to the stack, to
|
| + // satisfy the AAPCS64 constraint that the memory below the system stack
|
| + // pointer is not accessed.
|
| + //
|
| + // This method asserts that StackPointer() is not csp, since the call does
|
| + // not make sense in that context.
|
| + //
|
| + // TODO(jbramley): Currently, this method can only accept values of 'space'
|
| + // that can be encoded in one instruction. Refer to the implementation for
|
| + // details.
|
| + inline void BumpSystemStackPointer(const Operand& space);
|
| +
|
| + // Helpers ------------------------------------------------------------------
|
| + // Root register.
|
| + inline void InitializeRootRegister();
|
| +
|
| + // Load an object from the root table.
|
| + void LoadRoot(Register destination,
|
| + Heap::RootListIndex index);
|
| + // Store an object to the root table.
|
| + void StoreRoot(Register source,
|
| + Heap::RootListIndex index);
|
| +
|
| + // Load both TrueValue and FalseValue roots.
|
| + void LoadTrueFalseRoots(Register true_root, Register false_root);
|
| +
|
| + void LoadHeapObject(Register dst, Handle<HeapObject> object);
|
| +
|
| + void LoadObject(Register result, Handle<Object> object) {
|
| + AllowDeferredHandleDereference heap_object_check;
|
| + if (object->IsHeapObject()) {
|
| + LoadHeapObject(result, Handle<HeapObject>::cast(object));
|
| + } else {
|
| + ASSERT(object->IsSmi());
|
| + Mov(result, Operand(object));
|
| + }
|
| + }
|
| +
|
| + static int SafepointRegisterStackIndex(int reg_code);
|
| +
|
| + // This is required for compatibility with architecture independant code.
|
| + // Remove if not needed.
|
| + inline void Move(Register dst, Register src) { Mov(dst, src); }
|
| +
|
| + void LoadInstanceDescriptors(Register map,
|
| + Register descriptors);
|
| + void EnumLengthUntagged(Register dst, Register map);
|
| + void EnumLengthSmi(Register dst, Register map);
|
| + void NumberOfOwnDescriptors(Register dst, Register map);
|
| +
|
| + template<typename Field>
|
| + void DecodeField(Register reg) {
|
| + static const uint64_t shift = Field::kShift + kSmiShift;
|
| + static const uint64_t setbits = CountSetBits(Field::kMask, 32);
|
| + Ubfx(reg, reg, shift, setbits);
|
| + }
|
| +
|
| + // ---- SMI and Number Utilities ----
|
| +
|
| + inline void SmiTag(Register dst, Register src);
|
| + inline void SmiTag(Register smi);
|
| + inline void SmiUntag(Register dst, Register src);
|
| + inline void SmiUntag(Register smi);
|
| + inline void SmiUntagToDouble(FPRegister dst,
|
| + Register src,
|
| + UntagMode mode = kNotSpeculativeUntag);
|
| + inline void SmiUntagToFloat(FPRegister dst,
|
| + Register src,
|
| + UntagMode mode = kNotSpeculativeUntag);
|
| +
|
| + // Compute the absolute value of 'smi' and leave the result in 'smi'
|
| + // register. If 'smi' is the most negative SMI, the absolute value cannot
|
| + // be represented as a SMI and a jump to 'slow' is done.
|
| + void SmiAbs(const Register& smi, Label* slow);
|
| +
|
| + inline void JumpIfSmi(Register value,
|
| + Label* smi_label,
|
| + Label* not_smi_label = NULL);
|
| + inline void JumpIfNotSmi(Register value, Label* not_smi_label);
|
| + inline void JumpIfBothSmi(Register value1,
|
| + Register value2,
|
| + Label* both_smi_label,
|
| + Label* not_smi_label = NULL);
|
| + inline void JumpIfEitherSmi(Register value1,
|
| + Register value2,
|
| + Label* either_smi_label,
|
| + Label* not_smi_label = NULL);
|
| + inline void JumpIfEitherNotSmi(Register value1,
|
| + Register value2,
|
| + Label* not_smi_label);
|
| + inline void JumpIfBothNotSmi(Register value1,
|
| + Register value2,
|
| + Label* not_smi_label);
|
| +
|
| + // Abort execution if argument is a smi, enabled via --debug-code.
|
| + void AssertNotSmi(Register object, BailoutReason reason = kOperandIsASmi);
|
| + void AssertSmi(Register object, BailoutReason reason = kOperandIsNotASmi);
|
| +
|
| + // Abort execution if argument is not a name, enabled via --debug-code.
|
| + void AssertName(Register object);
|
| +
|
| + // Abort execution if argument is not a string, enabled via --debug-code.
|
| + void AssertString(Register object);
|
| +
|
| + void JumpForHeapNumber(Register object,
|
| + Register heap_number_map,
|
| + Label* on_heap_number,
|
| + Label* on_not_heap_number = NULL);
|
| + void JumpIfHeapNumber(Register object,
|
| + Label* on_heap_number,
|
| + Register heap_number_map = NoReg);
|
| + void JumpIfNotHeapNumber(Register object,
|
| + Label* on_not_heap_number,
|
| + Register heap_number_map = NoReg);
|
| +
|
| + // Jump to label if the input double register contains -0.0.
|
| + void JumpIfMinusZero(DoubleRegister input, Label* on_negative_zero);
|
| +
|
| + // Generate code to do a lookup in the number string cache. If the number in
|
| + // the register object is found in the cache the generated code falls through
|
| + // with the result in the result register. The object and the result register
|
| + // can be the same. If the number is not found in the cache the code jumps to
|
| + // the label not_found with only the content of register object unchanged.
|
| + void LookupNumberStringCache(Register object,
|
| + Register result,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Register scratch3,
|
| + Label* not_found);
|
| +
|
| + // Saturate a signed 32-bit integer in input to an unsigned 8-bit integer in
|
| + // output.
|
| + void ClampInt32ToUint8(Register in_out);
|
| + void ClampInt32ToUint8(Register output, Register input);
|
| +
|
| + // Saturate a double in input to an unsigned 8-bit integer in output.
|
| + void ClampDoubleToUint8(Register output,
|
| + DoubleRegister input,
|
| + DoubleRegister dbl_scratch);
|
| +
|
| + // Try to convert a double to a signed 32-bit int.
|
| + // This succeeds if the result compares equal to the input, so inputs of -0.0
|
| + // are converted to 0 and handled as a success.
|
| + void TryConvertDoubleToInt32(Register as_int,
|
| + FPRegister value,
|
| + FPRegister scratch_d,
|
| + Label* on_successful_conversion,
|
| + Label* on_failed_conversion = NULL) {
|
| + ASSERT(as_int.Is32Bits());
|
| + TryConvertDoubleToInt(as_int, value, scratch_d, on_successful_conversion,
|
| + on_failed_conversion);
|
| + }
|
| +
|
| + // Try to convert a double to a signed 64-bit int.
|
| + // This succeeds if the result compares equal to the input, so inputs of -0.0
|
| + // are converted to 0 and handled as a success.
|
| + void TryConvertDoubleToInt64(Register as_int,
|
| + FPRegister value,
|
| + FPRegister scratch_d,
|
| + Label* on_successful_conversion,
|
| + Label* on_failed_conversion = NULL) {
|
| + ASSERT(as_int.Is64Bits());
|
| + TryConvertDoubleToInt(as_int, value, scratch_d, on_successful_conversion,
|
| + on_failed_conversion);
|
| + }
|
| +
|
| + // ---- Object Utilities ----
|
| +
|
| + // Copy fields from 'src' to 'dst', where both are tagged objects.
|
| + // The 'temps' list is a list of X registers which can be used for scratch
|
| + // values. The temps list must include at least one register, and it must not
|
| + // contain Tmp0() or Tmp1().
