Index: src/a64/simulator-a64.cc |
diff --git a/src/a64/simulator-a64.cc b/src/a64/simulator-a64.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..e0625bc6140d9da8c423f03b44b7b9fb71113762 |
--- /dev/null |
+++ b/src/a64/simulator-a64.cc |
@@ -0,0 +1,3429 @@ |
+// Copyright 2013 the V8 project authors. All rights reserved. |
+// Redistribution and use in source and binary forms, with or without |
+// modification, are permitted provided that the following conditions are |
+// met: |
+// |
+// * Redistributions of source code must retain the above copyright |
+// notice, this list of conditions and the following disclaimer. |
+// * Redistributions in binary form must reproduce the above |
+// copyright notice, this list of conditions and the following |
+// disclaimer in the documentation and/or other materials provided |
+// with the distribution. |
+// * Neither the name of Google Inc. nor the names of its |
+// contributors may be used to endorse or promote products derived |
+// from this software without specific prior written permission. |
+// |
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
+ |
+#include <stdlib.h> |
+#include <cmath> |
+#include <cstdarg> |
+#include "v8.h" |
+ |
+#if V8_TARGET_ARCH_A64 |
+ |
+#include "disasm.h" |
+#include "assembler.h" |
+#include "a64/simulator-a64.h" |
+#include "macro-assembler.h" |
+ |
+namespace v8 { |
+namespace internal { |
+ |
+#if defined(USE_SIMULATOR) |
+ |
+ |
+// This macro provides a platform independent use of sscanf. The reason for |
+// SScanF not being implemented in a platform independent way through |
+// ::v8::internal::OS in the same way as SNPrintF is that the |
+// Windows C Run-Time Library does not provide vsscanf. |
+#define SScanF sscanf // NOLINT |
+ |
+ |
+// This is basically the same as PrintF, with a guard for FLAG_trace_sim. |
+void PRINTF_CHECKING TraceSim(const char* format, ...) { |
+ if (FLAG_trace_sim) { |
+ va_list arguments; |
+ va_start(arguments, format); |
+ OS::VPrint(format, arguments); |
+ va_end(arguments); |
+ } |
+} |
+ |
+ |
+const Instruction* Simulator::kEndOfSimAddress = NULL; |
+ |
+ |
+void SimSystemRegister::SetBits(int msb, int lsb, uint32_t bits) { |
+ int width = msb - lsb + 1; |
+ ASSERT(is_uintn(bits, width) || is_intn(bits, width)); |
+ |
+ bits <<= lsb; |
+ uint32_t mask = ((1 << width) - 1) << lsb; |
+ ASSERT((mask & write_ignore_mask_) == 0); |
+ |
+ value_ = (value_ & ~mask) | (bits & mask); |
+} |
+ |
+ |
+SimSystemRegister SimSystemRegister::DefaultValueFor(SystemRegister id) { |
+ switch (id) { |
+ case NZCV: |
+ return SimSystemRegister(0x00000000, NZCVWriteIgnoreMask); |
+ case FPCR: |
+ return SimSystemRegister(0x00000000, FPCRWriteIgnoreMask); |
+ default: |
+ UNREACHABLE(); |
+ return SimSystemRegister(); |
+ } |
+} |
+ |
+ |
+void Simulator::Initialize(Isolate* isolate) { |
+ if (isolate->simulator_initialized()) return; |
+ isolate->set_simulator_initialized(true); |
+ ExternalReference::set_redirector(isolate, &RedirectExternalReference); |
+} |
+ |
+ |
+// Get the active Simulator for the current thread. |
+Simulator* Simulator::current(Isolate* isolate) { |
+ Isolate::PerIsolateThreadData* isolate_data = |
+ isolate->FindOrAllocatePerThreadDataForThisThread(); |
+ ASSERT(isolate_data != NULL); |
+ |
+ Simulator* sim = isolate_data->simulator(); |
+ if (sim == NULL) { |
+ // TODO(146): delete the simulator object when a thread/isolate goes away. |
+ sim = new Simulator(new Decoder(), isolate); |
+ isolate_data->set_simulator(sim); |
+ } |
+ return sim; |
+} |
+ |
+ |
+void Simulator::CallVoid(byte* entry, va_list args) { |
+ int index_x = 0; |
+ int index_d = 0; |
+ |
+ // At this point, we don't know how much stack space we need (for arguments |
+ // that don't fit into registers). We can only do one pass through the |
+ // va_list, so we store the extra arguments in a vector, then copy them to |
+ // their proper locations later. |
+ std::vector<int64_t> stack_args(0); |
+ |
+ // Process register arguments. |
+ CallArgument arg = va_arg(args, CallArgument); |
+ while (!arg.IsEnd()) { |
+ if (arg.IsX() && (index_x < 8)) { |
+ set_xreg(index_x++, arg.bits()); |
+ } else if (arg.IsD() && (index_d < 8)) { |
+ set_dreg_bits(index_d++, arg.bits()); |
+ } else { |
+ ASSERT(arg.IsD() || arg.IsX()); |
+ stack_args.push_back(arg.bits()); |
+ } |
+ arg = va_arg(args, CallArgument); |
+ } |
+ |
+ // Process stack arguments, and make sure the stack is suitably aligned. |
+ uintptr_t original_stack = sp(); |
+ uintptr_t entry_stack = original_stack - |
+ stack_args.size() * sizeof(stack_args[0]); |
+ if (OS::ActivationFrameAlignment() != 0) { |
+ entry_stack &= -OS::ActivationFrameAlignment(); |
+ } |
+ char * stack = reinterpret_cast<char*>(entry_stack); |
+ std::vector<int64_t>::const_iterator it; |
+ for (it = stack_args.begin(); it != stack_args.end(); it++) { |
+ memcpy(stack, &(*it), sizeof(*it)); |
+ stack += sizeof(*it); |
+ } |
+ |
+ ASSERT(reinterpret_cast<uintptr_t>(stack) <= original_stack); |
+ set_sp(entry_stack); |
+ |
+ // Call the generated code. |
+ set_pc(entry); |
+ set_lr(kEndOfSimAddress); |
+ CheckPCSComplianceAndRun(); |
+ |
+ set_sp(original_stack); |
+} |
+ |
+ |
+ |
+void Simulator::CallVoid(byte* entry, ...) { |
+ va_list args; |
+ va_start(args, entry); |
+ CallVoid(entry, args); |
+ va_end(args); |
+} |
+ |
+ |
+int64_t Simulator::CallInt64(byte* entry, ...) { |
+ va_list args; |
+ va_start(args, entry); |
+ CallVoid(entry, args); |
+ va_end(args); |
+ |
+ return xreg(0); |
+} |
+ |
+ |
+double Simulator::CallDouble(byte* entry, ...) { |
+ va_list args; |
+ va_start(args, entry); |
+ CallVoid(entry, args); |
+ va_end(args); |
+ |
+ return dreg(0); |
+} |
+ |
+ |
+int64_t Simulator::CallJS(byte* entry, |
+ byte* function_entry, |
+ JSFunction* func, |
+ Object* revc, |
+ int64_t argc, |
+ Object*** argv) { |
+ return CallInt64(entry, |
+ CallArgument(function_entry), |
+ CallArgument(func), |
+ CallArgument(revc), |
+ CallArgument(argc), |
+ CallArgument(argv), |
+ CallArgument::End()); |
+} |
+ |
+int64_t Simulator::CallRegExp(byte* entry, |
+ String* input, |
+ int64_t start_offset, |
+ const byte* input_start, |
+ const byte* input_end, |
+ int* output, |
+ int64_t output_size, |
+ Address stack_base, |
+ int64_t direct_call, |
+ void* return_address, |
+ Isolate* isolate) { |
+ return CallInt64(entry, |
+ CallArgument(input), |
+ CallArgument(start_offset), |
+ CallArgument(input_start), |
+ CallArgument(input_end), |
+ CallArgument(output), |
+ CallArgument(output_size), |
+ CallArgument(stack_base), |
+ CallArgument(direct_call), |
+ CallArgument(return_address), |
+ CallArgument(isolate), |
+ CallArgument::End()); |
+} |
+ |
+ |
+void Simulator::CheckPCSComplianceAndRun() { |
+#ifdef DEBUG |
+ CHECK_EQ(kNumberOfCalleeSavedRegisters, kCalleeSaved.Count()); |
+ CHECK_EQ(kNumberOfCalleeSavedFPRegisters, kCalleeSavedFP.Count()); |
+ |
+ int64_t saved_registers[kNumberOfCalleeSavedRegisters]; |
+ uint64_t saved_fpregisters[kNumberOfCalleeSavedFPRegisters]; |
+ |
+ CPURegList register_list = kCalleeSaved; |
+ CPURegList fpregister_list = kCalleeSavedFP; |
+ |
+ for (int i = 0; i < kNumberOfCalleeSavedRegisters; i++) { |
+ // x31 is not a caller saved register, so no need to specify if we want |
+ // the stack or zero. |
+ saved_registers[i] = xreg(register_list.PopLowestIndex().code()); |
+ } |
+ for (int i = 0; i < kNumberOfCalleeSavedFPRegisters; i++) { |
+ saved_fpregisters[i] = |
+ dreg_bits(fpregister_list.PopLowestIndex().code()); |
+ } |
+ int64_t original_stack = sp(); |
+#endif |
+ // Start the simulation! |
+ Run(); |
+#ifdef DEBUG |
+ CHECK_EQ(original_stack, sp()); |
+ // Check that callee-saved registers have been preserved. |
+ register_list = kCalleeSaved; |
+ fpregister_list = kCalleeSavedFP; |
+ for (int i = 0; i < kNumberOfCalleeSavedRegisters; i++) { |
+ CHECK_EQ(saved_registers[i], xreg(register_list.PopLowestIndex().code())); |
+ } |
+ for (int i = 0; i < kNumberOfCalleeSavedFPRegisters; i++) { |
+ ASSERT(saved_fpregisters[i] == |
+ dreg_bits(fpregister_list.PopLowestIndex().code())); |
+ } |
+ |
+ // Corrupt caller saved register minus the return regiters. |
+ |
+ // In theory x0 to x7 can be used for return values, but V8 only uses x0, x1 |
+ // for now . |
+ register_list = kCallerSaved; |
+ register_list.Remove(x0); |
+ register_list.Remove(x1); |
+ |
+ // In theory d0 to d7 can be used for return values, but V8 only uses d0 |
+ // for now . |
+ fpregister_list = kCallerSavedFP; |
+ fpregister_list.Remove(d0); |
+ |
+ CorruptRegisters(®ister_list, kCallerSavedRegisterCorruptionValue); |
+ CorruptRegisters(&fpregister_list, kCallerSavedFPRegisterCorruptionValue); |
+#endif |
+} |
+ |
+ |
+#ifdef DEBUG |
+// The least significant byte of the curruption value holds the corresponding |
+// register's code. |
+void Simulator::CorruptRegisters(CPURegList* list, uint64_t value) { |
+ if (list->type() == CPURegister::kRegister) { |
+ while (!list->IsEmpty()) { |
+ unsigned code = list->PopLowestIndex().code(); |
+ set_xreg(code, value | code); |
+ } |
+ } else { |
+ ASSERT(list->type() == CPURegister::kFPRegister); |
+ while (!list->IsEmpty()) { |
+ unsigned code = list->PopLowestIndex().code(); |
+ set_dreg_bits(code, value | code); |
+ } |
+ } |
+} |
+ |
+ |
+void Simulator::CorruptAllCallerSavedCPURegisters() { |
+ // Corrupt alters its parameter so copy them first. |
+ CPURegList register_list = kCallerSaved; |
+ CPURegList fpregister_list = kCallerSavedFP; |
+ |
+ CorruptRegisters(®ister_list, kCallerSavedRegisterCorruptionValue); |
+ CorruptRegisters(&fpregister_list, kCallerSavedFPRegisterCorruptionValue); |
+} |
+#endif |
+ |
+ |
+// Extending the stack by 2 * 64 bits is required for stack alignment purposes. |
+// TODO(all): Insert a marker in the extra space allocated on the stack. |
+uintptr_t Simulator::PushAddress(uintptr_t address) { |
+ ASSERT(sizeof(uintptr_t) < 2 * kXRegSizeInBytes); |
+ intptr_t new_sp = sp() - 2 * kXRegSizeInBytes; |
+ uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp); |
+ *stack_slot = address; |
+ set_sp(new_sp); |
+ return new_sp; |
+} |
+ |
+ |
+uintptr_t Simulator::PopAddress() { |
+ intptr_t current_sp = sp(); |
+ uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp); |
+ uintptr_t address = *stack_slot; |
+ ASSERT(sizeof(uintptr_t) < 2 * kXRegSizeInBytes); |
+ set_sp(current_sp + 2 * kXRegSizeInBytes); |
+ return address; |
+} |
+ |
+ |
+// Returns the limit of the stack area to enable checking for stack overflows. |
+uintptr_t Simulator::StackLimit() const { |
+ // Leave a safety margin of 1024 bytes to prevent overrunning the stack when |
+ // pushing values. |
+ // TODO(all): Increase the stack limit protection. |
+ |
+ // The margin was decreased to 256 bytes, because we are intensively using |
+ // the stack. The stack usage should decrease when our code improves. Then |
+ // we can set it to 1024 again. |
+ return reinterpret_cast<uintptr_t>(stack_limit_) + 256; |
+} |
+ |
+ |
+Simulator::Simulator(Decoder* decoder, Isolate* isolate, FILE* stream) |
+ : decoder_(decoder), last_debugger_input_(NULL), log_parameters_(NO_PARAM), |
+ isolate_(isolate) { |
+ // Setup the decoder. |
+ decoder_->AppendVisitor(this); |
+ |
+ ResetState(); |
+ |
+ // Allocate and setup the simulator stack. |
+ stack_size_ = (FLAG_sim_stack_size * KB) + (2 * stack_protection_size_); |
+ stack_ = new byte[stack_size_]; |
+ stack_limit_ = stack_ + stack_protection_size_; |
+ byte* tos = stack_ + stack_size_ - stack_protection_size_; |
+ // The stack pointer must be 16 bytes aligned. |
+ set_sp(reinterpret_cast<int64_t>(tos) & ~0xfUL); |
+ |
+ stream_ = stream; |
+ print_disasm_ = new PrintDisassembler(stream_); |
+ |
+ if (FLAG_trace_sim) { |
+ decoder_->InsertVisitorBefore(print_disasm_, this); |
+ log_parameters_ = LOG_ALL; |
+ } |
+ |
+ // The debugger needs to disassemble code without the simulator executing an |
+ // instruction, so we create a dedicated decoder. |
+ disassembler_decoder_ = new Decoder(); |
+ disassembler_decoder_->AppendVisitor(print_disasm_); |
+ |
+ if (FLAG_log_instruction_stats) { |
+ instrument_ = new Instrument(FLAG_log_instruction_file, |
+ FLAG_log_instruction_period); |
+ decoder_->AppendVisitor(instrument_); |
+ } |
+} |
+ |
+ |
+void Simulator::ResetState() { |
+ // Reset the system registers. |
+ nzcv_ = SimSystemRegister::DefaultValueFor(NZCV); |
+ fpcr_ = SimSystemRegister::DefaultValueFor(FPCR); |
+ |
+ // Reset registers to 0. |
+ pc_ = NULL; |
+ for (unsigned i = 0; i < kNumberOfRegisters; i++) { |
+ set_xreg(i, 0xbadbeef); |
+ } |
+ for (unsigned i = 0; i < kNumberOfFPRegisters; i++) { |
+ // Set FP registers to a value that is NaN in both 32-bit and 64-bit FP. |
+ set_dreg_bits(i, 0x7ff000007f800001UL); |
+ } |
+ // Returning to address 0 exits the Simulator. |
+ set_lr(kEndOfSimAddress); |
+ |
+ // Reset debug helpers. |
+ breakpoints_.empty(); |
+ break_on_next_= false; |
+} |
+ |
+ |
+Simulator::~Simulator() { |
+ delete[] stack_; |
+ if (FLAG_log_instruction_stats) { |
+ delete instrument_; |
+ } |
+ delete disassembler_decoder_; |
+ delete print_disasm_; |
+ DeleteArray(last_debugger_input_); |
+} |
+ |
+ |
+void Simulator::Run() { |
+ pc_modified_ = false; |
+ while (pc_ != kEndOfSimAddress) { |
+ ExecuteInstruction(); |
+ } |
+} |
+ |
+ |
+void Simulator::RunFrom(Instruction* start) { |
+ set_pc(start); |
+ Run(); |
+} |
+ |
+ |
+void Simulator::CheckStackAlignment() { |
+ // TODO(aleram): The sp alignment check to perform depends on the processor |
+ // state. Check the specifications for more details. |
+} |
+ |
+ |
+// When the generated code calls an external reference we need to catch that in |
+// the simulator. The external reference will be a function compiled for the |
+// host architecture. We need to call that function instead of trying to |
+// execute it with the simulator. We do that by redirecting the external |
+// reference to a svc (Supervisor Call) instruction that is handled by |
