Index: src/a64/simulator-a64.h |
diff --git a/src/a64/simulator-a64.h b/src/a64/simulator-a64.h |
new file mode 100644 |
index 0000000000000000000000000000000000000000..6279677ca8565e46f32d4ce8caafed06a3d6b1b7 |
--- /dev/null |
+++ b/src/a64/simulator-a64.h |
@@ -0,0 +1,865 @@ |
+// Copyright 2013 the V8 project authors. All rights reserved. |
+// Redistribution and use in source and binary forms, with or without |
+// modification, are permitted provided that the following conditions are |
+// met: |
+// |
+// * Redistributions of source code must retain the above copyright |
+// notice, this list of conditions and the following disclaimer. |
+// * Redistributions in binary form must reproduce the above |
+// copyright notice, this list of conditions and the following |
+// disclaimer in the documentation and/or other materials provided |
+// with the distribution. |
+// * Neither the name of Google Inc. nor the names of its |
+// contributors may be used to endorse or promote products derived |
+// from this software without specific prior written permission. |
+// |
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
+ |
+#ifndef V8_A64_SIMULATOR_A64_H_ |
+#define V8_A64_SIMULATOR_A64_H_ |
+ |
+#include <stdarg.h> |
+#include <vector> |
+ |
+#include "v8.h" |
+ |
+#include "globals.h" |
+#include "utils.h" |
+#include "allocation.h" |
+#include "assembler.h" |
+#include "a64/assembler-a64.h" |
+#include "a64/decoder-a64.h" |
+#include "a64/disasm-a64.h" |
+#include "a64/instrument-a64.h" |
+ |
+#define REGISTER_CODE_LIST(R) \ |
+R(0) R(1) R(2) R(3) R(4) R(5) R(6) R(7) \ |
+R(8) R(9) R(10) R(11) R(12) R(13) R(14) R(15) \ |
+R(16) R(17) R(18) R(19) R(20) R(21) R(22) R(23) \ |
+R(24) R(25) R(26) R(27) R(28) R(29) R(30) R(31) |
+ |
+namespace v8 { |
+namespace internal { |
+ |
+#if !defined(USE_SIMULATOR) |
+ |
+// Running without a simulator on a native A64 platform. |
+// When running without a simulator we call the entry directly. |
+#define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \ |
+ (entry(p0, p1, p2, p3, p4)) |
+ |
+typedef int (*a64_regexp_matcher)(String* input, |
+ int64_t start_offset, |
+ const byte* input_start, |
+ const byte* input_end, |
+ int* output, |
+ int64_t output_size, |
+ Address stack_base, |
+ int64_t direct_call, |
+ void* return_address, |
+ Isolate* isolate); |
+ |
+// Call the generated regexp code directly. The code at the entry address |
+// should act as a function matching the type a64_regexp_matcher. |
+// The ninth argument is a dummy that reserves the space used for |
+// the return address added by the ExitFrame in native calls. |
+#define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \ |
+ (FUNCTION_CAST<a64_regexp_matcher>(entry)( \ |
+ p0, p1, p2, p3, p4, p5, p6, p7, NULL, p8)) |
+ |
+#define TRY_CATCH_FROM_ADDRESS(try_catch_address) \ |
+ reinterpret_cast<TryCatch*>(try_catch_address) |
+ |
+// Running without a simulator there is nothing to do. |
+class SimulatorStack : public v8::internal::AllStatic { |
+ public: |
+ static uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate, |
+ uintptr_t c_limit) { |
+ USE(isolate); |
+ return c_limit; |
+ } |
+ |
+ static uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) { |
+ return try_catch_address; |
+ } |
+ |
+ static void UnregisterCTryCatch() { } |
+}; |
+ |
+#else // !defined(USE_SIMULATOR) |
+ |
+enum ReverseByteMode { |
+ Reverse16 = 0, |
+ Reverse32 = 1, |
+ Reverse64 = 2 |
+}; |
+ |
+ |