|
| + //
|
| + // Currently, CopyFields cannot make use of more than three registers from
|
| + // the 'temps' list.
|
| + //
|
| + // As with several MacroAssembler methods, Tmp0() and Tmp1() will be used.
|
| + void CopyFields(Register dst, Register src, CPURegList temps, unsigned count);
|
| +
|
| + // Copies a number of bytes from src to dst. All passed registers are
|
| + // clobbered. On exit src and dst will point to the place just after where the
|
| + // last byte was read or written and length will be zero. Hint may be used to
|
| + // determine which is the most efficient algorithm to use for copying.
|
| + void CopyBytes(Register dst,
|
| + Register src,
|
| + Register length,
|
| + Register scratch,
|
| + CopyHint hint = kCopyUnknown);
|
| +
|
| + // Initialize fields with filler values. Fields starting at start_offset not
|
| + // including end_offset are overwritten with the value in filler. At the end
|
| + // of the loop, start_offset takes the value of end_offset.
|
| + void InitializeFieldsWithFiller(Register start_offset,
|
| + Register end_offset,
|
| + Register filler);
|
| +
|
| + // ---- String Utilities ----
|
| +
|
| +
|
| + // Jump to label if either object is not a sequential ASCII string.
|
| + // Optionally perform a smi check on the objects first.
|
| + void JumpIfEitherIsNotSequentialAsciiStrings(
|
| + Register first,
|
| + Register second,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Label* failure,
|
| + SmiCheckType smi_check = DO_SMI_CHECK);
|
| +
|
| + // Check if instance type is sequential ASCII string and jump to label if
|
| + // it is not.
|
| + void JumpIfInstanceTypeIsNotSequentialAscii(Register type,
|
| + Register scratch,
|
| + Label* failure);
|
| +
|
| + // Checks if both instance types are sequential ASCII strings and jumps to
|
| + // label if either is not.
|
| + void JumpIfEitherInstanceTypeIsNotSequentialAscii(
|
| + Register first_object_instance_type,
|
| + Register second_object_instance_type,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Label* failure);
|
| +
|
| + // Checks if both instance types are sequential ASCII strings and jumps to
|
| + // label if either is not.
|
| + void JumpIfBothInstanceTypesAreNotSequentialAscii(
|
| + Register first_object_instance_type,
|
| + Register second_object_instance_type,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Label* failure);
|
| +
|
| + void JumpIfNotUniqueName(Register type, Label* not_unique_name);
|
| +
|
| + // ---- Calling / Jumping helpers ----
|
| +
|
| + // This is required for compatibility in architecture indepenedant code.
|
| + inline void jmp(Label* L) { B(L); }
|
| +
|
| + // Passes thrown value to the handler of top of the try handler chain.
|
| + // Register value must be x0.
|
| + void Throw(Register value,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Register scratch3,
|
| + Register scratch4);
|
| +
|
| + // Propagates an uncatchable exception to the top of the current JS stack's
|
| + // handler chain. Register value must be x0.
|
| + void ThrowUncatchable(Register value,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Register scratch3,
|
| + Register scratch4);
|
| +
|
| + // Throw a message string as an exception.
|
| + void Throw(BailoutReason reason);
|
| +
|
| + // Throw a message string as an exception if a condition is not true.
|
| + void ThrowIf(Condition cc, BailoutReason reason);
|
| +
|
| + // Throw a message string as an exception if the value is a smi.
|
| + void ThrowIfSmi(const Register& value, BailoutReason reason);
|
| +
|
| + void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
|
| + void TailCallStub(CodeStub* stub);
|
| +
|
| + void CallRuntime(const Runtime::Function* f,
|
| + int num_arguments,
|
| + SaveFPRegsMode save_doubles = kDontSaveFPRegs);
|
| +
|
| + void CallRuntime(Runtime::FunctionId id,
|
| + int num_arguments,
|
| + SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
|
| + CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles);
|
| + }
|
| +
|
| + // TODO(all): Why does this variant save FP regs unconditionally?
|
| + void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
|
| + const Runtime::Function* function = Runtime::FunctionForId(id);
|
| + CallRuntime(function, function->nargs, kSaveFPRegs);
|
| + }
|
| +
|
| + void TailCallRuntime(Runtime::FunctionId fid,
|
| + int num_arguments,
|
| + int result_size);
|
| +
|
| + int ActivationFrameAlignment();
|
| +
|
| + // Calls a C function.
|
| + // The called function is not allowed to trigger a
|
| + // garbage collection, since that might move the code and invalidate the
|
| + // return address (unless this is somehow accounted for by the called
|
| + // function).
|
| + void CallCFunction(ExternalReference function,
|
| + int num_reg_arguments);
|
| + void CallCFunction(ExternalReference function,
|
| + int num_reg_arguments,
|
| + int num_double_arguments);
|
| + void CallCFunction(Register function,
|
| + int num_reg_arguments,
|
| + int num_double_arguments);
|
| +
|
| + // Calls an API function. Allocates HandleScope, extracts returned value
|
| + // from handle and propagates exceptions.
|
| + // 'stack_space' is the space to be unwound on exit (includes the call JS
|
| + // arguments space and the additional space allocated for the fast call).
|
| + // 'spill_offset' is the offset from the stack pointer where
|
| + // CallApiFunctionAndReturn can spill registers.
|
| + void CallApiFunctionAndReturn(Register function_address,
|
| + ExternalReference thunk_ref,
|
| + int stack_space,
|
| + int spill_offset,
|
| + MemOperand return_value_operand,
|
| + MemOperand* context_restore_operand);
|
| +
|
| + // The number of register that CallApiFunctionAndReturn will need to save on
|
| + // the stack. The space for these registers need to be allocated in the
|
| + // ExitFrame before calling CallApiFunctionAndReturn.
|
| + static const int kCallApiFunctionSpillSpace = 4;
|
| +
|
| + // Jump to a runtime routine.
|
| + void JumpToExternalReference(const ExternalReference& builtin);
|
| + // Tail call of a runtime routine (jump).
|
| + // Like JumpToExternalReference, but also takes care of passing the number
|
| + // of parameters.
|
| + void TailCallExternalReference(const ExternalReference& ext,
|
| + int num_arguments,
|
| + int result_size);
|
| + void CallExternalReference(const ExternalReference& ext,
|
| + int num_arguments);
|
| +
|
| +
|
| + // Invoke specified builtin JavaScript function. Adds an entry to
|
| + // the unresolved list if the name does not resolve.
|
| + void InvokeBuiltin(Builtins::JavaScript id,
|
| + InvokeFlag flag,
|
| + const CallWrapper& call_wrapper = NullCallWrapper());
|
| +
|
| + // Store the code object for the given builtin in the target register and
|
| + // setup the function in x1.
|
| + // TODO(all): Can we use another register than x1?
|
| + void GetBuiltinEntry(Register target, Builtins::JavaScript id);
|
| +
|
| + // Store the function for the given builtin in the target register.
|
| + void GetBuiltinFunction(Register target, Builtins::JavaScript id);
|
| +
|
| + void Jump(Register target);
|
| + void Jump(Address target, RelocInfo::Mode rmode);
|
| + void Jump(Handle<Code> code, RelocInfo::Mode rmode);
|
| + void Jump(intptr_t target, RelocInfo::Mode rmode);
|
| +
|
| + void Call(Register target);
|
| + void Call(Label* target);
|
| + void Call(Address target, RelocInfo::Mode rmode);
|
| + void Call(Handle<Code> code,
|
| + RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
|
| + TypeFeedbackId ast_id = TypeFeedbackId::None());
|
| +
|
| + // For every Call variant, there is a matching CallSize function that returns
|
| + // the size (in bytes) of the call sequence.
