| Index: src/a64/simulator-a64.h
|
| diff --git a/src/a64/simulator-a64.h b/src/a64/simulator-a64.h
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..6279677ca8565e46f32d4ce8caafed06a3d6b1b7
|
| --- /dev/null
|
| +++ b/src/a64/simulator-a64.h
|
| @@ -0,0 +1,865 @@
|
| +// Copyright 2013 the V8 project authors. All rights reserved.
|
| +// Redistribution and use in source and binary forms, with or without
|
| +// modification, are permitted provided that the following conditions are
|
| +// met:
|
| +//
|
| +// * Redistributions of source code must retain the above copyright
|
| +// notice, this list of conditions and the following disclaimer.
|
| +// * Redistributions in binary form must reproduce the above
|
| +// copyright notice, this list of conditions and the following
|
| +// disclaimer in the documentation and/or other materials provided
|
| +// with the distribution.
|
| +// * Neither the name of Google Inc. nor the names of its
|
| +// contributors may be used to endorse or promote products derived
|
| +// from this software without specific prior written permission.
|
| +//
|
| +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
| +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
| +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
| +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
| +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
| +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
| +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
| +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
| +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| +
|
| +#ifndef V8_A64_SIMULATOR_A64_H_
|
| +#define V8_A64_SIMULATOR_A64_H_
|
| +
|
| +#include <stdarg.h>
|
| +#include <vector>
|
| +
|
| +#include "v8.h"
|
| +
|
| +#include "globals.h"
|
| +#include "utils.h"
|
| +#include "allocation.h"
|
| +#include "assembler.h"
|
| +#include "a64/assembler-a64.h"
|
| +#include "a64/decoder-a64.h"
|
| +#include "a64/disasm-a64.h"
|
| +#include "a64/instrument-a64.h"
|
| +
|
| +#define REGISTER_CODE_LIST(R) \
|
| +R(0) R(1) R(2) R(3) R(4) R(5) R(6) R(7) \
|
| +R(8) R(9) R(10) R(11) R(12) R(13) R(14) R(15) \
|
| +R(16) R(17) R(18) R(19) R(20) R(21) R(22) R(23) \
|
| +R(24) R(25) R(26) R(27) R(28) R(29) R(30) R(31)
|
| +
|
| +namespace v8 {
|
| +namespace internal {
|
| +
|
| +#if !defined(USE_SIMULATOR)
|
| +
|
| +// Running without a simulator on a native A64 platform.
|
| +// When running without a simulator we call the entry directly.
|
| +#define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
|
| + (entry(p0, p1, p2, p3, p4))
|
| +
|
| +typedef int (*a64_regexp_matcher)(String* input,
|
| + int64_t start_offset,
|
| + const byte* input_start,
|
| + const byte* input_end,
|
| + int* output,
|
| + int64_t output_size,
|
| + Address stack_base,
|
| + int64_t direct_call,
|
| + void* return_address,
|
| + Isolate* isolate);
|
| +
|
| +// Call the generated regexp code directly. The code at the entry address
|
| +// should act as a function matching the type a64_regexp_matcher.
|
| +// The ninth argument is a dummy that reserves the space used for
|
| +// the return address added by the ExitFrame in native calls.
|
| +#define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \
|
| + (FUNCTION_CAST<a64_regexp_matcher>(entry)( \
|
| + p0, p1, p2, p3, p4, p5, p6, p7, NULL, p8))
|
| +
|
| +#define TRY_CATCH_FROM_ADDRESS(try_catch_address) \
|
| + reinterpret_cast<TryCatch*>(try_catch_address)
|
| +
|
| +// Running without a simulator there is nothing to do.
|
| +class SimulatorStack : public v8::internal::AllStatic {
|
| + public:
|
| + static uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate,
|
| + uintptr_t c_limit) {
|
| + USE(isolate);
|
| + return c_limit;
|
| + }
|
| +
|
| + static uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
|
| + return try_catch_address;
|
| + }
|
| +
|
| + static void UnregisterCTryCatch() { }
|
| +};
|
| +
|
| +#else // !defined(USE_SIMULATOR)
|
| +
|
| +enum ReverseByteMode {
|
| + Reverse16 = 0,
|
| + Reverse32 = 1,
|
| + Reverse64 = 2
|
| +};
|
| +
|
| +
|
| +// The proper way to initialize a simulated system register (such as NZCV) is as
|
| +// follows:
|
| +// SimSystemRegister nzcv = SimSystemRegister::DefaultValueFor(NZCV);
|
| +class SimSystemRegister {
|
| + public:
|
| + // The default constructor represents a register which has no writable bits.
