Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(35)

Unified Diff: src/a64/simulator-a64.cc

Issue 148293020: Merge experimental/a64 to bleeding_edge. (Closed) Base URL: https://v8.googlecode.com/svn/branches/bleeding_edge
Patch Set: Remove ARM from OWNERS Created 6 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/a64/simulator-a64.h ('k') | src/a64/stub-cache-a64.cc » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/a64/simulator-a64.cc
diff --git a/src/a64/simulator-a64.cc b/src/a64/simulator-a64.cc
new file mode 100644
index 0000000000000000000000000000000000000000..e0625bc6140d9da8c423f03b44b7b9fb71113762
--- /dev/null
+++ b/src/a64/simulator-a64.cc
@@ -0,0 +1,3429 @@
+// Copyright 2013 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include <stdlib.h>
+#include <cmath>
+#include <cstdarg>
+#include "v8.h"
+
+#if V8_TARGET_ARCH_A64
+
+#include "disasm.h"
+#include "assembler.h"
+#include "a64/simulator-a64.h"
+#include "macro-assembler.h"
+
+namespace v8 {
+namespace internal {
+
+#if defined(USE_SIMULATOR)
+
+
+// This macro provides a platform independent use of sscanf. The reason for
+// SScanF not being implemented in a platform independent way through
+// ::v8::internal::OS in the same way as SNPrintF is that the
+// Windows C Run-Time Library does not provide vsscanf.
+#define SScanF sscanf // NOLINT
+
+
+// This is basically the same as PrintF, with a guard for FLAG_trace_sim.
+void PRINTF_CHECKING TraceSim(const char* format, ...) {
+ if (FLAG_trace_sim) {
+ va_list arguments;
+ va_start(arguments, format);
+ OS::VPrint(format, arguments);
+ va_end(arguments);
+ }
+}
+
+
+const Instruction* Simulator::kEndOfSimAddress = NULL;
+
+
+void SimSystemRegister::SetBits(int msb, int lsb, uint32_t bits) {
+ int width = msb - lsb + 1;
+ ASSERT(is_uintn(bits, width) || is_intn(bits, width));
+
+ bits <<= lsb;
+ uint32_t mask = ((1 << width) - 1) << lsb;
+ ASSERT((mask & write_ignore_mask_) == 0);
+
+ value_ = (value_ & ~mask) | (bits & mask);
+}
+
+
+SimSystemRegister SimSystemRegister::DefaultValueFor(SystemRegister id) {
+ switch (id) {
+ case NZCV:
+ return SimSystemRegister(0x00000000, NZCVWriteIgnoreMask);
+ case FPCR:
+ return SimSystemRegister(0x00000000, FPCRWriteIgnoreMask);
+ default:
+ UNREACHABLE();
+ return SimSystemRegister();
+ }
+}
+
+
+void Simulator::Initialize(Isolate* isolate) {
+ if (isolate->simulator_initialized()) return;
+ isolate->set_simulator_initialized(true);
+ ExternalReference::set_redirector(isolate, &RedirectExternalReference);
+}
+
+
+// Get the active Simulator for the current thread.
+Simulator* Simulator::current(Isolate* isolate) {
+ Isolate::PerIsolateThreadData* isolate_data =
+ isolate->FindOrAllocatePerThreadDataForThisThread();
+ ASSERT(isolate_data != NULL);
+
+ Simulator* sim = isolate_data->simulator();
+ if (sim == NULL) {
+ // TODO(146): delete the simulator object when a thread/isolate goes away.
+ sim = new Simulator(new Decoder(), isolate);
+ isolate_data->set_simulator(sim);
+ }
+ return sim;
+}
+
+
+void Simulator::CallVoid(byte* entry, va_list args) {
+ int index_x = 0;
+ int index_d = 0;
+
+ // At this point, we don't know how much stack space we need (for arguments
+ // that don't fit into registers). We can only do one pass through the
+ // va_list, so we store the extra arguments in a vector, then copy them to
+ // their proper locations later.
+ std::vector<int64_t> stack_args(0);
+
+ // Process register arguments.
