Index: src/a64/macro-assembler-a64.h |
diff --git a/src/a64/macro-assembler-a64.h b/src/a64/macro-assembler-a64.h |
new file mode 100644 |
index 0000000000000000000000000000000000000000..c36a2e801612b8dd6b7ffc4de8ba2eca006aac7a |
--- /dev/null |
+++ b/src/a64/macro-assembler-a64.h |
@@ -0,0 +1,2192 @@ |
+// Copyright 2013 the V8 project authors. All rights reserved. |
+// Redistribution and use in source and binary forms, with or without |
+// modification, are permitted provided that the following conditions are |
+// met: |
+// |
+// * Redistributions of source code must retain the above copyright |
+// notice, this list of conditions and the following disclaimer. |
+// * Redistributions in binary form must reproduce the above |
+// copyright notice, this list of conditions and the following |
+// disclaimer in the documentation and/or other materials provided |
+// with the distribution. |
+// * Neither the name of Google Inc. nor the names of its |
+// contributors may be used to endorse or promote products derived |
+// from this software without specific prior written permission. |
+// |
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
+ |
+#ifndef V8_A64_MACRO_ASSEMBLER_A64_H_ |
+#define V8_A64_MACRO_ASSEMBLER_A64_H_ |
+ |
+#include "v8globals.h" |
+#include "globals.h" |
+ |
+#include "a64/assembler-a64-inl.h" |
+ |
+namespace v8 { |
+namespace internal { |
+ |
+#define LS_MACRO_LIST(V) \ |
+ V(Ldrb, Register&, rt, LDRB_w) \ |
+ V(Strb, Register&, rt, STRB_w) \ |
+ V(Ldrsb, Register&, rt, rt.Is64Bits() ? LDRSB_x : LDRSB_w) \ |
+ V(Ldrh, Register&, rt, LDRH_w) \ |
+ V(Strh, Register&, rt, STRH_w) \ |
+ V(Ldrsh, Register&, rt, rt.Is64Bits() ? LDRSH_x : LDRSH_w) \ |
+ V(Ldr, CPURegister&, rt, LoadOpFor(rt)) \ |
+ V(Str, CPURegister&, rt, StoreOpFor(rt)) \ |
+ V(Ldrsw, Register&, rt, LDRSW_x) |
+ |
+ |
+// ---------------------------------------------------------------------------- |
+// Static helper functions |
+ |
+// Generate a MemOperand for loading a field from an object. |
+inline MemOperand FieldMemOperand(Register object, int offset); |
+inline MemOperand UntagSmiFieldMemOperand(Register object, int offset); |
+ |
+// Generate a MemOperand for loading a SMI from memory. |
+inline MemOperand UntagSmiMemOperand(Register object, int offset); |
+ |
+ |
+// ---------------------------------------------------------------------------- |
+// MacroAssembler |
+ |
+enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET }; |
+enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK }; |
+enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved }; |
+enum TargetAddressStorageMode { |
+ CAN_INLINE_TARGET_ADDRESS, |
+ NEVER_INLINE_TARGET_ADDRESS |
+}; |
+enum UntagMode { kNotSpeculativeUntag, kSpeculativeUntag }; |
+enum ArrayHasHoles { kArrayCantHaveHoles, kArrayCanHaveHoles }; |
+enum CopyHint { kCopyUnknown, kCopyShort, kCopyLong }; |
+enum DiscardMoveMode { kDontDiscardForSameWReg, kDiscardForSameWReg }; |
+enum SeqStringSetCharCheckIndexType { kIndexIsSmi, kIndexIsInteger32 }; |
+ |
+class MacroAssembler : public Assembler { |
+ public: |
+ MacroAssembler(Isolate* isolate, byte * buffer, unsigned buffer_size); |
+ |
+ inline Handle<Object> CodeObject(); |
+ |
+ // Instruction set functions ------------------------------------------------ |
+ // Logical macros. |
+ inline void And(const Register& rd, |
+ const Register& rn, |
+ const Operand& operand); |
+ inline void Ands(const Register& rd, |
+ const Register& rn, |
+ const Operand& operand); |
+ inline void Bic(const Register& rd, |
+ const Register& rn, |
+ const Operand& operand); |
+ inline void Bics(const Register& rd, |
+ const Register& rn, |
+ const Operand& operand); |
+ inline void Orr(const Register& rd, |
+ const Register& rn, |
+ const Operand& operand); |
+ inline void Orn(const Register& rd, |
+ const Register& rn, |
+ const Operand& operand); |
+ inline void Eor(const Register& rd, |
+ const Register& rn, |
+ const Operand& operand); |
+ inline void Eon(const Register& rd, |
+ const Register& rn, |
+ const Operand& operand); |
+ inline void Tst(const Register& rn, const Operand& operand); |
+ void LogicalMacro(const Register& rd, |
+ const Register& rn, |
+ const Operand& operand, |
+ LogicalOp op); |
+ |
+ // Add and sub macros. |
+ inline void Add(const Register& rd, |
+ const Register& rn, |
+ const Operand& operand); |
+ inline void Adds(const Register& rd, |
+ const Register& rn, |
+ const Operand& operand); |
+ inline void Sub(const Register& rd, |
+ const Register& rn, |
+ const Operand& operand); |
+ inline void Subs(const Register& rd, |
+ const Register& rn, |
+ const Operand& operand); |
+ inline void Cmn(const Register& rn, const Operand& operand); |
+ inline void Cmp(const Register& rn, const Operand& operand); |
+ inline void Neg(const Register& rd, |
+ const Operand& operand); |
+ inline void Negs(const Register& rd, |
+ const Operand& operand); |
+ |
+ void AddSubMacro(const Register& rd, |
+ const Register& rn, |
+ const Operand& operand, |
+ FlagsUpdate S, |
+ AddSubOp op); |
+ |
+ // Add/sub with carry macros. |
+ inline void Adc(const Register& rd, |
+ const Register& rn, |
+ const Operand& operand); |
+ inline void Adcs(const Register& rd, |
+ const Register& rn, |
+ const Operand& operand); |
+ inline void Sbc(const Register& rd, |
+ const Register& rn, |
+ const Operand& operand); |
+ inline void Sbcs(const Register& rd, |
+ const Register& rn, |
+ const Operand& operand); |
+ inline void Ngc(const Register& rd, |
+ const Operand& operand); |
+ inline void Ngcs(const Register& rd, |
+ const Operand& operand); |
+ void AddSubWithCarryMacro(const Register& rd, |
+ const Register& rn, |
+ const Operand& operand, |
+ FlagsUpdate S, |
+ AddSubWithCarryOp op); |
+ |
+ // Move macros. |
+ void Mov(const Register& rd, |
+ const Operand& operand, |
+ DiscardMoveMode discard_mode = kDontDiscardForSameWReg); |
+ void Mov(const Register& rd, uint64_t imm); |
+ inline void Mvn(const Register& rd, uint64_t imm); |
+ void Mvn(const Register& rd, const Operand& operand); |
+ static bool IsImmMovn(uint64_t imm, unsigned reg_size); |
+ static bool IsImmMovz(uint64_t imm, unsigned reg_size); |
+ static unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size); |
+ |
+ // Conditional macros. |
+ inline void Ccmp(const Register& rn, |
+ const Operand& operand, |
+ StatusFlags nzcv, |
+ Condition cond); |
+ inline void Ccmn(const Register& rn, |
+ const Operand& operand, |
+ StatusFlags nzcv, |
+ Condition cond); |
+ void ConditionalCompareMacro(const Register& rn, |
+ const Operand& operand, |
+ StatusFlags nzcv, |
+ Condition cond, |
+ ConditionalCompareOp op); |
+ void Csel(const Register& rd, |
+ const Register& rn, |
+ const Operand& operand, |
+ Condition cond); |
+ |
+ // Load/store macros. |
+#define DECLARE_FUNCTION(FN, REGTYPE, REG, OP) \ |
+ inline void FN(const REGTYPE REG, const MemOperand& addr); |
+ LS_MACRO_LIST(DECLARE_FUNCTION) |
+#undef DECLARE_FUNCTION |
+ |
+ void LoadStoreMacro(const CPURegister& rt, |
+ const MemOperand& addr, |
+ LoadStoreOp op); |
+ |
+ // V8-specific load/store helpers. |
+ void Load(const Register& rt, const MemOperand& addr, Representation r); |
+ void Store(const Register& rt, const MemOperand& addr, Representation r); |
+ |
+ // Remaining instructions are simple pass-through calls to the assembler. |
+ inline void Adr(const Register& rd, Label* label); |
+ inline void Asr(const Register& rd, const Register& rn, unsigned shift); |
+ inline void Asr(const Register& rd, const Register& rn, const Register& rm); |
+ inline void B(Label* label); |
+ inline void B(Condition cond, Label* label); |
+ inline void B(Label* label, Condition cond); |
+ inline void Bfi(const Register& rd, |
+ const Register& rn, |
+ unsigned lsb, |
+ unsigned width); |
+ inline void Bfxil(const Register& rd, |
+ const Register& rn, |
+ unsigned lsb, |
+ unsigned width); |
+ inline void Bind(Label* label); |
+ inline void Bl(Label* label); |
+ inline void Blr(const Register& xn); |
+ inline void Br(const Register& xn); |
+ inline void Brk(int code); |
+ inline void Cbnz(const Register& rt, Label* label); |
+ inline void Cbz(const Register& rt, Label* label); |
+ inline void Cinc(const Register& rd, const Register& rn, Condition cond); |
+ inline void Cinv(const Register& rd, const Register& rn, Condition cond); |
+ inline void Cls(const Register& rd, const Register& rn); |
+ inline void Clz(const Register& rd, const Register& rn); |
+ inline void Cneg(const Register& rd, const Register& rn, Condition cond); |
+ inline void CzeroX(const Register& rd, Condition cond); |
+ inline void CmovX(const Register& rd, const Register& rn, Condition cond); |
+ inline void Cset(const Register& rd, Condition cond); |
+ inline void Csetm(const Register& rd, Condition cond); |
+ inline void Csinc(const Register& rd, |
+ const Register& rn, |
+ const Register& rm, |
+ Condition cond); |
+ inline void Csinv(const Register& rd, |
+ const Register& rn, |
+ const Register& rm, |
+ Condition cond); |
+ inline void Csneg(const Register& rd, |
+ const Register& rn, |
+ const Register& rm, |
+ Condition cond); |
+ inline void Dmb(BarrierDomain domain, BarrierType type); |
+ inline void Dsb(BarrierDomain domain, BarrierType type); |
+ inline void Debug(const char* message, uint32_t code, Instr params = BREAK); |
+ inline void Extr(const Register& rd, |
+ const Register& rn, |
+ const Register& rm, |
+ unsigned lsb); |
+ inline void Fabs(const FPRegister& fd, const FPRegister& fn); |
+ inline void Fadd(const FPRegister& fd, |
+ const FPRegister& fn, |
+ const FPRegister& fm); |
+ inline void Fccmp(const FPRegister& fn, |
+ const FPRegister& fm, |
+ StatusFlags nzcv, |
+ Condition cond); |
+ inline void Fcmp(const FPRegister& fn, const FPRegister& fm); |
+ inline void Fcmp(const FPRegister& fn, double value); |
+ inline void Fcsel(const FPRegister& fd, |
+ const FPRegister& fn, |
+ const FPRegister& fm, |
+ Condition cond); |
+ inline void Fcvt(const FPRegister& fd, const FPRegister& fn); |
+ inline void Fcvtas(const Register& rd, const FPRegister& fn); |
+ inline void Fcvtau(const Register& rd, const FPRegister& fn); |
+ inline void Fcvtms(const Register& rd, const FPRegister& fn); |
+ inline void Fcvtmu(const Register& rd, const FPRegister& fn); |
+ inline void Fcvtns(const Register& rd, const FPRegister& fn); |
+ inline void Fcvtnu(const Register& rd, const FPRegister& fn); |
+ inline void Fcvtzs(const Register& rd, const FPRegister& fn); |
+ inline void Fcvtzu(const Register& rd, const FPRegister& fn); |
+ inline void Fdiv(const FPRegister& fd, |