+// the simulator. We write the original destination of the jump just at a known |
+// offset from the svc instruction so the simulator knows what to call. |
+class Redirection { |
+ public: |
+ Redirection(void* external_function, ExternalReference::Type type) |
+ : external_function_(external_function), |
+ type_(type), |
+ next_(NULL) { |
+ redirect_call_.SetInstructionBits( |
+ HLT | Assembler::ImmException(kImmExceptionIsRedirectedCall)); |
+ Isolate* isolate = Isolate::Current(); |
+ next_ = isolate->simulator_redirection(); |
+ // TODO(all): Simulator flush I cache |
+ isolate->set_simulator_redirection(this); |
+ } |
+ |
+ void* address_of_redirect_call() { |
+ return reinterpret_cast<void*>(&redirect_call_); |
+ } |
+ |
+ void* external_function() { return external_function_; } |
+ ExternalReference::Type type() { return type_; } |
+ |
+ static Redirection* Get(void* external_function, |
+ ExternalReference::Type type) { |
+ Isolate* isolate = Isolate::Current(); |
+ Redirection* current = isolate->simulator_redirection(); |
+ for (; current != NULL; current = current->next_) { |
+ if (current->external_function_ == external_function) { |
+ ASSERT_EQ(current->type(), type); |
+ return current; |
+ } |
+ } |
+ return new Redirection(external_function, type); |
+ } |
+ |
+ static Redirection* FromHltInstruction(Instruction* redirect_call) { |
+ char* addr_of_hlt = reinterpret_cast<char*>(redirect_call); |
+ char* addr_of_redirection = |
+ addr_of_hlt - OFFSET_OF(Redirection, redirect_call_); |
+ return reinterpret_cast<Redirection*>(addr_of_redirection); |
+ } |
+ |
+ static void* ReverseRedirection(int64_t reg) { |
+ Redirection* redirection = |
+ FromHltInstruction(reinterpret_cast<Instruction*>(reg)); |
+ return redirection->external_function(); |
+ } |
+ |
+ private: |
+ void* external_function_; |
+ Instruction redirect_call_; |
+ ExternalReference::Type type_; |
+ Redirection* next_; |
+}; |
+ |
+ |
+void* Simulator::RedirectExternalReference(void* external_function, |
+ ExternalReference::Type type) { |
+ Redirection* redirection = Redirection::Get(external_function, type); |
+ return redirection->address_of_redirect_call(); |
+} |
+ |
+ |
+const char* Simulator::xreg_names[] = { |
+"x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", |
+"x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", |
+"ip0", "ip1", "x18", "x19", "x20", "x21", "x22", "x23", |
+"x24", "x25", "x26", "cp", "jssp", "fp", "lr", "xzr", "csp"}; |
+ |
+const char* Simulator::wreg_names[] = { |
+"w0", "w1", "w2", "w3", "w4", "w5", "w6", "w7", |
+"w8", "w9", "w10", "w11", "w12", "w13", "w14", "w15", |
+"w16", "w17", "w18", "w19", "w20", "w21", "w22", "w23", |
+"w24", "w25", "w26", "wcp", "wjssp", "wfp", "wlr", "wzr", "wcsp"}; |
+ |
+const char* Simulator::sreg_names[] = { |
+"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", |
+"s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15", |
+"s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23", |
+"s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31"}; |
+ |
+const char* Simulator::dreg_names[] = { |
+"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", |
+"d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15", |
+"d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23", |
+"d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31"}; |
+ |
+const char* Simulator::vreg_names[] = { |
+"v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", |
+"v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", |
+"v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", |
+"v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"}; |
+ |
+ |
+const char* Simulator::WRegNameForCode(unsigned code, Reg31Mode mode) { |
+ ASSERT(code < kNumberOfRegisters); |
+ // If the code represents the stack pointer, index the name after zr. |
+ if ((code == kZeroRegCode) && (mode == Reg31IsStackPointer)) { |
+ code = kZeroRegCode + 1; |
+ } |
+ return wreg_names[code]; |
+} |
+ |
+ |
+const char* Simulator::XRegNameForCode(unsigned code, Reg31Mode mode) { |
+ ASSERT(code < kNumberOfRegisters); |
+ // If the code represents the stack pointer, index the name after zr. |
+ if ((code == kZeroRegCode) && (mode == Reg31IsStackPointer)) { |
+ code = kZeroRegCode + 1; |
+ } |
+ return xreg_names[code]; |
+} |
+ |
+ |
+const char* Simulator::SRegNameForCode(unsigned code) { |
+ ASSERT(code < kNumberOfFPRegisters); |
+ return sreg_names[code]; |
+} |
+ |
+ |
+const char* Simulator::DRegNameForCode(unsigned code) { |
+ ASSERT(code < kNumberOfFPRegisters); |
+ return dreg_names[code]; |
+} |
+ |
+ |
+const char* Simulator::VRegNameForCode(unsigned code) { |
+ ASSERT(code < kNumberOfFPRegisters); |
+ return vreg_names[code]; |
+} |
+ |
+ |
+int Simulator::CodeFromName(const char* name) { |
+ for (unsigned i = 0; i < kNumberOfRegisters; i++) { |
+ if ((strcmp(xreg_names[i], name) == 0) || |
+ (strcmp(wreg_names[i], name) == 0)) { |
+ return i; |
+ } |
+ } |
+ for (unsigned i = 0; i < kNumberOfFPRegisters; i++) { |
+ if ((strcmp(vreg_names[i], name) == 0) || |
+ (strcmp(dreg_names[i], name) == 0) || |
+ (strcmp(sreg_names[i], name) == 0)) { |
+ return i; |
+ } |
+ } |
+ if ((strcmp("csp", name) == 0) || (strcmp("wcsp", name) == 0)) { |
+ return kSPRegInternalCode; |
+ } |
+ return -1; |
+} |
+ |
+ |
+// Helpers --------------------------------------------------------------------- |
+int64_t Simulator::AddWithCarry(unsigned reg_size, |
+ bool set_flags, |
+ int64_t src1, |
+ int64_t src2, |
+ int64_t carry_in) { |
+ ASSERT((carry_in == 0) || (carry_in == 1)); |
+ ASSERT((reg_size == kXRegSize) || (reg_size == kWRegSize)); |
+ |
+ uint64_t u1, u2; |
+ int64_t result; |
+ int64_t signed_sum = src1 + src2 + carry_in; |
+ |
+ uint32_t N, Z, C, V; |
+ |
+ if (reg_size == kWRegSize) { |
+ u1 = static_cast<uint64_t>(src1) & kWRegMask; |
+ u2 = static_cast<uint64_t>(src2) & kWRegMask; |
+ |
+ result = signed_sum & kWRegMask; |
+ // Compute the C flag by comparing the sum to the max unsigned integer. |
+ C = ((kWMaxUInt - u1) < (u2 + carry_in)) || |
+ ((kWMaxUInt - u1 - carry_in) < u2); |
+ // Overflow iff the sign bit is the same for the two inputs and different |
+ // for the result. |
+ int64_t s_src1 = src1 << (kXRegSize - kWRegSize); |
+ int64_t s_src2 = src2 << (kXRegSize - kWRegSize); |
+ int64_t s_result = result << (kXRegSize - kWRegSize); |
+ V = ((s_src1 ^ s_src2) >= 0) && ((s_src1 ^ s_result) < 0); |
+ |
+ } else { |
+ u1 = static_cast<uint64_t>(src1); |
+ u2 = static_cast<uint64_t>(src2); |
+ |
+ result = signed_sum; |
+ // Compute the C flag by comparing the sum to the max unsigned integer. |
+ C = ((kXMaxUInt - u1) < (u2 + carry_in)) || |
+ ((kXMaxUInt - u1 - carry_in) < u2); |
+ // Overflow iff the sign bit is the same for the two inputs and different |
+ // for the result. |
+ V = ((src1 ^ src2) >= 0) && ((src1 ^ result) < 0); |
+ } |
+ |
+ N = CalcNFlag(result, reg_size); |
+ Z = CalcZFlag(result); |
+ |
+ if (set_flags) { |
+ nzcv().SetN(N); |
+ nzcv().SetZ(Z); |
+ nzcv().SetC(C); |
+ nzcv().SetV(V); |
+ } |
+ return result; |
+} |
+ |
+ |
+int64_t Simulator::ShiftOperand(unsigned reg_size, |
+ int64_t value, |
+ Shift shift_type, |
+ unsigned amount) { |
+ if (amount == 0) { |
+ return value; |
+ } |
+ int64_t mask = reg_size == kXRegSize ? kXRegMask : kWRegMask; |
+ switch (shift_type) { |
+ case LSL: |
+ return (value << amount) & mask; |
+ case LSR: |
+ return static_cast<uint64_t>(value) >> amount; |
+ case ASR: { |
+ // Shift used to restore the sign. |
+ unsigned s_shift = kXRegSize - reg_size; |
+ // Value with its sign restored. |
+ int64_t s_value = (value << s_shift) >> s_shift; |
+ return (s_value >> amount) & mask; |
+ } |
+ case ROR: { |
+ if (reg_size == kWRegSize) { |
+ value &= kWRegMask; |
+ } |
+ return (static_cast<uint64_t>(value) >> amount) | |
+ ((value & ((1L << amount) - 1L)) << (reg_size - amount)); |
+ } |
+ default: |
+ UNIMPLEMENTED(); |
+ return 0; |
+ } |
+} |
+ |
+ |
+int64_t Simulator::ExtendValue(unsigned reg_size, |
+ int64_t value, |
+ Extend extend_type, |
+ unsigned left_shift) { |
+ switch (extend_type) { |
+ case UXTB: |
+ value &= kByteMask; |
+ break; |
+ case UXTH: |
+ value &= kHalfWordMask; |
+ break; |
+ case UXTW: |
+ value &= kWordMask; |
+ break; |
+ case SXTB: |
+ value = (value << 56) >> 56; |
+ break; |
+ case SXTH: |
+ value = (value << 48) >> 48; |
+ break; |
+ case SXTW: |
+ value = (value << 32) >> 32; |
+ break; |
+ case UXTX: |
+ case SXTX: |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ } |
+ int64_t mask = (reg_size == kXRegSize) ? kXRegMask : kWRegMask; |
+ return (value << left_shift) & mask; |
+} |
+ |
+ |
+void Simulator::FPCompare(double val0, double val1) { |
+ AssertSupportedFPCR(); |
+ |
+ // TODO(jbramley): This assumes that the C++ implementation handles |
+ // comparisons in the way that we expect (as per AssertSupportedFPCR()). |
+ if ((std::isnan(val0) != 0) || (std::isnan(val1) != 0)) { |
+ nzcv().SetRawValue(FPUnorderedFlag); |
+ } else if (val0 < val1) { |
+ nzcv().SetRawValue(FPLessThanFlag); |
+ } else if (val0 > val1) { |
+ nzcv().SetRawValue(FPGreaterThanFlag); |
+ } else if (val0 == val1) { |
+ nzcv().SetRawValue(FPEqualFlag); |
+ } else { |
+ UNREACHABLE(); |
+ } |
+} |
+ |
+ |
+void Simulator::SetBreakpoint(Instruction* location) { |
+ for (unsigned i = 0; i < breakpoints_.size(); i++) { |
+ if (breakpoints_.at(i).location == location) { |
+ PrintF("Existing breakpoint at %p was %s\n", |
+ reinterpret_cast<void*>(location), |
+ breakpoints_.at(i).enabled ? "disabled" : "enabled"); |
+ breakpoints_.at(i).enabled = !breakpoints_.at(i).enabled; |
+ return; |
+ } |
+ } |
+ Breakpoint new_breakpoint = {location, true}; |
+ breakpoints_.push_back(new_breakpoint); |
+ PrintF("Set a breakpoint at %p\n", reinterpret_cast<void*>(location)); |
+} |
+ |
+ |
+void Simulator::ListBreakpoints() { |
+ PrintF("Breakpoints:\n"); |
+ for (unsigned i = 0; i < breakpoints_.size(); i++) { |
+ PrintF("%p : %s\n", |
+ reinterpret_cast<void*>(breakpoints_.at(i).location), |
+ breakpoints_.at(i).enabled ? "enabled" : "disabled"); |
+ } |
+} |
+ |
+ |
+void Simulator::CheckBreakpoints() { |
+ bool hit_a_breakpoint = false; |
+ for (unsigned i = 0; i < breakpoints_.size(); i++) { |
+ if ((breakpoints_.at(i).location == pc_) && |
+ breakpoints_.at(i).enabled) { |
+ hit_a_breakpoint = true; |
+ // Disable this breakpoint. |
+ breakpoints_.at(i).enabled = false; |
+ } |
+ } |
+ if (hit_a_breakpoint) { |
+ PrintF("Hit and disabled a breakpoint at %p.\n", |
+ reinterpret_cast<void*>(pc_)); |
+ Debug(); |
+ } |
+} |
+ |
+ |
+void Simulator::CheckBreakNext() { |
+ // If the current instruction is a BL, insert a breakpoint just after it. |
+ if (break_on_next_ && pc_->IsBranchAndLinkToRegister()) { |
+ SetBreakpoint(pc_->NextInstruction()); |
+ break_on_next_ = false; |
+ } |
+} |
+ |
+ |
+void Simulator::PrintInstructionsAt(Instruction* start, uint64_t count) { |
+ Instruction* end = start->InstructionAtOffset(count * kInstructionSize); |
+ for (Instruction* pc = start; pc < end; pc = pc->NextInstruction()) { |
+ disassembler_decoder_->Decode(pc); |
+ } |
+} |
+ |
+ |
+void Simulator::PrintSystemRegisters(bool print_all) { |
+ static bool first_run = true; |
+ |
+ // Define some colour codes to use for the register dump. |
+ // TODO(jbramley): Find a more elegant way of defining these. |
+ char const * const clr_normal = (FLAG_log_colour) ? ("\033[m") : (""); |
+ char const * const clr_flag_name = (FLAG_log_colour) ? ("\033[1;30m") : (""); |
+ char const * const clr_flag_value = (FLAG_log_colour) ? ("\033[1;37m") : (""); |
+ |
+ static SimSystemRegister last_nzcv; |
+ if (print_all || first_run || (last_nzcv.RawValue() != nzcv().RawValue())) { |
+ fprintf(stream_, "# %sFLAGS: %sN:%d Z:%d C:%d V:%d%s\n", |
+ clr_flag_name, |
+ clr_flag_value, |
+ N(), Z(), C(), V(), |
+ clr_normal); |
+ } |
+ last_nzcv = nzcv(); |
+ |
+ static SimSystemRegister last_fpcr; |
+ if (print_all || first_run || (last_fpcr.RawValue() != fpcr().RawValue())) { |
+ static const char * rmode[] = { |
+ "0b00 (Round to Nearest)", |
+ "0b01 (Round towards Plus Infinity)", |
+ "0b10 (Round towards Minus Infinity)", |
+ "0b11 (Round towards Zero)" |
+ }; |
+ ASSERT(fpcr().RMode() <= (sizeof(rmode) / sizeof(rmode[0]))); |
+ fprintf(stream_, "# %sFPCR: %sAHP:%d DN:%d FZ:%d RMode:%s%s\n", |
+ clr_flag_name, |
+ clr_flag_value, |
+ fpcr().AHP(), fpcr().DN(), fpcr().FZ(), rmode[fpcr().RMode()], |
+ clr_normal); |
+ } |
+ last_fpcr = fpcr(); |
+ |
+ first_run = false; |
+} |
+ |
+ |
+void Simulator::PrintRegisters(bool print_all_regs) { |
+ static bool first_run = true; |
+ static int64_t last_regs[kNumberOfRegisters]; |
+ |
+ // Define some colour codes to use for the register dump. |
+ // TODO(jbramley): Find a more elegant way of defining these. |
+ char const * const clr_normal = (FLAG_log_colour) ? ("\033[m") : (""); |
+ char const * const clr_reg_name = (FLAG_log_colour) ? ("\033[1;34m") : (""); |
+ char const * const clr_reg_value = (FLAG_log_colour) ? ("\033[1;36m") : (""); |
+ |
+ for (unsigned i = 0; i < kNumberOfRegisters; i++) { |
+ if (print_all_regs || first_run || |
+ (last_regs[i] != xreg(i, Reg31IsStackPointer))) { |
+ fprintf(stream_, |
+ "# %s%4s:%s 0x%016" PRIx64 "%s\n", |
+ clr_reg_name, |
+ XRegNameForCode(i, Reg31IsStackPointer), |
+ clr_reg_value, |
+ xreg(i, Reg31IsStackPointer), |
+ clr_normal); |
+ } |
+ // Cache the new register value so the next run can detect any changes. |
+ last_regs[i] = xreg(i, Reg31IsStackPointer); |
+ } |
+ first_run = false; |
+} |
+ |
+ |
+void Simulator::PrintFPRegisters(bool print_all_regs) { |
+ static bool first_run = true; |
+ static uint64_t last_regs[kNumberOfFPRegisters]; |
+ |
+ // Define some colour codes to use for the register dump. |
+ // TODO(jbramley): Find a more elegant way of defining these. |
+ char const * const clr_normal = (FLAG_log_colour) ? ("\033[m") : (""); |
+ char const * const clr_reg_name = (FLAG_log_colour) ? ("\033[1;33m") : (""); |