+ CallArgument arg = va_arg(args, CallArgument);
+ while (!arg.IsEnd()) {
+ if (arg.IsX() && (index_x < 8)) {
+ set_xreg(index_x++, arg.bits());
+ } else if (arg.IsD() && (index_d < 8)) {
+ set_dreg_bits(index_d++, arg.bits());
+ } else {
+ ASSERT(arg.IsD() || arg.IsX());
+ stack_args.push_back(arg.bits());
+ }
+ arg = va_arg(args, CallArgument);
+ }
+
+ // Process stack arguments, and make sure the stack is suitably aligned.
+ uintptr_t original_stack = sp();
+ uintptr_t entry_stack = original_stack -
+ stack_args.size() * sizeof(stack_args[0]);
+ if (OS::ActivationFrameAlignment() != 0) {
+ entry_stack &= -OS::ActivationFrameAlignment();
+ }
+ char * stack = reinterpret_cast<char*>(entry_stack);
+ std::vector<int64_t>::const_iterator it;
+ for (it = stack_args.begin(); it != stack_args.end(); it++) {
+ memcpy(stack, &(*it), sizeof(*it));
+ stack += sizeof(*it);
+ }
+
+ ASSERT(reinterpret_cast<uintptr_t>(stack) <= original_stack);
+ set_sp(entry_stack);
+
+ // Call the generated code.
+ set_pc(entry);
+ set_lr(kEndOfSimAddress);
+ CheckPCSComplianceAndRun();
+
+ set_sp(original_stack);
+}
+
+
+
+void Simulator::CallVoid(byte* entry, ...) {
+ va_list args;
+ va_start(args, entry);
+ CallVoid(entry, args);
+ va_end(args);
+}
+
+
+int64_t Simulator::CallInt64(byte* entry, ...) {
+ va_list args;
+ va_start(args, entry);
+ CallVoid(entry, args);
+ va_end(args);
+
+ return xreg(0);
+}
+
+
+double Simulator::CallDouble(byte* entry, ...) {
+ va_list args;
+ va_start(args, entry);
+ CallVoid(entry, args);
+ va_end(args);
+
+ return dreg(0);
+}
+
+
+int64_t Simulator::CallJS(byte* entry,
+ byte* function_entry,
+ JSFunction* func,
+ Object* revc,
+ int64_t argc,
+ Object*** argv) {
+ return CallInt64(entry,
+ CallArgument(function_entry),
+ CallArgument(func),
+ CallArgument(revc),
+ CallArgument(argc),
+ CallArgument(argv),
+ CallArgument::End());
+}
+
+int64_t Simulator::CallRegExp(byte* entry,
+ String* input,
+ int64_t start_offset,
+ const byte* input_start,
+ const byte* input_end,
+ int* output,
+ int64_t output_size,
+ Address stack_base,
+ int64_t direct_call,
+ void* return_address,
+ Isolate* isolate) {
+ return CallInt64(entry,
+ CallArgument(input),
+ CallArgument(start_offset),
+ CallArgument(input_start),
+ CallArgument(input_end),
+ CallArgument(output),
+ CallArgument(output_size),
+ CallArgument(stack_base),
+ CallArgument(direct_call),
+ CallArgument(return_address),
+ CallArgument(isolate),
+ CallArgument::End());
+}
+
+
+void Simulator::CheckPCSComplianceAndRun() {
+#ifdef DEBUG
+ CHECK_EQ(kNumberOfCalleeSavedRegisters, kCalleeSaved.Count());
+ CHECK_EQ(kNumberOfCalleeSavedFPRegisters, kCalleeSavedFP.Count());
+
+ int64_t saved_registers[kNumberOfCalleeSavedRegisters];
+ uint64_t saved_fpregisters[kNumberOfCalleeSavedFPRegisters];
+
+ CPURegList register_list = kCalleeSaved;
+ CPURegList fpregister_list = kCalleeSavedFP;
+
+ for (int i = 0; i < kNumberOfCalleeSavedRegisters; i++) {
+ // x31 is not a caller saved register, so no need to specify if we want
+ // the stack or zero.