|
| + static int CallSize(Register target);
|
| + static int CallSize(Label* target);
|
| + static int CallSize(Address target, RelocInfo::Mode rmode);
|
| + static int CallSize(Handle<Code> code,
|
| + RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
|
| + TypeFeedbackId ast_id = TypeFeedbackId::None());
|
| +
|
| + // Registers used through the invocation chain are hard-coded.
|
| + // We force passing the parameters to ensure the contracts are correctly
|
| + // honoured by the caller.
|
| + // 'function' must be x1.
|
| + // 'actual' must use an immediate or x0.
|
| + // 'expected' must use an immediate or x2.
|
| + // 'call_kind' must be x5.
|
| + void InvokePrologue(const ParameterCount& expected,
|
| + const ParameterCount& actual,
|
| + Handle<Code> code_constant,
|
| + Register code_reg,
|
| + Label* done,
|
| + InvokeFlag flag,
|
| + bool* definitely_mismatches,
|
| + const CallWrapper& call_wrapper);
|
| + void InvokeCode(Register code,
|
| + const ParameterCount& expected,
|
| + const ParameterCount& actual,
|
| + InvokeFlag flag,
|
| + const CallWrapper& call_wrapper);
|
| + // Invoke the JavaScript function in the given register.
|
| + // Changes the current context to the context in the function before invoking.
|
| + void InvokeFunction(Register function,
|
| + const ParameterCount& actual,
|
| + InvokeFlag flag,
|
| + const CallWrapper& call_wrapper);
|
| + void InvokeFunction(Register function,
|
| + const ParameterCount& expected,
|
| + const ParameterCount& actual,
|
| + InvokeFlag flag,
|
| + const CallWrapper& call_wrapper);
|
| + void InvokeFunction(Handle<JSFunction> function,
|
| + const ParameterCount& expected,
|
| + const ParameterCount& actual,
|
| + InvokeFlag flag,
|
| + const CallWrapper& call_wrapper);
|
| +
|
| +
|
| + // ---- Floating point helpers ----
|
| +
|
| + enum ECMA262ToInt32Result {
|
| + // Provide an untagged int32_t which can be read using result.W(). That is,
|
| + // the upper 32 bits of result are undefined.
|
| + INT32_IN_W,
|
| +
|
| + // Provide an untagged int32_t which can be read using the 64-bit result
|
| + // register. The int32_t result is sign-extended.
|
| + INT32_IN_X,
|
| +
|
| + // Tag the int32_t result as a smi.
|
| + SMI
|
| + };
|
| +
|
| + // Applies ECMA-262 ToInt32 (see section 9.5) to a double value.
|
| + void ECMA262ToInt32(Register result,
|
| + DoubleRegister input,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + ECMA262ToInt32Result format = INT32_IN_X);
|
| +
|
| + // As ECMA262ToInt32, but operate on a HeapNumber.
|
| + void HeapNumberECMA262ToInt32(Register result,
|
| + Register heap_number,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + DoubleRegister double_scratch,
|
| + ECMA262ToInt32Result format = INT32_IN_X);
|
| +
|
| + // ---- Code generation helpers ----
|
| +
|
| + void set_generating_stub(bool value) { generating_stub_ = value; }
|
| + bool generating_stub() const { return generating_stub_; }
|
| +#if DEBUG
|
| + void set_allow_macro_instructions(bool value) {
|
| + allow_macro_instructions_ = value;
|
| + }
|
| + bool allow_macro_instructions() const { return allow_macro_instructions_; }
|
| +#endif
|
| + bool use_real_aborts() const { return use_real_aborts_; }
|
| + void set_has_frame(bool value) { has_frame_ = value; }
|
| + bool has_frame() const { return has_frame_; }
|
| + bool AllowThisStubCall(CodeStub* stub);
|
| +
|
| + class NoUseRealAbortsScope {
|
| + public:
|
| + explicit NoUseRealAbortsScope(MacroAssembler* masm) :
|
| + saved_(masm->use_real_aborts_), masm_(masm) {
|
| + masm_->use_real_aborts_ = false;
|
| + }
|
| + ~NoUseRealAbortsScope() {
|
| + masm_->use_real_aborts_ = saved_;
|
| + }
|
| + private:
|
| + bool saved_;
|
| + MacroAssembler* masm_;
|
| + };
|
| +
|
| +#ifdef ENABLE_DEBUGGER_SUPPORT
|
| + // ---------------------------------------------------------------------------
|
| + // Debugger Support
|
| +
|
| + void DebugBreak();
|
| +#endif
|
| + // ---------------------------------------------------------------------------
|
| + // Exception handling
|
| +
|
| + // Push a new try handler and link into try handler chain.
|
| + void PushTryHandler(StackHandler::Kind kind, int handler_index);
|
| +
|
| + // Unlink the stack handler on top of the stack from the try handler chain.
|
| + // Must preserve the result register.
|
| + void PopTryHandler();
|
| +
|
| +
|
| + // ---------------------------------------------------------------------------
|
| + // Allocation support
|
| +
|
| + // Allocate an object in new space or old pointer space. The object_size is
|
| + // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
|
| + // is passed. The allocated object is returned in result.
|
| + //
|
| + // If the new space is exhausted control continues at the gc_required label.
|
| + // In this case, the result and scratch registers may still be clobbered.
|
| + // If flags includes TAG_OBJECT, the result is tagged as as a heap object.
|
| + void Allocate(Register object_size,
|
| + Register result,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Label* gc_required,
|
| + AllocationFlags flags);
|
| +
|
| + void Allocate(int object_size,
|
| + Register result,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Label* gc_required,
|
| + AllocationFlags flags);
|
| +
|
| + // Undo allocation in new space. The object passed and objects allocated after
|
| + // it will no longer be allocated. The caller must make sure that no pointers
|
| + // are left to the object(s) no longer allocated as they would be invalid when
|
| + // allocation is undone.
|
| + void UndoAllocationInNewSpace(Register object, Register scratch);
|
| +
|
| + void AllocateTwoByteString(Register result,
|
| + Register length,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Register scratch3,
|
| + Label* gc_required);
|
| + void AllocateAsciiString(Register result,
|
| + Register length,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Register scratch3,
|
| + Label* gc_required);
|
| + void AllocateTwoByteConsString(Register result,
|
| + Register length,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Label* gc_required);
|
| + void AllocateAsciiConsString(Register result,
|
| + Register length,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Label* gc_required);
|
| + void AllocateTwoByteSlicedString(Register result,
|
| + Register length,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Label* gc_required);
|
| + void AllocateAsciiSlicedString(Register result,
|
| + Register length,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Label* gc_required);
|
| +
|
| + // Allocates a heap number or jumps to the gc_required label if the young
|
| + // space is full and a scavenge is needed.
|
| + // All registers are clobbered.
|
| + // If no heap_number_map register is provided, the function will take care of
|
| + // loading it.
|
| + void AllocateHeapNumber(Register result,
|
| + Label* gc_required,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Register heap_number_map = NoReg);
|
| + void AllocateHeapNumberWithValue(Register result,
|
| + DoubleRegister value,
|
| + Label* gc_required,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Register heap_number_map = NoReg);
|
| +
|
| + // ---------------------------------------------------------------------------
|
| + // Support functions.
|
| +
|
| + // Try to get function prototype of a function and puts the value in the
|
| + // result register. Checks that the function really is a function and jumps
|
| + // to the miss label if the fast checks fail. The function register will be
|
| + // untouched; the other registers may be clobbered.
|
| + enum BoundFunctionAction {
|
| + kMissOnBoundFunction,
|
| + kDontMissOnBoundFunction
|
| + };
|
| +
|
| + void TryGetFunctionPrototype(Register function,
|
| + Register result,
|
| + Register scratch,
|
| + Label* miss,
|
| + BoundFunctionAction action =
|
| + kDontMissOnBoundFunction);
|
| +
|
| + // Compare object type for heap object. heap_object contains a non-Smi
|
| + // whose object type should be compared with the given type. This both
|
| + // sets the flags and leaves the object type in the type_reg register.