+ char const * const clr_reg_value = (FLAG_log_colour) ? ("\033[1;35m") : (""); |
+ |
+ // Print as many rows of registers as necessary, keeping each individual |
+ // register in the same column each time (to make it easy to visually scan |
+ // for changes). |
+ for (unsigned i = 0; i < kNumberOfFPRegisters; i++) { |
+ if (print_all_regs || first_run || (last_regs[i] != dreg_bits(i))) { |
+ fprintf(stream_, |
+ "# %s %4s:%s 0x%016" PRIx64 "%s (%s%s:%s %g%s %s:%s %g%s)\n", |
+ clr_reg_name, |
+ VRegNameForCode(i), |
+ clr_reg_value, |
+ dreg_bits(i), |
+ clr_normal, |
+ clr_reg_name, |
+ DRegNameForCode(i), |
+ clr_reg_value, |
+ dreg(i), |
+ clr_reg_name, |
+ SRegNameForCode(i), |
+ clr_reg_value, |
+ sreg(i), |
+ clr_normal); |
+ } |
+ // Cache the new register value so the next run can detect any changes. |
+ last_regs[i] = dreg_bits(i); |
+ } |
+ first_run = false; |
+} |
+ |
+ |
+void Simulator::PrintProcessorState() { |
+ PrintSystemRegisters(); |
+ PrintRegisters(); |
+ PrintFPRegisters(); |
+} |
+ |
+ |
+void Simulator::PrintWrite(uint8_t* address, |
+ uint64_t value, |
+ unsigned num_bytes) { |
+ // Define some color codes to use for memory logging. |
+ const char* const clr_normal = (FLAG_log_colour) ? ("\033[m") |
+ : (""); |
+ const char* const clr_memory_value = (FLAG_log_colour) ? ("\033[1;32m") |
+ : (""); |
+ const char* const clr_memory_address = (FLAG_log_colour) ? ("\033[32m") |
+ : (""); |
+ |
+ // The template is "# value -> address". The template is not directly used |
+ // in the printf since compilers tend to struggle with the parametrized |
+ // width (%0*). |
+ const char* format = "# %s0x%0*" PRIx64 "%s -> %s0x%016" PRIx64 "%s\n"; |
+ fprintf(stream_, |
+ format, |
+ clr_memory_value, |
+ num_bytes * 2, // The width in hexa characters. |
+ value, |
+ clr_normal, |
+ clr_memory_address, |
+ address, |
+ clr_normal); |
+} |
+ |
+ |
+// Visitors--------------------------------------------------------------------- |
+ |
+void Simulator::VisitUnimplemented(Instruction* instr) { |
+ fprintf(stream_, "Unimplemented instruction at %p: 0x%08" PRIx32 "\n", |
+ reinterpret_cast<void*>(instr), instr->InstructionBits()); |
+ UNIMPLEMENTED(); |
+} |
+ |
+ |
+void Simulator::VisitUnallocated(Instruction* instr) { |
+ fprintf(stream_, "Unallocated instruction at %p: 0x%08" PRIx32 "\n", |
+ reinterpret_cast<void*>(instr), instr->InstructionBits()); |
+ UNIMPLEMENTED(); |
+} |
+ |
+ |
+void Simulator::VisitPCRelAddressing(Instruction* instr) { |
+ switch (instr->Mask(PCRelAddressingMask)) { |
+ case ADR: |
+ set_reg(instr->Rd(), instr->ImmPCOffsetTarget()); |
+ break; |
+ case ADRP: // Not implemented in the assembler. |
+ UNIMPLEMENTED(); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ break; |
+ } |
+} |
+ |
+ |
+void Simulator::VisitUnconditionalBranch(Instruction* instr) { |
+ switch (instr->Mask(UnconditionalBranchMask)) { |
+ case BL: |
+ set_lr(instr->NextInstruction()); |
+ // Fall through. |
+ case B: |
+ set_pc(instr->ImmPCOffsetTarget()); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ } |
+} |
+ |
+ |
+void Simulator::VisitConditionalBranch(Instruction* instr) { |
+ ASSERT(instr->Mask(ConditionalBranchMask) == B_cond); |
+ if (ConditionPassed(static_cast<Condition>(instr->ConditionBranch()))) { |
+ set_pc(instr->ImmPCOffsetTarget()); |
+ } |
+} |
+ |
+ |
+void Simulator::VisitUnconditionalBranchToRegister(Instruction* instr) { |
+ Instruction* target = reg<Instruction*>(instr->Rn()); |
+ switch (instr->Mask(UnconditionalBranchToRegisterMask)) { |
+ case BLR: { |
+ set_lr(instr->NextInstruction()); |
+ // Fall through. |
+ } |
+ case BR: |
+ case RET: set_pc(target); break; |
+ default: UNIMPLEMENTED(); |
+ } |
+} |
+ |
+ |
+void Simulator::VisitTestBranch(Instruction* instr) { |
+ unsigned bit_pos = (instr->ImmTestBranchBit5() << 5) | |
+ instr->ImmTestBranchBit40(); |
+ bool take_branch = ((xreg(instr->Rt()) & (1UL << bit_pos)) == 0); |
+ switch (instr->Mask(TestBranchMask)) { |
+ case TBZ: break; |
+ case TBNZ: take_branch = !take_branch; break; |
+ default: UNIMPLEMENTED(); |
+ } |
+ if (take_branch) { |
+ set_pc(instr->ImmPCOffsetTarget()); |
+ } |
+} |
+ |
+ |
+void Simulator::VisitCompareBranch(Instruction* instr) { |
+ unsigned rt = instr->Rt(); |
+ bool take_branch = false; |
+ switch (instr->Mask(CompareBranchMask)) { |
+ case CBZ_w: take_branch = (wreg(rt) == 0); break; |
+ case CBZ_x: take_branch = (xreg(rt) == 0); break; |
+ case CBNZ_w: take_branch = (wreg(rt) != 0); break; |
+ case CBNZ_x: take_branch = (xreg(rt) != 0); break; |
+ default: UNIMPLEMENTED(); |
+ } |
+ if (take_branch) { |
+ set_pc(instr->ImmPCOffsetTarget()); |
+ } |
+} |
+ |
+ |
+void Simulator::AddSubHelper(Instruction* instr, int64_t op2) { |
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize; |
+ bool set_flags = instr->FlagsUpdate(); |
+ int64_t new_val = 0; |
+ Instr operation = instr->Mask(AddSubOpMask); |
+ |
+ switch (operation) { |
+ case ADD: |
+ case ADDS: { |
+ new_val = AddWithCarry(reg_size, |
+ set_flags, |
+ reg(reg_size, instr->Rn(), instr->RnMode()), |
+ op2); |
+ break; |
+ } |
+ case SUB: |
+ case SUBS: { |
+ new_val = AddWithCarry(reg_size, |
+ set_flags, |
+ reg(reg_size, instr->Rn(), instr->RnMode()), |
+ ~op2, |
+ 1); |
+ break; |
+ } |
+ default: UNREACHABLE(); |
+ } |
+ |
+ set_reg(reg_size, instr->Rd(), new_val, instr->RdMode()); |
+} |
+ |
+ |
+void Simulator::VisitAddSubShifted(Instruction* instr) { |
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize; |
+ int64_t op2 = ShiftOperand(reg_size, |
+ reg(reg_size, instr->Rm()), |
+ static_cast<Shift>(instr->ShiftDP()), |
+ instr->ImmDPShift()); |
+ AddSubHelper(instr, op2); |
+} |
+ |
+ |
+void Simulator::VisitAddSubImmediate(Instruction* instr) { |
+ int64_t op2 = instr->ImmAddSub() << ((instr->ShiftAddSub() == 1) ? 12 : 0); |
+ AddSubHelper(instr, op2); |
+} |
+ |
+ |
+void Simulator::VisitAddSubExtended(Instruction* instr) { |
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize; |
+ int64_t op2 = ExtendValue(reg_size, |
+ reg(reg_size, instr->Rm()), |
+ static_cast<Extend>(instr->ExtendMode()), |
+ instr->ImmExtendShift()); |
+ AddSubHelper(instr, op2); |
+} |
+ |
+ |
+void Simulator::VisitAddSubWithCarry(Instruction* instr) { |
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize; |
+ int64_t op2 = reg(reg_size, instr->Rm()); |
+ int64_t new_val; |
+ |
+ if ((instr->Mask(AddSubOpMask) == SUB) || instr->Mask(AddSubOpMask) == SUBS) { |
+ op2 = ~op2; |
+ } |
+ |
+ new_val = AddWithCarry(reg_size, |
+ instr->FlagsUpdate(), |
+ reg(reg_size, instr->Rn()), |
+ op2, |
+ C()); |
+ |
+ set_reg(reg_size, instr->Rd(), new_val); |
+} |
+ |
+ |
+void Simulator::VisitLogicalShifted(Instruction* instr) { |
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize; |
+ Shift shift_type = static_cast<Shift>(instr->ShiftDP()); |
+ unsigned shift_amount = instr->ImmDPShift(); |
+ int64_t op2 = ShiftOperand(reg_size, reg(reg_size, instr->Rm()), shift_type, |
+ shift_amount); |
+ if (instr->Mask(NOT) == NOT) { |
+ op2 = ~op2; |
+ } |
+ LogicalHelper(instr, op2); |
+} |
+ |
+ |
+void Simulator::VisitLogicalImmediate(Instruction* instr) { |
+ LogicalHelper(instr, instr->ImmLogical()); |
+} |
+ |
+ |
+void Simulator::LogicalHelper(Instruction* instr, int64_t op2) { |
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize; |
+ int64_t op1 = reg(reg_size, instr->Rn()); |
+ int64_t result = 0; |
+ bool update_flags = false; |
+ |
+ // Switch on the logical operation, stripping out the NOT bit, as it has a |
+ // different meaning for logical immediate instructions. |
+ switch (instr->Mask(LogicalOpMask & ~NOT)) { |
+ case ANDS: update_flags = true; // Fall through. |
+ case AND: result = op1 & op2; break; |
+ case ORR: result = op1 | op2; break; |
+ case EOR: result = op1 ^ op2; break; |
+ default: |
+ UNIMPLEMENTED(); |
+ } |
+ |
+ if (update_flags) { |
+ nzcv().SetN(CalcNFlag(result, reg_size)); |
+ nzcv().SetZ(CalcZFlag(result)); |
+ nzcv().SetC(0); |
+ nzcv().SetV(0); |
+ } |
+ |
+ set_reg(reg_size, instr->Rd(), result, instr->RdMode()); |
+} |
+ |
+ |
+void Simulator::VisitConditionalCompareRegister(Instruction* instr) { |
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize; |
+ ConditionalCompareHelper(instr, reg(reg_size, instr->Rm())); |
+} |
+ |
+ |
+void Simulator::VisitConditionalCompareImmediate(Instruction* instr) { |
+ ConditionalCompareHelper(instr, instr->ImmCondCmp()); |
+} |
+ |
+ |
+void Simulator::ConditionalCompareHelper(Instruction* instr, int64_t op2) { |
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize; |
+ int64_t op1 = reg(reg_size, instr->Rn()); |
+ |
+ if (ConditionPassed(static_cast<Condition>(instr->Condition()))) { |
+ // If the condition passes, set the status flags to the result of comparing |
+ // the operands. |
+ if (instr->Mask(ConditionalCompareMask) == CCMP) { |
+ AddWithCarry(reg_size, true, op1, ~op2, 1); |
+ } else { |
+ ASSERT(instr->Mask(ConditionalCompareMask) == CCMN); |
+ AddWithCarry(reg_size, true, op1, op2, 0); |
+ } |
+ } else { |
+ // If the condition fails, set the status flags to the nzcv immediate. |
+ nzcv().SetFlags(instr->Nzcv()); |
+ } |
+} |
+ |
+ |
+void Simulator::VisitLoadStoreUnsignedOffset(Instruction* instr) { |
+ int offset = instr->ImmLSUnsigned() << instr->SizeLS(); |
+ LoadStoreHelper(instr, offset, Offset); |
+} |
+ |
+ |
+void Simulator::VisitLoadStoreUnscaledOffset(Instruction* instr) { |
+ LoadStoreHelper(instr, instr->ImmLS(), Offset); |
+} |
+ |
+ |
+void Simulator::VisitLoadStorePreIndex(Instruction* instr) { |
+ LoadStoreHelper(instr, instr->ImmLS(), PreIndex); |
+} |
+ |
+ |
+void Simulator::VisitLoadStorePostIndex(Instruction* instr) { |
+ LoadStoreHelper(instr, instr->ImmLS(), PostIndex); |
+} |
+ |
+ |
+void Simulator::VisitLoadStoreRegisterOffset(Instruction* instr) { |
+ Extend ext = static_cast<Extend>(instr->ExtendMode()); |
+ ASSERT((ext == UXTW) || (ext == UXTX) || (ext == SXTW) || (ext == SXTX)); |
+ unsigned shift_amount = instr->ImmShiftLS() * instr->SizeLS(); |
+ |
+ int64_t offset = ExtendValue(kXRegSize, xreg(instr->Rm()), ext, |
+ shift_amount); |
+ LoadStoreHelper(instr, offset, Offset); |
+} |
+ |
+ |
+void Simulator::LoadStoreHelper(Instruction* instr, |
+ int64_t offset, |
+ AddrMode addrmode) { |
+ unsigned srcdst = instr->Rt(); |
+ unsigned addr_reg = instr->Rn(); |
+ uint8_t* address = LoadStoreAddress(addr_reg, offset, addrmode); |
+ int num_bytes = 1 << instr->SizeLS(); |
+ uint8_t* stack = NULL; |
+ |
+ // Handle the writeback for stores before the store. On a CPU the writeback |
+ // and the store are atomic, but when running on the simulator it is possible |
+ // to be interrupted in between. The simulator is not thread safe and V8 does |
+ // not require it to be to run JavaScript therefore the profiler may sample |
+ // the "simulated" CPU in the middle of load/store with writeback. The code |
+ // below ensures that push operations are safe even when interrupted: the |
+ // stack pointer will be decremented before adding an element to the stack. |
+ if (instr->IsStore()) { |
+ LoadStoreWriteBack(addr_reg, offset, addrmode); |
+ |
+ // For store the address post writeback is used to check access below the |
+ // stack. |
+ stack = reinterpret_cast<uint8_t*>(sp()); |
+ } |
+ |
+ LoadStoreOp op = static_cast<LoadStoreOp>(instr->Mask(LoadStoreOpMask)); |
+ switch (op) { |
+ case LDRB_w: |
+ case LDRH_w: |
+ case LDR_w: |
+ case LDR_x: set_xreg(srcdst, MemoryRead(address, num_bytes)); break; |
+ case STRB_w: |
+ case STRH_w: |
+ case STR_w: |
+ case STR_x: MemoryWrite(address, xreg(srcdst), num_bytes); break; |
+ case LDRSB_w: { |
+ set_wreg(srcdst, ExtendValue(kWRegSize, MemoryRead8(address), SXTB)); |
+ break; |
+ } |
+ case LDRSB_x: { |
+ set_xreg(srcdst, ExtendValue(kXRegSize, MemoryRead8(address), SXTB)); |
+ break; |
+ } |
+ case LDRSH_w: { |
+ set_wreg(srcdst, ExtendValue(kWRegSize, MemoryRead16(address), SXTH)); |
+ break; |
+ } |
+ case LDRSH_x: { |
+ set_xreg(srcdst, ExtendValue(kXRegSize, MemoryRead16(address), SXTH)); |
+ break; |
+ } |
+ case LDRSW_x: { |
+ set_xreg(srcdst, ExtendValue(kXRegSize, MemoryRead32(address), SXTW)); |
+ break; |
+ } |
+ case LDR_s: set_sreg(srcdst, MemoryReadFP32(address)); break; |
+ case LDR_d: set_dreg(srcdst, MemoryReadFP64(address)); break; |
+ case STR_s: MemoryWriteFP32(address, sreg(srcdst)); break; |
+ case STR_d: MemoryWriteFP64(address, dreg(srcdst)); break; |
+ default: UNIMPLEMENTED(); |
+ } |
+ |
+ // Handle the writeback for loads after the load to ensure safe pop |
+ // operation even when interrupted in the middle of it. The stack pointer |
+ // is only updated after the load so pop(fp) will never break the invariant |
+ // sp <= fp expected while walking the stack in the sampler. |
+ if (instr->IsLoad()) { |
+ // For loads the address pre writeback is used to check access below the |
+ // stack. |
+ stack = reinterpret_cast<uint8_t*>(sp()); |
+ |
+ LoadStoreWriteBack(addr_reg, offset, addrmode); |
+ } |
+ |
+ // Accesses below the stack pointer (but above the platform stack limit) are |
+ // not allowed in the ABI. |
+ CheckMemoryAccess(address, stack); |
+} |
+ |
+ |
+void Simulator::VisitLoadStorePairOffset(Instruction* instr) { |
+ LoadStorePairHelper(instr, Offset); |
+} |
+ |
+ |
+void Simulator::VisitLoadStorePairPreIndex(Instruction* instr) { |
+ LoadStorePairHelper(instr, PreIndex); |
+} |
+ |
+ |
+void Simulator::VisitLoadStorePairPostIndex(Instruction* instr) { |
+ LoadStorePairHelper(instr, PostIndex); |
+} |
+ |
+ |
+void Simulator::VisitLoadStorePairNonTemporal(Instruction* instr) { |
+ LoadStorePairHelper(instr, Offset); |
+} |
+ |
+ |
+void Simulator::LoadStorePairHelper(Instruction* instr, |
+ AddrMode addrmode) { |
+ unsigned rt = instr->Rt(); |
+ unsigned rt2 = instr->Rt2(); |
+ unsigned addr_reg = instr->Rn(); |
+ int offset = instr->ImmLSPair() << instr->SizeLSPair(); |
+ uint8_t* address = LoadStoreAddress(addr_reg, offset, addrmode); |
+ uint8_t* stack = NULL; |
+ |