+ const FPRegister& fn, |
+ const FPRegister& fm); |
+ inline void Fmadd(const FPRegister& fd, |
+ const FPRegister& fn, |
+ const FPRegister& fm, |
+ const FPRegister& fa); |
+ inline void Fmax(const FPRegister& fd, |
+ const FPRegister& fn, |
+ const FPRegister& fm); |
+ inline void Fmaxnm(const FPRegister& fd, |
+ const FPRegister& fn, |
+ const FPRegister& fm); |
+ inline void Fmin(const FPRegister& fd, |
+ const FPRegister& fn, |
+ const FPRegister& fm); |
+ inline void Fminnm(const FPRegister& fd, |
+ const FPRegister& fn, |
+ const FPRegister& fm); |
+ inline void Fmov(FPRegister fd, FPRegister fn); |
+ inline void Fmov(FPRegister fd, Register rn); |
+ inline void Fmov(FPRegister fd, double imm); |
+ inline void Fmov(Register rd, FPRegister fn); |
+ inline void Fmsub(const FPRegister& fd, |
+ const FPRegister& fn, |
+ const FPRegister& fm, |
+ const FPRegister& fa); |
+ inline void Fmul(const FPRegister& fd, |
+ const FPRegister& fn, |
+ const FPRegister& fm); |
+ inline void Fneg(const FPRegister& fd, const FPRegister& fn); |
+ inline void Fnmadd(const FPRegister& fd, |
+ const FPRegister& fn, |
+ const FPRegister& fm, |
+ const FPRegister& fa); |
+ inline void Fnmsub(const FPRegister& fd, |
+ const FPRegister& fn, |
+ const FPRegister& fm, |
+ const FPRegister& fa); |
+ inline void Frinta(const FPRegister& fd, const FPRegister& fn); |
+ inline void Frintn(const FPRegister& fd, const FPRegister& fn); |
+ inline void Frintz(const FPRegister& fd, const FPRegister& fn); |
+ inline void Fsqrt(const FPRegister& fd, const FPRegister& fn); |
+ inline void Fsub(const FPRegister& fd, |
+ const FPRegister& fn, |
+ const FPRegister& fm); |
+ inline void Hint(SystemHint code); |
+ inline void Hlt(int code); |
+ inline void Isb(); |
+ inline void Ldnp(const CPURegister& rt, |
+ const CPURegister& rt2, |
+ const MemOperand& src); |
+ inline void Ldp(const CPURegister& rt, |
+ const CPURegister& rt2, |
+ const MemOperand& src); |
+ inline void Ldpsw(const Register& rt, |
+ const Register& rt2, |
+ const MemOperand& src); |
+ inline void Ldr(const FPRegister& ft, double imm); |
+ inline void Ldr(const Register& rt, uint64_t imm); |
+ inline void Lsl(const Register& rd, const Register& rn, unsigned shift); |
+ inline void Lsl(const Register& rd, const Register& rn, const Register& rm); |
+ inline void Lsr(const Register& rd, const Register& rn, unsigned shift); |
+ inline void Lsr(const Register& rd, const Register& rn, const Register& rm); |
+ inline void Madd(const Register& rd, |
+ const Register& rn, |
+ const Register& rm, |
+ const Register& ra); |
+ inline void Mneg(const Register& rd, const Register& rn, const Register& rm); |
+ inline void Mov(const Register& rd, const Register& rm); |
+ inline void Movk(const Register& rd, uint64_t imm, int shift = -1); |
+ inline void Mrs(const Register& rt, SystemRegister sysreg); |
+ inline void Msr(SystemRegister sysreg, const Register& rt); |
+ inline void Msub(const Register& rd, |
+ const Register& rn, |
+ const Register& rm, |
+ const Register& ra); |
+ inline void Mul(const Register& rd, const Register& rn, const Register& rm); |
+ inline void Nop() { nop(); } |
+ inline void Rbit(const Register& rd, const Register& rn); |
+ inline void Ret(const Register& xn = lr); |
+ inline void Rev(const Register& rd, const Register& rn); |
+ inline void Rev16(const Register& rd, const Register& rn); |
+ inline void Rev32(const Register& rd, const Register& rn); |
+ inline void Ror(const Register& rd, const Register& rs, unsigned shift); |
+ inline void Ror(const Register& rd, const Register& rn, const Register& rm); |
+ inline void Sbfiz(const Register& rd, |
+ const Register& rn, |
+ unsigned lsb, |
+ unsigned width); |
+ inline void Sbfx(const Register& rd, |
+ const Register& rn, |
+ unsigned lsb, |
+ unsigned width); |
+ inline void Scvtf(const FPRegister& fd, |
+ const Register& rn, |
+ unsigned fbits = 0); |
+ inline void Sdiv(const Register& rd, const Register& rn, const Register& rm); |
+ inline void Smaddl(const Register& rd, |
+ const Register& rn, |
+ const Register& rm, |
+ const Register& ra); |
+ inline void Smsubl(const Register& rd, |
+ const Register& rn, |
+ const Register& rm, |
+ const Register& ra); |
+ inline void Smull(const Register& rd, |
+ const Register& rn, |
+ const Register& rm); |
+ inline void Smulh(const Register& rd, |
+ const Register& rn, |
+ const Register& rm); |
+ inline void Stnp(const CPURegister& rt, |
+ const CPURegister& rt2, |
+ const MemOperand& dst); |
+ inline void Stp(const CPURegister& rt, |
+ const CPURegister& rt2, |
+ const MemOperand& dst); |
+ inline void Sxtb(const Register& rd, const Register& rn); |
+ inline void Sxth(const Register& rd, const Register& rn); |
+ inline void Sxtw(const Register& rd, const Register& rn); |
+ inline void Tbnz(const Register& rt, unsigned bit_pos, Label* label); |
+ inline void Tbz(const Register& rt, unsigned bit_pos, Label* label); |
+ inline void Ubfiz(const Register& rd, |
+ const Register& rn, |
+ unsigned lsb, |
+ unsigned width); |
+ inline void Ubfx(const Register& rd, |
+ const Register& rn, |
+ unsigned lsb, |
+ unsigned width); |
+ inline void Ucvtf(const FPRegister& fd, |
+ const Register& rn, |
+ unsigned fbits = 0); |
+ inline void Udiv(const Register& rd, const Register& rn, const Register& rm); |
+ inline void Umaddl(const Register& rd, |
+ const Register& rn, |
+ const Register& rm, |
+ const Register& ra); |
+ inline void Umsubl(const Register& rd, |
+ const Register& rn, |
+ const Register& rm, |
+ const Register& ra); |
+ inline void Unreachable(); |
+ inline void Uxtb(const Register& rd, const Register& rn); |
+ inline void Uxth(const Register& rd, const Register& rn); |
+ inline void Uxtw(const Register& rd, const Register& rn); |
+ |
+ // Pseudo-instructions ------------------------------------------------------ |
+ |
+ // Compute rd = abs(rm). |
+ // This function clobbers the condition flags. |
+ // |
+ // If rm is the minimum representable value, the result is not representable. |
+ // Handlers for each case can be specified using the relevant labels. |
+ void Abs(const Register& rd, const Register& rm, |
+ Label * is_not_representable = NULL, |
+ Label * is_representable = NULL); |
+ |
+ // Push or pop up to 4 registers of the same width to or from the stack, |
+ // using the current stack pointer as set by SetStackPointer. |
+ // |
+ // If an argument register is 'NoReg', all further arguments are also assumed |
+ // to be 'NoReg', and are thus not pushed or popped. |
+ // |
+ // Arguments are ordered such that "Push(a, b);" is functionally equivalent |
+ // to "Push(a); Push(b);". |
+ // |
+ // It is valid to push the same register more than once, and there is no |
+ // restriction on the order in which registers are specified. |
+ // |
+ // It is not valid to pop into the same register more than once in one |
+ // operation, not even into the zero register. |
+ // |
+ // If the current stack pointer (as set by SetStackPointer) is csp, then it |
+ // must be aligned to 16 bytes on entry and the total size of the specified |
+ // registers must also be a multiple of 16 bytes. |
+ // |
+ // Even if the current stack pointer is not the system stack pointer (csp), |
+ // Push (and derived methods) will still modify the system stack pointer in |
+ // order to comply with ABI rules about accessing memory below the system |
+ // stack pointer. |
+ // |
+ // Other than the registers passed into Pop, the stack pointer and (possibly) |
+ // the system stack pointer, these methods do not modify any other registers. |
+ // Scratch registers such as Tmp0() and Tmp1() are preserved. |
+ void Push(const CPURegister& src0, const CPURegister& src1 = NoReg, |
+ const CPURegister& src2 = NoReg, const CPURegister& src3 = NoReg); |
+ void Pop(const CPURegister& dst0, const CPURegister& dst1 = NoReg, |
+ const CPURegister& dst2 = NoReg, const CPURegister& dst3 = NoReg); |
+ |
+ // Alternative forms of Push and Pop, taking a RegList or CPURegList that |
+ // specifies the registers that are to be pushed or popped. Higher-numbered |
+ // registers are associated with higher memory addresses (as in the A32 push |
+ // and pop instructions). |
+ // |
+ // (Push|Pop)SizeRegList allow you to specify the register size as a |
+ // parameter. Only kXRegSize, kWRegSize, kDRegSize and kSRegSize are |
+ // supported. |
+ // |
+ // Otherwise, (Push|Pop)(CPU|X|W|D|S)RegList is preferred. |
+ void PushCPURegList(CPURegList registers); |
+ void PopCPURegList(CPURegList registers); |
+ |
+ inline void PushSizeRegList(RegList registers, unsigned reg_size, |
+ CPURegister::RegisterType type = CPURegister::kRegister) { |
+ PushCPURegList(CPURegList(type, reg_size, registers)); |
+ } |
+ inline void PopSizeRegList(RegList registers, unsigned reg_size, |
+ CPURegister::RegisterType type = CPURegister::kRegister) { |
+ PopCPURegList(CPURegList(type, reg_size, registers)); |
+ } |
+ inline void PushXRegList(RegList regs) { |
+ PushSizeRegList(regs, kXRegSize); |
+ } |
+ inline void PopXRegList(RegList regs) { |
+ PopSizeRegList(regs, kXRegSize); |
+ } |
+ inline void PushWRegList(RegList regs) { |
+ PushSizeRegList(regs, kWRegSize); |
+ } |
+ inline void PopWRegList(RegList regs) { |
+ PopSizeRegList(regs, kWRegSize); |
+ } |
+ inline void PushDRegList(RegList regs) { |
+ PushSizeRegList(regs, kDRegSize, CPURegister::kFPRegister); |
+ } |
+ inline void PopDRegList(RegList regs) { |
+ PopSizeRegList(regs, kDRegSize, CPURegister::kFPRegister); |
+ } |
+ inline void PushSRegList(RegList regs) { |
+ PushSizeRegList(regs, kSRegSize, CPURegister::kFPRegister); |
+ } |
+ inline void PopSRegList(RegList regs) { |
+ PopSizeRegList(regs, kSRegSize, CPURegister::kFPRegister); |
+ } |
+ |
+ // Push the specified register 'count' times. |
+ void PushMultipleTimes(int count, Register src); |
+ |
+ // This is a convenience method for pushing a single Handle<Object>. |
+ inline void Push(Handle<Object> handle); |
+ void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); } |
+ |
+ // Aliases of Push and Pop, required for V8 compatibility. |
+ inline void push(Register src) { |
+ Push(src); |
+ } |
+ inline void pop(Register dst) { |
+ Pop(dst); |
+ } |
+ |
+ // Poke 'src' onto the stack. The offset is in bytes. |
+ // |
+ // If the current stack pointer (according to StackPointer()) is csp, then |
+ // csp must be aligned to 16 bytes. |
+ void Poke(const CPURegister& src, const Operand& offset); |
+ |
+ // Peek at a value on the stack, and put it in 'dst'. The offset is in bytes. |
+ // |