|
| + // It leaves the map in the map register (unless the type_reg and map register
|
| + // are the same register). It leaves the heap object in the heap_object
|
| + // register unless the heap_object register is the same register as one of the
|
| + // other registers.
|
| + void CompareObjectType(Register heap_object,
|
| + Register map,
|
| + Register type_reg,
|
| + InstanceType type);
|
| +
|
| +
|
| + // Compare object type for heap object, and branch if equal (or not.)
|
| + // heap_object contains a non-Smi whose object type should be compared with
|
| + // the given type. This both sets the flags and leaves the object type in
|
| + // the type_reg register. It leaves the map in the map register (unless the
|
| + // type_reg and map register are the same register). It leaves the heap
|
| + // object in the heap_object register unless the heap_object register is the
|
| + // same register as one of the other registers.
|
| + void JumpIfObjectType(Register object,
|
| + Register map,
|
| + Register type_reg,
|
| + InstanceType type,
|
| + Label* if_cond_pass,
|
| + Condition cond = eq);
|
| +
|
| + void JumpIfNotObjectType(Register object,
|
| + Register map,
|
| + Register type_reg,
|
| + InstanceType type,
|
| + Label* if_not_object);
|
| +
|
| + // Compare instance type in a map. map contains a valid map object whose
|
| + // object type should be compared with the given type. This both
|
| + // sets the flags and leaves the object type in the type_reg register.
|
| + void CompareInstanceType(Register map,
|
| + Register type_reg,
|
| + InstanceType type);
|
| +
|
| + // Compare an object's map with the specified map and its transitioned
|
| + // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Condition flags are
|
| + // set with result of map compare. If multiple map compares are required, the
|
| + // compare sequences branches to early_success.
|
| + void CompareMap(Register obj,
|
| + Register scratch,
|
| + Handle<Map> map,
|
| + Label* early_success = NULL);
|
| +
|
| + // As above, but the map of the object is already loaded into the register
|
| + // which is preserved by the code generated.
|
| + void CompareMap(Register obj_map,
|
| + Handle<Map> map,
|
| + Label* early_success = NULL);
|
| +
|
| + // Check if the map of an object is equal to a specified map and branch to
|
| + // label if not. Skip the smi check if not required (object is known to be a
|
| + // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
|
| + // against maps that are ElementsKind transition maps of the specified map.
|
| + void CheckMap(Register obj,
|
| + Register scratch,
|
| + Handle<Map> map,
|
| + Label* fail,
|
| + SmiCheckType smi_check_type);
|
| +
|
| +
|
| + void CheckMap(Register obj,
|
| + Register scratch,
|
| + Heap::RootListIndex index,
|
| + Label* fail,
|
| + SmiCheckType smi_check_type);
|
| +
|
| + // As above, but the map of the object is already loaded into obj_map, and is
|
| + // preserved.
|
| + void CheckMap(Register obj_map,
|
| + Handle<Map> map,
|
| + Label* fail,
|
| + SmiCheckType smi_check_type);
|
| +
|
| + // Check if the map of an object is equal to a specified map and branch to a
|
| + // specified target if equal. Skip the smi check if not required (object is
|
| + // known to be a heap object)
|
| + void DispatchMap(Register obj,
|
| + Register scratch,
|
| + Handle<Map> map,
|
| + Handle<Code> success,
|
| + SmiCheckType smi_check_type);
|
| +
|
| + // Test the bitfield of the heap object map with mask and set the condition
|
| + // flags. The object register is preserved.
|
| + void TestMapBitfield(Register object, uint64_t mask);
|
| +
|
| + // Load the elements kind field of an object, and return it in the result
|
| + // register.
|
| + void LoadElementsKind(Register result, Register object);
|
| +
|
| + // Compare the object in a register to a value from the root list.
|
| + // Uses the Tmp0() register as scratch.
|
| + void CompareRoot(const Register& obj, Heap::RootListIndex index);
|
| +
|
| + // Compare the object in a register to a value and jump if they are equal.
|
| + void JumpIfRoot(const Register& obj,
|
| + Heap::RootListIndex index,
|
| + Label* if_equal);
|
| +
|
| + // Compare the object in a register to a value and jump if they are not equal.
|
| + void JumpIfNotRoot(const Register& obj,
|
| + Heap::RootListIndex index,
|
| + Label* if_not_equal);
|
| +
|
| + // Load and check the instance type of an object for being a unique name.
|
| + // Loads the type into the second argument register.
|
| + // The object and type arguments can be the same register; in that case it
|
| + // will be overwritten with the type.
|
| + // Fall-through if the object was a string and jump on fail otherwise.
|
| + inline void IsObjectNameType(Register object, Register type, Label* fail);
|
| +
|
| + inline void IsObjectJSObjectType(Register heap_object,
|
| + Register map,
|
| + Register scratch,
|
| + Label* fail);
|
| +
|
| + // Check the instance type in the given map to see if it corresponds to a
|
| + // JS object type. Jump to the fail label if this is not the case and fall
|
| + // through otherwise. However if fail label is NULL, no branch will be
|
| + // performed and the flag will be updated. You can test the flag for "le"
|
| + // condition to test if it is a valid JS object type.
|
| + inline void IsInstanceJSObjectType(Register map,
|
| + Register scratch,
|
| + Label* fail);
|
| +
|
| + // Load and check the instance type of an object for being a string.
|
| + // Loads the type into the second argument register.
|
| + // The object and type arguments can be the same register; in that case it
|
| + // will be overwritten with the type.
|
| + // Jumps to not_string or string appropriate. If the appropriate label is
|
| + // NULL, fall through.
|
| + inline void IsObjectJSStringType(Register object, Register type,
|
| + Label* not_string, Label* string = NULL);
|
| +
|
| + // Compare the contents of a register with an operand, and branch to true,
|
| + // false or fall through, depending on condition.
|
| + void CompareAndSplit(const Register& lhs,
|
| + const Operand& rhs,
|
| + Condition cond,
|
| + Label* if_true,
|
| + Label* if_false,
|
| + Label* fall_through);
|
| +
|
| + // Test the bits of register defined by bit_pattern, and branch to
|
| + // if_any_set, if_all_clear or fall_through accordingly.
|
| + void TestAndSplit(const Register& reg,
|
| + uint64_t bit_pattern,
|
| + Label* if_all_clear,
|
| + Label* if_any_set,
|
| + Label* fall_through);
|
| +
|
| + // Check if a map for a JSObject indicates that the object has fast elements.
|
| + // Jump to the specified label if it does not.
|
| + void CheckFastElements(Register map,
|
| + Register scratch,
|
| + Label* fail);
|
| +
|
| + // Check if a map for a JSObject indicates that the object can have both smi
|
| + // and HeapObject elements. Jump to the specified label if it does not.
|
| + void CheckFastObjectElements(Register map,
|
| + Register scratch,
|
| + Label* fail);
|
| +
|
| + // Check if a map for a JSObject indicates that the object has fast smi only
|
| + // elements. Jump to the specified label if it does not.
|
| + void CheckFastSmiElements(Register map, Register scratch, Label* fail);
|
| +
|
| + // Check to see if number can be stored as a double in FastDoubleElements.
|
| + // If it can, store it at the index specified by key_reg in the array,
|
| + // otherwise jump to fail.
|
| + void StoreNumberToDoubleElements(Register value_reg,
|
| + Register key_reg,
|
| + Register elements_reg,
|
| + Register scratch1,
|
| + FPRegister fpscratch1,
|
| + FPRegister fpscratch2,
|
| + Label* fail,
|
| + int elements_offset = 0);
|
| +
|
| + // Picks out an array index from the hash field.