+ saved_registers[i] = xreg(register_list.PopLowestIndex().code());
+ }
+ for (int i = 0; i < kNumberOfCalleeSavedFPRegisters; i++) {
+ saved_fpregisters[i] =
+ dreg_bits(fpregister_list.PopLowestIndex().code());
+ }
+ int64_t original_stack = sp();
+#endif
+ // Start the simulation!
+ Run();
+#ifdef DEBUG
+ CHECK_EQ(original_stack, sp());
+ // Check that callee-saved registers have been preserved.
+ register_list = kCalleeSaved;
+ fpregister_list = kCalleeSavedFP;
+ for (int i = 0; i < kNumberOfCalleeSavedRegisters; i++) {
+ CHECK_EQ(saved_registers[i], xreg(register_list.PopLowestIndex().code()));
+ }
+ for (int i = 0; i < kNumberOfCalleeSavedFPRegisters; i++) {
+ ASSERT(saved_fpregisters[i] ==
+ dreg_bits(fpregister_list.PopLowestIndex().code()));
+ }
+
+ // Corrupt caller saved register minus the return regiters.
+
+ // In theory x0 to x7 can be used for return values, but V8 only uses x0, x1
+ // for now .
+ register_list = kCallerSaved;
+ register_list.Remove(x0);
+ register_list.Remove(x1);
+
+ // In theory d0 to d7 can be used for return values, but V8 only uses d0
+ // for now .
+ fpregister_list = kCallerSavedFP;
+ fpregister_list.Remove(d0);
+
+ CorruptRegisters(&register_list, kCallerSavedRegisterCorruptionValue);
+ CorruptRegisters(&fpregister_list, kCallerSavedFPRegisterCorruptionValue);
+#endif
+}
+
+
+#ifdef DEBUG
+// The least significant byte of the curruption value holds the corresponding
+// register's code.
+void Simulator::CorruptRegisters(CPURegList* list, uint64_t value) {
+ if (list->type() == CPURegister::kRegister) {
+ while (!list->IsEmpty()) {
+ unsigned code = list->PopLowestIndex().code();
+ set_xreg(code, value | code);
+ }
+ } else {
+ ASSERT(list->type() == CPURegister::kFPRegister);
+ while (!list->IsEmpty()) {
+ unsigned code = list->PopLowestIndex().code();
+ set_dreg_bits(code, value | code);
+ }
+ }
+}
+
+
+void Simulator::CorruptAllCallerSavedCPURegisters() {
+ // Corrupt alters its parameter so copy them first.
+ CPURegList register_list = kCallerSaved;
+ CPURegList fpregister_list = kCallerSavedFP;
+
+ CorruptRegisters(&register_list, kCallerSavedRegisterCorruptionValue);
+ CorruptRegisters(&fpregister_list, kCallerSavedFPRegisterCorruptionValue);
+}
+#endif
+
+
+// Extending the stack by 2 * 64 bits is required for stack alignment purposes.
+// TODO(all): Insert a marker in the extra space allocated on the stack.
+uintptr_t Simulator::PushAddress(uintptr_t address) {
+ ASSERT(sizeof(uintptr_t) < 2 * kXRegSizeInBytes);
+ intptr_t new_sp = sp() - 2 * kXRegSizeInBytes;
+ uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
+ *stack_slot = address;
+ set_sp(new_sp);
+ return new_sp;
+}
+
+
+uintptr_t Simulator::PopAddress() {
+ intptr_t current_sp = sp();
+ uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
+ uintptr_t address = *stack_slot;
+ ASSERT(sizeof(uintptr_t) < 2 * kXRegSizeInBytes);
+ set_sp(current_sp + 2 * kXRegSizeInBytes);
+ return address;
+}
+
+
+// Returns the limit of the stack area to enable checking for stack overflows.
+uintptr_t Simulator::StackLimit() const {
+ // Leave a safety margin of 1024 bytes to prevent overrunning the stack when
+ // pushing values.
+ // TODO(all): Increase the stack limit protection.
+
+ // The margin was decreased to 256 bytes, because we are intensively using
+ // the stack. The stack usage should decrease when our code improves. Then
+ // we can set it to 1024 again.