|
| + // It is not possible to set its value to anything other than 0.
|
| + SimSystemRegister() : value_(0), write_ignore_mask_(0xffffffff) { }
|
| +
|
| + uint32_t RawValue() const {
|
| + return value_;
|
| + }
|
| +
|
| + void SetRawValue(uint32_t new_value) {
|
| + value_ = (value_ & write_ignore_mask_) | (new_value & ~write_ignore_mask_);
|
| + }
|
| +
|
| + uint32_t Bits(int msb, int lsb) const {
|
| + return unsigned_bitextract_32(msb, lsb, value_);
|
| + }
|
| +
|
| + int32_t SignedBits(int msb, int lsb) const {
|
| + return signed_bitextract_32(msb, lsb, value_);
|
| + }
|
| +
|
| + void SetBits(int msb, int lsb, uint32_t bits);
|
| +
|
| + // Default system register values.
|
| + static SimSystemRegister DefaultValueFor(SystemRegister id);
|
| +
|
| +#define DEFINE_GETTER(Name, HighBit, LowBit, Func) \
|
| + uint32_t Name() const { return Func(HighBit, LowBit); } \
|
| + void Set##Name(uint32_t bits) { SetBits(HighBit, LowBit, bits); }
|
| +#define DEFINE_WRITE_IGNORE_MASK(Name, Mask) \
|
| + static const uint32_t Name##WriteIgnoreMask = ~static_cast<uint32_t>(Mask);
|
| +
|
| + SYSTEM_REGISTER_FIELDS_LIST(DEFINE_GETTER, DEFINE_WRITE_IGNORE_MASK)
|
| +
|
| +#undef DEFINE_ZERO_BITS
|
| +#undef DEFINE_GETTER
|
| +
|
| + protected:
|
| + // Most system registers only implement a few of the bits in the word. Other
|
| + // bits are "read-as-zero, write-ignored". The write_ignore_mask argument
|
| + // describes the bits which are not modifiable.
|
| + SimSystemRegister(uint32_t value, uint32_t write_ignore_mask)
|
| + : value_(value), write_ignore_mask_(write_ignore_mask) { }
|
| +
|
| + uint32_t value_;
|
| + uint32_t write_ignore_mask_;
|
| +};
|
| +
|
| +
|
| +// Represent a register (r0-r31, v0-v31).
|
| +template<int kSizeInBytes>
|
| +class SimRegisterBase {
|
| + public:
|
| + template<typename T>
|
| + void Set(T new_value, unsigned size = sizeof(T)) {
|
| + ASSERT(size <= kSizeInBytes);
|
| + ASSERT(size <= sizeof(new_value));
|
| + // All AArch64 registers are zero-extending; Writing a W register clears the
|
| + // top bits of the corresponding X register.
|
| + memset(value_, 0, kSizeInBytes);
|
| + memcpy(value_, &new_value, size);
|
| + }
|
| +
|
| + // Copy 'size' bytes of the register to the result, and zero-extend to fill
|
| + // the result.
|
| + template<typename T>
|
| + T Get(unsigned size = sizeof(T)) const {
|
| + ASSERT(size <= kSizeInBytes);
|
| + T result;
|
| + memset(&result, 0, sizeof(result));
|
| + memcpy(&result, value_, size);
|
| + return result;
|
| + }
|
| +
|
| + protected:
|
| + uint8_t value_[kSizeInBytes];
|
| +};
|
| +typedef SimRegisterBase<kXRegSizeInBytes> SimRegister; // r0-r31
|
| +typedef SimRegisterBase<kDRegSizeInBytes> SimFPRegister; // v0-v31
|
| +
|
| +
|
| +class Simulator : public DecoderVisitor {
|
| + public:
|
| + explicit Simulator(Decoder* decoder,
|
| + Isolate* isolate = NULL,
|
| + FILE* stream = stderr);
|
| + ~Simulator();
|
| +
|
| + // System functions.
|
| +
|
| + static void Initialize(Isolate* isolate);
|
| +
|
| + static Simulator* current(v8::internal::Isolate* isolate);
|
| +
|
| + // Call an arbitrary function taking an arbitrary number of arguments. The
|
| + // varargs list must be a set of arguments with type CallArgument, and
|
| + // terminated by CallArgument::End().
|
| + void CallVoid(byte* entry, ...);
|
| + void CallVoid(byte* entry, va_list args);
|
| +
|
| + // Like CallVoid, but expect a return value.