+ // If the current stack pointer (according to StackPointer()) is csp, then |
+ // csp must be aligned to 16 bytes. |
+ void Peek(const CPURegister& dst, const Operand& offset); |
+ |
+ // Poke 'src1' and 'src2' onto the stack. The values written will be adjacent |
+ // with 'src2' at a higher address than 'src1'. The offset is in bytes. |
+ // |
+ // If the current stack pointer (according to StackPointer()) is csp, then |
+ // csp must be aligned to 16 bytes. |
+ void PokePair(const CPURegister& src1, const CPURegister& src2, int offset); |
+ |
+ // Peek at two values on the stack, and put them in 'dst1' and 'dst2'. The |
+ // values peeked will be adjacent, with the value in 'dst2' being from a |
+ // higher address than 'dst1'. The offset is in bytes. |
+ // |
+ // If the current stack pointer (according to StackPointer()) is csp, then |
+ // csp must be aligned to 16 bytes. |
+ void PeekPair(const CPURegister& dst1, const CPURegister& dst2, int offset); |
+ |
+ // Claim or drop stack space without actually accessing memory. |
+ // |
+ // In debug mode, both of these will write invalid data into the claimed or |
+ // dropped space. |
+ // |
+ // If the current stack pointer (according to StackPointer()) is csp, then it |
+ // must be aligned to 16 bytes and the size claimed or dropped must be a |
+ // multiple of 16 bytes. |
+ // |
+ // Note that unit_size must be specified in bytes. For variants which take a |
+ // Register count, the unit size must be a power of two. |
+ inline void Claim(uint64_t count, uint64_t unit_size = kXRegSizeInBytes); |
+ inline void Claim(const Register& count, |
+ uint64_t unit_size = kXRegSizeInBytes); |
+ inline void Drop(uint64_t count, uint64_t unit_size = kXRegSizeInBytes); |
+ inline void Drop(const Register& count, |
+ uint64_t unit_size = kXRegSizeInBytes); |
+ |
+ // Variants of Claim and Drop, where the 'count' parameter is a SMI held in a |
+ // register. |
+ inline void ClaimBySMI(const Register& count_smi, |
+ uint64_t unit_size = kXRegSizeInBytes); |
+ inline void DropBySMI(const Register& count_smi, |
+ uint64_t unit_size = kXRegSizeInBytes); |
+ |
+ // Compare a register with an operand, and branch to label depending on the |
+ // condition. May corrupt the status flags. |
+ inline void CompareAndBranch(const Register& lhs, |
+ const Operand& rhs, |
+ Condition cond, |
+ Label* label); |
+ |
+ // Test the bits of register defined by bit_pattern, and branch if ANY of |
+ // those bits are set. May corrupt the status flags. |
+ inline void TestAndBranchIfAnySet(const Register& reg, |
+ const uint64_t bit_pattern, |
+ Label* label); |
+ |
+ // Test the bits of register defined by bit_pattern, and branch if ALL of |
+ // those bits are clear (ie. not set.) May corrupt the status flags. |
+ inline void TestAndBranchIfAllClear(const Register& reg, |
+ const uint64_t bit_pattern, |
+ Label* label); |
+ |
+ // Insert one or more instructions into the instruction stream that encode |
+ // some caller-defined data. The instructions used will be executable with no |
+ // side effects. |
+ inline void InlineData(uint64_t data); |
+ |
+ // Insert an instrumentation enable marker into the instruction stream. |
+ inline void EnableInstrumentation(); |
+ |
+ // Insert an instrumentation disable marker into the instruction stream. |
+ inline void DisableInstrumentation(); |
+ |
+ // Insert an instrumentation event marker into the instruction stream. These |
+ // will be picked up by the instrumentation system to annotate an instruction |
+ // profile. The argument marker_name must be a printable two character string; |
+ // it will be encoded in the event marker. |
+ inline void AnnotateInstrumentation(const char* marker_name); |
+ |
+ // If emit_debug_code() is true, emit a run-time check to ensure that |
+ // StackPointer() does not point below the system stack pointer. |
+ // |
+ // Whilst it is architecturally legal for StackPointer() to point below csp, |
+ // it can be evidence of a potential bug because the ABI forbids accesses |
+ // below csp. |
+ // |
+ // If emit_debug_code() is false, this emits no code. |
+ // |
+ // If StackPointer() is the system stack pointer, this emits no code. |
+ void AssertStackConsistency(); |
+ |
+ // Preserve the callee-saved registers (as defined by AAPCS64). |
+ // |
+ // Higher-numbered registers are pushed before lower-numbered registers, and |
+ // thus get higher addresses. |
+ // Floating-point registers are pushed before general-purpose registers, and |
+ // thus get higher addresses. |
+ // |
+ // Note that registers are not checked for invalid values. Use this method |
+ // only if you know that the GC won't try to examine the values on the stack. |
+ // |
+ // This method must not be called unless the current stack pointer (as set by |
+ // SetStackPointer) is the system stack pointer (csp), and is aligned to |
+ // ActivationFrameAlignment(). |
+ void PushCalleeSavedRegisters(); |
+ |
+ // Restore the callee-saved registers (as defined by AAPCS64). |
+ // |
+ // Higher-numbered registers are popped after lower-numbered registers, and |
+ // thus come from higher addresses. |
+ // Floating-point registers are popped after general-purpose registers, and |
+ // thus come from higher addresses. |
+ // |
+ // This method must not be called unless the current stack pointer (as set by |
+ // SetStackPointer) is the system stack pointer (csp), and is aligned to |
+ // ActivationFrameAlignment(). |
+ void PopCalleeSavedRegisters(); |
+ |
+ // Set the current stack pointer, but don't generate any code. |
+ inline void SetStackPointer(const Register& stack_pointer) { |
+ ASSERT(!AreAliased(stack_pointer, Tmp0(), Tmp1())); |
+ sp_ = stack_pointer; |
+ } |
+ |
+ // Return the current stack pointer, as set by SetStackPointer. |
+ inline const Register& StackPointer() const { |
+ return sp_; |
+ } |
+ |
+ // Align csp for a frame, as per ActivationFrameAlignment, and make it the |
+ // current stack pointer. |
+ inline void AlignAndSetCSPForFrame() { |
+ int sp_alignment = ActivationFrameAlignment(); |
+ // AAPCS64 mandates at least 16-byte alignment. |
+ ASSERT(sp_alignment >= 16); |
+ ASSERT(IsPowerOf2(sp_alignment)); |
+ Bic(csp, StackPointer(), sp_alignment - 1); |
+ SetStackPointer(csp); |
+ } |
+ |
+ // Push the system stack pointer (csp) down to allow the same to be done to |
+ // the current stack pointer (according to StackPointer()). This must be |
+ // called _before_ accessing the memory. |
+ // |
+ // This is necessary when pushing or otherwise adding things to the stack, to |
+ // satisfy the AAPCS64 constraint that the memory below the system stack |
+ // pointer is not accessed. |
+ // |
+ // This method asserts that StackPointer() is not csp, since the call does |
+ // not make sense in that context. |
+ // |
+ // TODO(jbramley): Currently, this method can only accept values of 'space' |
+ // that can be encoded in one instruction. Refer to the implementation for |
+ // details. |
+ inline void BumpSystemStackPointer(const Operand& space); |
+ |
+ // Helpers ------------------------------------------------------------------ |
+ // Root register. |
+ inline void InitializeRootRegister(); |
+ |
+ // Load an object from the root table. |
+ void LoadRoot(Register destination, |
+ Heap::RootListIndex index); |
+ // Store an object to the root table. |
+ void StoreRoot(Register source, |
+ Heap::RootListIndex index); |
+ |
+ // Load both TrueValue and FalseValue roots. |
+ void LoadTrueFalseRoots(Register true_root, Register false_root); |
+ |
+ void LoadHeapObject(Register dst, Handle<HeapObject> object); |
+ |
+ void LoadObject(Register result, Handle<Object> object) { |
+ AllowDeferredHandleDereference heap_object_check; |
+ if (object->IsHeapObject()) { |
+ LoadHeapObject(result, Handle<HeapObject>::cast(object)); |
+ } else { |
+ ASSERT(object->IsSmi()); |
+ Mov(result, Operand(object)); |
+ } |
+ } |
+ |
+ static int SafepointRegisterStackIndex(int reg_code); |
+ |
+ // This is required for compatibility with architecture independant code. |
+ // Remove if not needed. |
+ inline void Move(Register dst, Register src) { Mov(dst, src); } |
+ |
+ void LoadInstanceDescriptors(Register map, |
+ Register descriptors); |
+ void EnumLengthUntagged(Register dst, Register map); |
+ void EnumLengthSmi(Register dst, Register map); |
+ void NumberOfOwnDescriptors(Register dst, Register map); |
+ |
+ template<typename Field> |
+ void DecodeField(Register reg) { |
+ static const uint64_t shift = Field::kShift + kSmiShift; |
+ static const uint64_t setbits = CountSetBits(Field::kMask, 32); |
+ Ubfx(reg, reg, shift, setbits); |
+ } |
+ |
+ // ---- SMI and Number Utilities ---- |
+ |
+ inline void SmiTag(Register dst, Register src); |
+ inline void SmiTag(Register smi); |
+ inline void SmiUntag(Register dst, Register src); |
+ inline void SmiUntag(Register smi); |
+ inline void SmiUntagToDouble(FPRegister dst, |
+ Register src, |
+ UntagMode mode = kNotSpeculativeUntag); |
+ inline void SmiUntagToFloat(FPRegister dst, |
+ Register src, |
+ UntagMode mode = kNotSpeculativeUntag); |
+ |
+ // Compute the absolute value of 'smi' and leave the result in 'smi' |
+ // register. If 'smi' is the most negative SMI, the absolute value cannot |
+ // be represented as a SMI and a jump to 'slow' is done. |
+ void SmiAbs(const Register& smi, Label* slow); |
+ |
+ inline void JumpIfSmi(Register value, |
+ Label* smi_label, |
+ Label* not_smi_label = NULL); |
+ inline void JumpIfNotSmi(Register value, Label* not_smi_label); |
+ inline void JumpIfBothSmi(Register value1, |
+ Register value2, |
+ Label* both_smi_label, |
+ Label* not_smi_label = NULL); |
+ inline void JumpIfEitherSmi(Register value1, |
+ Register value2, |
+ Label* either_smi_label, |
+ Label* not_smi_label = NULL); |
+ inline void JumpIfEitherNotSmi(Register value1, |
+ Register value2, |
+ Label* not_smi_label); |
+ inline void JumpIfBothNotSmi(Register value1, |
+ Register value2, |
+ Label* not_smi_label); |
+ |
+ // Abort execution if argument is a smi, enabled via --debug-code. |
+ void AssertNotSmi(Register object, BailoutReason reason = kOperandIsASmi); |
+ void AssertSmi(Register object, BailoutReason reason = kOperandIsNotASmi); |
+ |
+ // Abort execution if argument is not a name, enabled via --debug-code. |
+ void AssertName(Register object); |
+ |
+ // Abort execution if argument is not a string, enabled via --debug-code. |
+ void AssertString(Register object); |
+ |
+ void JumpForHeapNumber(Register object, |
+ Register heap_number_map, |
+ Label* on_heap_number, |
+ Label* on_not_heap_number = NULL); |