+ return reinterpret_cast<uintptr_t>(stack_limit_) + 256;
+}
+
+
+Simulator::Simulator(Decoder* decoder, Isolate* isolate, FILE* stream)
+ : decoder_(decoder), last_debugger_input_(NULL), log_parameters_(NO_PARAM),
+ isolate_(isolate) {
+ // Setup the decoder.
+ decoder_->AppendVisitor(this);
+
+ ResetState();
+
+ // Allocate and setup the simulator stack.
+ stack_size_ = (FLAG_sim_stack_size * KB) + (2 * stack_protection_size_);
+ stack_ = new byte[stack_size_];
+ stack_limit_ = stack_ + stack_protection_size_;
+ byte* tos = stack_ + stack_size_ - stack_protection_size_;
+ // The stack pointer must be 16 bytes aligned.
+ set_sp(reinterpret_cast<int64_t>(tos) & ~0xfUL);
+
+ stream_ = stream;
+ print_disasm_ = new PrintDisassembler(stream_);
+
+ if (FLAG_trace_sim) {
+ decoder_->InsertVisitorBefore(print_disasm_, this);
+ log_parameters_ = LOG_ALL;
+ }
+
+ // The debugger needs to disassemble code without the simulator executing an
+ // instruction, so we create a dedicated decoder.
+ disassembler_decoder_ = new Decoder();
+ disassembler_decoder_->AppendVisitor(print_disasm_);
+
+ if (FLAG_log_instruction_stats) {
+ instrument_ = new Instrument(FLAG_log_instruction_file,
+ FLAG_log_instruction_period);
+ decoder_->AppendVisitor(instrument_);
+ }
+}
+
+
+void Simulator::ResetState() {
+ // Reset the system registers.
+ nzcv_ = SimSystemRegister::DefaultValueFor(NZCV);
+ fpcr_ = SimSystemRegister::DefaultValueFor(FPCR);
+
+ // Reset registers to 0.
+ pc_ = NULL;
+ for (unsigned i = 0; i < kNumberOfRegisters; i++) {
+ set_xreg(i, 0xbadbeef);
+ }
+ for (unsigned i = 0; i < kNumberOfFPRegisters; i++) {
+ // Set FP registers to a value that is NaN in both 32-bit and 64-bit FP.
+ set_dreg_bits(i, 0x7ff000007f800001UL);
+ }
+ // Returning to address 0 exits the Simulator.
+ set_lr(kEndOfSimAddress);
+
+ // Reset debug helpers.
+ breakpoints_.empty();
+ break_on_next_= false;
+}
+
+
+Simulator::~Simulator() {
+ delete[] stack_;
+ if (FLAG_log_instruction_stats) {
+ delete instrument_;
+ }
+ delete disassembler_decoder_;
+ delete print_disasm_;
+ DeleteArray(last_debugger_input_);
+}
+
+
+void Simulator::Run() {
+ pc_modified_ = false;
+ while (pc_ != kEndOfSimAddress) {
+ ExecuteInstruction();
+ }
+}
+
+
+void Simulator::RunFrom(Instruction* start) {
+ set_pc(start);
+ Run();
+}
+
+
+void Simulator::CheckStackAlignment() {
+ // TODO(aleram): The sp alignment check to perform depends on the processor
+ // state. Check the specifications for more details.
+}
+
+
+// When the generated code calls an external reference we need to catch that in
+// the simulator. The external reference will be a function compiled for the
+// host architecture. We need to call that function instead of trying to
+// execute it with the simulator. We do that by redirecting the external
+// reference to a svc (Supervisor Call) instruction that is handled by
+// the simulator. We write the original destination of the jump just at a known
+// offset from the svc instruction so the simulator knows what to call.