+ // Handle the writeback for stores before the store. On a CPU the writeback |
+ // and the store are atomic, but when running on the simulator it is possible |
+ // to be interrupted in between. The simulator is not thread safe and V8 does |
+ // not require it to be to run JavaScript therefore the profiler may sample |
+ // the "simulated" CPU in the middle of load/store with writeback. The code |
+ // below ensures that push operations are safe even when interrupted: the |
+ // stack pointer will be decremented before adding an element to the stack. |
+ if (instr->IsStore()) { |
+ LoadStoreWriteBack(addr_reg, offset, addrmode); |
+ |
+ // For store the address post writeback is used to check access below the |
+ // stack. |
+ stack = reinterpret_cast<uint8_t*>(sp()); |
+ } |
+ |
+ LoadStorePairOp op = |
+ static_cast<LoadStorePairOp>(instr->Mask(LoadStorePairMask)); |
+ |
+ // 'rt' and 'rt2' can only be aliased for stores. |
+ ASSERT(((op & LoadStorePairLBit) == 0) || (rt != rt2)); |
+ |
+ switch (op) { |
+ case LDP_w: { |
+ set_wreg(rt, MemoryRead32(address)); |
+ set_wreg(rt2, MemoryRead32(address + kWRegSizeInBytes)); |
+ break; |
+ } |
+ case LDP_s: { |
+ set_sreg(rt, MemoryReadFP32(address)); |
+ set_sreg(rt2, MemoryReadFP32(address + kSRegSizeInBytes)); |
+ break; |
+ } |
+ case LDP_x: { |
+ set_xreg(rt, MemoryRead64(address)); |
+ set_xreg(rt2, MemoryRead64(address + kXRegSizeInBytes)); |
+ break; |
+ } |
+ case LDP_d: { |
+ set_dreg(rt, MemoryReadFP64(address)); |
+ set_dreg(rt2, MemoryReadFP64(address + kDRegSizeInBytes)); |
+ break; |
+ } |
+ case LDPSW_x: { |
+ set_xreg(rt, ExtendValue(kXRegSize, MemoryRead32(address), SXTW)); |
+ set_xreg(rt2, ExtendValue(kXRegSize, |
+ MemoryRead32(address + kWRegSizeInBytes), SXTW)); |
+ break; |
+ } |
+ case STP_w: { |
+ MemoryWrite32(address, wreg(rt)); |
+ MemoryWrite32(address + kWRegSizeInBytes, wreg(rt2)); |
+ break; |
+ } |
+ case STP_s: { |
+ MemoryWriteFP32(address, sreg(rt)); |
+ MemoryWriteFP32(address + kSRegSizeInBytes, sreg(rt2)); |
+ break; |
+ } |
+ case STP_x: { |
+ MemoryWrite64(address, xreg(rt)); |
+ MemoryWrite64(address + kXRegSizeInBytes, xreg(rt2)); |
+ break; |
+ } |
+ case STP_d: { |
+ MemoryWriteFP64(address, dreg(rt)); |
+ MemoryWriteFP64(address + kDRegSizeInBytes, dreg(rt2)); |
+ break; |
+ } |
+ default: UNREACHABLE(); |
+ } |
+ |
+ // Handle the writeback for loads after the load to ensure safe pop |
+ // operation even when interrupted in the middle of it. The stack pointer |
+ // is only updated after the load so pop(fp) will never break the invariant |
+ // sp <= fp expected while walking the stack in the sampler. |
+ if (instr->IsLoad()) { |
+ // For loads the address pre writeback is used to check access below the |
+ // stack. |
+ stack = reinterpret_cast<uint8_t*>(sp()); |
+ |
+ LoadStoreWriteBack(addr_reg, offset, addrmode); |
+ } |
+ |
+ // Accesses below the stack pointer (but above the platform stack limit) are |
+ // not allowed in the ABI. |
+ CheckMemoryAccess(address, stack); |
+} |
+ |
+ |
+void Simulator::VisitLoadLiteral(Instruction* instr) { |
+ uint8_t* address = instr->LiteralAddress(); |
+ unsigned rt = instr->Rt(); |
+ |
+ switch (instr->Mask(LoadLiteralMask)) { |
+ case LDR_w_lit: set_wreg(rt, MemoryRead32(address)); break; |
+ case LDR_x_lit: set_xreg(rt, MemoryRead64(address)); break; |
+ case LDR_s_lit: set_sreg(rt, MemoryReadFP32(address)); break; |
+ case LDR_d_lit: set_dreg(rt, MemoryReadFP64(address)); break; |
+ default: UNREACHABLE(); |
+ } |
+} |
+ |
+ |
+uint8_t* Simulator::LoadStoreAddress(unsigned addr_reg, |
+ int64_t offset, |
+ AddrMode addrmode) { |
+ const unsigned kSPRegCode = kSPRegInternalCode & kRegCodeMask; |
+ int64_t address = xreg(addr_reg, Reg31IsStackPointer); |
+ if ((addr_reg == kSPRegCode) && ((address % 16) != 0)) { |
+ // When the base register is SP the stack pointer is required to be |
+ // quadword aligned prior to the address calculation and write-backs. |
+ // Misalignment will cause a stack alignment fault. |
+ ALIGNMENT_EXCEPTION(); |
+ } |
+ |
+ if ((addrmode == Offset) || (addrmode == PreIndex)) { |
+ address += offset; |
+ } |
+ |
+ return reinterpret_cast<uint8_t*>(address); |
+} |
+ |
+ |
+void Simulator::LoadStoreWriteBack(unsigned addr_reg, |
+ int64_t offset, |
+ AddrMode addrmode) { |
+ if ((addrmode == PreIndex) || (addrmode == PostIndex)) { |
+ ASSERT(offset != 0); |
+ uint64_t address = xreg(addr_reg, Reg31IsStackPointer); |
+ set_reg(addr_reg, address + offset, Reg31IsStackPointer); |
+ } |
+} |
+ |
+ |
+void Simulator::CheckMemoryAccess(uint8_t* address, uint8_t* stack) { |
+ if ((address >= stack_limit_) && (address < stack)) { |
+ fprintf(stream_, "ACCESS BELOW STACK POINTER:\n"); |
+ fprintf(stream_, " sp is here: 0x%16p\n", stack); |
+ fprintf(stream_, " access was here: 0x%16p\n", address); |
+ fprintf(stream_, " stack limit is here: 0x%16p\n", stack_limit_); |
+ fprintf(stream_, "\n"); |
+ ABORT(); |
+ } |
+} |
+ |
+ |
+uint64_t Simulator::MemoryRead(uint8_t* address, unsigned num_bytes) { |
+ ASSERT(address != NULL); |
+ ASSERT((num_bytes > 0) && (num_bytes <= sizeof(uint64_t))); |
+ uint64_t read = 0; |
+ memcpy(&read, address, num_bytes); |
+ return read; |
+} |
+ |
+ |
+uint8_t Simulator::MemoryRead8(uint8_t* address) { |
+ return MemoryRead(address, sizeof(uint8_t)); |
+} |
+ |
+ |
+uint16_t Simulator::MemoryRead16(uint8_t* address) { |
+ return MemoryRead(address, sizeof(uint16_t)); |
+} |
+ |
+ |
+uint32_t Simulator::MemoryRead32(uint8_t* address) { |
+ return MemoryRead(address, sizeof(uint32_t)); |
+} |
+ |
+ |
+float Simulator::MemoryReadFP32(uint8_t* address) { |
+ return rawbits_to_float(MemoryRead32(address)); |
+} |
+ |
+ |
+uint64_t Simulator::MemoryRead64(uint8_t* address) { |
+ return MemoryRead(address, sizeof(uint64_t)); |
+} |
+ |
+ |
+double Simulator::MemoryReadFP64(uint8_t* address) { |
+ return rawbits_to_double(MemoryRead64(address)); |
+} |
+ |
+ |
+void Simulator::MemoryWrite(uint8_t* address, |
+ uint64_t value, |
+ unsigned num_bytes) { |
+ ASSERT(address != NULL); |
+ ASSERT((num_bytes > 0) && (num_bytes <= sizeof(uint64_t))); |
+ |
+ LogWrite(address, value, num_bytes); |
+ memcpy(address, &value, num_bytes); |
+} |
+ |
+ |
+void Simulator::MemoryWrite32(uint8_t* address, uint32_t value) { |
+ MemoryWrite(address, value, sizeof(uint32_t)); |
+} |
+ |
+ |
+void Simulator::MemoryWriteFP32(uint8_t* address, float value) { |
+ MemoryWrite32(address, float_to_rawbits(value)); |
+} |
+ |
+ |
+void Simulator::MemoryWrite64(uint8_t* address, uint64_t value) { |
+ MemoryWrite(address, value, sizeof(uint64_t)); |
+} |
+ |
+ |
+void Simulator::MemoryWriteFP64(uint8_t* address, double value) { |
+ MemoryWrite64(address, double_to_rawbits(value)); |
+} |
+ |
+ |
+void Simulator::VisitMoveWideImmediate(Instruction* instr) { |
+ MoveWideImmediateOp mov_op = |
+ static_cast<MoveWideImmediateOp>(instr->Mask(MoveWideImmediateMask)); |
+ int64_t new_xn_val = 0; |
+ |
+ bool is_64_bits = instr->SixtyFourBits() == 1; |
+ // Shift is limited for W operations. |
+ ASSERT(is_64_bits || (instr->ShiftMoveWide() < 2)); |
+ |
+ // Get the shifted immediate. |
+ int64_t shift = instr->ShiftMoveWide() * 16; |
+ int64_t shifted_imm16 = instr->ImmMoveWide() << shift; |
+ |
+ // Compute the new value. |
+ switch (mov_op) { |
+ case MOVN_w: |
+ case MOVN_x: { |
+ new_xn_val = ~shifted_imm16; |
+ if (!is_64_bits) new_xn_val &= kWRegMask; |
+ break; |
+ } |
+ case MOVK_w: |
+ case MOVK_x: { |
+ unsigned reg_code = instr->Rd(); |
+ int64_t prev_xn_val = is_64_bits ? xreg(reg_code) |
+ : wreg(reg_code); |
+ new_xn_val = (prev_xn_val & ~(0xffffL << shift)) | shifted_imm16; |
+ break; |
+ } |
+ case MOVZ_w: |
+ case MOVZ_x: { |
+ new_xn_val = shifted_imm16; |
+ break; |
+ } |
+ default: |
+ UNREACHABLE(); |
+ } |
+ |
+ // Update the destination register. |
+ set_xreg(instr->Rd(), new_xn_val); |
+} |
+ |
+ |
+void Simulator::VisitConditionalSelect(Instruction* instr) { |
+ uint64_t new_val = xreg(instr->Rn()); |
+ |
+ if (ConditionFailed(static_cast<Condition>(instr->Condition()))) { |
+ new_val = xreg(instr->Rm()); |
+ switch (instr->Mask(ConditionalSelectMask)) { |
+ case CSEL_w: |
+ case CSEL_x: break; |
+ case CSINC_w: |
+ case CSINC_x: new_val++; break; |
+ case CSINV_w: |
+ case CSINV_x: new_val = ~new_val; break; |
+ case CSNEG_w: |
+ case CSNEG_x: new_val = -new_val; break; |
+ default: UNIMPLEMENTED(); |
+ } |
+ } |
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize; |
+ set_reg(reg_size, instr->Rd(), new_val); |
+} |
+ |
+ |
+void Simulator::VisitDataProcessing1Source(Instruction* instr) { |
+ unsigned dst = instr->Rd(); |
+ unsigned src = instr->Rn(); |
+ |
+ switch (instr->Mask(DataProcessing1SourceMask)) { |
+ case RBIT_w: set_wreg(dst, ReverseBits(wreg(src), kWRegSize)); break; |
+ case RBIT_x: set_xreg(dst, ReverseBits(xreg(src), kXRegSize)); break; |
+ case REV16_w: set_wreg(dst, ReverseBytes(wreg(src), Reverse16)); break; |
+ case REV16_x: set_xreg(dst, ReverseBytes(xreg(src), Reverse16)); break; |
+ case REV_w: set_wreg(dst, ReverseBytes(wreg(src), Reverse32)); break; |
+ case REV32_x: set_xreg(dst, ReverseBytes(xreg(src), Reverse32)); break; |
+ case REV_x: set_xreg(dst, ReverseBytes(xreg(src), Reverse64)); break; |
+ case CLZ_w: set_wreg(dst, CountLeadingZeros(wreg(src), kWRegSize)); break; |
+ case CLZ_x: set_xreg(dst, CountLeadingZeros(xreg(src), kXRegSize)); break; |
+ case CLS_w: { |
+ set_wreg(dst, CountLeadingSignBits(wreg(src), kWRegSize)); |
+ break; |
+ } |
+ case CLS_x: { |
+ set_xreg(dst, CountLeadingSignBits(xreg(src), kXRegSize)); |
+ break; |
+ } |
+ default: UNIMPLEMENTED(); |
+ } |
+} |
+ |
+ |
+uint64_t Simulator::ReverseBits(uint64_t value, unsigned num_bits) { |
+ ASSERT((num_bits == kWRegSize) || (num_bits == kXRegSize)); |
+ uint64_t result = 0; |
+ for (unsigned i = 0; i < num_bits; i++) { |
+ result = (result << 1) | (value & 1); |
+ value >>= 1; |
+ } |
+ return result; |
+} |
+ |
+ |
+uint64_t Simulator::ReverseBytes(uint64_t value, ReverseByteMode mode) { |
+ // Split the 64-bit value into an 8-bit array, where b[0] is the least |
+ // significant byte, and b[7] is the most significant. |
+ uint8_t bytes[8]; |
+ uint64_t mask = 0xff00000000000000UL; |
+ for (int i = 7; i >= 0; i--) { |
+ bytes[i] = (value & mask) >> (i * 8); |
+ mask >>= 8; |
+ } |
+ |
+ // Permutation tables for REV instructions. |
+ // permute_table[Reverse16] is used by REV16_x, REV16_w |
+ // permute_table[Reverse32] is used by REV32_x, REV_w |
+ // permute_table[Reverse64] is used by REV_x |
+ ASSERT((Reverse16 == 0) && (Reverse32 == 1) && (Reverse64 == 2)); |
+ static const uint8_t permute_table[3][8] = { {6, 7, 4, 5, 2, 3, 0, 1}, |
+ {4, 5, 6, 7, 0, 1, 2, 3}, |
+ {0, 1, 2, 3, 4, 5, 6, 7} }; |
+ uint64_t result = 0; |
+ for (int i = 0; i < 8; i++) { |
+ result <<= 8; |
+ result |= bytes[permute_table[mode][i]]; |
+ } |
+ return result; |
+} |
+ |
+ |
+void Simulator::VisitDataProcessing2Source(Instruction* instr) { |
+ // TODO(mcapewel) move these to a higher level file, as they are global |
+ // assumptions. |
+ ASSERT((static_cast<int32_t>(-1) >> 1) == -1); |
+ ASSERT((static_cast<uint32_t>(-1) >> 1) == 0x7FFFFFFF); |
+ |
+ Shift shift_op = NO_SHIFT; |
+ int64_t result = 0; |
+ switch (instr->Mask(DataProcessing2SourceMask)) { |
+ case SDIV_w: { |
+ int32_t rn = wreg(instr->Rn()); |
+ int32_t rm = wreg(instr->Rm()); |
+ if ((rn == kWMinInt) && (rm == -1)) { |
+ result = kWMinInt; |
+ } else if (rm == 0) { |
+ // Division by zero can be trapped, but not on A-class processors. |
+ result = 0; |
+ } else { |
+ result = rn / rm; |
+ } |
+ break; |
+ } |
+ case SDIV_x: { |
+ int64_t rn = xreg(instr->Rn()); |
+ int64_t rm = xreg(instr->Rm()); |
+ if ((rn == kXMinInt) && (rm == -1)) { |
+ result = kXMinInt; |
+ } else if (rm == 0) { |
+ // Division by zero can be trapped, but not on A-class processors. |
+ result = 0; |
+ } else { |
+ result = rn / rm; |
+ } |
+ break; |
+ } |
+ case UDIV_w: { |
+ uint32_t rn = static_cast<uint32_t>(wreg(instr->Rn())); |
+ uint32_t rm = static_cast<uint32_t>(wreg(instr->Rm())); |
+ if (rm == 0) { |
+ // Division by zero can be trapped, but not on A-class processors. |
+ result = 0; |
+ } else { |
+ result = rn / rm; |
+ } |
+ break; |
+ } |
+ case UDIV_x: { |
+ uint64_t rn = static_cast<uint64_t>(xreg(instr->Rn())); |
+ uint64_t rm = static_cast<uint64_t>(xreg(instr->Rm())); |
+ if (rm == 0) { |
+ // Division by zero can be trapped, but not on A-class processors. |
+ result = 0; |
+ } else { |
+ result = rn / rm; |
+ } |
+ break; |
+ } |
+ case LSLV_w: |
+ case LSLV_x: shift_op = LSL; break; |
+ case LSRV_w: |
+ case LSRV_x: shift_op = LSR; break; |
+ case ASRV_w: |
+ case ASRV_x: shift_op = ASR; break; |
+ case RORV_w: |
+ case RORV_x: shift_op = ROR; break; |
+ default: UNIMPLEMENTED(); |
+ } |
+ |
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize; |
+ if (shift_op != NO_SHIFT) { |
+ // Shift distance encoded in the least-significant five/six bits of the |
+ // register. |
+ int mask = (instr->SixtyFourBits() == 1) ? 0x3f : 0x1f; |
+ unsigned shift = wreg(instr->Rm()) & mask; |
+ result = ShiftOperand(reg_size, reg(reg_size, instr->Rn()), shift_op, |
+ shift); |
+ } |
+ set_reg(reg_size, instr->Rd(), result); |
+} |
+ |
+ |
+// The algorithm used is described in section 8.2 of |
+// Hacker's Delight, by Henry S. Warren, Jr. |
+// It assumes that a right shift on a signed integer is an arithmetic shift. |
+static int64_t MultiplyHighSigned(int64_t u, int64_t v) { |
+ uint64_t u0, v0, w0; |
+ int64_t u1, v1, w1, w2, t; |
+ |
+ u0 = u & 0xffffffffL; |
+ u1 = u >> 32; |
+ v0 = v & 0xffffffffL; |
+ v1 = v >> 32; |
+ |
+ w0 = u0 * v0; |
+ t = u1 * v0 + (w0 >> 32); |
+ w1 = t & 0xffffffffL; |
+ w2 = t >> 32; |
+ w1 = u0 * v1 + w1; |
+ |
+ return u1 * v1 + w2 + (w1 >> 32); |
+} |
+ |
+ |
+void Simulator::VisitDataProcessing3Source(Instruction* instr) { |
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize; |
+ |
+ int64_t result = 0; |