|
| + int64_t CallInt64(byte* entry, ...);
|
| + double CallDouble(byte* entry, ...);
|
| +
|
| + // V8 calls into generated JS code with 5 parameters and into
|
| + // generated RegExp code with 10 parameters. These are convenience functions,
|
| + // which set up the simulator state and grab the result on return.
|
| + int64_t CallJS(byte* entry,
|
| + byte* function_entry,
|
| + JSFunction* func,
|
| + Object* revc,
|
| + int64_t argc,
|
| + Object*** argv);
|
| + int64_t CallRegExp(byte* entry,
|
| + String* input,
|
| + int64_t start_offset,
|
| + const byte* input_start,
|
| + const byte* input_end,
|
| + int* output,
|
| + int64_t output_size,
|
| + Address stack_base,
|
| + int64_t direct_call,
|
| + void* return_address,
|
| + Isolate* isolate);
|
| +
|
| + // A wrapper class that stores an argument for one of the above Call
|
| + // functions.
|
| + //
|
| + // Only arguments up to 64 bits in size are supported.
|
| + class CallArgument {
|
| + public:
|
| + template<typename T>
|
| + explicit CallArgument(T argument) {
|
| + ASSERT(sizeof(argument) <= sizeof(bits_));
|
| + memcpy(&bits_, &argument, sizeof(argument));
|
| + type_ = X_ARG;
|
| + }
|
| +
|
| + explicit CallArgument(double argument) {
|
| + ASSERT(sizeof(argument) == sizeof(bits_));
|
| + memcpy(&bits_, &argument, sizeof(argument));
|
| + type_ = D_ARG;
|
| + }
|
| +
|
| + explicit CallArgument(float argument) {
|
| + TODO_UNIMPLEMENTED("CallArgument(float) is untested.");
|
| + // Make the D register a NaN to try to trap errors if the callee expects a
|
| + // double. If it expects a float, the callee should ignore the top word.
|
| + ASSERT(sizeof(kFP64SignallingNaN) == sizeof(bits_));
|
| + memcpy(&bits_, &kFP64SignallingNaN, sizeof(kFP64SignallingNaN));
|
| + // Write the float payload to the S register.
|
| + ASSERT(sizeof(argument) <= sizeof(bits_));
|
| + memcpy(&bits_, &argument, sizeof(argument));
|
| + type_ = D_ARG;
|
| + }
|
| +
|
| + // This indicates the end of the arguments list, so that CallArgument
|
| + // objects can be passed into varargs functions.
|
| + static CallArgument End() { return CallArgument(); }
|
| +
|
| + int64_t bits() const { return bits_; }
|
| + bool IsEnd() const { return type_ == NO_ARG; }
|
| + bool IsX() const { return type_ == X_ARG; }
|
| + bool IsD() const { return type_ == D_ARG; }
|
| +
|
| + private:
|
| + enum CallArgumentType { X_ARG, D_ARG, NO_ARG };
|
| +
|
| + // All arguments are aligned to at least 64 bits and we don't support
|
| + // passing bigger arguments, so the payload size can be fixed at 64 bits.
|
| + int64_t bits_;
|
| + CallArgumentType type_;
|
| +
|
| + CallArgument() { type_ = NO_ARG; }
|
| + };
|
| +
|
| +
|
| + // Start the debugging command line.
|
| + void Debug();
|
| +
|
| + bool GetValue(const char* desc, int64_t* value);
|
| +
|
| + bool PrintValue(const char* desc);
|
| +
|
| + // Push an address onto the JS stack.
|
| + uintptr_t PushAddress(uintptr_t address);
|
| +
|
| + // Pop an address from the JS stack.
|
| + uintptr_t PopAddress();
|
| +
|
| + // Accessor to the internal simulator stack area.
|
| + uintptr_t StackLimit() const;
|
| +
|
| + void ResetState();
|
| +
|
| + // Runtime call support.
|
| + static void* RedirectExternalReference(void* external_function,
|
| + ExternalReference::Type type);
|
| +
|
| + // Run the simulator.
|
| + static const Instruction* kEndOfSimAddress;
|
| + void DecodeInstruction();
|
| + void Run();
|
| + void RunFrom(Instruction* start);
|
| +
|
| + // Simulation helpers.