+// The proper way to initialize a simulated system register (such as NZCV) is as |
+// follows: |
+// SimSystemRegister nzcv = SimSystemRegister::DefaultValueFor(NZCV); |
+class SimSystemRegister { |
+ public: |
+ // The default constructor represents a register which has no writable bits. |
+ // It is not possible to set its value to anything other than 0. |
+ SimSystemRegister() : value_(0), write_ignore_mask_(0xffffffff) { } |
+ |
+ uint32_t RawValue() const { |
+ return value_; |
+ } |
+ |
+ void SetRawValue(uint32_t new_value) { |
+ value_ = (value_ & write_ignore_mask_) | (new_value & ~write_ignore_mask_); |
+ } |
+ |
+ uint32_t Bits(int msb, int lsb) const { |
+ return unsigned_bitextract_32(msb, lsb, value_); |
+ } |
+ |
+ int32_t SignedBits(int msb, int lsb) const { |
+ return signed_bitextract_32(msb, lsb, value_); |
+ } |
+ |
+ void SetBits(int msb, int lsb, uint32_t bits); |
+ |
+ // Default system register values. |
+ static SimSystemRegister DefaultValueFor(SystemRegister id); |
+ |
+#define DEFINE_GETTER(Name, HighBit, LowBit, Func) \ |
+ uint32_t Name() const { return Func(HighBit, LowBit); } \ |
+ void Set##Name(uint32_t bits) { SetBits(HighBit, LowBit, bits); } |
+#define DEFINE_WRITE_IGNORE_MASK(Name, Mask) \ |
+ static const uint32_t Name##WriteIgnoreMask = ~static_cast<uint32_t>(Mask); |
+ |
+ SYSTEM_REGISTER_FIELDS_LIST(DEFINE_GETTER, DEFINE_WRITE_IGNORE_MASK) |
+ |
+#undef DEFINE_ZERO_BITS |
+#undef DEFINE_GETTER |
+ |
+ protected: |
+ // Most system registers only implement a few of the bits in the word. Other |
+ // bits are "read-as-zero, write-ignored". The write_ignore_mask argument |
+ // describes the bits which are not modifiable. |
+ SimSystemRegister(uint32_t value, uint32_t write_ignore_mask) |
+ : value_(value), write_ignore_mask_(write_ignore_mask) { } |
+ |
+ uint32_t value_; |
+ uint32_t write_ignore_mask_; |
+}; |
+ |
+ |
+// Represent a register (r0-r31, v0-v31). |
+template<int kSizeInBytes> |
+class SimRegisterBase { |
+ public: |
+ template<typename T> |
+ void Set(T new_value, unsigned size = sizeof(T)) { |
+ ASSERT(size <= kSizeInBytes); |
+ ASSERT(size <= sizeof(new_value)); |
+ // All AArch64 registers are zero-extending; Writing a W register clears the |
+ // top bits of the corresponding X register. |
+ memset(value_, 0, kSizeInBytes); |
+ memcpy(value_, &new_value, size); |
+ } |
+ |
+ // Copy 'size' bytes of the register to the result, and zero-extend to fill |
+ // the result. |
+ template<typename T> |
+ T Get(unsigned size = sizeof(T)) const { |
+ ASSERT(size <= kSizeInBytes); |
+ T result; |
+ memset(&result, 0, sizeof(result)); |
+ memcpy(&result, value_, size); |
+ return result; |
+ } |
+ |
+ protected: |
+ uint8_t value_[kSizeInBytes]; |
+}; |
+typedef SimRegisterBase<kXRegSizeInBytes> SimRegister; // r0-r31 |
+typedef SimRegisterBase<kDRegSizeInBytes> SimFPRegister; // v0-v31 |
+ |
+ |
+class Simulator : public DecoderVisitor { |
+ public: |
+ explicit Simulator(Decoder* decoder, |
+ Isolate* isolate = NULL, |
+ FILE* stream = stderr); |
+ ~Simulator(); |
+ |
+ // System functions. |
+ |
+ static void Initialize(Isolate* isolate); |
+ |
+ static Simulator* current(v8::internal::Isolate* isolate); |
+ |
+ // Call an arbitrary function taking an arbitrary number of arguments. The |
+ // varargs list must be a set of arguments with type CallArgument, and |
+ // terminated by CallArgument::End(). |
+ void CallVoid(byte* entry, ...); |
+ void CallVoid(byte* entry, va_list args); |