|
| + // Register use:
|
| + // hash - holds the index's hash. Clobbered.
|
| + // index - holds the overwritten index on exit.
|
| + void IndexFromHash(Register hash, Register index);
|
| +
|
| + // ---------------------------------------------------------------------------
|
| + // Inline caching support.
|
| +
|
| + void EmitSeqStringSetCharCheck(Register string,
|
| + Register index,
|
| + SeqStringSetCharCheckIndexType index_type,
|
| + Register scratch,
|
| + uint32_t encoding_mask);
|
| +
|
| + // Generate code for checking access rights - used for security checks
|
| + // on access to global objects across environments. The holder register
|
| + // is left untouched, whereas both scratch registers are clobbered.
|
| + void CheckAccessGlobalProxy(Register holder_reg,
|
| + Register scratch,
|
| + Label* miss);
|
| +
|
| + // Hash the interger value in 'key' register.
|
| + // It uses the same algorithm as ComputeIntegerHash in utils.h.
|
| + void GetNumberHash(Register key, Register scratch);
|
| +
|
| + // Load value from the dictionary.
|
| + //
|
| + // elements - holds the slow-case elements of the receiver on entry.
|
| + // Unchanged unless 'result' is the same register.
|
| + //
|
| + // key - holds the smi key on entry.
|
| + // Unchanged unless 'result' is the same register.
|
| + //
|
| + // result - holds the result on exit if the load succeeded.
|
| + // Allowed to be the same as 'key' or 'result'.
|
| + // Unchanged on bailout so 'key' or 'result' can be used
|
| + // in further computation.
|
| + void LoadFromNumberDictionary(Label* miss,
|
| + Register elements,
|
| + Register key,
|
| + Register result,
|
| + Register scratch0,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Register scratch3);
|
| +
|
| + // ---------------------------------------------------------------------------
|
| + // Frames.
|
| +
|
| + // Activation support.
|
| + // Note that Tmp0() and Tmp1() are used as a scratch registers. This is safe
|
| + // because these methods are not used in Crankshaft.
|
| + void EnterFrame(StackFrame::Type type);
|
| + void LeaveFrame(StackFrame::Type type);
|
| +
|
| + // Returns map with validated enum cache in object register.
|
| + void CheckEnumCache(Register object,
|
| + Register null_value,
|
| + Register scratch0,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Register scratch3,
|
| + Label* call_runtime);
|
| +
|
| + // AllocationMemento support. Arrays may have an associated
|
| + // AllocationMemento object that can be checked for in order to pretransition
|
| + // to another type.
|
| + // On entry, receiver should point to the array object.
|
| + // If allocation info is present, the Z flag is set (so that the eq
|
| + // condition will pass).
|
| + void TestJSArrayForAllocationMemento(Register receiver,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Label* no_memento_found);
|
| +
|
| + void JumpIfJSArrayHasAllocationMemento(Register receiver,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Label* memento_found) {
|
| + Label no_memento_found;
|
| + TestJSArrayForAllocationMemento(receiver, scratch1, scratch2,
|
| + &no_memento_found);
|
| + B(eq, memento_found);
|
| + Bind(&no_memento_found);
|
| + }
|
| +
|
| + // The stack pointer has to switch between csp and jssp when setting up and
|
| + // destroying the exit frame. Hence preserving/restoring the registers is
|
| + // slightly more complicated than simple push/pop operations.
|
| + void ExitFramePreserveFPRegs();
|
| + void ExitFrameRestoreFPRegs();
|
| +
|
| + // Generates function and stub prologue code.
|
| + void Prologue(PrologueFrameMode frame_mode);
|
| +
|
| + // Enter exit frame. Exit frames are used when calling C code from generated
|
| + // (JavaScript) code.
|
| + //
|
| + // The stack pointer must be jssp on entry, and will be set to csp by this
|
| + // function. The frame pointer is also configured, but the only other
|
| + // registers modified by this function are the provided scratch register, and
|
| + // jssp.
|
| + //
|
| + // The 'extra_space' argument can be used to allocate some space in the exit
|
| + // frame that will be ignored by the GC. This space will be reserved in the
|
| + // bottom of the frame immediately above the return address slot.
|
| + //
|
| + // Set up a stack frame and registers as follows:
|
| + // fp[8]: CallerPC (lr)
|
| + // fp -> fp[0]: CallerFP (old fp)
|
| + // fp[-8]: SPOffset (new csp)
|
| + // fp[-16]: CodeObject()
|
| + // fp[-16 - fp-size]: Saved doubles, if saved_doubles is true.
|
| + // csp[8]: Memory reserved for the caller if extra_space != 0.
|
| + // Alignment padding, if necessary.
|
| + // csp -> csp[0]: Space reserved for the return address.
|
| + //
|
| + // This function also stores the new frame information in the top frame, so
|
| + // that the new frame becomes the current frame.
|
| + void EnterExitFrame(bool save_doubles,
|
| + const Register& scratch,
|
| + int extra_space = 0);
|
| +
|
| + // Leave the current exit frame, after a C function has returned to generated
|
| + // (JavaScript) code.
|
| + //
|
| + // This effectively unwinds the operation of EnterExitFrame:
|
| + // * Preserved doubles are restored (if restore_doubles is true).
|
| + // * The frame information is removed from the top frame.
|
| + // * The exit frame is dropped.
|
| + // * The stack pointer is reset to jssp.
|
| + //
|
| + // The stack pointer must be csp on entry.
|
| + void LeaveExitFrame(bool save_doubles,
|
| + const Register& scratch,
|
| + bool restore_context);
|
| +
|
| + void LoadContext(Register dst, int context_chain_length);
|
| +
|
| + // ---------------------------------------------------------------------------
|
| + // StatsCounter support
|
| +
|
| + void SetCounter(StatsCounter* counter, int value, Register scratch1,
|
| + Register scratch2);
|
| + void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
|
| + Register scratch2);
|
| + void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
|
| + Register scratch2);
|
| +
|
| + // ---------------------------------------------------------------------------
|
| + // Garbage collector support (GC).
|
| +
|
| + enum RememberedSetFinalAction {
|
| + kReturnAtEnd,
|
| + kFallThroughAtEnd
|
| + };
|
| +
|
| + // Record in the remembered set the fact that we have a pointer to new space
|
| + // at the address pointed to by the addr register. Only works if addr is not
|
| + // in new space.
|
| + void RememberedSetHelper(Register object, // Used for debug code.
|
| + Register addr,
|
| + Register scratch,
|
| + SaveFPRegsMode save_fp,
|
| + RememberedSetFinalAction and_then);
|
| +
|
| + // Push and pop the registers that can hold pointers, as defined by the
|
| + // RegList constant kSafepointSavedRegisters.
|
| + void PushSafepointRegisters();
|
| + void PopSafepointRegisters();
|
| +
|
| + void PushSafepointFPRegisters();
|
| + void PopSafepointFPRegisters();
|
| +
|
| + // Store value in register src in the safepoint stack slot for register dst.
|
| + void StoreToSafepointRegisterSlot(Register src, Register dst) {
|
| + Poke(src, SafepointRegisterStackIndex(dst.code()) * kPointerSize);
|
| + }
|
| +
|
| + // Load the value of the src register from its safepoint stack slot
|
| + // into register dst.
|
| + void LoadFromSafepointRegisterSlot(Register dst, Register src) {
|
| + Peek(src, SafepointRegisterStackIndex(dst.code()) * kPointerSize);
|
| + }
|
| +
|
| + void CheckPageFlagSet(const Register& object,
|
| + const Register& scratch,
|
| + int mask,
|
| + Label* if_any_set);
|
| +
|
| + void CheckPageFlagClear(const Register& object,
|
| + const Register& scratch,
|
| + int mask,
|
| + Label* if_all_clear);
|
| +
|
| + void CheckMapDeprecated(Handle<Map> map,
|
| + Register scratch,
|
| + Label* if_deprecated);
|
| +
|
| + // Check if object is in new space and jump accordingly.