|
| + template <typename T>
|
| + void set_pc(T new_pc) {
|
| + ASSERT(sizeof(T) == sizeof(pc_));
|
| + memcpy(&pc_, &new_pc, sizeof(T));
|
| + pc_modified_ = true;
|
| + }
|
| + Instruction* pc() { return pc_; }
|
| +
|
| + void increment_pc() {
|
| + if (!pc_modified_) {
|
| + pc_ = pc_->NextInstruction();
|
| + }
|
| +
|
| + pc_modified_ = false;
|
| + }
|
| +
|
| + void ExecuteInstruction() {
|
| + ASSERT(IsAligned(reinterpret_cast<uintptr_t>(pc_), kInstructionSize));
|
| + CheckBreakNext();
|
| + decoder_->Decode(pc_);
|
| + LogProcessorState();
|
| + increment_pc();
|
| + CheckBreakpoints();
|
| + }
|
| +
|
| + // Declare all Visitor functions.
|
| + #define DECLARE(A) void Visit##A(Instruction* instr);
|
| + VISITOR_LIST(DECLARE)
|
| + #undef DECLARE
|
| +
|
| + // Register accessors.
|
| +
|
| + // Return 'size' bits of the value of an integer register, as the specified
|
| + // type. The value is zero-extended to fill the result.
|
| + //
|
| + // The only supported values of 'size' are kXRegSize and kWRegSize.
|
| + template<typename T>
|
| + T reg(unsigned size, unsigned code,
|
| + Reg31Mode r31mode = Reg31IsZeroRegister) const {
|
| + unsigned size_in_bytes = size / 8;
|
| + ASSERT(size_in_bytes <= sizeof(T));
|
| + ASSERT((size == kXRegSize) || (size == kWRegSize));
|
| + ASSERT(code < kNumberOfRegisters);
|
| +
|
| + if ((code == 31) && (r31mode == Reg31IsZeroRegister)) {
|
| + T result;
|
| + memset(&result, 0, sizeof(result));
|
| + return result;
|
| + }
|
| + return registers_[code].Get<T>(size_in_bytes);
|
| + }
|
| +
|
| + // Like reg(), but infer the access size from the template type.
|
| + template<typename T>
|
| + T reg(unsigned code, Reg31Mode r31mode = Reg31IsZeroRegister) const {
|
| + return reg<T>(sizeof(T) * 8, code, r31mode);
|
| + }
|
| +
|
| + // Common specialized accessors for the reg() template.
|
| + int32_t wreg(unsigned code,
|
| + Reg31Mode r31mode = Reg31IsZeroRegister) const {
|
| + return reg<int32_t>(code, r31mode);
|
| + }
|
| +
|
| + int64_t xreg(unsigned code,
|
| + Reg31Mode r31mode = Reg31IsZeroRegister) const {
|
| + return reg<int64_t>(code, r31mode);
|
| + }
|
| +
|
| + int64_t reg(unsigned size, unsigned code,
|
| + Reg31Mode r31mode = Reg31IsZeroRegister) const {
|
| + return reg<int64_t>(size, code, r31mode);
|
| + }
|
| +
|
| + // Write 'size' bits of 'value' into an integer register. The value is
|
| + // zero-extended. This behaviour matches AArch64 register writes.
|
| + //
|
| + // The only supported values of 'size' are kXRegSize and kWRegSize.
|
| + template<typename T>
|
| + void set_reg(unsigned size, unsigned code, T value,
|
| + Reg31Mode r31mode = Reg31IsZeroRegister) {
|
| + unsigned size_in_bytes = size / 8;
|
| + ASSERT(size_in_bytes <= sizeof(T));
|
| + ASSERT((size == kXRegSize) || (size == kWRegSize));
|
| + ASSERT(code < kNumberOfRegisters);
|
| +
|
| + if ((code == 31) && (r31mode == Reg31IsZeroRegister)) {
|
| + return;
|
| + }
|
| + return registers_[code].Set(value, size_in_bytes);
|
| + }
|
| +
|
| + // Like set_reg(), but infer the access size from the template type.
|
| + template<typename T>
|
| + void set_reg(unsigned code, T value,
|
| + Reg31Mode r31mode = Reg31IsZeroRegister) {
|
| + set_reg(sizeof(value) * 8, code, value, r31mode);
|
| + }
|
| +
|
| + // Common specialized accessors for the set_reg() template.
|
| + void set_wreg(unsigned code, int32_t value,
|
| + Reg31Mode r31mode = Reg31IsZeroRegister) {
|
| + set_reg(kWRegSize, code, value, r31mode);
|
| + }
|
| +
|
| + void set_xreg(unsigned code, int64_t value,
|
| + Reg31Mode r31mode = Reg31IsZeroRegister) {
|
| + set_reg(kXRegSize, code, value, r31mode);
|
| + }
|
| +
|
| + // Commonly-used special cases.