+class Redirection {
+ public:
+ Redirection(void* external_function, ExternalReference::Type type)
+ : external_function_(external_function),
+ type_(type),
+ next_(NULL) {
+ redirect_call_.SetInstructionBits(
+ HLT | Assembler::ImmException(kImmExceptionIsRedirectedCall));
+ Isolate* isolate = Isolate::Current();
+ next_ = isolate->simulator_redirection();
+ // TODO(all): Simulator flush I cache
+ isolate->set_simulator_redirection(this);
+ }
+
+ void* address_of_redirect_call() {
+ return reinterpret_cast<void*>(&redirect_call_);
+ }
+
+ void* external_function() { return external_function_; }
+ ExternalReference::Type type() { return type_; }
+
+ static Redirection* Get(void* external_function,
+ ExternalReference::Type type) {
+ Isolate* isolate = Isolate::Current();
+ Redirection* current = isolate->simulator_redirection();
+ for (; current != NULL; current = current->next_) {
+ if (current->external_function_ == external_function) {
+ ASSERT_EQ(current->type(), type);
+ return current;
+ }
+ }
+ return new Redirection(external_function, type);
+ }
+
+ static Redirection* FromHltInstruction(Instruction* redirect_call) {
+ char* addr_of_hlt = reinterpret_cast<char*>(redirect_call);
+ char* addr_of_redirection =
+ addr_of_hlt - OFFSET_OF(Redirection, redirect_call_);
+ return reinterpret_cast<Redirection*>(addr_of_redirection);
+ }
+
+ static void* ReverseRedirection(int64_t reg) {
+ Redirection* redirection =
+ FromHltInstruction(reinterpret_cast<Instruction*>(reg));
+ return redirection->external_function();
+ }
+
+ private:
+ void* external_function_;
+ Instruction redirect_call_;
+ ExternalReference::Type type_;
+ Redirection* next_;
+};
+
+
+void* Simulator::RedirectExternalReference(void* external_function,
+ ExternalReference::Type type) {
+ Redirection* redirection = Redirection::Get(external_function, type);
+ return redirection->address_of_redirect_call();
+}
+
+
+const char* Simulator::xreg_names[] = {
+"x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
+"x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
+"ip0", "ip1", "x18", "x19", "x20", "x21", "x22", "x23",
+"x24", "x25", "x26", "cp", "jssp", "fp", "lr", "xzr", "csp"};
+
+const char* Simulator::wreg_names[] = {
+"w0", "w1", "w2", "w3", "w4", "w5", "w6", "w7",
+"w8", "w9", "w10", "w11", "w12", "w13", "w14", "w15",
+"w16", "w17", "w18", "w19", "w20", "w21", "w22", "w23",
+"w24", "w25", "w26", "wcp", "wjssp", "wfp", "wlr", "wzr", "wcsp"};
+
+const char* Simulator::sreg_names[] = {
+"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
+"s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15",
+"s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23",
+"s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31"};
+
+const char* Simulator::dreg_names[] = {
+"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
+"d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15",
+"d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23",
+"d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31"};
+
+const char* Simulator::vreg_names[] = {
+"v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
+"v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15",
+"v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23",
+"v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"};
+
+
+const char* Simulator::WRegNameForCode(unsigned code, Reg31Mode mode) {
+ ASSERT(code < kNumberOfRegisters);
+ // If the code represents the stack pointer, index the name after zr.
+ if ((code == kZeroRegCode) && (mode == Reg31IsStackPointer)) {
+ code = kZeroRegCode + 1;
+ }
+ return wreg_names[code];
+}
+
+
+const char* Simulator::XRegNameForCode(unsigned code, Reg31Mode mode) {
+ ASSERT(code < kNumberOfRegisters);
+ // If the code represents the stack pointer, index the name after zr.