+ |
+ // Like CallVoid, but expect a return value. |
+ int64_t CallInt64(byte* entry, ...); |
+ double CallDouble(byte* entry, ...); |
+ |
+ // V8 calls into generated JS code with 5 parameters and into |
+ // generated RegExp code with 10 parameters. These are convenience functions, |
+ // which set up the simulator state and grab the result on return. |
+ int64_t CallJS(byte* entry, |
+ byte* function_entry, |
+ JSFunction* func, |
+ Object* revc, |
+ int64_t argc, |
+ Object*** argv); |
+ int64_t CallRegExp(byte* entry, |
+ String* input, |
+ int64_t start_offset, |
+ const byte* input_start, |
+ const byte* input_end, |
+ int* output, |
+ int64_t output_size, |
+ Address stack_base, |
+ int64_t direct_call, |
+ void* return_address, |
+ Isolate* isolate); |
+ |
+ // A wrapper class that stores an argument for one of the above Call |
+ // functions. |
+ // |
+ // Only arguments up to 64 bits in size are supported. |
+ class CallArgument { |
+ public: |
+ template<typename T> |
+ explicit CallArgument(T argument) { |
+ ASSERT(sizeof(argument) <= sizeof(bits_)); |
+ memcpy(&bits_, &argument, sizeof(argument)); |
+ type_ = X_ARG; |
+ } |
+ |
+ explicit CallArgument(double argument) { |
+ ASSERT(sizeof(argument) == sizeof(bits_)); |
+ memcpy(&bits_, &argument, sizeof(argument)); |
+ type_ = D_ARG; |
+ } |
+ |
+ explicit CallArgument(float argument) { |
+ TODO_UNIMPLEMENTED("CallArgument(float) is untested."); |
+ // Make the D register a NaN to try to trap errors if the callee expects a |
+ // double. If it expects a float, the callee should ignore the top word. |
+ ASSERT(sizeof(kFP64SignallingNaN) == sizeof(bits_)); |
+ memcpy(&bits_, &kFP64SignallingNaN, sizeof(kFP64SignallingNaN)); |
+ // Write the float payload to the S register. |
+ ASSERT(sizeof(argument) <= sizeof(bits_)); |
+ memcpy(&bits_, &argument, sizeof(argument)); |
+ type_ = D_ARG; |
+ } |
+ |
+ // This indicates the end of the arguments list, so that CallArgument |
+ // objects can be passed into varargs functions. |
+ static CallArgument End() { return CallArgument(); } |
+ |
+ int64_t bits() const { return bits_; } |
+ bool IsEnd() const { return type_ == NO_ARG; } |
+ bool IsX() const { return type_ == X_ARG; } |
+ bool IsD() const { return type_ == D_ARG; } |
+ |
+ private: |
+ enum CallArgumentType { X_ARG, D_ARG, NO_ARG }; |
+ |
+ // All arguments are aligned to at least 64 bits and we don't support |
+ // passing bigger arguments, so the payload size can be fixed at 64 bits. |
+ int64_t bits_; |
+ CallArgumentType type_; |
+ |
+ CallArgument() { type_ = NO_ARG; } |
+ }; |
+ |
+ |
+ // Start the debugging command line. |
+ void Debug(); |
+ |
+ bool GetValue(const char* desc, int64_t* value); |
+ |
+ bool PrintValue(const char* desc); |
+ |
+ // Push an address onto the JS stack. |
+ uintptr_t PushAddress(uintptr_t address); |
+ |
+ // Pop an address from the JS stack. |
+ uintptr_t PopAddress(); |
+ |
+ // Accessor to the internal simulator stack area. |
+ uintptr_t StackLimit() const; |
+ |
+ void ResetState(); |
+ |
+ // Runtime call support. |
+ static void* RedirectExternalReference(void* external_function, |
+ ExternalReference::Type type); |
+ |
+ // Run the simulator. |
+ static const Instruction* kEndOfSimAddress; |
+ void DecodeInstruction(); |
+ void Run(); |
+ void RunFrom(Instruction* start); |
+ |
+ // Simulation helpers. |
+ template <typename T> |
+ void set_pc(T new_pc) { |
+ ASSERT(sizeof(T) == sizeof(pc_)); |