+ void JumpIfHeapNumber(Register object, |
+ Label* on_heap_number, |
+ Register heap_number_map = NoReg); |
+ void JumpIfNotHeapNumber(Register object, |
+ Label* on_not_heap_number, |
+ Register heap_number_map = NoReg); |
+ |
+ // Jump to label if the input double register contains -0.0. |
+ void JumpIfMinusZero(DoubleRegister input, Label* on_negative_zero); |
+ |
+ // Generate code to do a lookup in the number string cache. If the number in |
+ // the register object is found in the cache the generated code falls through |
+ // with the result in the result register. The object and the result register |
+ // can be the same. If the number is not found in the cache the code jumps to |
+ // the label not_found with only the content of register object unchanged. |
+ void LookupNumberStringCache(Register object, |
+ Register result, |
+ Register scratch1, |
+ Register scratch2, |
+ Register scratch3, |
+ Label* not_found); |
+ |
+ // Saturate a signed 32-bit integer in input to an unsigned 8-bit integer in |
+ // output. |
+ void ClampInt32ToUint8(Register in_out); |
+ void ClampInt32ToUint8(Register output, Register input); |
+ |
+ // Saturate a double in input to an unsigned 8-bit integer in output. |
+ void ClampDoubleToUint8(Register output, |
+ DoubleRegister input, |
+ DoubleRegister dbl_scratch); |
+ |
+ // Try to convert a double to a signed 32-bit int. |
+ // This succeeds if the result compares equal to the input, so inputs of -0.0 |
+ // are converted to 0 and handled as a success. |
+ void TryConvertDoubleToInt32(Register as_int, |
+ FPRegister value, |
+ FPRegister scratch_d, |
+ Label* on_successful_conversion, |
+ Label* on_failed_conversion = NULL) { |
+ ASSERT(as_int.Is32Bits()); |
+ TryConvertDoubleToInt(as_int, value, scratch_d, on_successful_conversion, |
+ on_failed_conversion); |
+ } |
+ |
+ // Try to convert a double to a signed 64-bit int. |
+ // This succeeds if the result compares equal to the input, so inputs of -0.0 |
+ // are converted to 0 and handled as a success. |
+ void TryConvertDoubleToInt64(Register as_int, |
+ FPRegister value, |
+ FPRegister scratch_d, |
+ Label* on_successful_conversion, |
+ Label* on_failed_conversion = NULL) { |
+ ASSERT(as_int.Is64Bits()); |
+ TryConvertDoubleToInt(as_int, value, scratch_d, on_successful_conversion, |
+ on_failed_conversion); |
+ } |
+ |
+ // ---- Object Utilities ---- |
+ |
+ // Copy fields from 'src' to 'dst', where both are tagged objects. |
+ // The 'temps' list is a list of X registers which can be used for scratch |
+ // values. The temps list must include at least one register, and it must not |
+ // contain Tmp0() or Tmp1(). |
+ // |
+ // Currently, CopyFields cannot make use of more than three registers from |
+ // the 'temps' list. |
+ // |
+ // As with several MacroAssembler methods, Tmp0() and Tmp1() will be used. |
+ void CopyFields(Register dst, Register src, CPURegList temps, unsigned count); |
+ |
+ // Copies a number of bytes from src to dst. All passed registers are |
+ // clobbered. On exit src and dst will point to the place just after where the |
+ // last byte was read or written and length will be zero. Hint may be used to |
+ // determine which is the most efficient algorithm to use for copying. |
+ void CopyBytes(Register dst, |
+ Register src, |
+ Register length, |
+ Register scratch, |
+ CopyHint hint = kCopyUnknown); |
+ |
+ // Initialize fields with filler values. Fields starting at start_offset not |
+ // including end_offset are overwritten with the value in filler. At the end |
+ // of the loop, start_offset takes the value of end_offset. |
+ void InitializeFieldsWithFiller(Register start_offset, |
+ Register end_offset, |
+ Register filler); |
+ |
+ // ---- String Utilities ---- |
+ |
+ |
+ // Jump to label if either object is not a sequential ASCII string. |
+ // Optionally perform a smi check on the objects first. |
+ void JumpIfEitherIsNotSequentialAsciiStrings( |
+ Register first, |
+ Register second, |
+ Register scratch1, |
+ Register scratch2, |
+ Label* failure, |
+ SmiCheckType smi_check = DO_SMI_CHECK); |
+ |
+ // Check if instance type is sequential ASCII string and jump to label if |
+ // it is not. |
+ void JumpIfInstanceTypeIsNotSequentialAscii(Register type, |
+ Register scratch, |
+ Label* failure); |
+ |
+ // Checks if both instance types are sequential ASCII strings and jumps to |
+ // label if either is not. |
+ void JumpIfEitherInstanceTypeIsNotSequentialAscii( |
+ Register first_object_instance_type, |
+ Register second_object_instance_type, |
+ Register scratch1, |
+ Register scratch2, |
+ Label* failure); |
+ |
+ // Checks if both instance types are sequential ASCII strings and jumps to |
+ // label if either is not. |
+ void JumpIfBothInstanceTypesAreNotSequentialAscii( |
+ Register first_object_instance_type, |
+ Register second_object_instance_type, |
+ Register scratch1, |
+ Register scratch2, |
+ Label* failure); |
+ |
+ void JumpIfNotUniqueName(Register type, Label* not_unique_name); |
+ |
+ // ---- Calling / Jumping helpers ---- |
+ |
+ // This is required for compatibility in architecture indepenedant code. |
+ inline void jmp(Label* L) { B(L); } |
+ |
+ // Passes thrown value to the handler of top of the try handler chain. |
+ // Register value must be x0. |
+ void Throw(Register value, |
+ Register scratch1, |
+ Register scratch2, |
+ Register scratch3, |
+ Register scratch4); |
+ |
+ // Propagates an uncatchable exception to the top of the current JS stack's |
+ // handler chain. Register value must be x0. |
+ void ThrowUncatchable(Register value, |
+ Register scratch1, |
+ Register scratch2, |
+ Register scratch3, |
+ Register scratch4); |
+ |
+ // Throw a message string as an exception. |
+ void Throw(BailoutReason reason); |
+ |
+ // Throw a message string as an exception if a condition is not true. |
+ void ThrowIf(Condition cc, BailoutReason reason); |
+ |
+ // Throw a message string as an exception if the value is a smi. |
+ void ThrowIfSmi(const Register& value, BailoutReason reason); |
+ |
+ void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None()); |
+ void TailCallStub(CodeStub* stub); |
+ |
+ void CallRuntime(const Runtime::Function* f, |
+ int num_arguments, |
+ SaveFPRegsMode save_doubles = kDontSaveFPRegs); |
+ |
+ void CallRuntime(Runtime::FunctionId id, |
+ int num_arguments, |
+ SaveFPRegsMode save_doubles = kDontSaveFPRegs) { |
+ CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles); |
+ } |
+ |
+ // TODO(all): Why does this variant save FP regs unconditionally? |
+ void CallRuntimeSaveDoubles(Runtime::FunctionId id) { |
+ const Runtime::Function* function = Runtime::FunctionForId(id); |
+ CallRuntime(function, function->nargs, kSaveFPRegs); |
+ } |
+ |
+ void TailCallRuntime(Runtime::FunctionId fid, |
+ int num_arguments, |
+ int result_size); |
+ |
+ int ActivationFrameAlignment(); |
+ |
+ // Calls a C function. |
+ // The called function is not allowed to trigger a |
+ // garbage collection, since that might move the code and invalidate the |
+ // return address (unless this is somehow accounted for by the called |
+ // function). |
+ void CallCFunction(ExternalReference function, |
+ int num_reg_arguments); |
+ void CallCFunction(ExternalReference function, |
+ int num_reg_arguments, |
+ int num_double_arguments); |
+ void CallCFunction(Register function, |
+ int num_reg_arguments, |
+ int num_double_arguments); |
+ |
+ // Calls an API function. Allocates HandleScope, extracts returned value |
+ // from handle and propagates exceptions. |
+ // 'stack_space' is the space to be unwound on exit (includes the call JS |
+ // arguments space and the additional space allocated for the fast call). |
+ // 'spill_offset' is the offset from the stack pointer where |
+ // CallApiFunctionAndReturn can spill registers. |
+ void CallApiFunctionAndReturn(Register function_address, |
+ ExternalReference thunk_ref, |
+ int stack_space, |
+ int spill_offset, |
+ MemOperand return_value_operand, |
+ MemOperand* context_restore_operand); |
+ |
+ // The number of register that CallApiFunctionAndReturn will need to save on |
+ // the stack. The space for these registers need to be allocated in the |
+ // ExitFrame before calling CallApiFunctionAndReturn. |
+ static const int kCallApiFunctionSpillSpace = 4; |
+ |
+ // Jump to a runtime routine. |
+ void JumpToExternalReference(const ExternalReference& builtin); |
+ // Tail call of a runtime routine (jump). |
+ // Like JumpToExternalReference, but also takes care of passing the number |
+ // of parameters. |
+ void TailCallExternalReference(const ExternalReference& ext, |
+ int num_arguments, |
+ int result_size); |
+ void CallExternalReference(const ExternalReference& ext, |
+ int num_arguments); |
+ |
+ |
+ // Invoke specified builtin JavaScript function. Adds an entry to |
+ // the unresolved list if the name does not resolve. |
+ void InvokeBuiltin(Builtins::JavaScript id, |
+ InvokeFlag flag, |
+ const CallWrapper& call_wrapper = NullCallWrapper()); |
+ |
+ // Store the code object for the given builtin in the target register and |
+ // setup the function in x1. |
+ // TODO(all): Can we use another register than x1? |
+ void GetBuiltinEntry(Register target, Builtins::JavaScript id); |
+ |
+ // Store the function for the given builtin in the target register. |
+ void GetBuiltinFunction(Register target, Builtins::JavaScript id); |
+ |
+ void Jump(Register target); |
+ void Jump(Address target, RelocInfo::Mode rmode); |
+ void Jump(Handle<Code> code, RelocInfo::Mode rmode); |
+ void Jump(intptr_t target, RelocInfo::Mode rmode); |
+ |
+ void Call(Register target); |
+ void Call(Label* target); |
+ void Call(Address target, RelocInfo::Mode rmode); |
+ void Call(Handle<Code> code, |
+ RelocInfo::Mode rmode = RelocInfo::CODE_TARGET, |
+ TypeFeedbackId ast_id = TypeFeedbackId::None()); |
+ |
+ // For every Call variant, there is a matching CallSize function that returns |
+ // the size (in bytes) of the call sequence. |
+ static int CallSize(Register target); |
+ static int CallSize(Label* target); |
+ static int CallSize(Address target, RelocInfo::Mode rmode); |
+ static int CallSize(Handle<Code> code, |
+ RelocInfo::Mode rmode = RelocInfo::CODE_TARGET, |
+ TypeFeedbackId ast_id = TypeFeedbackId::None()); |
+ |
+ // Registers used through the invocation chain are hard-coded. |
+ // We force passing the parameters to ensure the contracts are correctly |
+ // honoured by the caller. |
+ // 'function' must be x1. |
+ // 'actual' must use an immediate or x0. |
+ // 'expected' must use an immediate or x2. |
+ // 'call_kind' must be x5. |