|
| + template<typename T>
|
| + void set_lr(T value) {
|
| + ASSERT(sizeof(T) == kPointerSize);
|
| + set_reg(kLinkRegCode, value);
|
| + }
|
| +
|
| + template<typename T>
|
| + void set_sp(T value) {
|
| + ASSERT(sizeof(T) == kPointerSize);
|
| + set_reg(31, value, Reg31IsStackPointer);
|
| + }
|
| +
|
| + int64_t sp() { return xreg(31, Reg31IsStackPointer); }
|
| + int64_t jssp() { return xreg(kJSSPCode, Reg31IsStackPointer); }
|
| + int64_t fp() {
|
| + return xreg(kFramePointerRegCode, Reg31IsStackPointer);
|
| + }
|
| + Instruction* lr() { return reg<Instruction*>(kLinkRegCode); }
|
| +
|
| + Address get_sp() { return reinterpret_cast<Address>(sp()); }
|
| +
|
| + // Return 'size' bits of the value of a floating-point register, as the
|
| + // specified type. The value is zero-extended to fill the result.
|
| + //
|
| + // The only supported values of 'size' are kDRegSize and kSRegSize.
|
| + template<typename T>
|
| + T fpreg(unsigned size, unsigned code) const {
|
| + unsigned size_in_bytes = size / 8;
|
| + ASSERT(size_in_bytes <= sizeof(T));
|
| + ASSERT((size == kDRegSize) || (size == kSRegSize));
|
| + ASSERT(code < kNumberOfFPRegisters);
|
| + return fpregisters_[code].Get<T>(size_in_bytes);
|
| + }
|
| +
|
| + // Like fpreg(), but infer the access size from the template type.
|
| + template<typename T>
|
| + T fpreg(unsigned code) const {
|
| + return fpreg<T>(sizeof(T) * 8, code);
|
| + }
|
| +
|
| + // Common specialized accessors for the fpreg() template.
|
| + float sreg(unsigned code) const {
|
| + return fpreg<float>(code);
|
| + }
|
| +
|
| + uint32_t sreg_bits(unsigned code) const {
|
| + return fpreg<uint32_t>(code);
|
| + }
|
| +
|
| + double dreg(unsigned code) const {
|
| + return fpreg<double>(code);
|
| + }
|
| +
|
| + uint64_t dreg_bits(unsigned code) const {
|
| + return fpreg<uint64_t>(code);
|
| + }
|
| +
|
| + double fpreg(unsigned size, unsigned code) const {
|
| + switch (size) {
|
| + case kSRegSize: return sreg(code);
|
| + case kDRegSize: return dreg(code);
|
| + default:
|
| + UNREACHABLE();
|
| + return 0.0;
|
| + }
|
| + }
|
| +
|
| + // Write 'value' into a floating-point register. The value is zero-extended.
|
| + // This behaviour matches AArch64 register writes.
|
| + template<typename T>
|
| + void set_fpreg(unsigned code, T value) {
|
| + ASSERT((sizeof(value) == kDRegSizeInBytes) ||
|
| + (sizeof(value) == kSRegSizeInBytes));
|
| + ASSERT(code < kNumberOfFPRegisters);
|
| + fpregisters_[code].Set(value, sizeof(value));
|
| + }
|
| +
|
| + // Common specialized accessors for the set_fpreg() template.
|
| + void set_sreg(unsigned code, float value) {
|
| + set_fpreg(code, value);
|
| + }
|
| +
|
| + void set_sreg_bits(unsigned code, uint32_t value) {
|
| + set_fpreg(code, value);
|
| + }
|
| +
|
| + void set_dreg(unsigned code, double value) {
|
| + set_fpreg(code, value);
|
| + }
|
| +
|
| + void set_dreg_bits(unsigned code, uint64_t value) {
|
| + set_fpreg(code, value);
|
| + }
|
| +
|
| + bool N() { return nzcv_.N() != 0; }
|
| + bool Z() { return nzcv_.Z() != 0; }
|
| + bool C() { return nzcv_.C() != 0; }
|
| + bool V() { return nzcv_.V() != 0; }
|
| + SimSystemRegister& nzcv() { return nzcv_; }
|
| +
|
| + // TODO(jbramley): Find a way to make the fpcr_ members return the proper
|
| + // types, so this accessor is not necessary.
|
| + FPRounding RMode() { return static_cast<FPRounding>(fpcr_.RMode()); }
|
| + SimSystemRegister& fpcr() { return fpcr_; }
|
| +
|
| + // Debug helpers
|
| +
|
| + // Simulator breakpoints.
|
| + struct Breakpoint {
|
| + Instruction* location;
|
| + bool enabled;
|
| + };
|
| + std::vector<Breakpoint> breakpoints_;
|
| + void SetBreakpoint(Instruction* breakpoint);
|
| + void ListBreakpoints();
|
| + void CheckBreakpoints();
|
| +
|
| + // Helpers for the 'next' command.