+ memcpy(&pc_, &new_pc, sizeof(T)); |
+ pc_modified_ = true; |
+ } |
+ Instruction* pc() { return pc_; } |
+ |
+ void increment_pc() { |
+ if (!pc_modified_) { |
+ pc_ = pc_->NextInstruction(); |
+ } |
+ |
+ pc_modified_ = false; |
+ } |
+ |
+ void ExecuteInstruction() { |
+ ASSERT(IsAligned(reinterpret_cast<uintptr_t>(pc_), kInstructionSize)); |
+ CheckBreakNext(); |
+ decoder_->Decode(pc_); |
+ LogProcessorState(); |
+ increment_pc(); |
+ CheckBreakpoints(); |
+ } |
+ |
+ // Declare all Visitor functions. |
+ #define DECLARE(A) void Visit##A(Instruction* instr); |
+ VISITOR_LIST(DECLARE) |
+ #undef DECLARE |
+ |
+ // Register accessors. |
+ |
+ // Return 'size' bits of the value of an integer register, as the specified |
+ // type. The value is zero-extended to fill the result. |
+ // |
+ // The only supported values of 'size' are kXRegSize and kWRegSize. |
+ template<typename T> |
+ T reg(unsigned size, unsigned code, |
+ Reg31Mode r31mode = Reg31IsZeroRegister) const { |
+ unsigned size_in_bytes = size / 8; |
+ ASSERT(size_in_bytes <= sizeof(T)); |
+ ASSERT((size == kXRegSize) || (size == kWRegSize)); |
+ ASSERT(code < kNumberOfRegisters); |
+ |
+ if ((code == 31) && (r31mode == Reg31IsZeroRegister)) { |
+ T result; |
+ memset(&result, 0, sizeof(result)); |
+ return result; |
+ } |
+ return registers_[code].Get<T>(size_in_bytes); |
+ } |
+ |
+ // Like reg(), but infer the access size from the template type. |
+ template<typename T> |
+ T reg(unsigned code, Reg31Mode r31mode = Reg31IsZeroRegister) const { |
+ return reg<T>(sizeof(T) * 8, code, r31mode); |
+ } |
+ |
+ // Common specialized accessors for the reg() template. |
+ int32_t wreg(unsigned code, |
+ Reg31Mode r31mode = Reg31IsZeroRegister) const { |
+ return reg<int32_t>(code, r31mode); |
+ } |
+ |
+ int64_t xreg(unsigned code, |
+ Reg31Mode r31mode = Reg31IsZeroRegister) const { |
+ return reg<int64_t>(code, r31mode); |
+ } |
+ |
+ int64_t reg(unsigned size, unsigned code, |
+ Reg31Mode r31mode = Reg31IsZeroRegister) const { |
+ return reg<int64_t>(size, code, r31mode); |
+ } |
+ |
+ // Write 'size' bits of 'value' into an integer register. The value is |
+ // zero-extended. This behaviour matches AArch64 register writes. |
+ // |
+ // The only supported values of 'size' are kXRegSize and kWRegSize. |
+ template<typename T> |
+ void set_reg(unsigned size, unsigned code, T value, |
+ Reg31Mode r31mode = Reg31IsZeroRegister) { |
+ unsigned size_in_bytes = size / 8; |
+ ASSERT(size_in_bytes <= sizeof(T)); |
+ ASSERT((size == kXRegSize) || (size == kWRegSize)); |
+ ASSERT(code < kNumberOfRegisters); |
+ |
+ if ((code == 31) && (r31mode == Reg31IsZeroRegister)) { |
+ return; |
+ } |
+ return registers_[code].Set(value, size_in_bytes); |
+ } |
+ |
+ // Like set_reg(), but infer the access size from the template type. |
+ template<typename T> |
+ void set_reg(unsigned code, T value, |
+ Reg31Mode r31mode = Reg31IsZeroRegister) { |
+ set_reg(sizeof(value) * 8, code, value, r31mode); |
+ } |
+ |
+ // Common specialized accessors for the set_reg() template. |
+ void set_wreg(unsigned code, int32_t value, |
+ Reg31Mode r31mode = Reg31IsZeroRegister) { |
+ set_reg(kWRegSize, code, value, r31mode); |
+ } |
+ |
+ void set_xreg(unsigned code, int64_t value, |
+ Reg31Mode r31mode = Reg31IsZeroRegister) { |
+ set_reg(kXRegSize, code, value, r31mode); |
+ } |
+ |
+ // Commonly-used special cases. |
+ template<typename T> |
+ void set_lr(T value) { |
+ ASSERT(sizeof(T) == kPointerSize); |