+ void InvokePrologue(const ParameterCount& expected, |
+ const ParameterCount& actual, |
+ Handle<Code> code_constant, |
+ Register code_reg, |
+ Label* done, |
+ InvokeFlag flag, |
+ bool* definitely_mismatches, |
+ const CallWrapper& call_wrapper); |
+ void InvokeCode(Register code, |
+ const ParameterCount& expected, |
+ const ParameterCount& actual, |
+ InvokeFlag flag, |
+ const CallWrapper& call_wrapper); |
+ // Invoke the JavaScript function in the given register. |
+ // Changes the current context to the context in the function before invoking. |
+ void InvokeFunction(Register function, |
+ const ParameterCount& actual, |
+ InvokeFlag flag, |
+ const CallWrapper& call_wrapper); |
+ void InvokeFunction(Register function, |
+ const ParameterCount& expected, |
+ const ParameterCount& actual, |
+ InvokeFlag flag, |
+ const CallWrapper& call_wrapper); |
+ void InvokeFunction(Handle<JSFunction> function, |
+ const ParameterCount& expected, |
+ const ParameterCount& actual, |
+ InvokeFlag flag, |
+ const CallWrapper& call_wrapper); |
+ |
+ |
+ // ---- Floating point helpers ---- |
+ |
+ enum ECMA262ToInt32Result { |
+ // Provide an untagged int32_t which can be read using result.W(). That is, |
+ // the upper 32 bits of result are undefined. |
+ INT32_IN_W, |
+ |
+ // Provide an untagged int32_t which can be read using the 64-bit result |
+ // register. The int32_t result is sign-extended. |
+ INT32_IN_X, |
+ |
+ // Tag the int32_t result as a smi. |
+ SMI |
+ }; |
+ |
+ // Applies ECMA-262 ToInt32 (see section 9.5) to a double value. |
+ void ECMA262ToInt32(Register result, |
+ DoubleRegister input, |
+ Register scratch1, |
+ Register scratch2, |
+ ECMA262ToInt32Result format = INT32_IN_X); |
+ |
+ // As ECMA262ToInt32, but operate on a HeapNumber. |
+ void HeapNumberECMA262ToInt32(Register result, |
+ Register heap_number, |
+ Register scratch1, |
+ Register scratch2, |
+ DoubleRegister double_scratch, |
+ ECMA262ToInt32Result format = INT32_IN_X); |
+ |
+ // ---- Code generation helpers ---- |
+ |
+ void set_generating_stub(bool value) { generating_stub_ = value; } |
+ bool generating_stub() const { return generating_stub_; } |
+#if DEBUG |
+ void set_allow_macro_instructions(bool value) { |
+ allow_macro_instructions_ = value; |
+ } |
+ bool allow_macro_instructions() const { return allow_macro_instructions_; } |
+#endif |
+ bool use_real_aborts() const { return use_real_aborts_; } |
+ void set_has_frame(bool value) { has_frame_ = value; } |
+ bool has_frame() const { return has_frame_; } |
+ bool AllowThisStubCall(CodeStub* stub); |
+ |
+ class NoUseRealAbortsScope { |
+ public: |
+ explicit NoUseRealAbortsScope(MacroAssembler* masm) : |
+ saved_(masm->use_real_aborts_), masm_(masm) { |
+ masm_->use_real_aborts_ = false; |
+ } |
+ ~NoUseRealAbortsScope() { |
+ masm_->use_real_aborts_ = saved_; |
+ } |
+ private: |
+ bool saved_; |
+ MacroAssembler* masm_; |
+ }; |
+ |
+#ifdef ENABLE_DEBUGGER_SUPPORT |
+ // --------------------------------------------------------------------------- |
+ // Debugger Support |
+ |
+ void DebugBreak(); |
+#endif |
+ // --------------------------------------------------------------------------- |
+ // Exception handling |
+ |
+ // Push a new try handler and link into try handler chain. |
+ void PushTryHandler(StackHandler::Kind kind, int handler_index); |
+ |
+ // Unlink the stack handler on top of the stack from the try handler chain. |
+ // Must preserve the result register. |
+ void PopTryHandler(); |
+ |
+ |
+ // --------------------------------------------------------------------------- |
+ // Allocation support |
+ |
+ // Allocate an object in new space or old pointer space. The object_size is |
+ // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS |
+ // is passed. The allocated object is returned in result. |
+ // |
+ // If the new space is exhausted control continues at the gc_required label. |
+ // In this case, the result and scratch registers may still be clobbered. |
+ // If flags includes TAG_OBJECT, the result is tagged as as a heap object. |
+ void Allocate(Register object_size, |
+ Register result, |
+ Register scratch1, |
+ Register scratch2, |
+ Label* gc_required, |
+ AllocationFlags flags); |
+ |
+ void Allocate(int object_size, |
+ Register result, |
+ Register scratch1, |
+ Register scratch2, |
+ Label* gc_required, |
+ AllocationFlags flags); |
+ |
+ // Undo allocation in new space. The object passed and objects allocated after |
+ // it will no longer be allocated. The caller must make sure that no pointers |
+ // are left to the object(s) no longer allocated as they would be invalid when |
+ // allocation is undone. |
+ void UndoAllocationInNewSpace(Register object, Register scratch); |
+ |
+ void AllocateTwoByteString(Register result, |
+ Register length, |
+ Register scratch1, |
+ Register scratch2, |
+ Register scratch3, |
+ Label* gc_required); |
+ void AllocateAsciiString(Register result, |
+ Register length, |
+ Register scratch1, |
+ Register scratch2, |
+ Register scratch3, |
+ Label* gc_required); |
+ void AllocateTwoByteConsString(Register result, |
+ Register length, |
+ Register scratch1, |
+ Register scratch2, |
+ Label* gc_required); |
+ void AllocateAsciiConsString(Register result, |
+ Register length, |
+ Register scratch1, |
+ Register scratch2, |
+ Label* gc_required); |
+ void AllocateTwoByteSlicedString(Register result, |
+ Register length, |
+ Register scratch1, |
+ Register scratch2, |
+ Label* gc_required); |
+ void AllocateAsciiSlicedString(Register result, |
+ Register length, |
+ Register scratch1, |
+ Register scratch2, |
+ Label* gc_required); |
+ |
+ // Allocates a heap number or jumps to the gc_required label if the young |
+ // space is full and a scavenge is needed. |
+ // All registers are clobbered. |
+ // If no heap_number_map register is provided, the function will take care of |
+ // loading it. |
+ void AllocateHeapNumber(Register result, |
+ Label* gc_required, |
+ Register scratch1, |
+ Register scratch2, |
+ Register heap_number_map = NoReg); |
+ void AllocateHeapNumberWithValue(Register result, |
+ DoubleRegister value, |
+ Label* gc_required, |
+ Register scratch1, |
+ Register scratch2, |
+ Register heap_number_map = NoReg); |
+ |
+ // --------------------------------------------------------------------------- |
+ // Support functions. |
+ |
+ // Try to get function prototype of a function and puts the value in the |
+ // result register. Checks that the function really is a function and jumps |
+ // to the miss label if the fast checks fail. The function register will be |
+ // untouched; the other registers may be clobbered. |
+ enum BoundFunctionAction { |
+ kMissOnBoundFunction, |
+ kDontMissOnBoundFunction |
+ }; |
+ |
+ void TryGetFunctionPrototype(Register function, |
+ Register result, |
+ Register scratch, |
+ Label* miss, |
+ BoundFunctionAction action = |
+ kDontMissOnBoundFunction); |
+ |
+ // Compare object type for heap object. heap_object contains a non-Smi |
+ // whose object type should be compared with the given type. This both |
+ // sets the flags and leaves the object type in the type_reg register. |
+ // It leaves the map in the map register (unless the type_reg and map register |
+ // are the same register). It leaves the heap object in the heap_object |
+ // register unless the heap_object register is the same register as one of the |
+ // other registers. |
+ void CompareObjectType(Register heap_object, |
+ Register map, |
+ Register type_reg, |
+ InstanceType type); |
+ |
+ |
+ // Compare object type for heap object, and branch if equal (or not.) |
+ // heap_object contains a non-Smi whose object type should be compared with |
+ // the given type. This both sets the flags and leaves the object type in |
+ // the type_reg register. It leaves the map in the map register (unless the |
+ // type_reg and map register are the same register). It leaves the heap |
+ // object in the heap_object register unless the heap_object register is the |
+ // same register as one of the other registers. |
+ void JumpIfObjectType(Register object, |
+ Register map, |
+ Register type_reg, |
+ InstanceType type, |
+ Label* if_cond_pass, |
+ Condition cond = eq); |
+ |
+ void JumpIfNotObjectType(Register object, |
+ Register map, |
+ Register type_reg, |
+ InstanceType type, |
+ Label* if_not_object); |
+ |
+ // Compare instance type in a map. map contains a valid map object whose |
+ // object type should be compared with the given type. This both |
+ // sets the flags and leaves the object type in the type_reg register. |
+ void CompareInstanceType(Register map, |
+ Register type_reg, |
+ InstanceType type); |
+ |
+ // Compare an object's map with the specified map and its transitioned |
+ // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Condition flags are |
+ // set with result of map compare. If multiple map compares are required, the |
+ // compare sequences branches to early_success. |
+ void CompareMap(Register obj, |
+ Register scratch, |
+ Handle<Map> map, |
+ Label* early_success = NULL); |
+ |
+ // As above, but the map of the object is already loaded into the register |
+ // which is preserved by the code generated. |
+ void CompareMap(Register obj_map, |
+ Handle<Map> map, |
+ Label* early_success = NULL); |
+ |
+ // Check if the map of an object is equal to a specified map and branch to |
+ // label if not. Skip the smi check if not required (object is known to be a |
+ // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match |
+ // against maps that are ElementsKind transition maps of the specified map. |
+ void CheckMap(Register obj, |
+ Register scratch, |
+ Handle<Map> map, |
+ Label* fail, |
+ SmiCheckType smi_check_type); |
+ |
+ |
+ void CheckMap(Register obj, |
+ Register scratch, |
+ Heap::RootListIndex index, |
+ Label* fail, |
+ SmiCheckType smi_check_type); |
+ |
+ // As above, but the map of the object is already loaded into obj_map, and is |
+ // preserved. |
+ void CheckMap(Register obj_map, |
+ Handle<Map> map, |
+ Label* fail, |
+ SmiCheckType smi_check_type); |
+ |
+ // Check if the map of an object is equal to a specified map and branch to a |
+ // specified target if equal. Skip the smi check if not required (object is |
+ // known to be a heap object) |
+ void DispatchMap(Register obj, |
+ Register scratch, |
+ Handle<Map> map, |
+ Handle<Code> success, |
+ SmiCheckType smi_check_type); |
+ |
+ // Test the bitfield of the heap object map with mask and set the condition |
+ // flags. The object register is preserved. |
+ void TestMapBitfield(Register object, uint64_t mask); |