|
| + // When this is set, the Simulator will insert a breakpoint after the next BL
|
| + // instruction it meets.
|
| + bool break_on_next_;
|
| + // Check if the Simulator should insert a break after the current instruction
|
| + // for the 'next' command.
|
| + void CheckBreakNext();
|
| +
|
| + // Disassemble instruction at the given address.
|
| + void PrintInstructionsAt(Instruction* pc, uint64_t count);
|
| +
|
| + void PrintSystemRegisters(bool print_all = false);
|
| + void PrintRegisters(bool print_all_regs = false);
|
| + void PrintFPRegisters(bool print_all_regs = false);
|
| + void PrintProcessorState();
|
| + void PrintWrite(uint8_t* address, uint64_t value, unsigned num_bytes);
|
| + void LogSystemRegisters() {
|
| + if (log_parameters_ & LOG_SYS_REGS) PrintSystemRegisters();
|
| + }
|
| + void LogRegisters() {
|
| + if (log_parameters_ & LOG_REGS) PrintRegisters();
|
| + }
|
| + void LogFPRegisters() {
|
| + if (log_parameters_ & LOG_FP_REGS) PrintFPRegisters();
|
| + }
|
| + void LogProcessorState() {
|
| + LogSystemRegisters();
|
| + LogRegisters();
|
| + LogFPRegisters();
|
| + }
|
| + void LogWrite(uint8_t* address, uint64_t value, unsigned num_bytes) {
|
| + if (log_parameters_ & LOG_WRITE) PrintWrite(address, value, num_bytes);
|
| + }
|
| +
|
| + int log_parameters() { return log_parameters_; }
|
| + void set_log_parameters(int new_parameters) {
|
| + if (new_parameters & LOG_DISASM) {
|
| + decoder_->InsertVisitorBefore(print_disasm_, this);
|
| + } else {
|
| + decoder_->RemoveVisitor(print_disasm_);
|
| + }
|
| + log_parameters_ = new_parameters;
|
| + }
|
| +
|
| + static inline const char* WRegNameForCode(unsigned code,
|
| + Reg31Mode mode = Reg31IsZeroRegister);
|
| + static inline const char* XRegNameForCode(unsigned code,
|
| + Reg31Mode mode = Reg31IsZeroRegister);
|
| + static inline const char* SRegNameForCode(unsigned code);
|
| + static inline const char* DRegNameForCode(unsigned code);
|
| + static inline const char* VRegNameForCode(unsigned code);
|
| + static inline int CodeFromName(const char* name);
|
| +
|
| + protected:
|
| + // Simulation helpers ------------------------------------
|
| + bool ConditionPassed(Condition cond) {
|
| + switch (cond) {
|
| + case eq:
|
| + return Z();
|
| + case ne:
|
| + return !Z();
|
| + case hs:
|
| + return C();
|
| + case lo:
|
| + return !C();
|
| + case mi:
|
| + return N();
|
| + case pl:
|
| + return !N();
|
| + case vs:
|
| + return V();
|
| + case vc:
|
| + return !V();
|
| + case hi:
|
| + return C() && !Z();
|
| + case ls:
|
| + return !(C() && !Z());
|
| + case ge:
|
| + return N() == V();
|
| + case lt:
|
| + return N() != V();
|
| + case gt:
|
| + return !Z() && (N() == V());
|
| + case le:
|
| + return !(!Z() && (N() == V()));
|
| + case nv: // Fall through.