|
| + // Register 'object' is preserved.
|
| + void JumpIfNotInNewSpace(Register object,
|
| + Label* branch) {
|
| + InNewSpace(object, ne, branch);
|
| + }
|
| +
|
| + void JumpIfInNewSpace(Register object,
|
| + Label* branch) {
|
| + InNewSpace(object, eq, branch);
|
| + }
|
| +
|
| + // Notify the garbage collector that we wrote a pointer into an object.
|
| + // |object| is the object being stored into, |value| is the object being
|
| + // stored. value and scratch registers are clobbered by the operation.
|
| + // The offset is the offset from the start of the object, not the offset from
|
| + // the tagged HeapObject pointer. For use with FieldOperand(reg, off).
|
| + void RecordWriteField(
|
| + Register object,
|
| + int offset,
|
| + Register value,
|
| + Register scratch,
|
| + LinkRegisterStatus lr_status,
|
| + SaveFPRegsMode save_fp,
|
| + RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
|
| + SmiCheck smi_check = INLINE_SMI_CHECK);
|
| +
|
| + // As above, but the offset has the tag presubtracted. For use with
|
| + // MemOperand(reg, off).
|
| + inline void RecordWriteContextSlot(
|
| + Register context,
|
| + int offset,
|
| + Register value,
|
| + Register scratch,
|
| + LinkRegisterStatus lr_status,
|
| + SaveFPRegsMode save_fp,
|
| + RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
|
| + SmiCheck smi_check = INLINE_SMI_CHECK) {
|
| + RecordWriteField(context,
|
| + offset + kHeapObjectTag,
|
| + value,
|
| + scratch,
|
| + lr_status,
|
| + save_fp,
|
| + remembered_set_action,
|
| + smi_check);
|
| + }
|
| +
|
| + // For a given |object| notify the garbage collector that the slot |address|
|
| + // has been written. |value| is the object being stored. The value and
|
| + // address registers are clobbered by the operation.
|
| + void RecordWrite(
|
| + Register object,
|
| + Register address,
|
| + Register value,
|
| + LinkRegisterStatus lr_status,
|
| + SaveFPRegsMode save_fp,
|
| + RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
|
| + SmiCheck smi_check = INLINE_SMI_CHECK);
|
| +
|
| + // Checks the color of an object. If the object is already grey or black
|
| + // then we just fall through, since it is already live. If it is white and
|
| + // we can determine that it doesn't need to be scanned, then we just mark it
|
| + // black and fall through. For the rest we jump to the label so the
|
| + // incremental marker can fix its assumptions.
|
| + void EnsureNotWhite(Register object,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Register scratch3,
|
| + Register scratch4,
|
| + Label* object_is_white_and_not_data);
|
| +
|
| + // Detects conservatively whether an object is data-only, i.e. it does need to
|
| + // be scanned by the garbage collector.
|
| + void JumpIfDataObject(Register value,
|
| + Register scratch,
|
| + Label* not_data_object);
|
| +
|
| + // Helper for finding the mark bits for an address.
|
| + // Note that the behaviour slightly differs from other architectures.
|
| + // On exit:
|
| + // - addr_reg is unchanged.
|
| + // - The bitmap register points at the word with the mark bits.
|
| + // - The shift register contains the index of the first color bit for this
|
| + // object in the bitmap.
|
| + inline void GetMarkBits(Register addr_reg,
|
| + Register bitmap_reg,
|
| + Register shift_reg);
|
| +
|
| + // Check if an object has a given incremental marking color.
|
| + void HasColor(Register object,
|
| + Register scratch0,
|
| + Register scratch1,
|
| + Label* has_color,
|
| + int first_bit,
|
| + int second_bit);
|
| +
|
| + void JumpIfBlack(Register object,
|
| + Register scratch0,
|
| + Register scratch1,
|
| + Label* on_black);
|
| +
|
| +
|
| + // Get the location of a relocated constant (its address in the constant pool)
|
| + // from its load site.
|
| + void GetRelocatedValueLocation(Register ldr_location,
|
| + Register result);
|
| +
|
| +
|
| + // ---------------------------------------------------------------------------
|
| + // Debugging.
|
| +
|
| + // Calls Abort(msg) if the condition cond is not satisfied.
|
| + // Use --debug_code to enable.
|
| + void Assert(Condition cond, BailoutReason reason);
|
| + void AssertRegisterIsClear(Register reg, BailoutReason reason);
|
| + void AssertRegisterIsRoot(
|
| + Register reg,
|
| + Heap::RootListIndex index,
|
| + BailoutReason reason = kRegisterDidNotMatchExpectedRoot);
|
| + void AssertFastElements(Register elements);
|
| +
|
| + // Abort if the specified register contains the invalid color bit pattern.
|
| + // The pattern must be in bits [1:0] of 'reg' register.
|
| + //
|
| + // If emit_debug_code() is false, this emits no code.
|
| + void AssertHasValidColor(const Register& reg);
|
| +
|
| + // Abort if 'object' register doesn't point to a string object.
|
| + //
|
| + // If emit_debug_code() is false, this emits no code.
|
| + void AssertIsString(const Register& object);
|
| +
|
| + // Like Assert(), but always enabled.
|
| + void Check(Condition cond, BailoutReason reason);
|
| + void CheckRegisterIsClear(Register reg, BailoutReason reason);
|
| +
|
| + // Print a message to stderr and abort execution.
|
| + void Abort(BailoutReason reason);
|
| +
|
| + // Conditionally load the cached Array transitioned map of type
|
| + // transitioned_kind from the native context if the map in register
|
| + // map_in_out is the cached Array map in the native context of
|
| + // expected_kind.
|
| + void LoadTransitionedArrayMapConditional(
|
| + ElementsKind expected_kind,
|
| + ElementsKind transitioned_kind,
|
| + Register map_in_out,
|
| + Register scratch,
|
| + Label* no_map_match);
|
| +
|
| + // Load the initial map for new Arrays from a JSFunction.
|
| + void LoadInitialArrayMap(Register function_in,
|
| + Register scratch,
|
| + Register map_out,
|
| + ArrayHasHoles holes);
|
| +
|
| + void LoadArrayFunction(Register function);
|
| + void LoadGlobalFunction(int index, Register function);
|
| +
|
| + // Load the initial map from the global function. The registers function and
|
| + // map can be the same, function is then overwritten.
|
| + void LoadGlobalFunctionInitialMap(Register function,
|
| + Register map,
|
| + Register scratch);
|
| +
|
| + // --------------------------------------------------------------------------
|
| + // Set the registers used internally by the MacroAssembler as scratch
|
| + // registers. These registers are used to implement behaviours which are not
|
| + // directly supported by A64, and where an intermediate result is required.
|
| + //
|
| + // Both tmp0 and tmp1 may be set to any X register except for xzr, sp,
|
| + // and StackPointer(). Also, they must not be the same register (though they
|
| + // may both be NoReg).
|
| + //
|
| + // It is valid to set either or both of these registers to NoReg if you don't
|
| + // want the MacroAssembler to use any scratch registers. In a debug build, the
|
| + // Assembler will assert that any registers it uses are valid. Be aware that
|
| + // this check is not present in release builds. If this is a problem, use the
|
| + // Assembler directly.
|
| + void SetScratchRegisters(const Register& tmp0, const Register& tmp1) {
|
| + // V8 assumes the macro assembler uses ip0 and ip1 as temp registers.