+ |
+ // Load the elements kind field of an object, and return it in the result |
+ // register. |
+ void LoadElementsKind(Register result, Register object); |
+ |
+ // Compare the object in a register to a value from the root list. |
+ // Uses the Tmp0() register as scratch. |
+ void CompareRoot(const Register& obj, Heap::RootListIndex index); |
+ |
+ // Compare the object in a register to a value and jump if they are equal. |
+ void JumpIfRoot(const Register& obj, |
+ Heap::RootListIndex index, |
+ Label* if_equal); |
+ |
+ // Compare the object in a register to a value and jump if they are not equal. |
+ void JumpIfNotRoot(const Register& obj, |
+ Heap::RootListIndex index, |
+ Label* if_not_equal); |
+ |
+ // Load and check the instance type of an object for being a unique name. |
+ // Loads the type into the second argument register. |
+ // The object and type arguments can be the same register; in that case it |
+ // will be overwritten with the type. |
+ // Fall-through if the object was a string and jump on fail otherwise. |
+ inline void IsObjectNameType(Register object, Register type, Label* fail); |
+ |
+ inline void IsObjectJSObjectType(Register heap_object, |
+ Register map, |
+ Register scratch, |
+ Label* fail); |
+ |
+ // Check the instance type in the given map to see if it corresponds to a |
+ // JS object type. Jump to the fail label if this is not the case and fall |
+ // through otherwise. However if fail label is NULL, no branch will be |
+ // performed and the flag will be updated. You can test the flag for "le" |
+ // condition to test if it is a valid JS object type. |
+ inline void IsInstanceJSObjectType(Register map, |
+ Register scratch, |
+ Label* fail); |
+ |
+ // Load and check the instance type of an object for being a string. |
+ // Loads the type into the second argument register. |
+ // The object and type arguments can be the same register; in that case it |
+ // will be overwritten with the type. |
+ // Jumps to not_string or string appropriate. If the appropriate label is |
+ // NULL, fall through. |
+ inline void IsObjectJSStringType(Register object, Register type, |
+ Label* not_string, Label* string = NULL); |
+ |
+ // Compare the contents of a register with an operand, and branch to true, |
+ // false or fall through, depending on condition. |
+ void CompareAndSplit(const Register& lhs, |
+ const Operand& rhs, |
+ Condition cond, |
+ Label* if_true, |
+ Label* if_false, |
+ Label* fall_through); |
+ |
+ // Test the bits of register defined by bit_pattern, and branch to |
+ // if_any_set, if_all_clear or fall_through accordingly. |
+ void TestAndSplit(const Register& reg, |
+ uint64_t bit_pattern, |
+ Label* if_all_clear, |
+ Label* if_any_set, |
+ Label* fall_through); |
+ |
+ // Check if a map for a JSObject indicates that the object has fast elements. |
+ // Jump to the specified label if it does not. |
+ void CheckFastElements(Register map, |
+ Register scratch, |
+ Label* fail); |
+ |
+ // Check if a map for a JSObject indicates that the object can have both smi |
+ // and HeapObject elements. Jump to the specified label if it does not. |
+ void CheckFastObjectElements(Register map, |
+ Register scratch, |
+ Label* fail); |
+ |
+ // Check if a map for a JSObject indicates that the object has fast smi only |
+ // elements. Jump to the specified label if it does not. |
+ void CheckFastSmiElements(Register map, Register scratch, Label* fail); |
+ |
+ // Check to see if number can be stored as a double in FastDoubleElements. |
+ // If it can, store it at the index specified by key_reg in the array, |
+ // otherwise jump to fail. |
+ void StoreNumberToDoubleElements(Register value_reg, |
+ Register key_reg, |
+ Register elements_reg, |
+ Register scratch1, |
+ FPRegister fpscratch1, |
+ FPRegister fpscratch2, |
+ Label* fail, |
+ int elements_offset = 0); |
+ |
+ // Picks out an array index from the hash field. |
+ // Register use: |
+ // hash - holds the index's hash. Clobbered. |
+ // index - holds the overwritten index on exit. |
+ void IndexFromHash(Register hash, Register index); |
+ |
+ // --------------------------------------------------------------------------- |
+ // Inline caching support. |
+ |
+ void EmitSeqStringSetCharCheck(Register string, |
+ Register index, |
+ SeqStringSetCharCheckIndexType index_type, |
+ Register scratch, |
+ uint32_t encoding_mask); |
+ |
+ // Generate code for checking access rights - used for security checks |
+ // on access to global objects across environments. The holder register |
+ // is left untouched, whereas both scratch registers are clobbered. |
+ void CheckAccessGlobalProxy(Register holder_reg, |
+ Register scratch, |
+ Label* miss); |
+ |
+ // Hash the interger value in 'key' register. |
+ // It uses the same algorithm as ComputeIntegerHash in utils.h. |
+ void GetNumberHash(Register key, Register scratch); |
+ |
+ // Load value from the dictionary. |
+ // |
+ // elements - holds the slow-case elements of the receiver on entry. |
+ // Unchanged unless 'result' is the same register. |
+ // |
+ // key - holds the smi key on entry. |
+ // Unchanged unless 'result' is the same register. |
+ // |
+ // result - holds the result on exit if the load succeeded. |
+ // Allowed to be the same as 'key' or 'result'. |
+ // Unchanged on bailout so 'key' or 'result' can be used |
+ // in further computation. |
+ void LoadFromNumberDictionary(Label* miss, |
+ Register elements, |
+ Register key, |
+ Register result, |
+ Register scratch0, |
+ Register scratch1, |
+ Register scratch2, |
+ Register scratch3); |
+ |
+ // --------------------------------------------------------------------------- |
+ // Frames. |
+ |
+ // Activation support. |
+ // Note that Tmp0() and Tmp1() are used as a scratch registers. This is safe |
+ // because these methods are not used in Crankshaft. |
+ void EnterFrame(StackFrame::Type type); |
+ void LeaveFrame(StackFrame::Type type); |
+ |
+ // Returns map with validated enum cache in object register. |
+ void CheckEnumCache(Register object, |
+ Register null_value, |
+ Register scratch0, |
+ Register scratch1, |
+ Register scratch2, |
+ Register scratch3, |
+ Label* call_runtime); |
+ |
+ // AllocationMemento support. Arrays may have an associated |
+ // AllocationMemento object that can be checked for in order to pretransition |
+ // to another type. |
+ // On entry, receiver should point to the array object. |
+ // If allocation info is present, the Z flag is set (so that the eq |
+ // condition will pass). |
+ void TestJSArrayForAllocationMemento(Register receiver, |
+ Register scratch1, |
+ Register scratch2, |
+ Label* no_memento_found); |
+ |
+ void JumpIfJSArrayHasAllocationMemento(Register receiver, |
+ Register scratch1, |
+ Register scratch2, |
+ Label* memento_found) { |
+ Label no_memento_found; |
+ TestJSArrayForAllocationMemento(receiver, scratch1, scratch2, |
+ &no_memento_found); |
+ B(eq, memento_found); |
+ Bind(&no_memento_found); |
+ } |
+ |
+ // The stack pointer has to switch between csp and jssp when setting up and |
+ // destroying the exit frame. Hence preserving/restoring the registers is |
+ // slightly more complicated than simple push/pop operations. |
+ void ExitFramePreserveFPRegs(); |
+ void ExitFrameRestoreFPRegs(); |
+ |
+ // Generates function and stub prologue code. |
+ void Prologue(PrologueFrameMode frame_mode); |
+ |
+ // Enter exit frame. Exit frames are used when calling C code from generated |
+ // (JavaScript) code. |
+ // |
+ // The stack pointer must be jssp on entry, and will be set to csp by this |
+ // function. The frame pointer is also configured, but the only other |
+ // registers modified by this function are the provided scratch register, and |
+ // jssp. |
+ // |
+ // The 'extra_space' argument can be used to allocate some space in the exit |
+ // frame that will be ignored by the GC. This space will be reserved in the |
+ // bottom of the frame immediately above the return address slot. |
+ // |
+ // Set up a stack frame and registers as follows: |
+ // fp[8]: CallerPC (lr) |
+ // fp -> fp[0]: CallerFP (old fp) |
+ // fp[-8]: SPOffset (new csp) |
+ // fp[-16]: CodeObject() |
+ // fp[-16 - fp-size]: Saved doubles, if saved_doubles is true. |
+ // csp[8]: Memory reserved for the caller if extra_space != 0. |
+ // Alignment padding, if necessary. |
+ // csp -> csp[0]: Space reserved for the return address. |
+ // |
+ // This function also stores the new frame information in the top frame, so |
+ // that the new frame becomes the current frame. |
+ void EnterExitFrame(bool save_doubles, |
+ const Register& scratch, |
+ int extra_space = 0); |
+ |
+ // Leave the current exit frame, after a C function has returned to generated |
+ // (JavaScript) code. |
+ // |
+ // This effectively unwinds the operation of EnterExitFrame: |
+ // * Preserved doubles are restored (if restore_doubles is true). |
+ // * The frame information is removed from the top frame. |
+ // * The exit frame is dropped. |
+ // * The stack pointer is reset to jssp. |
+ // |
+ // The stack pointer must be csp on entry. |
+ void LeaveExitFrame(bool save_doubles, |
+ const Register& scratch, |
+ bool restore_context); |
+ |
+ void LoadContext(Register dst, int context_chain_length); |
+ |
+ // --------------------------------------------------------------------------- |
+ // StatsCounter support |
+ |
+ void SetCounter(StatsCounter* counter, int value, Register scratch1, |
+ Register scratch2); |
+ void IncrementCounter(StatsCounter* counter, int value, Register scratch1, |
+ Register scratch2); |
+ void DecrementCounter(StatsCounter* counter, int value, Register scratch1, |
+ Register scratch2); |
+ |
+ // --------------------------------------------------------------------------- |
+ // Garbage collector support (GC). |
+ |
+ enum RememberedSetFinalAction { |
+ kReturnAtEnd, |
+ kFallThroughAtEnd |
+ }; |
+ |
+ // Record in the remembered set the fact that we have a pointer to new space |
+ // at the address pointed to by the addr register. Only works if addr is not |
+ // in new space. |
+ void RememberedSetHelper(Register object, // Used for debug code. |
+ Register addr, |
+ Register scratch, |
+ SaveFPRegsMode save_fp, |
+ RememberedSetFinalAction and_then); |
+ |
+ // Push and pop the registers that can hold pointers, as defined by the |
+ // RegList constant kSafepointSavedRegisters. |
+ void PushSafepointRegisters(); |
+ void PopSafepointRegisters(); |
+ |
+ void PushSafepointFPRegisters(); |
+ void PopSafepointFPRegisters(); |
+ |