+ // Extract and sign- or zero-extend 32-bit arguments for widening operations. |
+ uint64_t rn_u32 = reg<uint32_t>(instr->Rn()); |
+ uint64_t rm_u32 = reg<uint32_t>(instr->Rm()); |
+ int64_t rn_s32 = reg<int32_t>(instr->Rn()); |
+ int64_t rm_s32 = reg<int32_t>(instr->Rm()); |
+ switch (instr->Mask(DataProcessing3SourceMask)) { |
+ case MADD_w: |
+ case MADD_x: |
+ result = xreg(instr->Ra()) + (xreg(instr->Rn()) * xreg(instr->Rm())); |
+ break; |
+ case MSUB_w: |
+ case MSUB_x: |
+ result = xreg(instr->Ra()) - (xreg(instr->Rn()) * xreg(instr->Rm())); |
+ break; |
+ case SMADDL_x: result = xreg(instr->Ra()) + (rn_s32 * rm_s32); break; |
+ case SMSUBL_x: result = xreg(instr->Ra()) - (rn_s32 * rm_s32); break; |
+ case UMADDL_x: result = xreg(instr->Ra()) + (rn_u32 * rm_u32); break; |
+ case UMSUBL_x: result = xreg(instr->Ra()) - (rn_u32 * rm_u32); break; |
+ case SMULH_x: |
+ ASSERT(instr->Ra() == kZeroRegCode); |
+ result = MultiplyHighSigned(xreg(instr->Rn()), xreg(instr->Rm())); |
+ break; |
+ default: UNIMPLEMENTED(); |
+ } |
+ set_reg(reg_size, instr->Rd(), result); |
+} |
+ |
+ |
+void Simulator::VisitBitfield(Instruction* instr) { |
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize; |
+ int64_t reg_mask = instr->SixtyFourBits() ? kXRegMask : kWRegMask; |
+ int64_t R = instr->ImmR(); |
+ int64_t S = instr->ImmS(); |
+ int64_t diff = S - R; |
+ int64_t mask; |
+ if (diff >= 0) { |
+ mask = diff < reg_size - 1 ? (1L << (diff + 1)) - 1 |
+ : reg_mask; |
+ } else { |
+ mask = ((1L << (S + 1)) - 1); |
+ mask = (static_cast<uint64_t>(mask) >> R) | (mask << (reg_size - R)); |
+ diff += reg_size; |
+ } |
+ |
+ // inzero indicates if the extracted bitfield is inserted into the |
+ // destination register value or in zero. |
+ // If extend is true, extend the sign of the extracted bitfield. |
+ bool inzero = false; |
+ bool extend = false; |
+ switch (instr->Mask(BitfieldMask)) { |
+ case BFM_x: |
+ case BFM_w: |
+ break; |
+ case SBFM_x: |
+ case SBFM_w: |
+ inzero = true; |
+ extend = true; |
+ break; |
+ case UBFM_x: |
+ case UBFM_w: |
+ inzero = true; |
+ break; |
+ default: |
+ UNIMPLEMENTED(); |
+ } |
+ |
+ int64_t dst = inzero ? 0 : reg(reg_size, instr->Rd()); |
+ int64_t src = reg(reg_size, instr->Rn()); |
+ // Rotate source bitfield into place. |
+ int64_t result = (static_cast<uint64_t>(src) >> R) | (src << (reg_size - R)); |
+ // Determine the sign extension. |
+ int64_t topbits = ((1L << (reg_size - diff - 1)) - 1) << (diff + 1); |
+ int64_t signbits = extend && ((src >> S) & 1) ? topbits : 0; |
+ |
+ // Merge sign extension, dest/zero and bitfield. |
+ result = signbits | (result & mask) | (dst & ~mask); |
+ |
+ set_reg(reg_size, instr->Rd(), result); |
+} |
+ |
+ |
+void Simulator::VisitExtract(Instruction* instr) { |
+ unsigned lsb = instr->ImmS(); |
+ unsigned reg_size = (instr->SixtyFourBits() == 1) ? kXRegSize |
+ : kWRegSize; |
+ set_reg(reg_size, |
+ instr->Rd(), |
+ (static_cast<uint64_t>(reg(reg_size, instr->Rm())) >> lsb) | |
+ (reg(reg_size, instr->Rn()) << (reg_size - lsb))); |
+} |
+ |
+ |
+void Simulator::VisitFPImmediate(Instruction* instr) { |
+ AssertSupportedFPCR(); |
+ |
+ unsigned dest = instr->Rd(); |
+ switch (instr->Mask(FPImmediateMask)) { |
+ case FMOV_s_imm: set_sreg(dest, instr->ImmFP32()); break; |
+ case FMOV_d_imm: set_dreg(dest, instr->ImmFP64()); break; |
+ default: UNREACHABLE(); |
+ } |
+} |
+ |
+ |
+void Simulator::VisitFPIntegerConvert(Instruction* instr) { |
+ AssertSupportedFPCR(); |
+ |
+ unsigned dst = instr->Rd(); |
+ unsigned src = instr->Rn(); |
+ |
+ FPRounding round = RMode(); |
+ |
+ switch (instr->Mask(FPIntegerConvertMask)) { |
+ case FCVTAS_ws: set_wreg(dst, FPToInt32(sreg(src), FPTieAway)); break; |
+ case FCVTAS_xs: set_xreg(dst, FPToInt64(sreg(src), FPTieAway)); break; |
+ case FCVTAS_wd: set_wreg(dst, FPToInt32(dreg(src), FPTieAway)); break; |
+ case FCVTAS_xd: set_xreg(dst, FPToInt64(dreg(src), FPTieAway)); break; |
+ case FCVTAU_ws: set_wreg(dst, FPToUInt32(sreg(src), FPTieAway)); break; |
+ case FCVTAU_xs: set_xreg(dst, FPToUInt64(sreg(src), FPTieAway)); break; |
+ case FCVTAU_wd: set_wreg(dst, FPToUInt32(dreg(src), FPTieAway)); break; |
+ case FCVTAU_xd: set_xreg(dst, FPToUInt64(dreg(src), FPTieAway)); break; |
+ case FCVTMS_ws: |
+ set_wreg(dst, FPToInt32(sreg(src), FPNegativeInfinity)); |
+ break; |
+ case FCVTMS_xs: |
+ set_xreg(dst, FPToInt64(sreg(src), FPNegativeInfinity)); |
+ break; |
+ case FCVTMS_wd: |
+ set_wreg(dst, FPToInt32(dreg(src), FPNegativeInfinity)); |
+ break; |
+ case FCVTMS_xd: |
+ set_xreg(dst, FPToInt64(dreg(src), FPNegativeInfinity)); |
+ break; |
+ case FCVTMU_ws: |
+ set_wreg(dst, FPToUInt32(sreg(src), FPNegativeInfinity)); |
+ break; |
+ case FCVTMU_xs: |
+ set_xreg(dst, FPToUInt64(sreg(src), FPNegativeInfinity)); |
+ break; |
+ case FCVTMU_wd: |
+ set_wreg(dst, FPToUInt32(dreg(src), FPNegativeInfinity)); |
+ break; |
+ case FCVTMU_xd: |
+ set_xreg(dst, FPToUInt64(dreg(src), FPNegativeInfinity)); |
+ break; |
+ case FCVTNS_ws: set_wreg(dst, FPToInt32(sreg(src), FPTieEven)); break; |
+ case FCVTNS_xs: set_xreg(dst, FPToInt64(sreg(src), FPTieEven)); break; |
+ case FCVTNS_wd: set_wreg(dst, FPToInt32(dreg(src), FPTieEven)); break; |
+ case FCVTNS_xd: set_xreg(dst, FPToInt64(dreg(src), FPTieEven)); break; |
+ case FCVTNU_ws: set_wreg(dst, FPToUInt32(sreg(src), FPTieEven)); break; |
+ case FCVTNU_xs: set_xreg(dst, FPToUInt64(sreg(src), FPTieEven)); break; |
+ case FCVTNU_wd: set_wreg(dst, FPToUInt32(dreg(src), FPTieEven)); break; |
+ case FCVTNU_xd: set_xreg(dst, FPToUInt64(dreg(src), FPTieEven)); break; |
+ case FCVTZS_ws: set_wreg(dst, FPToInt32(sreg(src), FPZero)); break; |
+ case FCVTZS_xs: set_xreg(dst, FPToInt64(sreg(src), FPZero)); break; |
+ case FCVTZS_wd: set_wreg(dst, FPToInt32(dreg(src), FPZero)); break; |
+ case FCVTZS_xd: set_xreg(dst, FPToInt64(dreg(src), FPZero)); break; |
+ case FCVTZU_ws: set_wreg(dst, FPToUInt32(sreg(src), FPZero)); break; |
+ case FCVTZU_xs: set_xreg(dst, FPToUInt64(sreg(src), FPZero)); break; |
+ case FCVTZU_wd: set_wreg(dst, FPToUInt32(dreg(src), FPZero)); break; |
+ case FCVTZU_xd: set_xreg(dst, FPToUInt64(dreg(src), FPZero)); break; |
+ case FMOV_ws: set_wreg(dst, sreg_bits(src)); break; |
+ case FMOV_xd: set_xreg(dst, dreg_bits(src)); break; |
+ case FMOV_sw: set_sreg_bits(dst, wreg(src)); break; |
+ case FMOV_dx: set_dreg_bits(dst, xreg(src)); break; |
+ |
+ // A 32-bit input can be handled in the same way as a 64-bit input, since |
+ // the sign- or zero-extension will not affect the conversion. |
+ case SCVTF_dx: set_dreg(dst, FixedToDouble(xreg(src), 0, round)); break; |
+ case SCVTF_dw: set_dreg(dst, FixedToDouble(wreg(src), 0, round)); break; |
+ case UCVTF_dx: set_dreg(dst, UFixedToDouble(xreg(src), 0, round)); break; |
+ case UCVTF_dw: { |
+ set_dreg(dst, UFixedToDouble(reg<uint32_t>(src), 0, round)); |
+ break; |
+ } |
+ case SCVTF_sx: set_sreg(dst, FixedToFloat(xreg(src), 0, round)); break; |
+ case SCVTF_sw: set_sreg(dst, FixedToFloat(wreg(src), 0, round)); break; |
+ case UCVTF_sx: set_sreg(dst, UFixedToFloat(xreg(src), 0, round)); break; |
+ case UCVTF_sw: { |
+ set_sreg(dst, UFixedToFloat(reg<uint32_t>(src), 0, round)); |
+ break; |
+ } |
+ |
+ default: UNREACHABLE(); |
+ } |
+} |
+ |
+ |
+void Simulator::VisitFPFixedPointConvert(Instruction* instr) { |
+ AssertSupportedFPCR(); |
+ |
+ unsigned dst = instr->Rd(); |
+ unsigned src = instr->Rn(); |
+ int fbits = 64 - instr->FPScale(); |
+ |
+ FPRounding round = RMode(); |
+ |
+ switch (instr->Mask(FPFixedPointConvertMask)) { |
+ // A 32-bit input can be handled in the same way as a 64-bit input, since |
+ // the sign- or zero-extension will not affect the conversion. |
+ case SCVTF_dx_fixed: |
+ set_dreg(dst, FixedToDouble(xreg(src), fbits, round)); |
+ break; |
+ case SCVTF_dw_fixed: |
+ set_dreg(dst, FixedToDouble(wreg(src), fbits, round)); |
+ break; |
+ case UCVTF_dx_fixed: |
+ set_dreg(dst, UFixedToDouble(xreg(src), fbits, round)); |
+ break; |
+ case UCVTF_dw_fixed: { |
+ set_dreg(dst, |
+ UFixedToDouble(reg<uint32_t>(src), fbits, round)); |
+ break; |
+ } |
+ case SCVTF_sx_fixed: |
+ set_sreg(dst, FixedToFloat(xreg(src), fbits, round)); |
+ break; |
+ case SCVTF_sw_fixed: |
+ set_sreg(dst, FixedToFloat(wreg(src), fbits, round)); |
+ break; |
+ case UCVTF_sx_fixed: |
+ set_sreg(dst, UFixedToFloat(xreg(src), fbits, round)); |
+ break; |
+ case UCVTF_sw_fixed: { |
+ set_sreg(dst, |
+ UFixedToFloat(reg<uint32_t>(src), fbits, round)); |
+ break; |
+ } |
+ default: UNREACHABLE(); |
+ } |
+} |
+ |
+ |
+int32_t Simulator::FPToInt32(double value, FPRounding rmode) { |
+ value = FPRoundInt(value, rmode); |
+ if (value >= kWMaxInt) { |
+ return kWMaxInt; |
+ } else if (value < kWMinInt) { |
+ return kWMinInt; |
+ } |
+ return std::isnan(value) ? 0 : static_cast<int32_t>(value); |
+} |
+ |
+ |
+int64_t Simulator::FPToInt64(double value, FPRounding rmode) { |
+ value = FPRoundInt(value, rmode); |
+ if (value >= kXMaxInt) { |
+ return kXMaxInt; |
+ } else if (value < kXMinInt) { |
+ return kXMinInt; |
+ } |
+ return std::isnan(value) ? 0 : static_cast<int64_t>(value); |
+} |
+ |
+ |
+uint32_t Simulator::FPToUInt32(double value, FPRounding rmode) { |
+ value = FPRoundInt(value, rmode); |
+ if (value >= kWMaxUInt) { |
+ return kWMaxUInt; |
+ } else if (value < 0.0) { |
+ return 0; |
+ } |
+ return std::isnan(value) ? 0 : static_cast<uint32_t>(value); |
+} |
+ |
+ |
+uint64_t Simulator::FPToUInt64(double value, FPRounding rmode) { |
+ value = FPRoundInt(value, rmode); |
+ if (value >= kXMaxUInt) { |
+ return kXMaxUInt; |
+ } else if (value < 0.0) { |
+ return 0; |
+ } |
+ return std::isnan(value) ? 0 : static_cast<uint64_t>(value); |
+} |
+ |
+ |
+void Simulator::VisitFPCompare(Instruction* instr) { |
+ AssertSupportedFPCR(); |
+ |
+ unsigned reg_size = instr->FPType() == FP32 ? kSRegSize : kDRegSize; |
+ double fn_val = fpreg(reg_size, instr->Rn()); |
+ |
+ switch (instr->Mask(FPCompareMask)) { |
+ case FCMP_s: |
+ case FCMP_d: FPCompare(fn_val, fpreg(reg_size, instr->Rm())); break; |
+ case FCMP_s_zero: |
+ case FCMP_d_zero: FPCompare(fn_val, 0.0); break; |
+ default: UNIMPLEMENTED(); |
+ } |
+} |
+ |
+ |
+void Simulator::VisitFPConditionalCompare(Instruction* instr) { |
+ AssertSupportedFPCR(); |
+ |
+ switch (instr->Mask(FPConditionalCompareMask)) { |
+ case FCCMP_s: |
+ case FCCMP_d: { |
+ if (ConditionPassed(static_cast<Condition>(instr->Condition()))) { |
+ // If the condition passes, set the status flags to the result of |
+ // comparing the operands. |
+ unsigned reg_size = instr->FPType() == FP32 ? kSRegSize : kDRegSize; |
+ FPCompare(fpreg(reg_size, instr->Rn()), fpreg(reg_size, instr->Rm())); |
+ } else { |
+ // If the condition fails, set the status flags to the nzcv immediate. |
+ nzcv().SetFlags(instr->Nzcv()); |
+ } |
+ break; |
+ } |
+ default: UNIMPLEMENTED(); |
+ } |
+} |
+ |
+ |
+void Simulator::VisitFPConditionalSelect(Instruction* instr) { |
+ AssertSupportedFPCR(); |
+ |
+ Instr selected; |
+ if (ConditionPassed(static_cast<Condition>(instr->Condition()))) { |
+ selected = instr->Rn(); |
+ } else { |
+ selected = instr->Rm(); |
+ } |
+ |
+ switch (instr->Mask(FPConditionalSelectMask)) { |
+ case FCSEL_s: set_sreg(instr->Rd(), sreg(selected)); break; |
+ case FCSEL_d: set_dreg(instr->Rd(), dreg(selected)); break; |
+ default: UNIMPLEMENTED(); |
+ } |
+} |
+ |
+ |
+void Simulator::VisitFPDataProcessing1Source(Instruction* instr) { |
+ AssertSupportedFPCR(); |
+ |
+ unsigned fd = instr->Rd(); |
+ unsigned fn = instr->Rn(); |
+ |
+ switch (instr->Mask(FPDataProcessing1SourceMask)) { |
+ case FMOV_s: set_sreg(fd, sreg(fn)); break; |
+ case FMOV_d: set_dreg(fd, dreg(fn)); break; |
+ case FABS_s: set_sreg(fd, std::fabs(sreg(fn))); break; |
+ case FABS_d: set_dreg(fd, std::fabs(dreg(fn))); break; |
+ case FNEG_s: set_sreg(fd, -sreg(fn)); break; |
+ case FNEG_d: set_dreg(fd, -dreg(fn)); break; |
+ case FSQRT_s: set_sreg(fd, std::sqrt(sreg(fn))); break; |
+ case FSQRT_d: set_dreg(fd, std::sqrt(dreg(fn))); break; |
+ case FRINTA_s: set_sreg(fd, FPRoundInt(sreg(fn), FPTieAway)); break; |
+ case FRINTA_d: set_dreg(fd, FPRoundInt(dreg(fn), FPTieAway)); break; |
+ case FRINTN_s: set_sreg(fd, FPRoundInt(sreg(fn), FPTieEven)); break; |
+ case FRINTN_d: set_dreg(fd, FPRoundInt(dreg(fn), FPTieEven)); break; |
+ case FRINTZ_s: set_sreg(fd, FPRoundInt(sreg(fn), FPZero)); break; |
+ case FRINTZ_d: set_dreg(fd, FPRoundInt(dreg(fn), FPZero)); break; |
+ case FCVT_ds: set_dreg(fd, FPToDouble(sreg(fn))); break; |
+ case FCVT_sd: set_sreg(fd, FPToFloat(dreg(fn), FPTieEven)); break; |
+ default: UNIMPLEMENTED(); |
+ } |
+} |
+ |
+ |
+// Assemble the specified IEEE-754 components into the target type and apply |
+// appropriate rounding. |
+// sign: 0 = positive, 1 = negative |
+// exponent: Unbiased IEEE-754 exponent. |
+// mantissa: The mantissa of the input. The top bit (which is not encoded for |
+// normal IEEE-754 values) must not be omitted. This bit has the |
+// value 'pow(2, exponent)'. |
+// |
+// The input value is assumed to be a normalized value. That is, the input may |
+// not be infinity or NaN. If the source value is subnormal, it must be |
+// normalized before calling this function such that the highest set bit in the |
+// mantissa has the value 'pow(2, exponent)'. |
+// |
+// Callers should use FPRoundToFloat or FPRoundToDouble directly, rather than |
+// calling a templated FPRound. |
+template <class T, int ebits, int mbits> |
+static T FPRound(int64_t sign, int64_t exponent, uint64_t mantissa, |
+ FPRounding round_mode) { |
+ ASSERT((sign == 0) || (sign == 1)); |
+ |
+ // Only the FPTieEven rounding mode is implemented. |
+ ASSERT(round_mode == FPTieEven); |
+ USE(round_mode); |
+ |
+ // Rounding can promote subnormals to normals, and normals to infinities. For |
+ // example, a double with exponent 127 (FLT_MAX_EXP) would appear to be |
+ // encodable as a float, but rounding based on the low-order mantissa bits |
+ // could make it overflow. With ties-to-even rounding, this value would become |