+ if ((code == kZeroRegCode) && (mode == Reg31IsStackPointer)) {
+ code = kZeroRegCode + 1;
+ }
+ return xreg_names[code];
+}
+
+
+const char* Simulator::SRegNameForCode(unsigned code) {
+ ASSERT(code < kNumberOfFPRegisters);
+ return sreg_names[code];
+}
+
+
+const char* Simulator::DRegNameForCode(unsigned code) {
+ ASSERT(code < kNumberOfFPRegisters);
+ return dreg_names[code];
+}
+
+
+const char* Simulator::VRegNameForCode(unsigned code) {
+ ASSERT(code < kNumberOfFPRegisters);
+ return vreg_names[code];
+}
+
+
+int Simulator::CodeFromName(const char* name) {
+ for (unsigned i = 0; i < kNumberOfRegisters; i++) {
+ if ((strcmp(xreg_names[i], name) == 0) ||
+ (strcmp(wreg_names[i], name) == 0)) {
+ return i;
+ }
+ }
+ for (unsigned i = 0; i < kNumberOfFPRegisters; i++) {
+ if ((strcmp(vreg_names[i], name) == 0) ||
+ (strcmp(dreg_names[i], name) == 0) ||
+ (strcmp(sreg_names[i], name) == 0)) {
+ return i;
+ }
+ }
+ if ((strcmp("csp", name) == 0) || (strcmp("wcsp", name) == 0)) {
+ return kSPRegInternalCode;
+ }
+ return -1;
+}
+
+
+// Helpers ---------------------------------------------------------------------
+int64_t Simulator::AddWithCarry(unsigned reg_size,
+ bool set_flags,
+ int64_t src1,
+ int64_t src2,
+ int64_t carry_in) {
+ ASSERT((carry_in == 0) || (carry_in == 1));
+ ASSERT((reg_size == kXRegSize) || (reg_size == kWRegSize));
+
+ uint64_t u1, u2;
+ int64_t result;
+ int64_t signed_sum = src1 + src2 + carry_in;
+
+ uint32_t N, Z, C, V;
+
+ if (reg_size == kWRegSize) {
+ u1 = static_cast<uint64_t>(src1) & kWRegMask;
+ u2 = static_cast<uint64_t>(src2) & kWRegMask;
+
+ result = signed_sum & kWRegMask;
+ // Compute the C flag by comparing the sum to the max unsigned integer.
+ C = ((kWMaxUInt - u1) < (u2 + carry_in)) ||
+ ((kWMaxUInt - u1 - carry_in) < u2);
+ // Overflow iff the sign bit is the same for the two inputs and different
+ // for the result.
+ int64_t s_src1 = src1 << (kXRegSize - kWRegSize);
+ int64_t s_src2 = src2 << (kXRegSize - kWRegSize);
+ int64_t s_result = result << (kXRegSize - kWRegSize);
+ V = ((s_src1 ^ s_src2) >= 0) && ((s_src1 ^ s_result) < 0);
+
+ } else {
+ u1 = static_cast<uint64_t>(src1);
+ u2 = static_cast<uint64_t>(src2);
+
+ result = signed_sum;
+ // Compute the C flag by comparing the sum to the max unsigned integer.
+ C = ((kXMaxUInt - u1) < (u2 + carry_in)) ||
+ ((kXMaxUInt - u1 - carry_in) < u2);
+ // Overflow iff the sign bit is the same for the two inputs and different
+ // for the result.
+ V = ((src1 ^ src2) >= 0) && ((src1 ^ result) < 0);
+ }
+
+ N = CalcNFlag(result, reg_size);
+ Z = CalcZFlag(result);
+
+ if (set_flags) {
+ nzcv().SetN(N);
+ nzcv().SetZ(Z);
+ nzcv().SetC(C);
+ nzcv().SetV(V);
+ }
+ return result;
+}
+
+
+int64_t Simulator::ShiftOperand(unsigned reg_size,
+ int64_t value,
+ Shift shift_type,
+ unsigned amount) {
+ if (amount == 0) {
+ return value;
+ }
+ int64_t mask = reg_size == kXRegSize ? kXRegMask : kWRegMask;
+ switch (shift_type) {
+ case LSL:
+ return (value << amount) & mask;
+ case LSR:
+ return static_cast<uint64_t>(value) >> amount;
+ case ASR: {
+ // Shift used to restore the sign.
+ unsigned s_shift = kXRegSize - reg_size;
+ // Value with its sign restored.