|
| + ASSERT(tmp0.IsNone() || tmp0.Is(ip0));
|
| + ASSERT(tmp1.IsNone() || tmp1.Is(ip1));
|
| +
|
| + ASSERT(!AreAliased(xzr, csp, tmp0, tmp1));
|
| + ASSERT(!AreAliased(StackPointer(), tmp0, tmp1));
|
| + tmp0_ = tmp0;
|
| + tmp1_ = tmp1;
|
| + }
|
| +
|
| + const Register& Tmp0() const {
|
| + return tmp0_;
|
| + }
|
| +
|
| + const Register& Tmp1() const {
|
| + return tmp1_;
|
| + }
|
| +
|
| + const Register WTmp0() const {
|
| + return Register::Create(tmp0_.code(), kWRegSize);
|
| + }
|
| +
|
| + const Register WTmp1() const {
|
| + return Register::Create(tmp1_.code(), kWRegSize);
|
| + }
|
| +
|
| + void SetFPScratchRegister(const FPRegister& fptmp0) {
|
| + fptmp0_ = fptmp0;
|
| + }
|
| +
|
| + const FPRegister& FPTmp0() const {
|
| + return fptmp0_;
|
| + }
|
| +
|
| + const Register AppropriateTempFor(
|
| + const Register& target,
|
| + const CPURegister& forbidden = NoCPUReg) const {
|
| + Register candidate = forbidden.Is(Tmp0()) ? Tmp1() : Tmp0();
|
| + ASSERT(!candidate.Is(target));
|
| + return Register::Create(candidate.code(), target.SizeInBits());
|
| + }
|
| +
|
| + const FPRegister AppropriateTempFor(
|
| + const FPRegister& target,
|
| + const CPURegister& forbidden = NoCPUReg) const {
|
| + USE(forbidden);
|
| + FPRegister candidate = FPTmp0();
|
| + ASSERT(!candidate.Is(forbidden));
|
| + ASSERT(!candidate.Is(target));
|
| + return FPRegister::Create(candidate.code(), target.SizeInBits());
|
| + }
|
| +
|
| + // Like printf, but print at run-time from generated code.
|
| + //
|
| + // The caller must ensure that arguments for floating-point placeholders
|
| + // (such as %e, %f or %g) are FPRegisters, and that arguments for integer
|
| + // placeholders are Registers.
|
| + //
|
| + // A maximum of four arguments may be given to any single Printf call. The
|
| + // arguments must be of the same type, but they do not need to have the same
|
| + // size.
|
| + //
|
| + // The following registers cannot be printed:
|
| + // Tmp0(), Tmp1(), StackPointer(), csp.
|
| + //
|
| + // This function automatically preserves caller-saved registers so that
|
| + // calling code can use Printf at any point without having to worry about
|
| + // corruption. The preservation mechanism generates a lot of code. If this is
|
| + // a problem, preserve the important registers manually and then call
|
| + // PrintfNoPreserve. Callee-saved registers are not used by Printf, and are
|
| + // implicitly preserved.
|
| + //
|
| + // Unlike many MacroAssembler functions, x8 and x9 are guaranteed to be
|
| + // preserved, and can be printed. This allows Printf to be used during debug
|
| + // code.
|
| + //
|
| + // This function assumes (and asserts) that the current stack pointer is
|
| + // callee-saved, not caller-saved. This is most likely the case anyway, as a
|
| + // caller-saved stack pointer doesn't make a lot of sense.
|
| + void Printf(const char * format,
|
| + const CPURegister& arg0 = NoCPUReg,
|
| + const CPURegister& arg1 = NoCPUReg,
|
| + const CPURegister& arg2 = NoCPUReg,
|
| + const CPURegister& arg3 = NoCPUReg);
|
| +
|
| + // Like Printf, but don't preserve any caller-saved registers, not even 'lr'.
|
| + //
|
| + // The return code from the system printf call will be returned in x0.
|
| + void PrintfNoPreserve(const char * format,
|
| + const CPURegister& arg0 = NoCPUReg,
|
| + const CPURegister& arg1 = NoCPUReg,
|
| + const CPURegister& arg2 = NoCPUReg,
|
| + const CPURegister& arg3 = NoCPUReg);
|
| +
|
| + // Code ageing support functions.
|
| +
|
| + // Code ageing on A64 works similarly to on ARM. When V8 wants to mark a
|
| + // function as old, it replaces some of the function prologue (generated by
|
| + // FullCodeGenerator::Generate) with a call to a special stub (ultimately
|
| + // generated by GenerateMakeCodeYoungAgainCommon). The stub restores the
|
| + // function prologue to its initial young state (indicating that it has been
|
| + // recently run) and continues. A young function is therefore one which has a
|
| + // normal frame setup sequence, and an old function has a code age sequence
|
| + // which calls a code ageing stub.
|
| +
|
| + // Set up a basic stack frame for young code (or code exempt from ageing) with
|
| + // type FUNCTION. It may be patched later for code ageing support. This is
|
| + // done by to Code::PatchPlatformCodeAge and EmitCodeAgeSequence.
|
| + //
|
| + // This function takes an Assembler so it can be called from either a
|
| + // MacroAssembler or a PatchingAssembler context.
|
| + static void EmitFrameSetupForCodeAgePatching(Assembler* assm);
|
| +
|
| + // Call EmitFrameSetupForCodeAgePatching from a MacroAssembler context.
|
| + void EmitFrameSetupForCodeAgePatching();
|
| +
|
| + // Emit a code age sequence that calls the relevant code age stub. The code
|
| + // generated by this sequence is expected to replace the code generated by
|
| + // EmitFrameSetupForCodeAgePatching, and represents an old function.
|
| + //
|
| + // If stub is NULL, this function generates the code age sequence but omits
|
| + // the stub address that is normally embedded in the instruction stream. This
|
| + // can be used by debug code to verify code age sequences.
|
| + static void EmitCodeAgeSequence(Assembler* assm, Code* stub);
|
| +
|
| + // Call EmitCodeAgeSequence from a MacroAssembler context.
|
| + void EmitCodeAgeSequence(Code* stub);
|
| +
|
| + // Return true if the sequence is a young sequence geneated by
|
| + // EmitFrameSetupForCodeAgePatching. Otherwise, this method asserts that the
|
| + // sequence is a code age sequence (emitted by EmitCodeAgeSequence).
|
| + static bool IsYoungSequence(byte* sequence);
|
| +
|
| +#ifdef DEBUG
|
| + // Return true if the sequence is a code age sequence generated by
|
| + // EmitCodeAgeSequence.
|
| + static bool IsCodeAgeSequence(byte* sequence);
|
| +#endif
|
| +
|
| + // Jumps to found label if a prototype map has dictionary elements.
|
| + void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
|
| + Register scratch1, Label* found);
|
| +
|
| + private:
|
| + // Helpers for CopyFields.
|
| + // These each implement CopyFields in a different way.
|
| + void CopyFieldsLoopPairsHelper(Register dst, Register src, unsigned count,
|
| + Register scratch1, Register scratch2,
|
| + Register scratch3);
|
| + void CopyFieldsUnrolledPairsHelper(Register dst, Register src, unsigned count,
|
| + Register scratch1, Register scratch2);
|
| + void CopyFieldsUnrolledHelper(Register dst, Register src, unsigned count,
|
| + Register scratch1);
|
| +
|
| + // The actual Push and Pop implementations. These don't generate any code
|
| + // other than that required for the push or pop. This allows
|
| + // (Push|Pop)CPURegList to bundle together run-time assertions for a large
|
| + // block of registers.
|
| + //
|
| + // Note that size is per register, and is specified in bytes.
|
| + void PushHelper(int count, int size,
|
| + const CPURegister& src0, const CPURegister& src1,
|
| + const CPURegister& src2, const CPURegister& src3);
|
| + void PopHelper(int count, int size,
|
| + const CPURegister& dst0, const CPURegister& dst1,
|
| + const CPURegister& dst2, const CPURegister& dst3);
|
| +
|
| + // Perform necessary maintenance operations before a push or pop.