+ // an infinity. |
+ |
+ // ---- Rounding Method ---- |
+ // |
+ // The exponent is irrelevant in the rounding operation, so we treat the |
+ // lowest-order bit that will fit into the result ('onebit') as having |
+ // the value '1'. Similarly, the highest-order bit that won't fit into |
+ // the result ('halfbit') has the value '0.5'. The 'point' sits between |
+ // 'onebit' and 'halfbit': |
+ // |
+ // These bits fit into the result. |
+ // |---------------------| |
+ // mantissa = 0bxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx |
+ // || |
+ // / | |
+ // / halfbit |
+ // onebit |
+ // |
+ // For subnormal outputs, the range of representable bits is smaller and |
+ // the position of onebit and halfbit depends on the exponent of the |
+ // input, but the method is otherwise similar. |
+ // |
+ // onebit(frac) |
+ // | |
+ // | halfbit(frac) halfbit(adjusted) |
+ // | / / |
+ // | | | |
+ // 0b00.0 (exact) -> 0b00.0 (exact) -> 0b00 |
+ // 0b00.0... -> 0b00.0... -> 0b00 |
+ // 0b00.1 (exact) -> 0b00.0111..111 -> 0b00 |
+ // 0b00.1... -> 0b00.1... -> 0b01 |
+ // 0b01.0 (exact) -> 0b01.0 (exact) -> 0b01 |
+ // 0b01.0... -> 0b01.0... -> 0b01 |
+ // 0b01.1 (exact) -> 0b01.1 (exact) -> 0b10 |
+ // 0b01.1... -> 0b01.1... -> 0b10 |
+ // 0b10.0 (exact) -> 0b10.0 (exact) -> 0b10 |
+ // 0b10.0... -> 0b10.0... -> 0b10 |
+ // 0b10.1 (exact) -> 0b10.0111..111 -> 0b10 |
+ // 0b10.1... -> 0b10.1... -> 0b11 |
+ // 0b11.0 (exact) -> 0b11.0 (exact) -> 0b11 |
+ // ... / | / | |
+ // / | / | |
+ // / | |
+ // adjusted = frac - (halfbit(mantissa) & ~onebit(frac)); / | |
+ // |
+ // mantissa = (mantissa >> shift) + halfbit(adjusted); |
+ |
+ static const int mantissa_offset = 0; |
+ static const int exponent_offset = mantissa_offset + mbits; |
+ static const int sign_offset = exponent_offset + ebits; |
+ STATIC_ASSERT(sign_offset == (sizeof(T) * kByteSize - 1)); |
+ |
+ // Bail out early for zero inputs. |
+ if (mantissa == 0) { |
+ return sign << sign_offset; |
+ } |
+ |
+ // If all bits in the exponent are set, the value is infinite or NaN. |
+ // This is true for all binary IEEE-754 formats. |
+ static const int infinite_exponent = (1 << ebits) - 1; |
+ static const int max_normal_exponent = infinite_exponent - 1; |
+ |
+ // Apply the exponent bias to encode it for the result. Doing this early makes |
+ // it easy to detect values that will be infinite or subnormal. |
+ exponent += max_normal_exponent >> 1; |
+ |
+ if (exponent > max_normal_exponent) { |
+ // Overflow: The input is too large for the result type to represent. The |
+ // FPTieEven rounding mode handles overflows using infinities. |
+ exponent = infinite_exponent; |
+ mantissa = 0; |
+ return (sign << sign_offset) | |
+ (exponent << exponent_offset) | |
+ (mantissa << mantissa_offset); |
+ } |
+ |
+ // Calculate the shift required to move the top mantissa bit to the proper |
+ // place in the destination type. |
+ const int highest_significant_bit = 63 - CountLeadingZeros(mantissa, 64); |
+ int shift = highest_significant_bit - mbits; |
+ |
+ if (exponent <= 0) { |
+ // The output will be subnormal (before rounding). |
+ |
+ // For subnormal outputs, the shift must be adjusted by the exponent. The +1 |
+ // is necessary because the exponent of a subnormal value (encoded as 0) is |
+ // the same as the exponent of the smallest normal value (encoded as 1). |
+ shift += -exponent + 1; |
+ |
+ // Handle inputs that would produce a zero output. |
+ // |
+ // Shifts higher than highest_significant_bit+1 will always produce a zero |
+ // result. A shift of exactly highest_significant_bit+1 might produce a |
+ // non-zero result after rounding. |
+ if (shift > (highest_significant_bit + 1)) { |
+ // The result will always be +/-0.0. |
+ return sign << sign_offset; |
+ } |
+ |
+ // Properly encode the exponent for a subnormal output. |
+ exponent = 0; |
+ } else { |
+ // Clear the topmost mantissa bit, since this is not encoded in IEEE-754 |
+ // normal values. |
+ mantissa &= ~(1UL << highest_significant_bit); |
+ } |
+ |
+ if (shift > 0) { |
+ // We have to shift the mantissa to the right. Some precision is lost, so we |
+ // need to apply rounding. |
+ uint64_t onebit_mantissa = (mantissa >> (shift)) & 1; |
+ uint64_t halfbit_mantissa = (mantissa >> (shift-1)) & 1; |
+ uint64_t adjusted = mantissa - (halfbit_mantissa & ~onebit_mantissa); |
+ T halfbit_adjusted = (adjusted >> (shift-1)) & 1; |
+ |
+ T result = (sign << sign_offset) | |
+ (exponent << exponent_offset) | |
+ ((mantissa >> shift) << mantissa_offset); |
+ |
+ // A very large mantissa can overflow during rounding. If this happens, the |
+ // exponent should be incremented and the mantissa set to 1.0 (encoded as |
+ // 0). Applying halfbit_adjusted after assembling the float has the nice |
+ // side-effect that this case is handled for free. |
+ // |
+ // This also handles cases where a very large finite value overflows to |
+ // infinity, or where a very large subnormal value overflows to become |
+ // normal. |
+ return result + halfbit_adjusted; |
+ } else { |
+ // We have to shift the mantissa to the left (or not at all). The input |
+ // mantissa is exactly representable in the output mantissa, so apply no |
+ // rounding correction. |
+ return (sign << sign_offset) | |
+ (exponent << exponent_offset) | |
+ ((mantissa << -shift) << mantissa_offset); |
+ } |
+} |
+ |
+ |
+// See FPRound for a description of this function. |
+static inline double FPRoundToDouble(int64_t sign, int64_t exponent, |
+ uint64_t mantissa, FPRounding round_mode) { |
+ int64_t bits = |
+ FPRound<int64_t, kDoubleExponentBits, kDoubleMantissaBits>(sign, |
+ exponent, |
+ mantissa, |
+ round_mode); |
+ return rawbits_to_double(bits); |
+} |
+ |
+ |
+// See FPRound for a description of this function. |
+static inline float FPRoundToFloat(int64_t sign, int64_t exponent, |
+ uint64_t mantissa, FPRounding round_mode) { |
+ int32_t bits = |
+ FPRound<int32_t, kFloatExponentBits, kFloatMantissaBits>(sign, |
+ exponent, |
+ mantissa, |
+ round_mode); |
+ return rawbits_to_float(bits); |
+} |
+ |
+ |
+double Simulator::FixedToDouble(int64_t src, int fbits, FPRounding round) { |
+ if (src >= 0) { |
+ return UFixedToDouble(src, fbits, round); |
+ } else { |
+ // This works for all negative values, including INT64_MIN. |
+ return -UFixedToDouble(-src, fbits, round); |
+ } |
+} |
+ |
+ |
+double Simulator::UFixedToDouble(uint64_t src, int fbits, FPRounding round) { |
+ // An input of 0 is a special case because the result is effectively |
+ // subnormal: The exponent is encoded as 0 and there is no implicit 1 bit. |
+ if (src == 0) { |
+ return 0.0; |
+ } |
+ |
+ // Calculate the exponent. The highest significant bit will have the value |
+ // 2^exponent. |
+ const int highest_significant_bit = 63 - CountLeadingZeros(src, 64); |
+ const int64_t exponent = highest_significant_bit - fbits; |
+ |
+ return FPRoundToDouble(0, exponent, src, round); |
+} |
+ |
+ |
+float Simulator::FixedToFloat(int64_t src, int fbits, FPRounding round) { |
+ if (src >= 0) { |
+ return UFixedToFloat(src, fbits, round); |
+ } else { |
+ // This works for all negative values, including INT64_MIN. |
+ return -UFixedToFloat(-src, fbits, round); |
+ } |
+} |
+ |
+ |
+float Simulator::UFixedToFloat(uint64_t src, int fbits, FPRounding round) { |
+ // An input of 0 is a special case because the result is effectively |
+ // subnormal: The exponent is encoded as 0 and there is no implicit 1 bit. |
+ if (src == 0) { |
+ return 0.0f; |
+ } |
+ |
+ // Calculate the exponent. The highest significant bit will have the value |
+ // 2^exponent. |
+ const int highest_significant_bit = 63 - CountLeadingZeros(src, 64); |
+ const int32_t exponent = highest_significant_bit - fbits; |
+ |
+ return FPRoundToFloat(0, exponent, src, round); |
+} |
+ |
+ |
+double Simulator::FPRoundInt(double value, FPRounding round_mode) { |
+ if ((value == 0.0) || (value == kFP64PositiveInfinity) || |
+ (value == kFP64NegativeInfinity) || std::isnan(value)) { |
+ return value; |
+ } |
+ |
+ double int_result = floor(value); |
+ double error = value - int_result; |
+ switch (round_mode) { |
+ case FPTieAway: { |
+ // If the error is greater than 0.5, or is equal to 0.5 and the integer |
+ // result is positive, round up. |
+ if ((error > 0.5) || ((error == 0.5) && (int_result >= 0.0))) { |
+ int_result++; |
+ } |
+ break; |
+ } |
+ case FPTieEven: { |
+ // If the error is greater than 0.5, or is equal to 0.5 and the integer |
+ // result is odd, round up. |
+ if ((error > 0.5) || |
+ ((error == 0.5) && (fmod(int_result, 2) != 0))) { |
+ int_result++; |
+ } |
+ break; |
+ } |
+ case FPZero: { |
+ // If value > 0 then we take floor(value) |
+ // otherwise, ceil(value) |
+ if (value < 0) { |
+ int_result = ceil(value); |
+ } |
+ break; |
+ } |
+ case FPNegativeInfinity: { |
+ // We always use floor(value). |
+ break; |
+ } |
+ default: UNIMPLEMENTED(); |
+ } |
+ return int_result; |
+} |
+ |
+ |
+double Simulator::FPToDouble(float value) { |
+ switch (std::fpclassify(value)) { |
+ case FP_NAN: { |
+ // Convert NaNs as the processor would, assuming that FPCR.DN (default |
+ // NaN) is not set: |
+ // - The sign is propagated. |
+ // - The payload (mantissa) is transferred entirely, except that the top |
+ // bit is forced to '1', making the result a quiet NaN. The unused |
+ // (low-order) payload bits are set to 0. |
+ uint32_t raw = float_to_rawbits(value); |
+ |
+ uint64_t sign = raw >> 31; |
+ uint64_t exponent = (1 << 11) - 1; |
+ uint64_t payload = unsigned_bitextract_64(21, 0, raw); |
+ payload <<= (52 - 23); // The unused low-order bits should be 0. |
+ payload |= (1L << 51); // Force a quiet NaN. |
+ |
+ return rawbits_to_double((sign << 63) | (exponent << 52) | payload); |
+ } |
+ |
+ case FP_ZERO: |
+ case FP_NORMAL: |
+ case FP_SUBNORMAL: |
+ case FP_INFINITE: { |
+ // All other inputs are preserved in a standard cast, because every value |
+ // representable using an IEEE-754 float is also representable using an |
+ // IEEE-754 double. |
+ return static_cast<double>(value); |
+ } |
+ } |
+ |
+ UNREACHABLE(); |
+ return static_cast<double>(value); |
+} |
+ |
+ |
+float Simulator::FPToFloat(double value, FPRounding round_mode) { |
+ // Only the FPTieEven rounding mode is implemented. |
+ ASSERT(round_mode == FPTieEven); |
+ USE(round_mode); |
+ |
+ switch (std::fpclassify(value)) { |
+ case FP_NAN: { |
+ // Convert NaNs as the processor would, assuming that FPCR.DN (default |
+ // NaN) is not set: |
+ // - The sign is propagated. |
+ // - The payload (mantissa) is transferred as much as possible, except |
+ // that the top bit is forced to '1', making the result a quiet NaN. |
+ uint64_t raw = double_to_rawbits(value); |
+ |
+ uint32_t sign = raw >> 63; |
+ uint32_t exponent = (1 << 8) - 1; |
+ uint32_t payload = unsigned_bitextract_64(50, 52 - 23, raw); |
+ payload |= (1 << 22); // Force a quiet NaN. |
+ |
+ return rawbits_to_float((sign << 31) | (exponent << 23) | payload); |
+ } |
+ |
+ case FP_ZERO: |
+ case FP_INFINITE: { |
+ // In a C++ cast, any value representable in the target type will be |
+ // unchanged. This is always the case for +/-0.0 and infinities. |
+ return static_cast<float>(value); |
+ } |
+ |
+ case FP_NORMAL: |
+ case FP_SUBNORMAL: { |
+ // Convert double-to-float as the processor would, assuming that FPCR.FZ |
+ // (flush-to-zero) is not set. |
+ uint64_t raw = double_to_rawbits(value); |
+ // Extract the IEEE-754 double components. |
+ uint32_t sign = raw >> 63; |
+ // Extract the exponent and remove the IEEE-754 encoding bias. |
+ int32_t exponent = unsigned_bitextract_64(62, 52, raw) - 1023; |
+ // Extract the mantissa and add the implicit '1' bit. |
+ uint64_t mantissa = unsigned_bitextract_64(51, 0, raw); |
+ if (std::fpclassify(value) == FP_NORMAL) { |
+ mantissa |= (1UL << 52); |
+ } |
+ return FPRoundToFloat(sign, exponent, mantissa, round_mode); |
+ } |
+ } |
+ |
+ UNREACHABLE(); |
+ return value; |
+} |
+ |
+ |
+void Simulator::VisitFPDataProcessing2Source(Instruction* instr) { |
+ AssertSupportedFPCR(); |
+ |
+ unsigned fd = instr->Rd(); |
+ unsigned fn = instr->Rn(); |
+ unsigned fm = instr->Rm(); |
+ |
+ switch (instr->Mask(FPDataProcessing2SourceMask)) { |
+ case FADD_s: set_sreg(fd, sreg(fn) + sreg(fm)); break; |
+ case FADD_d: set_dreg(fd, dreg(fn) + dreg(fm)); break; |
+ case FSUB_s: set_sreg(fd, sreg(fn) - sreg(fm)); break; |
+ case FSUB_d: set_dreg(fd, dreg(fn) - dreg(fm)); break; |
+ case FMUL_s: set_sreg(fd, sreg(fn) * sreg(fm)); break; |
+ case FMUL_d: set_dreg(fd, dreg(fn) * dreg(fm)); break; |
+ case FDIV_s: set_sreg(fd, sreg(fn) / sreg(fm)); break; |
+ case FDIV_d: set_dreg(fd, dreg(fn) / dreg(fm)); break; |
+ case FMAX_s: set_sreg(fd, FPMax(sreg(fn), sreg(fm))); break; |
+ case FMAX_d: set_dreg(fd, FPMax(dreg(fn), dreg(fm))); break; |
+ case FMIN_s: set_sreg(fd, FPMin(sreg(fn), sreg(fm))); break; |
+ case FMIN_d: set_dreg(fd, FPMin(dreg(fn), dreg(fm))); break; |
+ case FMAXNM_s: set_sreg(fd, FPMaxNM(sreg(fn), sreg(fm))); break; |
+ case FMAXNM_d: set_dreg(fd, FPMaxNM(dreg(fn), dreg(fm))); break; |
+ case FMINNM_s: set_sreg(fd, FPMinNM(sreg(fn), sreg(fm))); break; |
+ case FMINNM_d: set_dreg(fd, FPMinNM(dreg(fn), dreg(fm))); break; |
+ default: UNIMPLEMENTED(); |
+ } |
+} |
+ |
+ |
+void Simulator::VisitFPDataProcessing3Source(Instruction* instr) { |
+ AssertSupportedFPCR(); |
+ |
+ unsigned fd = instr->Rd(); |
+ unsigned fn = instr->Rn(); |
+ unsigned fm = instr->Rm(); |
+ unsigned fa = instr->Ra(); |
+ |
+ // The C99 (and C++11) fma function performs a fused multiply-accumulate. |
+ switch (instr->Mask(FPDataProcessing3SourceMask)) { |
+ // fd = fa +/- (fn * fm) |
+ case FMADD_s: set_sreg(fd, fmaf(sreg(fn), sreg(fm), sreg(fa))); break; |
+ case FMSUB_s: set_sreg(fd, fmaf(-sreg(fn), sreg(fm), sreg(fa))); break; |
+ case FMADD_d: set_dreg(fd, fma(dreg(fn), dreg(fm), dreg(fa))); break; |
+ case FMSUB_d: set_dreg(fd, fma(-dreg(fn), dreg(fm), dreg(fa))); break; |