+ set_reg(kLinkRegCode, value); |
+ } |
+ |
+ template<typename T> |
+ void set_sp(T value) { |
+ ASSERT(sizeof(T) == kPointerSize); |
+ set_reg(31, value, Reg31IsStackPointer); |
+ } |
+ |
+ int64_t sp() { return xreg(31, Reg31IsStackPointer); } |
+ int64_t jssp() { return xreg(kJSSPCode, Reg31IsStackPointer); } |
+ int64_t fp() { |
+ return xreg(kFramePointerRegCode, Reg31IsStackPointer); |
+ } |
+ Instruction* lr() { return reg<Instruction*>(kLinkRegCode); } |
+ |
+ Address get_sp() { return reinterpret_cast<Address>(sp()); } |
+ |
+ // Return 'size' bits of the value of a floating-point register, as the |
+ // specified type. The value is zero-extended to fill the result. |
+ // |
+ // The only supported values of 'size' are kDRegSize and kSRegSize. |
+ template<typename T> |
+ T fpreg(unsigned size, unsigned code) const { |
+ unsigned size_in_bytes = size / 8; |
+ ASSERT(size_in_bytes <= sizeof(T)); |
+ ASSERT((size == kDRegSize) || (size == kSRegSize)); |
+ ASSERT(code < kNumberOfFPRegisters); |
+ return fpregisters_[code].Get<T>(size_in_bytes); |
+ } |
+ |
+ // Like fpreg(), but infer the access size from the template type. |
+ template<typename T> |
+ T fpreg(unsigned code) const { |
+ return fpreg<T>(sizeof(T) * 8, code); |
+ } |
+ |
+ // Common specialized accessors for the fpreg() template. |
+ float sreg(unsigned code) const { |
+ return fpreg<float>(code); |
+ } |
+ |
+ uint32_t sreg_bits(unsigned code) const { |
+ return fpreg<uint32_t>(code); |
+ } |
+ |
+ double dreg(unsigned code) const { |
+ return fpreg<double>(code); |
+ } |
+ |
+ uint64_t dreg_bits(unsigned code) const { |
+ return fpreg<uint64_t>(code); |
+ } |
+ |
+ double fpreg(unsigned size, unsigned code) const { |
+ switch (size) { |
+ case kSRegSize: return sreg(code); |
+ case kDRegSize: return dreg(code); |
+ default: |
+ UNREACHABLE(); |
+ return 0.0; |
+ } |
+ } |
+ |
+ // Write 'value' into a floating-point register. The value is zero-extended. |
+ // This behaviour matches AArch64 register writes. |
+ template<typename T> |
+ void set_fpreg(unsigned code, T value) { |
+ ASSERT((sizeof(value) == kDRegSizeInBytes) || |
+ (sizeof(value) == kSRegSizeInBytes)); |
+ ASSERT(code < kNumberOfFPRegisters); |
+ fpregisters_[code].Set(value, sizeof(value)); |
+ } |
+ |
+ // Common specialized accessors for the set_fpreg() template. |
+ void set_sreg(unsigned code, float value) { |
+ set_fpreg(code, value); |
+ } |
+ |
+ void set_sreg_bits(unsigned code, uint32_t value) { |
+ set_fpreg(code, value); |
+ } |
+ |
+ void set_dreg(unsigned code, double value) { |
+ set_fpreg(code, value); |
+ } |
+ |
+ void set_dreg_bits(unsigned code, uint64_t value) { |
+ set_fpreg(code, value); |
+ } |
+ |
+ bool N() { return nzcv_.N() != 0; } |
+ bool Z() { return nzcv_.Z() != 0; } |
+ bool C() { return nzcv_.C() != 0; } |
+ bool V() { return nzcv_.V() != 0; } |
+ SimSystemRegister& nzcv() { return nzcv_; } |
+ |
+ // TODO(jbramley): Find a way to make the fpcr_ members return the proper |
+ // types, so this accessor is not necessary. |
+ FPRounding RMode() { return static_cast<FPRounding>(fpcr_.RMode()); } |
+ SimSystemRegister& fpcr() { return fpcr_; } |
+ |
+ // Debug helpers |
+ |
+ // Simulator breakpoints. |
+ struct Breakpoint { |
+ Instruction* location; |
+ bool enabled; |
+ }; |
+ std::vector<Breakpoint> breakpoints_; |
+ void SetBreakpoint(Instruction* breakpoint); |
+ void ListBreakpoints(); |
+ void CheckBreakpoints(); |
+ |