+ int64_t s_value = (value << s_shift) >> s_shift;
+ return (s_value >> amount) & mask;
+ }
+ case ROR: {
+ if (reg_size == kWRegSize) {
+ value &= kWRegMask;
+ }
+ return (static_cast<uint64_t>(value) >> amount) |
+ ((value & ((1L << amount) - 1L)) << (reg_size - amount));
+ }
+ default:
+ UNIMPLEMENTED();
+ return 0;
+ }
+}
+
+
+int64_t Simulator::ExtendValue(unsigned reg_size,
+ int64_t value,
+ Extend extend_type,
+ unsigned left_shift) {
+ switch (extend_type) {
+ case UXTB:
+ value &= kByteMask;
+ break;
+ case UXTH:
+ value &= kHalfWordMask;
+ break;
+ case UXTW:
+ value &= kWordMask;
+ break;
+ case SXTB:
+ value = (value << 56) >> 56;
+ break;
+ case SXTH:
+ value = (value << 48) >> 48;
+ break;
+ case SXTW:
+ value = (value << 32) >> 32;
+ break;
+ case UXTX:
+ case SXTX:
+ break;
+ default:
+ UNREACHABLE();
+ }
+ int64_t mask = (reg_size == kXRegSize) ? kXRegMask : kWRegMask;
+ return (value << left_shift) & mask;
+}
+
+
+void Simulator::FPCompare(double val0, double val1) {
+ AssertSupportedFPCR();
+
+ // TODO(jbramley): This assumes that the C++ implementation handles
+ // comparisons in the way that we expect (as per AssertSupportedFPCR()).
+ if ((std::isnan(val0) != 0) || (std::isnan(val1) != 0)) {
+ nzcv().SetRawValue(FPUnorderedFlag);
+ } else if (val0 < val1) {
+ nzcv().SetRawValue(FPLessThanFlag);
+ } else if (val0 > val1) {
+ nzcv().SetRawValue(FPGreaterThanFlag);
+ } else if (val0 == val1) {
+ nzcv().SetRawValue(FPEqualFlag);
+ } else {
+ UNREACHABLE();
+ }
+}
+
+
+void Simulator::SetBreakpoint(Instruction* location) {
+ for (unsigned i = 0; i < breakpoints_.size(); i++) {
+ if (breakpoints_.at(i).location == location) {
+ PrintF("Existing breakpoint at %p was %s\n",
+ reinterpret_cast<void*>(location),
+ breakpoints_.at(i).enabled ? "disabled" : "enabled");
+ breakpoints_.at(i).enabled = !breakpoints_.at(i).enabled;
+ return;
+ }
+ }
+ Breakpoint new_breakpoint = {location, true};
+ breakpoints_.push_back(new_breakpoint);
+ PrintF("Set a breakpoint at %p\n", reinterpret_cast<void*>(location));
+}
+
+
+void Simulator::ListBreakpoints() {
+ PrintF("Breakpoints:\n");
+ for (unsigned i = 0; i < breakpoints_.size(); i++) {
+ PrintF("%p : %s\n",
+ reinterpret_cast<void*>(breakpoints_.at(i).location),
+ breakpoints_.at(i).enabled ? "enabled" : "disabled");
+ }
+}
+
+
+void Simulator::CheckBreakpoints() {
+ bool hit_a_breakpoint = false;
+ for (unsigned i = 0; i < breakpoints_.size(); i++) {
+ if ((breakpoints_.at(i).location == pc_) &&
+ breakpoints_.at(i).enabled) {
+ hit_a_breakpoint = true;
+ // Disable this breakpoint.
+ breakpoints_.at(i).enabled = false;
+ }
+ }
+ if (hit_a_breakpoint) {
+ PrintF("Hit and disabled a breakpoint at %p.\n",
+ reinterpret_cast<void*>(pc_));
+ Debug();
+ }
+}
+
+
+void Simulator::CheckBreakNext() {
+ // If the current instruction is a BL, insert a breakpoint just after it.
+ if (break_on_next_ && pc_->IsBranchAndLinkToRegister()) {
+ SetBreakpoint(pc_->NextInstruction());
+ break_on_next_ = false;
+ }
+}
+
+
+void Simulator::PrintInstructionsAt(Instruction* start, uint64_t count) {
+ Instruction* end = start->InstructionAtOffset(count * kInstructionSize);
+ for (Instruction* pc = start; pc < end; pc = pc->NextInstruction()) {
+ disassembler_decoder_->Decode(pc);
+ }
+}
+
+
+void Simulator::PrintSystemRegisters(bool print_all) {
+ static bool first_run = true;
+
+ // Define some colour codes to use for the register dump.
+ // TODO(jbramley): Find a more elegant way of defining these.