+ // Variants of the above where the result is negated. |
+ case FNMADD_s: set_sreg(fd, -fmaf(sreg(fn), sreg(fm), sreg(fa))); break; |
+ case FNMSUB_s: set_sreg(fd, -fmaf(-sreg(fn), sreg(fm), sreg(fa))); break; |
+ case FNMADD_d: set_dreg(fd, -fma(dreg(fn), dreg(fm), dreg(fa))); break; |
+ case FNMSUB_d: set_dreg(fd, -fma(-dreg(fn), dreg(fm), dreg(fa))); break; |
+ default: UNIMPLEMENTED(); |
+ } |
+} |
+ |
+ |
+template <typename T> |
+T Simulator::FPMax(T a, T b) { |
+ if (IsSignallingNaN(a)) { |
+ return a; |
+ } else if (IsSignallingNaN(b)) { |
+ return b; |
+ } else if (std::isnan(a)) { |
+ ASSERT(IsQuietNaN(a)); |
+ return a; |
+ } else if (std::isnan(b)) { |
+ ASSERT(IsQuietNaN(b)); |
+ return b; |
+ } |
+ |
+ if ((a == 0.0) && (b == 0.0) && |
+ (copysign(1.0, a) != copysign(1.0, b))) { |
+ // a and b are zero, and the sign differs: return +0.0. |
+ return 0.0; |
+ } else { |
+ return (a > b) ? a : b; |
+ } |
+} |
+ |
+ |
+template <typename T> |
+T Simulator::FPMaxNM(T a, T b) { |
+ if (IsQuietNaN(a) && !IsQuietNaN(b)) { |
+ a = kFP64NegativeInfinity; |
+ } else if (!IsQuietNaN(a) && IsQuietNaN(b)) { |
+ b = kFP64NegativeInfinity; |
+ } |
+ return FPMax(a, b); |
+} |
+ |
+template <typename T> |
+T Simulator::FPMin(T a, T b) { |
+ if (IsSignallingNaN(a)) { |
+ return a; |
+ } else if (IsSignallingNaN(b)) { |
+ return b; |
+ } else if (std::isnan(a)) { |
+ ASSERT(IsQuietNaN(a)); |
+ return a; |
+ } else if (std::isnan(b)) { |
+ ASSERT(IsQuietNaN(b)); |
+ return b; |
+ } |
+ |
+ if ((a == 0.0) && (b == 0.0) && |
+ (copysign(1.0, a) != copysign(1.0, b))) { |
+ // a and b are zero, and the sign differs: return -0.0. |
+ return -0.0; |
+ } else { |
+ return (a < b) ? a : b; |
+ } |
+} |
+ |
+ |
+template <typename T> |
+T Simulator::FPMinNM(T a, T b) { |
+ if (IsQuietNaN(a) && !IsQuietNaN(b)) { |
+ a = kFP64PositiveInfinity; |
+ } else if (!IsQuietNaN(a) && IsQuietNaN(b)) { |
+ b = kFP64PositiveInfinity; |
+ } |
+ return FPMin(a, b); |
+} |
+ |
+ |
+void Simulator::VisitSystem(Instruction* instr) { |
+ // Some system instructions hijack their Op and Cp fields to represent a |
+ // range of immediates instead of indicating a different instruction. This |
+ // makes the decoding tricky. |
+ if (instr->Mask(SystemSysRegFMask) == SystemSysRegFixed) { |
+ switch (instr->Mask(SystemSysRegMask)) { |
+ case MRS: { |
+ switch (instr->ImmSystemRegister()) { |
+ case NZCV: set_xreg(instr->Rt(), nzcv().RawValue()); break; |
+ case FPCR: set_xreg(instr->Rt(), fpcr().RawValue()); break; |
+ default: UNIMPLEMENTED(); |
+ } |
+ break; |
+ } |
+ case MSR: { |
+ switch (instr->ImmSystemRegister()) { |
+ case NZCV: nzcv().SetRawValue(xreg(instr->Rt())); break; |
+ case FPCR: fpcr().SetRawValue(xreg(instr->Rt())); break; |
+ default: UNIMPLEMENTED(); |
+ } |
+ break; |
+ } |
+ } |
+ } else if (instr->Mask(SystemHintFMask) == SystemHintFixed) { |
+ ASSERT(instr->Mask(SystemHintMask) == HINT); |
+ switch (instr->ImmHint()) { |
+ case NOP: break; |
+ default: UNIMPLEMENTED(); |
+ } |
+ } else if (instr->Mask(MemBarrierFMask) == MemBarrierFixed) { |
+ __sync_synchronize(); |
+ } else { |
+ UNIMPLEMENTED(); |
+ } |
+} |
+ |
+ |
+bool Simulator::GetValue(const char* desc, int64_t* value) { |
+ int regnum = CodeFromName(desc); |
+ if (regnum >= 0) { |
+ unsigned code = regnum; |
+ if (code == kZeroRegCode) { |
+ // Catch the zero register and return 0. |
+ *value = 0; |
+ return true; |
+ } else if (code == kSPRegInternalCode) { |
+ // Translate the stack pointer code to 31, for Reg31IsStackPointer. |
+ code = 31; |
+ } |
+ if (desc[0] == 'w') { |
+ *value = wreg(code, Reg31IsStackPointer); |
+ } else { |
+ *value = xreg(code, Reg31IsStackPointer); |
+ } |
+ return true; |
+ } else if (strncmp(desc, "0x", 2) == 0) { |
+ return SScanF(desc + 2, "%" SCNx64, |
+ reinterpret_cast<uint64_t*>(value)) == 1; |
+ } else { |
+ return SScanF(desc, "%" SCNu64, |
+ reinterpret_cast<uint64_t*>(value)) == 1; |
+ } |
+} |
+ |
+ |
+bool Simulator::PrintValue(const char* desc) { |
+ // Define some colour codes to use for the register dump. |
+ // TODO(jbramley): Find a more elegant way of defining these. |
+ char const * const clr_normal = FLAG_log_colour ? "\033[m" : ""; |
+ char const * const clr_reg_name = FLAG_log_colour ? "\033[1;34m" : ""; |
+ char const * const clr_reg_value = FLAG_log_colour ? "\033[1;36m" : ""; |
+ char const * const clr_fpreg_name = FLAG_log_colour ? "\033[1;33m" : ""; |
+ char const * const clr_fpreg_value = FLAG_log_colour ? "\033[1;35m" : ""; |
+ |
+ if (strcmp(desc, "csp") == 0) { |
+ ASSERT(CodeFromName(desc) == static_cast<int>(kSPRegInternalCode)); |
+ PrintF("%s csp:%s 0x%016" PRIx64 "%s\n", |
+ clr_reg_name, clr_reg_value, xreg(31, Reg31IsStackPointer), clr_normal); |
+ return true; |
+ } else if (strcmp(desc, "wcsp") == 0) { |
+ ASSERT(CodeFromName(desc) == static_cast<int>(kSPRegInternalCode)); |
+ PrintF("%s wcsp:%s 0x%08" PRIx32 "%s\n", |
+ clr_reg_name, clr_reg_value, wreg(31, Reg31IsStackPointer), clr_normal); |
+ return true; |
+ } |
+ |
+ int i = CodeFromName(desc); |
+ if (i == -1) { |
+ return false; |
+ } |
+ ASSERT(i >= 0); |
+ |
+ if (desc[0] == 'v') { |
+ PrintF("%s %s:%s 0x%016" PRIx64 "%s (%s%s:%s %g%s %s:%s %g%s)\n", |
+ clr_fpreg_name, VRegNameForCode(i), |
+ clr_fpreg_value, double_to_rawbits(dreg(i)), |
+ clr_normal, |
+ clr_fpreg_name, DRegNameForCode(i), |
+ clr_fpreg_value, dreg(i), |
+ clr_fpreg_name, SRegNameForCode(i), |
+ clr_fpreg_value, sreg(i), |
+ clr_normal); |
+ return true; |
+ } else if (desc[0] == 'd') { |
+ PrintF("%s %s:%s %g%s\n", |
+ clr_fpreg_name, DRegNameForCode(i), |
+ clr_fpreg_value, dreg(i), |
+ clr_normal); |
+ return true; |
+ } else if (desc[0] == 's') { |
+ PrintF("%s %s:%s %g%s\n", |
+ clr_fpreg_name, SRegNameForCode(i), |
+ clr_fpreg_value, sreg(i), |
+ clr_normal); |
+ return true; |
+ } else if (desc[0] == 'w') { |
+ PrintF("%s %s:%s 0x%08" PRIx32 "%s\n", |
+ clr_reg_name, WRegNameForCode(i), clr_reg_value, wreg(i), clr_normal); |
+ return true; |
+ } else { |
+ // X register names have a wide variety of starting characters, but anything |
+ // else will be an X register. |
+ PrintF("%s %s:%s 0x%016" PRIx64 "%s\n", |
+ clr_reg_name, XRegNameForCode(i), clr_reg_value, xreg(i), clr_normal); |
+ return true; |
+ } |
+} |
+ |
+ |
+void Simulator::Debug() { |
+#define COMMAND_SIZE 63 |
+#define ARG_SIZE 255 |
+ |
+#define STR(a) #a |
+#define XSTR(a) STR(a) |
+ |
+ char cmd[COMMAND_SIZE + 1]; |
+ char arg1[ARG_SIZE + 1]; |
+ char arg2[ARG_SIZE + 1]; |
+ char* argv[3] = { cmd, arg1, arg2 }; |
+ |
+ // Make sure to have a proper terminating character if reaching the limit. |
+ cmd[COMMAND_SIZE] = 0; |
+ arg1[ARG_SIZE] = 0; |
+ arg2[ARG_SIZE] = 0; |
+ |
+ bool done = false; |
+ bool cleared_log_disasm_bit = false; |
+ |
+ while (!done) { |
+ // Disassemble the next instruction to execute before doing anything else. |
+ PrintInstructionsAt(pc_, 1); |
+ // Read the command line. |
+ char* line = ReadLine("sim> "); |
+ if (line == NULL) { |
+ break; |
+ } else { |
+ // Repeat last command by default. |
+ char* last_input = last_debugger_input(); |
+ if (strcmp(line, "\n") == 0 && (last_input != NULL)) { |
+ DeleteArray(line); |
+ line = last_input; |
+ } else { |
+ // Update the latest command ran |
+ set_last_debugger_input(line); |
+ } |
+ |
+ // Use sscanf to parse the individual parts of the command line. At the |
+ // moment no command expects more than two parameters. |
+ int argc = SScanF(line, |
+ "%" XSTR(COMMAND_SIZE) "s " |
+ "%" XSTR(ARG_SIZE) "s " |
+ "%" XSTR(ARG_SIZE) "s", |
+ cmd, arg1, arg2); |
+ |
+ // stepi / si ------------------------------------------------------------ |
+ if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { |
+ // We are about to execute instructions, after which by default we |
+ // should increment the pc_. If it was set when reaching this debug |
+ // instruction, it has not been cleared because this instruction has not |
+ // completed yet. So clear it manually. |
+ pc_modified_ = false; |
+ |
+ if (argc == 1) { |
+ ExecuteInstruction(); |
+ } else { |
+ int64_t number_of_instructions_to_execute = 1; |
+ GetValue(arg1, &number_of_instructions_to_execute); |
+ |
+ set_log_parameters(log_parameters() | LOG_DISASM); |
+ while (number_of_instructions_to_execute-- > 0) { |
+ ExecuteInstruction(); |
+ } |
+ set_log_parameters(log_parameters() & ~LOG_DISASM); |
+ PrintF("\n"); |
+ } |
+ |
+ // If it was necessary, the pc has already been updated or incremented |
+ // when executing the instruction. So we do not want it to be updated |
+ // again. It will be cleared when exiting. |
+ pc_modified_ = true; |
+ |
+ // next / n -------------------------------------------------------------- |
+ } else if ((strcmp(cmd, "next") == 0) || (strcmp(cmd, "n") == 0)) { |
+ // Tell the simulator to break after the next executed BL. |
+ break_on_next_ = true; |
+ // Continue. |
+ done = true; |
+ |
+ // continue / cont / c --------------------------------------------------- |
+ } else if ((strcmp(cmd, "continue") == 0) || |
+ (strcmp(cmd, "cont") == 0) || |
+ (strcmp(cmd, "c") == 0)) { |
+ // Leave the debugger shell. |
+ done = true; |
+ |
+ // disassemble / disasm / di --------------------------------------------- |
+ } else if (strcmp(cmd, "disassemble") == 0 || |
+ strcmp(cmd, "disasm") == 0 || |
+ strcmp(cmd, "di") == 0) { |
+ int64_t n_of_instrs_to_disasm = 10; // default value. |
+ int64_t address = reinterpret_cast<int64_t>(pc_); // default value. |
+ if (argc >= 2) { // disasm <n of instrs> |
+ GetValue(arg1, &n_of_instrs_to_disasm); |
+ } |
+ if (argc >= 3) { // disasm <n of instrs> <address> |
+ GetValue(arg2, &address); |
+ } |
+ |
+ // Disassemble. |
+ PrintInstructionsAt(reinterpret_cast<Instruction*>(address), |
+ n_of_instrs_to_disasm); |
+ PrintF("\n"); |
+ |
+ // print / p ------------------------------------------------------------- |
+ } else if ((strcmp(cmd, "print") == 0) || (strcmp(cmd, "p") == 0)) { |
+ if (argc == 2) { |
+ if (strcmp(arg1, "all") == 0) { |
+ // TODO(all): better support for printing in the debugger. |
+ PrintRegisters(true); |
+ PrintFPRegisters(true); |
+ } else { |
+ if (!PrintValue(arg1)) { |
+ PrintF("%s unrecognized\n", arg1); |
+ } |
+ } |
+ } else { |
+ PrintF( |
+ "print <register>\n" |
+ " Print the content of a register. (alias 'p')\n" |
+ " 'print all' will print all registers.\n" |
+ " Use 'printobject' to get more details about the value.\n"); |
+ } |
+ |
+ // printobject / po ------------------------------------------------------ |
+ } else if ((strcmp(cmd, "printobject") == 0) || |
+ (strcmp(cmd, "po") == 0)) { |
+ if (argc == 2) { |
+ int64_t value; |
+ if (GetValue(arg1, &value)) { |
+ Object* obj = reinterpret_cast<Object*>(value); |
+ PrintF("%s: \n", arg1); |
+#ifdef DEBUG |
+ obj->PrintLn(); |
+#else |
+ obj->ShortPrint(); |
+ PrintF("\n"); |
+#endif |
+ } else { |
+ PrintF("%s unrecognized\n", arg1); |
+ } |
+ } else { |
+ PrintF("printobject <value>\n" |
+ "printobject <register>\n" |
+ " Print details about the value. (alias 'po')\n"); |
+ } |
+ |
+ // stack / mem ---------------------------------------------------------- |
+ } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) { |
+ int64_t* cur = NULL; |
+ int64_t* end = NULL; |
+ int next_arg = 1; |
+ |
+ if (strcmp(cmd, "stack") == 0) { |
+ cur = reinterpret_cast<int64_t*>(jssp()); |
+ |
+ } else { // "mem" |
+ int64_t value; |
+ if (!GetValue(arg1, &value)) { |
+ PrintF("%s unrecognized\n", arg1); |
+ continue; |
+ } |
+ cur = reinterpret_cast<int64_t*>(value); |
+ next_arg++; |
+ } |
+ |
+ int64_t words; |
+ if (argc == next_arg) { |
+ words = 10; |
+ } else if (argc == next_arg + 1) { |
+ if (!GetValue(argv[next_arg], &words)) { |
+ PrintF("%s unrecognized\n", argv[next_arg]); |
+ PrintF("Printing 10 double words by default"); |
+ words = 10; |
+ } |
+ } |
+ end = cur + words; |
+ |
+ while (cur < end) { |
+ PrintF(" 0x%016" PRIx64 ": 0x%016" PRIx64 " %10" PRId64, |
+ reinterpret_cast<uint64_t>(cur), *cur, *cur); |
+ HeapObject* obj = reinterpret_cast<HeapObject*>(*cur); |
+ int64_t value = *cur; |
+ Heap* current_heap = v8::internal::Isolate::Current()->heap(); |
+ if (((value & 1) == 0) || current_heap->Contains(obj)) { |
+ PrintF(" ("); |
+ if ((value & kSmiTagMask) == 0) { |
+ STATIC_ASSERT(kSmiValueSize == 32); |
+ int32_t untagged = (value >> kSmiShift) & 0xffffffff; |
+ PrintF("smi %" PRId32, untagged); |
+ } else { |
+ obj->ShortPrint(); |
+ } |
+ PrintF(")"); |
+ } |
+ PrintF("\n"); |
+ cur++; |
+ } |
+ |
+ // trace / t ------------------------------------------------------------- |
+ } else if (strcmp(cmd, "trace") == 0 || strcmp(cmd, "t") == 0) { |
+ if ((log_parameters() & (LOG_DISASM | LOG_REGS)) != |
+ (LOG_DISASM | LOG_REGS)) { |
+ PrintF("Enabling disassembly and registers tracing\n"); |
+ set_log_parameters(log_parameters() | LOG_DISASM | LOG_REGS); |
+ } else { |
+ PrintF("Disabling disassembly and registers tracing\n"); |
+ set_log_parameters(log_parameters() & ~(LOG_DISASM | LOG_REGS)); |
+ } |
+ |
+ // break / b ------------------------------------------------------------- |
+ } else if (strcmp(cmd, "break") == 0 || strcmp(cmd, "b") == 0) { |
+ if (argc == 2) { |
+ int64_t value; |
+ if (GetValue(arg1, &value)) { |
+ SetBreakpoint(reinterpret_cast<Instruction*>(value)); |
+ } else { |
+ PrintF("%s unrecognized\n", arg1); |
+ } |
+ } else { |
+ ListBreakpoints(); |
+ PrintF("Use `break <address>` to set or disable a breakpoint\n"); |
+ } |
+ |
+ // gdb ------------------------------------------------------------------- |
+ } else if (strcmp(cmd, "gdb") == 0) { |
+ PrintF("Relinquishing control to gdb.\n"); |
+ OS::DebugBreak(); |
+ PrintF("Regaining control from gdb.\n"); |
+ |
+ // sysregs --------------------------------------------------------------- |
+ } else if (strcmp(cmd, "sysregs") == 0) { |
+ PrintSystemRegisters(); |
+ |
+ // help / h -------------------------------------------------------------- |
+ } else if (strcmp(cmd, "help") == 0 || strcmp(cmd, "h") == 0) { |