+ // Helpers for the 'next' command. |
+ // When this is set, the Simulator will insert a breakpoint after the next BL |
+ // instruction it meets. |
+ bool break_on_next_; |
+ // Check if the Simulator should insert a break after the current instruction |
+ // for the 'next' command. |
+ void CheckBreakNext(); |
+ |
+ // Disassemble instruction at the given address. |
+ void PrintInstructionsAt(Instruction* pc, uint64_t count); |
+ |
+ void PrintSystemRegisters(bool print_all = false); |
+ void PrintRegisters(bool print_all_regs = false); |
+ void PrintFPRegisters(bool print_all_regs = false); |
+ void PrintProcessorState(); |
+ void PrintWrite(uint8_t* address, uint64_t value, unsigned num_bytes); |
+ void LogSystemRegisters() { |
+ if (log_parameters_ & LOG_SYS_REGS) PrintSystemRegisters(); |
+ } |
+ void LogRegisters() { |
+ if (log_parameters_ & LOG_REGS) PrintRegisters(); |
+ } |
+ void LogFPRegisters() { |
+ if (log_parameters_ & LOG_FP_REGS) PrintFPRegisters(); |
+ } |
+ void LogProcessorState() { |
+ LogSystemRegisters(); |
+ LogRegisters(); |
+ LogFPRegisters(); |
+ } |
+ void LogWrite(uint8_t* address, uint64_t value, unsigned num_bytes) { |
+ if (log_parameters_ & LOG_WRITE) PrintWrite(address, value, num_bytes); |
+ } |
+ |
+ int log_parameters() { return log_parameters_; } |
+ void set_log_parameters(int new_parameters) { |
+ if (new_parameters & LOG_DISASM) { |
+ decoder_->InsertVisitorBefore(print_disasm_, this); |
+ } else { |
+ decoder_->RemoveVisitor(print_disasm_); |
+ } |
+ log_parameters_ = new_parameters; |
+ } |
+ |
+ static inline const char* WRegNameForCode(unsigned code, |
+ Reg31Mode mode = Reg31IsZeroRegister); |
+ static inline const char* XRegNameForCode(unsigned code, |
+ Reg31Mode mode = Reg31IsZeroRegister); |
+ static inline const char* SRegNameForCode(unsigned code); |
+ static inline const char* DRegNameForCode(unsigned code); |
+ static inline const char* VRegNameForCode(unsigned code); |
+ static inline int CodeFromName(const char* name); |
+ |
+ protected: |
+ // Simulation helpers ------------------------------------ |
+ bool ConditionPassed(Condition cond) { |
+ switch (cond) { |
+ case eq: |
+ return Z(); |
+ case ne: |
+ return !Z(); |
+ case hs: |
+ return C(); |
+ case lo: |
+ return !C(); |
+ case mi: |
+ return N(); |
+ case pl: |
+ return !N(); |
+ case vs: |
+ return V(); |
+ case vc: |
+ return !V(); |
+ case hi: |
+ return C() && !Z(); |
+ case ls: |
+ return !(C() && !Z()); |
+ case ge: |
+ return N() == V(); |
+ case lt: |
+ return N() != V(); |
+ case gt: |
+ return !Z() && (N() == V()); |
+ case le: |
+ return !(!Z() && (N() == V())); |
+ case nv: // Fall through. |
+ case al: |
+ return true; |
+ default: |
+ UNREACHABLE(); |
+ return false; |
+ } |
+ } |
+ |
+ bool ConditionFailed(Condition cond) { |
+ return !ConditionPassed(cond); |
+ } |
+ |
+ void AddSubHelper(Instruction* instr, int64_t op2); |
+ int64_t AddWithCarry(unsigned reg_size, |
+ bool set_flags, |
+ int64_t src1, |
+ int64_t src2, |
+ int64_t carry_in = 0); |
+ void LogicalHelper(Instruction* instr, int64_t op2); |
+ void ConditionalCompareHelper(Instruction* instr, int64_t op2); |
+ void LoadStoreHelper(Instruction* instr, |
+ int64_t offset, |
+ AddrMode addrmode); |
+ void LoadStorePairHelper(Instruction* instr, AddrMode addrmode); |
+ uint8_t* LoadStoreAddress(unsigned addr_reg, |
+ int64_t offset, |
+ AddrMode addrmode); |
+ void LoadStoreWriteBack(unsigned addr_reg, |
+ int64_t offset, |
+ AddrMode addrmode); |