+ // Store value in register src in the safepoint stack slot for register dst. |
+ void StoreToSafepointRegisterSlot(Register src, Register dst) { |
+ Poke(src, SafepointRegisterStackIndex(dst.code()) * kPointerSize); |
+ } |
+ |
+ // Load the value of the src register from its safepoint stack slot |
+ // into register dst. |
+ void LoadFromSafepointRegisterSlot(Register dst, Register src) { |
+ Peek(src, SafepointRegisterStackIndex(dst.code()) * kPointerSize); |
+ } |
+ |
+ void CheckPageFlagSet(const Register& object, |
+ const Register& scratch, |
+ int mask, |
+ Label* if_any_set); |
+ |
+ void CheckPageFlagClear(const Register& object, |
+ const Register& scratch, |
+ int mask, |
+ Label* if_all_clear); |
+ |
+ void CheckMapDeprecated(Handle<Map> map, |
+ Register scratch, |
+ Label* if_deprecated); |
+ |
+ // Check if object is in new space and jump accordingly. |
+ // Register 'object' is preserved. |
+ void JumpIfNotInNewSpace(Register object, |
+ Label* branch) { |
+ InNewSpace(object, ne, branch); |
+ } |
+ |
+ void JumpIfInNewSpace(Register object, |
+ Label* branch) { |
+ InNewSpace(object, eq, branch); |
+ } |
+ |
+ // Notify the garbage collector that we wrote a pointer into an object. |
+ // |object| is the object being stored into, |value| is the object being |
+ // stored. value and scratch registers are clobbered by the operation. |
+ // The offset is the offset from the start of the object, not the offset from |
+ // the tagged HeapObject pointer. For use with FieldOperand(reg, off). |
+ void RecordWriteField( |
+ Register object, |
+ int offset, |
+ Register value, |
+ Register scratch, |
+ LinkRegisterStatus lr_status, |
+ SaveFPRegsMode save_fp, |
+ RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, |
+ SmiCheck smi_check = INLINE_SMI_CHECK); |
+ |
+ // As above, but the offset has the tag presubtracted. For use with |
+ // MemOperand(reg, off). |
+ inline void RecordWriteContextSlot( |
+ Register context, |
+ int offset, |
+ Register value, |
+ Register scratch, |
+ LinkRegisterStatus lr_status, |
+ SaveFPRegsMode save_fp, |
+ RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, |
+ SmiCheck smi_check = INLINE_SMI_CHECK) { |
+ RecordWriteField(context, |
+ offset + kHeapObjectTag, |
+ value, |
+ scratch, |
+ lr_status, |
+ save_fp, |
+ remembered_set_action, |
+ smi_check); |
+ } |
+ |
+ // For a given |object| notify the garbage collector that the slot |address| |
+ // has been written. |value| is the object being stored. The value and |
+ // address registers are clobbered by the operation. |
+ void RecordWrite( |
+ Register object, |
+ Register address, |
+ Register value, |
+ LinkRegisterStatus lr_status, |
+ SaveFPRegsMode save_fp, |
+ RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, |
+ SmiCheck smi_check = INLINE_SMI_CHECK); |
+ |
+ // Checks the color of an object. If the object is already grey or black |
+ // then we just fall through, since it is already live. If it is white and |
+ // we can determine that it doesn't need to be scanned, then we just mark it |
+ // black and fall through. For the rest we jump to the label so the |
+ // incremental marker can fix its assumptions. |
+ void EnsureNotWhite(Register object, |
+ Register scratch1, |
+ Register scratch2, |
+ Register scratch3, |
+ Register scratch4, |
+ Label* object_is_white_and_not_data); |
+ |
+ // Detects conservatively whether an object is data-only, i.e. it does need to |
+ // be scanned by the garbage collector. |
+ void JumpIfDataObject(Register value, |
+ Register scratch, |
+ Label* not_data_object); |
+ |
+ // Helper for finding the mark bits for an address. |
+ // Note that the behaviour slightly differs from other architectures. |
+ // On exit: |
+ // - addr_reg is unchanged. |
+ // - The bitmap register points at the word with the mark bits. |
+ // - The shift register contains the index of the first color bit for this |
+ // object in the bitmap. |
+ inline void GetMarkBits(Register addr_reg, |
+ Register bitmap_reg, |
+ Register shift_reg); |
+ |
+ // Check if an object has a given incremental marking color. |
+ void HasColor(Register object, |
+ Register scratch0, |
+ Register scratch1, |
+ Label* has_color, |
+ int first_bit, |
+ int second_bit); |
+ |
+ void JumpIfBlack(Register object, |
+ Register scratch0, |
+ Register scratch1, |
+ Label* on_black); |
+ |
+ |
+ // Get the location of a relocated constant (its address in the constant pool) |
+ // from its load site. |
+ void GetRelocatedValueLocation(Register ldr_location, |
+ Register result); |
+ |
+ |
+ // --------------------------------------------------------------------------- |
+ // Debugging. |
+ |
+ // Calls Abort(msg) if the condition cond is not satisfied. |
+ // Use --debug_code to enable. |
+ void Assert(Condition cond, BailoutReason reason); |
+ void AssertRegisterIsClear(Register reg, BailoutReason reason); |
+ void AssertRegisterIsRoot( |
+ Register reg, |
+ Heap::RootListIndex index, |
+ BailoutReason reason = kRegisterDidNotMatchExpectedRoot); |
+ void AssertFastElements(Register elements); |
+ |
+ // Abort if the specified register contains the invalid color bit pattern. |
+ // The pattern must be in bits [1:0] of 'reg' register. |
+ // |
+ // If emit_debug_code() is false, this emits no code. |
+ void AssertHasValidColor(const Register& reg); |
+ |
+ // Abort if 'object' register doesn't point to a string object. |
+ // |
+ // If emit_debug_code() is false, this emits no code. |
+ void AssertIsString(const Register& object); |
+ |
+ // Like Assert(), but always enabled. |
+ void Check(Condition cond, BailoutReason reason); |
+ void CheckRegisterIsClear(Register reg, BailoutReason reason); |
+ |
+ // Print a message to stderr and abort execution. |
+ void Abort(BailoutReason reason); |
+ |
+ // Conditionally load the cached Array transitioned map of type |
+ // transitioned_kind from the native context if the map in register |
+ // map_in_out is the cached Array map in the native context of |
+ // expected_kind. |
+ void LoadTransitionedArrayMapConditional( |
+ ElementsKind expected_kind, |
+ ElementsKind transitioned_kind, |
+ Register map_in_out, |
+ Register scratch, |
+ Label* no_map_match); |
+ |
+ // Load the initial map for new Arrays from a JSFunction. |
+ void LoadInitialArrayMap(Register function_in, |
+ Register scratch, |
+ Register map_out, |
+ ArrayHasHoles holes); |
+ |
+ void LoadArrayFunction(Register function); |
+ void LoadGlobalFunction(int index, Register function); |
+ |
+ // Load the initial map from the global function. The registers function and |
+ // map can be the same, function is then overwritten. |
+ void LoadGlobalFunctionInitialMap(Register function, |
+ Register map, |
+ Register scratch); |
+ |
+ // -------------------------------------------------------------------------- |
+ // Set the registers used internally by the MacroAssembler as scratch |
+ // registers. These registers are used to implement behaviours which are not |
+ // directly supported by A64, and where an intermediate result is required. |
+ // |
+ // Both tmp0 and tmp1 may be set to any X register except for xzr, sp, |
+ // and StackPointer(). Also, they must not be the same register (though they |
+ // may both be NoReg). |
+ // |
+ // It is valid to set either or both of these registers to NoReg if you don't |
+ // want the MacroAssembler to use any scratch registers. In a debug build, the |
+ // Assembler will assert that any registers it uses are valid. Be aware that |
+ // this check is not present in release builds. If this is a problem, use the |
+ // Assembler directly. |
+ void SetScratchRegisters(const Register& tmp0, const Register& tmp1) { |
+ // V8 assumes the macro assembler uses ip0 and ip1 as temp registers. |
+ ASSERT(tmp0.IsNone() || tmp0.Is(ip0)); |
+ ASSERT(tmp1.IsNone() || tmp1.Is(ip1)); |
+ |
+ ASSERT(!AreAliased(xzr, csp, tmp0, tmp1)); |
+ ASSERT(!AreAliased(StackPointer(), tmp0, tmp1)); |
+ tmp0_ = tmp0; |
+ tmp1_ = tmp1; |
+ } |
+ |
+ const Register& Tmp0() const { |
+ return tmp0_; |
+ } |
+ |
+ const Register& Tmp1() const { |
+ return tmp1_; |
+ } |
+ |
+ const Register WTmp0() const { |
+ return Register::Create(tmp0_.code(), kWRegSize); |
+ } |
+ |
+ const Register WTmp1() const { |
+ return Register::Create(tmp1_.code(), kWRegSize); |
+ } |
+ |
+ void SetFPScratchRegister(const FPRegister& fptmp0) { |
+ fptmp0_ = fptmp0; |
+ } |
+ |
+ const FPRegister& FPTmp0() const { |
+ return fptmp0_; |
+ } |
+ |
+ const Register AppropriateTempFor( |
+ const Register& target, |
+ const CPURegister& forbidden = NoCPUReg) const { |
+ Register candidate = forbidden.Is(Tmp0()) ? Tmp1() : Tmp0(); |
+ ASSERT(!candidate.Is(target)); |
+ return Register::Create(candidate.code(), target.SizeInBits()); |
+ } |
+ |
+ const FPRegister AppropriateTempFor( |
+ const FPRegister& target, |
+ const CPURegister& forbidden = NoCPUReg) const { |
+ USE(forbidden); |
+ FPRegister candidate = FPTmp0(); |
+ ASSERT(!candidate.Is(forbidden)); |
+ ASSERT(!candidate.Is(target)); |
+ return FPRegister::Create(candidate.code(), target.SizeInBits()); |
+ } |
+ |
+ // Like printf, but print at run-time from generated code. |
+ // |
+ // The caller must ensure that arguments for floating-point placeholders |
+ // (such as %e, %f or %g) are FPRegisters, and that arguments for integer |
+ // placeholders are Registers. |
+ // |
+ // A maximum of four arguments may be given to any single Printf call. The |
+ // arguments must be of the same type, but they do not need to have the same |
+ // size. |
+ // |
+ // The following registers cannot be printed: |
+ // Tmp0(), Tmp1(), StackPointer(), csp. |
+ // |
+ // This function automatically preserves caller-saved registers so that |
+ // calling code can use Printf at any point without having to worry about |
+ // corruption. The preservation mechanism generates a lot of code. If this is |
+ // a problem, preserve the important registers manually and then call |
+ // PrintfNoPreserve. Callee-saved registers are not used by Printf, and are |
+ // implicitly preserved. |
+ // |
+ // Unlike many MacroAssembler functions, x8 and x9 are guaranteed to be |
+ // preserved, and can be printed. This allows Printf to be used during debug |
+ // code. |
+ // |
+ // This function assumes (and asserts) that the current stack pointer is |
+ // callee-saved, not caller-saved. This is most likely the case anyway, as a |
+ // caller-saved stack pointer doesn't make a lot of sense. |
+ void Printf(const char * format, |
+ const CPURegister& arg0 = NoCPUReg, |
+ const CPURegister& arg1 = NoCPUReg, |
+ const CPURegister& arg2 = NoCPUReg, |