|
| + case al:
|
| + return true;
|
| + default:
|
| + UNREACHABLE();
|
| + return false;
|
| + }
|
| + }
|
| +
|
| + bool ConditionFailed(Condition cond) {
|
| + return !ConditionPassed(cond);
|
| + }
|
| +
|
| + void AddSubHelper(Instruction* instr, int64_t op2);
|
| + int64_t AddWithCarry(unsigned reg_size,
|
| + bool set_flags,
|
| + int64_t src1,
|
| + int64_t src2,
|
| + int64_t carry_in = 0);
|
| + void LogicalHelper(Instruction* instr, int64_t op2);
|
| + void ConditionalCompareHelper(Instruction* instr, int64_t op2);
|
| + void LoadStoreHelper(Instruction* instr,
|
| + int64_t offset,
|
| + AddrMode addrmode);
|
| + void LoadStorePairHelper(Instruction* instr, AddrMode addrmode);
|
| + uint8_t* LoadStoreAddress(unsigned addr_reg,
|
| + int64_t offset,
|
| + AddrMode addrmode);
|
| + void LoadStoreWriteBack(unsigned addr_reg,
|
| + int64_t offset,
|
| + AddrMode addrmode);
|
| + void CheckMemoryAccess(uint8_t* address, uint8_t* stack);
|
| +
|
| + uint64_t MemoryRead(uint8_t* address, unsigned num_bytes);
|
| + uint8_t MemoryRead8(uint8_t* address);
|
| + uint16_t MemoryRead16(uint8_t* address);
|
| + uint32_t MemoryRead32(uint8_t* address);
|
| + float MemoryReadFP32(uint8_t* address);
|
| + uint64_t MemoryRead64(uint8_t* address);
|
| + double MemoryReadFP64(uint8_t* address);
|
| +
|
| + void MemoryWrite(uint8_t* address, uint64_t value, unsigned num_bytes);
|
| + void MemoryWrite32(uint8_t* address, uint32_t value);
|
| + void MemoryWriteFP32(uint8_t* address, float value);
|
| + void MemoryWrite64(uint8_t* address, uint64_t value);
|
| + void MemoryWriteFP64(uint8_t* address, double value);
|
| +
|
| + int64_t ShiftOperand(unsigned reg_size,
|
| + int64_t value,
|
| + Shift shift_type,
|
| + unsigned amount);
|
| + int64_t Rotate(unsigned reg_width,
|
| + int64_t value,
|
| + Shift shift_type,
|
| + unsigned amount);
|
| + int64_t ExtendValue(unsigned reg_width,
|
| + int64_t value,
|
| + Extend extend_type,
|
| + unsigned left_shift = 0);
|
| +
|
| + uint64_t ReverseBits(uint64_t value, unsigned num_bits);
|
| + uint64_t ReverseBytes(uint64_t value, ReverseByteMode mode);
|
| +
|
| + void FPCompare(double val0, double val1);
|
| + double FPRoundInt(double value, FPRounding round_mode);
|
| + double FPToDouble(float value);
|
| + float FPToFloat(double value, FPRounding round_mode);
|
| + double FixedToDouble(int64_t src, int fbits, FPRounding round_mode);
|
| + double UFixedToDouble(uint64_t src, int fbits, FPRounding round_mode);
|
| + float FixedToFloat(int64_t src, int fbits, FPRounding round_mode);
|
| + float UFixedToFloat(uint64_t src, int fbits, FPRounding round_mode);
|
| + int32_t FPToInt32(double value, FPRounding rmode);
|
| + int64_t FPToInt64(double value, FPRounding rmode);
|
| + uint32_t FPToUInt32(double value, FPRounding rmode);
|
| + uint64_t FPToUInt64(double value, FPRounding rmode);
|
| +
|
| + template <typename T>
|
| + T FPMax(T a, T b);
|
| +
|
| + template <typename T>
|
| + T FPMin(T a, T b);
|
| +
|
| + template <typename T>
|
| + T FPMaxNM(T a, T b);
|
| +
|
| + template <typename T>
|
| + T FPMinNM(T a, T b);
|
| +
|
| + void CheckStackAlignment();
|
| +
|
| + inline void CheckPCSComplianceAndRun();
|
| +
|
| +#ifdef DEBUG
|
| + // Corruption values should have their least significant byte cleared to
|
| + // allow the code of the register being corrupted to be inserted.
|
| + static const uint64_t kCallerSavedRegisterCorruptionValue =
|
| + 0xca11edc0de000000UL;
|
| + // This value is a NaN in both 32-bit and 64-bit FP.
|
| + static const uint64_t kCallerSavedFPRegisterCorruptionValue =
|
| + 0x7ff000007f801000UL;
|
| + // This value is a mix of 32/64-bits NaN and "verbose" immediate.
|
| + static const uint64_t kDefaultCPURegisterCorruptionValue =
|
| + 0x7ffbad007f8bad00UL;
|
| +
|
| + void CorruptRegisters(CPURegList* list,
|
| + uint64_t value = kDefaultCPURegisterCorruptionValue);
|
| + void CorruptAllCallerSavedCPURegisters();
|
| +#endif
|
| +
|
| + // Processor state ---------------------------------------
|
| +
|
| + // Output stream.
|
| + FILE* stream_;
|
| + PrintDisassembler* print_disasm_;
|
| +
|
| + // Instrumentation.
|
| + Instrument* instrument_;
|
| +
|
| + // General purpose registers. Register 31 is the stack pointer.