+ void CheckMemoryAccess(uint8_t* address, uint8_t* stack); |
+ |
+ uint64_t MemoryRead(uint8_t* address, unsigned num_bytes); |
+ uint8_t MemoryRead8(uint8_t* address); |
+ uint16_t MemoryRead16(uint8_t* address); |
+ uint32_t MemoryRead32(uint8_t* address); |
+ float MemoryReadFP32(uint8_t* address); |
+ uint64_t MemoryRead64(uint8_t* address); |
+ double MemoryReadFP64(uint8_t* address); |
+ |
+ void MemoryWrite(uint8_t* address, uint64_t value, unsigned num_bytes); |
+ void MemoryWrite32(uint8_t* address, uint32_t value); |
+ void MemoryWriteFP32(uint8_t* address, float value); |
+ void MemoryWrite64(uint8_t* address, uint64_t value); |
+ void MemoryWriteFP64(uint8_t* address, double value); |
+ |
+ int64_t ShiftOperand(unsigned reg_size, |
+ int64_t value, |
+ Shift shift_type, |
+ unsigned amount); |
+ int64_t Rotate(unsigned reg_width, |
+ int64_t value, |
+ Shift shift_type, |
+ unsigned amount); |
+ int64_t ExtendValue(unsigned reg_width, |
+ int64_t value, |
+ Extend extend_type, |
+ unsigned left_shift = 0); |
+ |
+ uint64_t ReverseBits(uint64_t value, unsigned num_bits); |
+ uint64_t ReverseBytes(uint64_t value, ReverseByteMode mode); |
+ |
+ void FPCompare(double val0, double val1); |
+ double FPRoundInt(double value, FPRounding round_mode); |
+ double FPToDouble(float value); |
+ float FPToFloat(double value, FPRounding round_mode); |
+ double FixedToDouble(int64_t src, int fbits, FPRounding round_mode); |
+ double UFixedToDouble(uint64_t src, int fbits, FPRounding round_mode); |
+ float FixedToFloat(int64_t src, int fbits, FPRounding round_mode); |
+ float UFixedToFloat(uint64_t src, int fbits, FPRounding round_mode); |
+ int32_t FPToInt32(double value, FPRounding rmode); |
+ int64_t FPToInt64(double value, FPRounding rmode); |
+ uint32_t FPToUInt32(double value, FPRounding rmode); |
+ uint64_t FPToUInt64(double value, FPRounding rmode); |
+ |
+ template <typename T> |
+ T FPMax(T a, T b); |
+ |
+ template <typename T> |
+ T FPMin(T a, T b); |
+ |
+ template <typename T> |
+ T FPMaxNM(T a, T b); |
+ |
+ template <typename T> |
+ T FPMinNM(T a, T b); |
+ |
+ void CheckStackAlignment(); |
+ |
+ inline void CheckPCSComplianceAndRun(); |
+ |
+#ifdef DEBUG |
+ // Corruption values should have their least significant byte cleared to |
+ // allow the code of the register being corrupted to be inserted. |
+ static const uint64_t kCallerSavedRegisterCorruptionValue = |
+ 0xca11edc0de000000UL; |
+ // This value is a NaN in both 32-bit and 64-bit FP. |
+ static const uint64_t kCallerSavedFPRegisterCorruptionValue = |
+ 0x7ff000007f801000UL; |
+ // This value is a mix of 32/64-bits NaN and "verbose" immediate. |
+ static const uint64_t kDefaultCPURegisterCorruptionValue = |
+ 0x7ffbad007f8bad00UL; |
+ |
+ void CorruptRegisters(CPURegList* list, |
+ uint64_t value = kDefaultCPURegisterCorruptionValue); |
+ void CorruptAllCallerSavedCPURegisters(); |
+#endif |
+ |
+ // Processor state --------------------------------------- |
+ |
+ // Output stream. |
+ FILE* stream_; |
+ PrintDisassembler* print_disasm_; |
+ |
+ // Instrumentation. |
+ Instrument* instrument_; |
+ |
+ // General purpose registers. Register 31 is the stack pointer. |
+ SimRegister registers_[kNumberOfRegisters]; |
+ |
+ // Floating point registers |
+ SimFPRegister fpregisters_[kNumberOfFPRegisters]; |
+ |
+ // Processor state |
+ // bits[31, 27]: Condition flags N, Z, C, and V. |
+ // (Negative, Zero, Carry, Overflow) |
+ SimSystemRegister nzcv_; |