+ const CPURegister& arg3 = NoCPUReg); |
+ |
+ // Like Printf, but don't preserve any caller-saved registers, not even 'lr'. |
+ // |
+ // The return code from the system printf call will be returned in x0. |
+ void PrintfNoPreserve(const char * format, |
+ const CPURegister& arg0 = NoCPUReg, |
+ const CPURegister& arg1 = NoCPUReg, |
+ const CPURegister& arg2 = NoCPUReg, |
+ const CPURegister& arg3 = NoCPUReg); |
+ |
+ // Code ageing support functions. |
+ |
+ // Code ageing on A64 works similarly to on ARM. When V8 wants to mark a |
+ // function as old, it replaces some of the function prologue (generated by |
+ // FullCodeGenerator::Generate) with a call to a special stub (ultimately |
+ // generated by GenerateMakeCodeYoungAgainCommon). The stub restores the |
+ // function prologue to its initial young state (indicating that it has been |
+ // recently run) and continues. A young function is therefore one which has a |
+ // normal frame setup sequence, and an old function has a code age sequence |
+ // which calls a code ageing stub. |
+ |
+ // Set up a basic stack frame for young code (or code exempt from ageing) with |
+ // type FUNCTION. It may be patched later for code ageing support. This is |
+ // done by to Code::PatchPlatformCodeAge and EmitCodeAgeSequence. |
+ // |
+ // This function takes an Assembler so it can be called from either a |
+ // MacroAssembler or a PatchingAssembler context. |
+ static void EmitFrameSetupForCodeAgePatching(Assembler* assm); |
+ |
+ // Call EmitFrameSetupForCodeAgePatching from a MacroAssembler context. |
+ void EmitFrameSetupForCodeAgePatching(); |
+ |
+ // Emit a code age sequence that calls the relevant code age stub. The code |
+ // generated by this sequence is expected to replace the code generated by |
+ // EmitFrameSetupForCodeAgePatching, and represents an old function. |
+ // |
+ // If stub is NULL, this function generates the code age sequence but omits |
+ // the stub address that is normally embedded in the instruction stream. This |
+ // can be used by debug code to verify code age sequences. |
+ static void EmitCodeAgeSequence(Assembler* assm, Code* stub); |
+ |
+ // Call EmitCodeAgeSequence from a MacroAssembler context. |
+ void EmitCodeAgeSequence(Code* stub); |
+ |
+ // Return true if the sequence is a young sequence geneated by |
+ // EmitFrameSetupForCodeAgePatching. Otherwise, this method asserts that the |
+ // sequence is a code age sequence (emitted by EmitCodeAgeSequence). |
+ static bool IsYoungSequence(byte* sequence); |
+ |
+#ifdef DEBUG |
+ // Return true if the sequence is a code age sequence generated by |
+ // EmitCodeAgeSequence. |
+ static bool IsCodeAgeSequence(byte* sequence); |
+#endif |
+ |
+ // Jumps to found label if a prototype map has dictionary elements. |
+ void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0, |
+ Register scratch1, Label* found); |
+ |
+ private: |
+ // Helpers for CopyFields. |
+ // These each implement CopyFields in a different way. |
+ void CopyFieldsLoopPairsHelper(Register dst, Register src, unsigned count, |
+ Register scratch1, Register scratch2, |
+ Register scratch3); |
+ void CopyFieldsUnrolledPairsHelper(Register dst, Register src, unsigned count, |
+ Register scratch1, Register scratch2); |
+ void CopyFieldsUnrolledHelper(Register dst, Register src, unsigned count, |
+ Register scratch1); |
+ |
+ // The actual Push and Pop implementations. These don't generate any code |
+ // other than that required for the push or pop. This allows |
+ // (Push|Pop)CPURegList to bundle together run-time assertions for a large |
+ // block of registers. |
+ // |
+ // Note that size is per register, and is specified in bytes. |
+ void PushHelper(int count, int size, |
+ const CPURegister& src0, const CPURegister& src1, |
+ const CPURegister& src2, const CPURegister& src3); |
+ void PopHelper(int count, int size, |
+ const CPURegister& dst0, const CPURegister& dst1, |
+ const CPURegister& dst2, const CPURegister& dst3); |
+ |
+ // Perform necessary maintenance operations before a push or pop. |
+ // |
+ // Note that size is per register, and is specified in bytes. |
+ void PrepareForPush(int count, int size); |
+ void PrepareForPop(int count, int size); |
+ |
+ // Call Printf. On a native build, a simple call will be generated, but if the |
+ // simulator is being used then a suitable pseudo-instruction is used. The |
+ // arguments and stack (csp) must be prepared by the caller as for a normal |
+ // AAPCS64 call to 'printf'. |
+ // |
+ // The 'type' argument specifies the type of the optional arguments. |
+ void CallPrintf(CPURegister::RegisterType type = CPURegister::kNoRegister); |
+ |
+ // Helper for throwing exceptions. Compute a handler address and jump to |
+ // it. See the implementation for register usage. |
+ void JumpToHandlerEntry(Register exception, |
+ Register object, |
+ Register state, |
+ Register scratch1, |
+ Register scratch2); |
+ |
+ // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace. |
+ void InNewSpace(Register object, |
+ Condition cond, // eq for new space, ne otherwise. |
+ Label* branch); |
+ |
+ // Try to convert a double to an int so that integer fast-paths may be |
+ // used. Not every valid integer value is guaranteed to be caught. |
+ // It supports both 32-bit and 64-bit integers depending whether 'as_int' |
+ // is a W or X register. |
+ // |
+ // This does not distinguish between +0 and -0, so if this distinction is |
+ // important it must be checked separately. |
+ void TryConvertDoubleToInt(Register as_int, |
+ FPRegister value, |
+ FPRegister scratch_d, |
+ Label* on_successful_conversion, |
+ Label* on_failed_conversion = NULL); |
+ |
+ bool generating_stub_; |
+#if DEBUG |
+ // Tell whether any of the macro instruction can be used. When false the |
+ // MacroAssembler will assert if a method which can emit a variable number |
+ // of instructions is called. |
+ bool allow_macro_instructions_; |
+#endif |
+ bool has_frame_; |
+ |
+ // The Abort method should call a V8 runtime function, but the CallRuntime |
+ // mechanism depends on CEntryStub. If use_real_aborts is false, Abort will |
+ // use a simpler abort mechanism that doesn't depend on CEntryStub. |
+ // |
+ // The purpose of this is to allow Aborts to be compiled whilst CEntryStub is |
+ // being generated. |
+ bool use_real_aborts_; |
+ |
+ // This handle will be patched with the code object on installation. |
+ Handle<Object> code_object_; |
+ |
+ // The register to use as a stack pointer for stack operations. |
+ Register sp_; |
+ |
+ // Scratch registers used internally by the MacroAssembler. |
+ Register tmp0_; |
+ Register tmp1_; |
+ FPRegister fptmp0_; |
+ |
+ void InitializeNewString(Register string, |
+ Register length, |
+ Heap::RootListIndex map_index, |
+ Register scratch1, |
+ Register scratch2); |
+}; |
+ |
+ |
+// Use this scope when you need a one-to-one mapping bewteen methods and |
+// instructions. This scope prevents the MacroAssembler from being called and |
+// literal pools from being emitted. It also asserts the number of instructions |
+// emitted is what you specified when creating the scope. |
+class InstructionAccurateScope BASE_EMBEDDED { |
+ public: |
+ explicit InstructionAccurateScope(MacroAssembler* masm) |
+ : masm_(masm), size_(0) { |
+ masm_->StartBlockConstPool(); |
+#ifdef DEBUG |
+ previous_allow_macro_instructions_ = masm_->allow_macro_instructions(); |
+ masm_->set_allow_macro_instructions(false); |
+#endif |
+ } |
+ |
+ InstructionAccurateScope(MacroAssembler* masm, size_t count) |
+ : masm_(masm), size_(count * kInstructionSize) { |
+ masm_->StartBlockConstPool(); |
+#ifdef DEBUG |
+ masm_->bind(&start_); |
+ previous_allow_macro_instructions_ = masm_->allow_macro_instructions(); |
+ masm_->set_allow_macro_instructions(false); |
+#endif |
+ } |
+ |
+ ~InstructionAccurateScope() { |
+ masm_->EndBlockConstPool(); |
+#ifdef DEBUG |
+ if (start_.is_bound()) { |
+ ASSERT(masm_->SizeOfCodeGeneratedSince(&start_) == size_); |
+ } |
+ masm_->set_allow_macro_instructions(previous_allow_macro_instructions_); |
+#endif |
+ } |
+ |
+ private: |
+ MacroAssembler* masm_; |
+ size_t size_; |
+#ifdef DEBUG |
+ Label start_; |
+ bool previous_allow_macro_instructions_; |
+#endif |
+}; |
+ |
+ |
+inline MemOperand ContextMemOperand(Register context, int index) { |
+ return MemOperand(context, Context::SlotOffset(index)); |
+} |
+ |
+inline MemOperand GlobalObjectMemOperand() { |
+ return ContextMemOperand(cp, Context::GLOBAL_OBJECT_INDEX); |
+} |
+ |
+ |
+// Encode and decode information about patchable inline SMI checks. |
+class InlineSmiCheckInfo { |
+ public: |
+ explicit InlineSmiCheckInfo(Address info); |
+ |
+ bool HasSmiCheck() const { |
+ return smi_check_ != NULL; |
+ } |
+ |
+ const Register& SmiRegister() const { |
+ return reg_; |
+ } |
+ |
+ Instruction* SmiCheck() const { |
+ return smi_check_; |
+ } |
+ |
+ // Use MacroAssembler::InlineData to emit information about patchable inline |
+ // SMI checks. The caller may specify 'reg' as NoReg and an unbound 'site' to |
+ // indicate that there is no inline SMI check. Note that 'reg' cannot be csp. |
+ // |
+ // The generated patch information can be read using the InlineSMICheckInfo |
+ // class. |
+ static void Emit(MacroAssembler* masm, const Register& reg, |
+ const Label* smi_check); |
+ |
+ // Emit information to indicate that there is no inline SMI check. |
+ static void EmitNotInlined(MacroAssembler* masm) { |
+ Label unbound; |
+ Emit(masm, NoReg, &unbound); |
+ } |
+ |
+ private: |
+ Register reg_; |
+ Instruction* smi_check_; |
+ |
+ // Fields in the data encoded by InlineData. |
+ |
+ // A width of 5 (Rd_width) for the SMI register preclues the use of csp, |
+ // since kSPRegInternalCode is 63. However, csp should never hold a SMI or be |
+ // used in a patchable check. The Emit() method checks this. |
+ // |
+ // Note that the total size of the fields is restricted by the underlying |
+ // storage size handled by the BitField class, which is a uint32_t. |
+ class RegisterBits : public BitField<unsigned, 0, 5> {}; |
+ class DeltaBits : public BitField<uint32_t, 5, 32-5> {}; |
+}; |
+ |
+} } // namespace v8::internal |
+ |
+#ifdef GENERATED_CODE_COVERAGE |
+#error "Unsupported option" |
+#define CODE_COVERAGE_STRINGIFY(x) #x |
+#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x) |
+#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__) |
+#define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm-> |
+#else |
+#define ACCESS_MASM(masm) masm-> |
+#endif |
+ |
+#endif // V8_A64_MACRO_ASSEMBLER_A64_H_ |