|
| + SimRegister registers_[kNumberOfRegisters];
|
| +
|
| + // Floating point registers
|
| + SimFPRegister fpregisters_[kNumberOfFPRegisters];
|
| +
|
| + // Processor state
|
| + // bits[31, 27]: Condition flags N, Z, C, and V.
|
| + // (Negative, Zero, Carry, Overflow)
|
| + SimSystemRegister nzcv_;
|
| +
|
| + // Floating-Point Control Register
|
| + SimSystemRegister fpcr_;
|
| +
|
| + // Only a subset of FPCR features are supported by the simulator. This helper
|
| + // checks that the FPCR settings are supported.
|
| + //
|
| + // This is checked when floating-point instructions are executed, not when
|
| + // FPCR is set. This allows generated code to modify FPCR for external
|
| + // functions, or to save and restore it when entering and leaving generated
|
| + // code.
|
| + void AssertSupportedFPCR() {
|
| + ASSERT(fpcr().DN() == 0); // No default-NaN support.
|
| + ASSERT(fpcr().FZ() == 0); // No flush-to-zero support.
|
| + ASSERT(fpcr().RMode() == FPTieEven); // Ties-to-even rounding only.
|
| +
|
| + // The simulator does not support half-precision operations so fpcr().AHP()
|
| + // is irrelevant, and is not checked here.
|
| + }
|
| +
|
| + static int CalcNFlag(uint64_t result, unsigned reg_size) {
|
| + return (result >> (reg_size - 1)) & 1;
|
| + }
|
| +
|
| + static int CalcZFlag(uint64_t result) {
|
| + return result == 0;
|
| + }
|
| +
|
| + static const uint32_t kConditionFlagsMask = 0xf0000000;
|
| +
|
| + // Stack
|
| + byte* stack_;
|
| + static const intptr_t stack_protection_size_ = KB;
|
| + intptr_t stack_size_;
|
| + byte* stack_limit_;
|
| + // TODO(aleram): protect the stack.
|
| +
|
| + Decoder* decoder_;
|
| + Decoder* disassembler_decoder_;
|
| +
|
| + // Indicates if the pc has been modified by the instruction and should not be
|
| + // automatically incremented.
|
| + bool pc_modified_;
|
| + Instruction* pc_;
|
| +
|
| + static const char* xreg_names[];
|
| + static const char* wreg_names[];
|
| + static const char* sreg_names[];
|
| + static const char* dreg_names[];
|
| + static const char* vreg_names[];
|
| +
|
| + // Debugger input.
|
| + void set_last_debugger_input(char* input) {
|
| + DeleteArray(last_debugger_input_);
|
| + last_debugger_input_ = input;
|
| + }
|
| + char* last_debugger_input() { return last_debugger_input_; }
|
| + char* last_debugger_input_;
|
| +
|
| + private:
|
| + int log_parameters_;
|
| + Isolate* isolate_;
|
| +};
|
| +
|
| +
|
| +// When running with the simulator transition into simulated execution at this
|
| +// point.
|
| +#define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
|
| + reinterpret_cast<Object*>(Simulator::current(Isolate::Current())->CallJS( \
|
| + FUNCTION_ADDR(entry), \
|
| + p0, p1, p2, p3, p4))
|
| +
|
| +#define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \
|
| + Simulator::current(Isolate::Current())->CallRegExp( \
|
| + entry, \
|
| + p0, p1, p2, p3, p4, p5, p6, p7, NULL, p8)
|
| +
|
| +#define TRY_CATCH_FROM_ADDRESS(try_catch_address) \
|
| + try_catch_address == NULL ? \
|
| + NULL : *(reinterpret_cast<TryCatch**>(try_catch_address))
|
| +
|
| +
|
| +// The simulator has its own stack. Thus it has a different stack limit from
|
| +// the C-based native code.
|
| +// See also 'class SimulatorStack' in arm/simulator-arm.h.
|
| +class SimulatorStack : public v8::internal::AllStatic {
|
| + public:
|
| + static uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate,
|
| + uintptr_t c_limit) {
|
| + return Simulator::current(isolate)->StackLimit();
|
| + }
|
| +
|
| + static uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
|
| + Simulator* sim = Simulator::current(Isolate::Current());
|
| + return sim->PushAddress(try_catch_address);
|
| + }
|
| +
|
| + static void UnregisterCTryCatch() {
|
| + Simulator::current(Isolate::Current())->PopAddress();
|
| + }
|
| +};
|
| +
|
| +#endif // !defined(USE_SIMULATOR)
|
| +
|
| +} } // namespace v8::internal
|
| +
|
| +#endif // V8_A64_SIMULATOR_A64_H_
|
|
|