+ PrintF( |
+ "stepi / si\n" |
+ " stepi <n>\n" |
+ " Step <n> instructions.\n" |
+ "next / n\n" |
+ " Continue execution until a BL instruction is reached.\n" |
+ " At this point a breakpoint is set just after this BL.\n" |
+ " Then execution is resumed. It will probably later hit the\n" |
+ " breakpoint just set.\n" |
+ "continue / cont / c\n" |
+ " Continue execution from here.\n" |
+ "disassemble / disasm / di\n" |
+ " disassemble <n> <address>\n" |
+ " Disassemble <n> instructions from current <address>.\n" |
+ " By default <n> is 20 and <address> is the current pc.\n" |
+ "print / p\n" |
+ " print <register>\n" |
+ " Print the content of a register.\n" |
+ " 'print all' will print all registers.\n" |
+ " Use 'printobject' to get more details about the value.\n" |
+ "printobject / po\n" |
+ " printobject <value>\n" |
+ " printobject <register>\n" |
+ " Print details about the value.\n" |
+ "stack\n" |
+ " stack [<words>]\n" |
+ " Dump stack content, default dump 10 words\n" |
+ "mem\n" |
+ " mem <address> [<words>]\n" |
+ " Dump memory content, default dump 10 words\n" |
+ "trace / t\n" |
+ " Toggle disassembly and register tracing\n" |
+ "break / b\n" |
+ " break : list all breakpoints\n" |
+ " break <address> : set / enable / disable a breakpoint.\n" |
+ "gdb\n" |
+ " Enter gdb.\n" |
+ "sysregs\n" |
+ " Print all system registers (including NZCV).\n"); |
+ } else { |
+ PrintF("Unknown command: %s\n", cmd); |
+ PrintF("Use 'help' for more information.\n"); |
+ } |
+ } |
+ if (cleared_log_disasm_bit == true) { |
+ set_log_parameters(log_parameters_ | LOG_DISASM); |
+ } |
+ } |
+} |
+ |
+ |
+// Calls into the V8 runtime are based on this very simple interface. |
+// Note: To be able to return two values from some calls the code in runtime.cc |
+// uses the ObjectPair structure. |
+// The simulator assumes all runtime calls return two 64-bits values. If they |
+// don't, register x1 is clobbered. This is fine because x1 is caller-saved. |
+struct ObjectPair { |
+ int64_t res0; |
+ int64_t res1; |
+}; |
+ |
+ |
+typedef ObjectPair (*SimulatorRuntimeCall)(int64_t arg0, |
+ int64_t arg1, |
+ int64_t arg2, |
+ int64_t arg3, |
+ int64_t arg4, |
+ int64_t arg5, |
+ int64_t arg6, |
+ int64_t arg7); |
+ |
+typedef int64_t (*SimulatorRuntimeCompareCall)(double arg1, double arg2); |
+typedef double (*SimulatorRuntimeFPFPCall)(double arg1, double arg2); |
+typedef double (*SimulatorRuntimeFPCall)(double arg1); |
+typedef double (*SimulatorRuntimeFPIntCall)(double arg1, int32_t arg2); |
+ |
+// This signature supports direct call in to API function native callback |
+// (refer to InvocationCallback in v8.h). |
+typedef void (*SimulatorRuntimeDirectApiCall)(int64_t arg0); |
+typedef void (*SimulatorRuntimeProfilingApiCall)(int64_t arg0, void* arg1); |
+ |
+// This signature supports direct call to accessor getter callback. |
+typedef void (*SimulatorRuntimeDirectGetterCall)(int64_t arg0, int64_t arg1); |
+typedef void (*SimulatorRuntimeProfilingGetterCall)(int64_t arg0, int64_t arg1, |
+ void* arg2); |
+ |
+void Simulator::VisitException(Instruction* instr) { |
+ // Define some colour codes to use for log messages. |
+ // TODO(jbramley): Find a more elegant way of defining these. |
+ char const* const clr_normal = (FLAG_log_colour) ? ("\033[m") |
+ : (""); |
+ char const* const clr_debug_number = (FLAG_log_colour) ? ("\033[1;33m") |
+ : (""); |
+ char const* const clr_debug_message = (FLAG_log_colour) ? ("\033[0;33m") |
+ : (""); |
+ char const* const clr_printf = (FLAG_log_colour) ? ("\033[0;32m") |
+ : (""); |
+ |
+ switch (instr->Mask(ExceptionMask)) { |
+ case HLT: { |
+ if (instr->ImmException() == kImmExceptionIsDebug) { |
+ // Read the arguments encoded inline in the instruction stream. |
+ uint32_t code; |
+ uint32_t parameters; |
+ char const * message; |
+ |
+ ASSERT(sizeof(*pc_) == 1); |
+ memcpy(&code, pc_ + kDebugCodeOffset, sizeof(code)); |
+ memcpy(¶meters, pc_ + kDebugParamsOffset, sizeof(parameters)); |
+ message = reinterpret_cast<char const *>(pc_ + kDebugMessageOffset); |
+ |
+ // Always print something when we hit a debug point that breaks. |
+ // We are going to break, so printing something is not an issue in |
+ // terms of speed. |
+ if (FLAG_trace_sim_messages || FLAG_trace_sim || (parameters & BREAK)) { |
+ if (message != NULL) { |
+ PrintF("%sDebugger hit %d: %s%s%s\n", |
+ clr_debug_number, |
+ code, |
+ clr_debug_message, |
+ message, |
+ clr_normal); |
+ } else { |
+ PrintF("%sDebugger hit %d.%s\n", |
+ clr_debug_number, |
+ code, |
+ clr_normal); |
+ } |
+ } |
+ |
+ // Other options. |
+ switch (parameters & kDebuggerTracingDirectivesMask) { |
+ case TRACE_ENABLE: |
+ set_log_parameters(log_parameters() | parameters); |
+ if (parameters & LOG_SYS_REGS) { PrintSystemRegisters(); } |
+ if (parameters & LOG_REGS) { PrintRegisters(); } |
+ if (parameters & LOG_FP_REGS) { PrintFPRegisters(); } |
+ break; |
+ case TRACE_DISABLE: |
+ set_log_parameters(log_parameters() & ~parameters); |
+ break; |
+ case TRACE_OVERRIDE: |
+ set_log_parameters(parameters); |
+ break; |
+ default: |
+ // We don't support a one-shot LOG_DISASM. |
+ ASSERT((parameters & LOG_DISASM) == 0); |
+ // Don't print information that is already being traced. |
+ parameters &= ~log_parameters(); |
+ // Print the requested information. |
+ if (parameters & LOG_SYS_REGS) PrintSystemRegisters(true); |
+ if (parameters & LOG_REGS) PrintRegisters(true); |
+ if (parameters & LOG_FP_REGS) PrintFPRegisters(true); |
+ } |
+ |
+ // The stop parameters are inlined in the code. Skip them: |
+ // - Skip to the end of the message string. |
+ pc_ += kDebugMessageOffset + strlen(message) + 1; |
+ // - Advance to the next aligned location. |
+ pc_ = AlignUp(pc_, kInstructionSize); |
+ // - Verify that the unreachable marker is present. |
+ ASSERT(pc_->Mask(ExceptionMask) == HLT); |
+ ASSERT(pc_->ImmException() == kImmExceptionIsUnreachable); |
+ // - Skip past the unreachable marker. |
+ set_pc(pc_->NextInstruction()); |
+ |
+ // Check if the debugger should break. |
+ if (parameters & BREAK) Debug(); |
+ |
+ } else if (instr->ImmException() == kImmExceptionIsRedirectedCall) { |
+ // TODO(all): Extract the call redirection code into a separate |
+ // function. |
+ |
+ Redirection* redirection = Redirection::FromHltInstruction(instr); |
+ |
+ // The called C code might itself call simulated code, so any |
+ // caller-saved registers (including lr) could still be clobbered by a |
+ // redirected call. |
+ Instruction* return_address = lr(); |
+ |
+ // TODO(jbramley): Make external_function() a template so that we don't |
+ // have to explicitly cast the result for each redirection type. |
+ int64_t external = |
+ reinterpret_cast<int64_t>(redirection->external_function()); |
+ |
+ TraceSim("Call to host function at %p\n", |
+ reinterpret_cast<void*>(redirection->external_function())); |
+ |
+ // SP must be 16 bytes aligned at the call interface. |
+ bool stack_alignment_exception = ((sp() & 0xf) != 0); |
+ if (stack_alignment_exception) { |
+ TraceSim(" with unaligned stack 0x%016" PRIx64 ".\n", sp()); |
+ ALIGNMENT_EXCEPTION(); |
+ } |
+ |
+ switch (redirection->type()) { |
+ default: |
+ TraceSim("Type: Unknown.\n"); |
+ UNREACHABLE(); |
+ break; |
+ |
+ case ExternalReference::BUILTIN_CALL: { |
+ // MaybeObject* f(v8::internal::Arguments). |
+ TraceSim("Type: BUILTIN_CALL\n"); |
+ SimulatorRuntimeCall target = |
+ reinterpret_cast<SimulatorRuntimeCall>(external); |
+ |
+ // We don't know how many arguments are being passed, but we can |
+ // pass 8 without touching the stack. They will be ignored by the |
+ // host function if they aren't used. |
+ TraceSim("Arguments: " |
+ "0x%016" PRIx64 ", 0x%016" PRIx64 ", " |
+ "0x%016" PRIx64 ", 0x%016" PRIx64 ", " |
+ "0x%016" PRIx64 ", 0x%016" PRIx64 ", " |
+ "0x%016" PRIx64 ", 0x%016" PRIx64, |
+ xreg(0), xreg(1), xreg(2), xreg(3), |
+ xreg(4), xreg(5), xreg(6), xreg(7)); |
+ ObjectPair result = target(xreg(0), xreg(1), xreg(2), xreg(3), |
+ xreg(4), xreg(5), xreg(6), xreg(7)); |
+ TraceSim("Returned: {0x%" PRIx64 ", 0x%" PRIx64"}\n", |
+ result.res0, result.res1); |
+#ifdef DEBUG |
+ CorruptAllCallerSavedCPURegisters(); |
+#endif |
+ set_xreg(0, result.res0); |
+ set_xreg(1, result.res1); |
+ break; |
+ } |
+ |
+ case ExternalReference::DIRECT_API_CALL: { |
+ // void f(v8::FunctionCallbackInfo&) |
+ TraceSim("Type: DIRECT_API_CALL\n"); |
+ SimulatorRuntimeDirectApiCall target = |
+ reinterpret_cast<SimulatorRuntimeDirectApiCall>(external); |
+ TraceSim("Arguments: 0x%016" PRIx64 "\n", xreg(0)); |
+ target(xreg(0)); |
+ TraceSim("No return value."); |
+#ifdef DEBUG |
+ CorruptAllCallerSavedCPURegisters(); |
+#endif |
+ break; |
+ } |
+ |
+ case ExternalReference::BUILTIN_COMPARE_CALL: { |
+ // int f(double, double) |
+ TraceSim("Type: BUILTIN_COMPARE_CALL\n"); |
+ SimulatorRuntimeCompareCall target = |
+ reinterpret_cast<SimulatorRuntimeCompareCall>(external); |
+ TraceSim("Arguments: %f, %f\n", dreg(0), dreg(1)); |
+ int64_t result = target(dreg(0), dreg(1)); |
+ TraceSim("Returned: %" PRId64 "\n", result); |
+#ifdef DEBUG |
+ CorruptAllCallerSavedCPURegisters(); |
+#endif |
+ set_xreg(0, result); |
+ break; |
+ } |
+ |
+ case ExternalReference::BUILTIN_FP_CALL: { |
+ // double f(double) |
+ TraceSim("Type: BUILTIN_FP_CALL\n"); |
+ SimulatorRuntimeFPCall target = |
+ reinterpret_cast<SimulatorRuntimeFPCall>(external); |
+ TraceSim("Argument: %f\n", dreg(0)); |
+ double result = target(dreg(0)); |
+ TraceSim("Returned: %f\n", result); |
+#ifdef DEBUG |
+ CorruptAllCallerSavedCPURegisters(); |
+#endif |
+ set_dreg(0, result); |
+ break; |
+ } |
+ |
+ case ExternalReference::BUILTIN_FP_FP_CALL: { |
+ // double f(double, double) |
+ TraceSim("Type: BUILTIN_FP_FP_CALL\n"); |
+ SimulatorRuntimeFPFPCall target = |
+ reinterpret_cast<SimulatorRuntimeFPFPCall>(external); |
+ TraceSim("Arguments: %f, %f\n", dreg(0), dreg(1)); |
+ double result = target(dreg(0), dreg(1)); |
+ TraceSim("Returned: %f\n", result); |
+#ifdef DEBUG |
+ CorruptAllCallerSavedCPURegisters(); |
+#endif |
+ set_dreg(0, result); |
+ break; |
+ } |
+ |
+ case ExternalReference::BUILTIN_FP_INT_CALL: { |
+ // double f(double, int) |
+ TraceSim("Type: BUILTIN_FP_INT_CALL\n"); |
+ SimulatorRuntimeFPIntCall target = |
+ reinterpret_cast<SimulatorRuntimeFPIntCall>(external); |
+ TraceSim("Arguments: %f, %d\n", dreg(0), wreg(0)); |
+ double result = target(dreg(0), wreg(0)); |
+ TraceSim("Returned: %f\n", result); |
+#ifdef DEBUG |
+ CorruptAllCallerSavedCPURegisters(); |
+#endif |
+ set_dreg(0, result); |
+ break; |
+ } |
+ |
+ case ExternalReference::DIRECT_GETTER_CALL: { |
+ // void f(Local<String> property, PropertyCallbackInfo& info) |
+ TraceSim("Type: DIRECT_GETTER_CALL\n"); |
+ SimulatorRuntimeDirectGetterCall target = |
+ reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external); |
+ TraceSim("Arguments: 0x%016" PRIx64 ", 0x%016" PRIx64 "\n", |
+ xreg(0), xreg(1)); |
+ target(xreg(0), xreg(1)); |
+ TraceSim("No return value."); |
+#ifdef DEBUG |
+ CorruptAllCallerSavedCPURegisters(); |
+#endif |
+ break; |
+ } |
+ |
+ case ExternalReference::PROFILING_API_CALL: { |
+ // void f(v8::FunctionCallbackInfo&, v8::FunctionCallback) |
+ TraceSim("Type: PROFILING_API_CALL\n"); |
+ SimulatorRuntimeProfilingApiCall target = |
+ reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external); |
+ void* arg1 = Redirection::ReverseRedirection(xreg(1)); |
+ TraceSim("Arguments: 0x%016" PRIx64 ", %p\n", xreg(0), arg1); |
+ target(xreg(0), arg1); |
+ TraceSim("No return value."); |
+#ifdef DEBUG |
+ CorruptAllCallerSavedCPURegisters(); |
+#endif |
+ break; |
+ } |
+ |
+ case ExternalReference::PROFILING_GETTER_CALL: { |
+ // void f(Local<String> property, PropertyCallbackInfo& info, |
+ // AccessorGetterCallback callback) |
+ TraceSim("Type: PROFILING_GETTER_CALL\n"); |
+ SimulatorRuntimeProfilingGetterCall target = |
+ reinterpret_cast<SimulatorRuntimeProfilingGetterCall>( |
+ external); |
+ void* arg2 = Redirection::ReverseRedirection(xreg(2)); |
+ TraceSim("Arguments: 0x%016" PRIx64 ", 0x%016" PRIx64 ", %p\n", |
+ xreg(0), xreg(1), arg2); |
+ target(xreg(0), xreg(1), arg2); |
+ TraceSim("No return value."); |
+#ifdef DEBUG |
+ CorruptAllCallerSavedCPURegisters(); |
+#endif |
+ break; |
+ } |
+ } |
+ |
+ set_lr(return_address); |
+ set_pc(return_address); |
+ } else if (instr->ImmException() == kImmExceptionIsPrintf) { |
+ // Read the argument encoded inline in the instruction stream. |
+ uint32_t type; |
+ ASSERT(sizeof(*pc_) == 1); |
+ memcpy(&type, pc_ + kPrintfTypeOffset, sizeof(type)); |
+ |
+ const char* format = reg<const char*>(0); |
+ |
+ // Pass all of the relevant PCS registers onto printf. It doesn't |
+ // matter if we pass too many as the extra ones won't be read. |
+ int result; |
+ fputs(clr_printf, stream_); |
+ if (type == CPURegister::kRegister) { |
+ result = fprintf(stream_, format, |
+ xreg(1), xreg(2), xreg(3), xreg(4), |
+ xreg(5), xreg(6), xreg(7)); |
+ } else if (type == CPURegister::kFPRegister) { |
+ result = fprintf(stream_, format, |
+ dreg(0), dreg(1), dreg(2), dreg(3), |
+ dreg(4), dreg(5), dreg(6), dreg(7)); |
+ } else { |
+ ASSERT(type == CPURegister::kNoRegister); |
+ result = fprintf(stream_, "%s", format); |
+ } |
+ fputs(clr_normal, stream_); |
+ set_xreg(0, result); |
+ |
+ // TODO(jbramley): Consider clobbering all caller-saved registers here. |
+ |
+ // The printf parameters are inlined in the code, so skip them. |
+ set_pc(pc_->InstructionAtOffset(kPrintfLength)); |
+ |
+ // Set LR as if we'd just called a native printf function. |
+ set_lr(pc()); |
+ |
+ } else if (instr->ImmException() == kImmExceptionIsUnreachable) { |
+ fprintf(stream_, "Hit UNREACHABLE marker at PC=%p.\n", |
+ reinterpret_cast<void*>(pc_)); |
+ abort(); |
+ |
+ } else { |
+ OS::DebugBreak(); |
+ } |
+ break; |
+ } |
+ |
+ default: |
+ UNIMPLEMENTED(); |
+ } |
+} |
+ |
+#endif // USE_SIMULATOR |
+ |
+} } // namespace v8::internal |
+ |
+#endif // V8_TARGET_ARCH_A64 |