+ |
+ // Floating-Point Control Register |
+ SimSystemRegister fpcr_; |
+ |
+ // Only a subset of FPCR features are supported by the simulator. This helper |
+ // checks that the FPCR settings are supported. |
+ // |
+ // This is checked when floating-point instructions are executed, not when |
+ // FPCR is set. This allows generated code to modify FPCR for external |
+ // functions, or to save and restore it when entering and leaving generated |
+ // code. |
+ void AssertSupportedFPCR() { |
+ ASSERT(fpcr().DN() == 0); // No default-NaN support. |
+ ASSERT(fpcr().FZ() == 0); // No flush-to-zero support. |
+ ASSERT(fpcr().RMode() == FPTieEven); // Ties-to-even rounding only. |
+ |
+ // The simulator does not support half-precision operations so fpcr().AHP() |
+ // is irrelevant, and is not checked here. |
+ } |
+ |
+ static int CalcNFlag(uint64_t result, unsigned reg_size) { |
+ return (result >> (reg_size - 1)) & 1; |
+ } |
+ |
+ static int CalcZFlag(uint64_t result) { |
+ return result == 0; |
+ } |
+ |
+ static const uint32_t kConditionFlagsMask = 0xf0000000; |
+ |
+ // Stack |
+ byte* stack_; |
+ static const intptr_t stack_protection_size_ = KB; |
+ intptr_t stack_size_; |
+ byte* stack_limit_; |
+ // TODO(aleram): protect the stack. |
+ |
+ Decoder* decoder_; |
+ Decoder* disassembler_decoder_; |
+ |
+ // Indicates if the pc has been modified by the instruction and should not be |
+ // automatically incremented. |
+ bool pc_modified_; |
+ Instruction* pc_; |
+ |
+ static const char* xreg_names[]; |
+ static const char* wreg_names[]; |
+ static const char* sreg_names[]; |
+ static const char* dreg_names[]; |
+ static const char* vreg_names[]; |
+ |
+ // Debugger input. |
+ void set_last_debugger_input(char* input) { |
+ DeleteArray(last_debugger_input_); |
+ last_debugger_input_ = input; |
+ } |
+ char* last_debugger_input() { return last_debugger_input_; } |
+ char* last_debugger_input_; |
+ |
+ private: |
+ int log_parameters_; |
+ Isolate* isolate_; |
+}; |
+ |
+ |
+// When running with the simulator transition into simulated execution at this |
+// point. |
+#define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \ |
+ reinterpret_cast<Object*>(Simulator::current(Isolate::Current())->CallJS( \ |
+ FUNCTION_ADDR(entry), \ |
+ p0, p1, p2, p3, p4)) |
+ |
+#define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \ |
+ Simulator::current(Isolate::Current())->CallRegExp( \ |
+ entry, \ |
+ p0, p1, p2, p3, p4, p5, p6, p7, NULL, p8) |
+ |
+#define TRY_CATCH_FROM_ADDRESS(try_catch_address) \ |
+ try_catch_address == NULL ? \ |
+ NULL : *(reinterpret_cast<TryCatch**>(try_catch_address)) |
+ |
+ |
+// The simulator has its own stack. Thus it has a different stack limit from |
+// the C-based native code. |
+// See also 'class SimulatorStack' in arm/simulator-arm.h. |
+class SimulatorStack : public v8::internal::AllStatic { |
+ public: |
+ static uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate, |
+ uintptr_t c_limit) { |
+ return Simulator::current(isolate)->StackLimit(); |
+ } |
+ |
+ static uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) { |
+ Simulator* sim = Simulator::current(Isolate::Current()); |
+ return sim->PushAddress(try_catch_address); |
+ } |
+ |
+ static void UnregisterCTryCatch() { |
+ Simulator::current(Isolate::Current())->PopAddress(); |
+ } |
+}; |
+ |
+#endif // !defined(USE_SIMULATOR) |
+ |
+} } // namespace v8::internal |
+ |
+#endif // V8_A64_SIMULATOR_A64_H_ |