|
| + //
|
| + // Note that size is per register, and is specified in bytes.
|
| + void PrepareForPush(int count, int size);
|
| + void PrepareForPop(int count, int size);
|
| +
|
| + // Call Printf. On a native build, a simple call will be generated, but if the
|
| + // simulator is being used then a suitable pseudo-instruction is used. The
|
| + // arguments and stack (csp) must be prepared by the caller as for a normal
|
| + // AAPCS64 call to 'printf'.
|
| + //
|
| + // The 'type' argument specifies the type of the optional arguments.
|
| + void CallPrintf(CPURegister::RegisterType type = CPURegister::kNoRegister);
|
| +
|
| + // Helper for throwing exceptions. Compute a handler address and jump to
|
| + // it. See the implementation for register usage.
|
| + void JumpToHandlerEntry(Register exception,
|
| + Register object,
|
| + Register state,
|
| + Register scratch1,
|
| + Register scratch2);
|
| +
|
| + // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
|
| + void InNewSpace(Register object,
|
| + Condition cond, // eq for new space, ne otherwise.
|
| + Label* branch);
|
| +
|
| + // Try to convert a double to an int so that integer fast-paths may be
|
| + // used. Not every valid integer value is guaranteed to be caught.
|
| + // It supports both 32-bit and 64-bit integers depending whether 'as_int'
|
| + // is a W or X register.
|
| + //
|
| + // This does not distinguish between +0 and -0, so if this distinction is
|
| + // important it must be checked separately.
|
| + void TryConvertDoubleToInt(Register as_int,
|
| + FPRegister value,
|
| + FPRegister scratch_d,
|
| + Label* on_successful_conversion,
|
| + Label* on_failed_conversion = NULL);
|
| +
|
| + bool generating_stub_;
|
| +#if DEBUG
|
| + // Tell whether any of the macro instruction can be used. When false the
|
| + // MacroAssembler will assert if a method which can emit a variable number
|
| + // of instructions is called.
|
| + bool allow_macro_instructions_;
|
| +#endif
|
| + bool has_frame_;
|
| +
|
| + // The Abort method should call a V8 runtime function, but the CallRuntime
|
| + // mechanism depends on CEntryStub. If use_real_aborts is false, Abort will
|
| + // use a simpler abort mechanism that doesn't depend on CEntryStub.
|
| + //
|
| + // The purpose of this is to allow Aborts to be compiled whilst CEntryStub is
|
| + // being generated.
|
| + bool use_real_aborts_;
|
| +
|
| + // This handle will be patched with the code object on installation.
|
| + Handle<Object> code_object_;
|
| +
|
| + // The register to use as a stack pointer for stack operations.
|
| + Register sp_;
|
| +
|
| + // Scratch registers used internally by the MacroAssembler.
|
| + Register tmp0_;
|
| + Register tmp1_;
|
| + FPRegister fptmp0_;
|
| +
|
| + void InitializeNewString(Register string,
|
| + Register length,
|
| + Heap::RootListIndex map_index,
|
| + Register scratch1,
|
| + Register scratch2);
|
| +};
|
| +
|
| +
|
| +// Use this scope when you need a one-to-one mapping bewteen methods and
|
| +// instructions. This scope prevents the MacroAssembler from being called and
|
| +// literal pools from being emitted. It also asserts the number of instructions
|
| +// emitted is what you specified when creating the scope.
|
| +class InstructionAccurateScope BASE_EMBEDDED {
|
| + public:
|
| + explicit InstructionAccurateScope(MacroAssembler* masm)
|
| + : masm_(masm), size_(0) {
|
| + masm_->StartBlockConstPool();
|
| +#ifdef DEBUG
|
| + previous_allow_macro_instructions_ = masm_->allow_macro_instructions();
|
| + masm_->set_allow_macro_instructions(false);
|
| +#endif
|
| + }
|
| +
|
| + InstructionAccurateScope(MacroAssembler* masm, size_t count)
|
| + : masm_(masm), size_(count * kInstructionSize) {
|
| + masm_->StartBlockConstPool();
|
| +#ifdef DEBUG
|
| + masm_->bind(&start_);
|
| + previous_allow_macro_instructions_ = masm_->allow_macro_instructions();
|
| + masm_->set_allow_macro_instructions(false);
|
| +#endif
|
| + }
|
| +
|
| + ~InstructionAccurateScope() {
|
| + masm_->EndBlockConstPool();
|
| +#ifdef DEBUG
|
| + if (start_.is_bound()) {
|
| + ASSERT(masm_->SizeOfCodeGeneratedSince(&start_) == size_);
|
| + }
|
| + masm_->set_allow_macro_instructions(previous_allow_macro_instructions_);
|
| +#endif
|
| + }
|
| +
|
| + private:
|
| + MacroAssembler* masm_;
|
| + size_t size_;
|
| +#ifdef DEBUG
|
| + Label start_;
|
| + bool previous_allow_macro_instructions_;
|
| +#endif
|
| +};
|
| +
|
| +
|
| +inline MemOperand ContextMemOperand(Register context, int index) {
|
| + return MemOperand(context, Context::SlotOffset(index));
|
| +}
|
| +
|
| +inline MemOperand GlobalObjectMemOperand() {
|
| + return ContextMemOperand(cp, Context::GLOBAL_OBJECT_INDEX);
|
| +}
|
| +
|
| +
|
| +// Encode and decode information about patchable inline SMI checks.
|
| +class InlineSmiCheckInfo {
|
| + public:
|
| + explicit InlineSmiCheckInfo(Address info);
|
| +
|
| + bool HasSmiCheck() const {
|
| + return smi_check_ != NULL;
|
| + }
|
| +
|
| + const Register& SmiRegister() const {
|
| + return reg_;
|
| + }
|
| +
|
| + Instruction* SmiCheck() const {
|
| + return smi_check_;
|
| + }
|
| +
|
| + // Use MacroAssembler::InlineData to emit information about patchable inline
|
| + // SMI checks. The caller may specify 'reg' as NoReg and an unbound 'site' to
|
| + // indicate that there is no inline SMI check. Note that 'reg' cannot be csp.
|
| + //
|
| + // The generated patch information can be read using the InlineSMICheckInfo
|
| + // class.
|
| + static void Emit(MacroAssembler* masm, const Register& reg,
|
| + const Label* smi_check);
|
| +
|
| + // Emit information to indicate that there is no inline SMI check.
|
| + static void EmitNotInlined(MacroAssembler* masm) {
|
| + Label unbound;
|
| + Emit(masm, NoReg, &unbound);
|
| + }
|
| +
|
| + private:
|
| + Register reg_;
|
| + Instruction* smi_check_;
|
| +
|
| + // Fields in the data encoded by InlineData.
|
| +
|
| + // A width of 5 (Rd_width) for the SMI register preclues the use of csp,
|
| + // since kSPRegInternalCode is 63. However, csp should never hold a SMI or be
|
| + // used in a patchable check. The Emit() method checks this.
|
| + //
|
| + // Note that the total size of the fields is restricted by the underlying
|
| + // storage size handled by the BitField class, which is a uint32_t.
|
| + class RegisterBits : public BitField<unsigned, 0, 5> {};
|
| + class DeltaBits : public BitField<uint32_t, 5, 32-5> {};
|
| +};
|
| +
|
| +} } // namespace v8::internal
|
| +
|
| +#ifdef GENERATED_CODE_COVERAGE
|
| +#error "Unsupported option"
|
| +#define CODE_COVERAGE_STRINGIFY(x) #x
|
| +#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
|
| +#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
|
| +#define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm->
|
| +#else
|
| +#define ACCESS_MASM(masm) masm->
|
| +#endif
|
| +
|
| +#endif // V8_A64_MACRO_ASSEMBLER_A64_H_
|
|
|