+ char const * const clr_normal = (FLAG_log_colour) ? ("\033[m") : ("");
+ char const * const clr_flag_name = (FLAG_log_colour) ? ("\033[1;30m") : ("");
+ char const * const clr_flag_value = (FLAG_log_colour) ? ("\033[1;37m") : ("");
+
+ static SimSystemRegister last_nzcv;
+ if (print_all || first_run || (last_nzcv.RawValue() != nzcv().RawValue())) {
+ fprintf(stream_, "# %sFLAGS: %sN:%d Z:%d C:%d V:%d%s\n",
+ clr_flag_name,
+ clr_flag_value,
+ N(), Z(), C(), V(),
+ clr_normal);
+ }
+ last_nzcv = nzcv();
+
+ static SimSystemRegister last_fpcr;
+ if (print_all || first_run || (last_fpcr.RawValue() != fpcr().RawValue())) {
+ static const char * rmode[] = {
+ "0b00 (Round to Nearest)",
+ "0b01 (Round towards Plus Infinity)",
+ "0b10 (Round towards Minus Infinity)",
+ "0b11 (Round towards Zero)"
+ };
+ ASSERT(fpcr().RMode() <= (sizeof(rmode) / sizeof(rmode[0])));
+ fprintf(stream_, "# %sFPCR: %sAHP:%d DN:%d FZ:%d RMode:%s%s\n",
+ clr_flag_name,
+ clr_flag_value,
+ fpcr().AHP(), fpcr().DN(), fpcr().FZ(), rmode[fpcr().RMode()],
+ clr_normal);
+ }
+ last_fpcr = fpcr();
+
+ first_run = false;
+}
+
+
+void Simulator::PrintRegisters(bool print_all_regs) {
+ static bool first_run = true;
+ static int64_t last_regs[kNumberOfRegisters];
+
+ // Define some colour codes to use for the register dump.
+ // TODO(jbramley): Find a more elegant way of defining these.
+ char const * const clr_normal = (FLAG_log_colour) ? ("\033[m") : ("");
+ char const * const clr_reg_name = (FLAG_log_colour) ? ("\033[1;34m") : ("");
+ char const * const clr_reg_value = (FLAG_log_colour) ? ("\033[1;36m") : ("");
+
+ for (unsigned i = 0; i < kNumberOfRegisters; i++) {
+ if (print_all_regs || first_run ||
+ (last_regs[i] != xreg(i, Reg31IsStackPointer))) {
+ fprintf(stream_,
+ "# %s%4s:%s 0x%016" PRIx64 "%s\n",
+ clr_reg_name,
+ XRegNameForCode(i, Reg31IsStackPointer),
+ clr_reg_value,
+ xreg(i, Reg31IsStackPointer),
+ clr_normal);
+ }
+ // Cache the new register value so the next run can detect any changes.
+ last_regs[i] = xreg(i, Reg31IsStackPointer);
+ }
+ first_run = false;
+}
+
+
+void Simulator::PrintFPRegisters(bool print_all_regs) {
+ static bool first_run = true;
+ static uint64_t last_regs[kNumberOfFPRegisters];
+
+ // Define some colour codes to use for the register dump.
+ // TODO(jbramley): Find a more elegant way of defining these.
+ char const * const clr_normal = (FLAG_log_colour) ? ("\033[m") : ("");
+ char const * const clr_reg_name = (FLAG_log_colour) ? ("\033[1;33m") : ("");
+ char const * const clr_reg_value = (FLAG_log_colour) ? ("\033[1;35m") : ("");
+
+ // Print as many rows of registers as necessary, keeping each individual
+ // register in the same column each time (to make it easy to visually scan
+ // for changes).
+ for (unsigned i = 0; i < kNumberOfFPRegisters; i++) {
+ if (print_all_regs || first_run || (last_regs[i] != dreg_bits(i))) {
+ fprintf(stream_,
+ "# %s %4s:%s 0x%016" PRIx64 "%s (%s%s:%s %g%s %s:%s %g%s)\n",
+ clr_reg_name,
+ VRegNameForCode(i),
+ clr_reg_value,
+ dreg_bits(i),
+ clr_normal,
+ clr_reg_name,
+ DRegNameForCode(i),
+ clr_reg_value,
+ dreg(i),
+ clr_reg_name,
+ SRegNameForCode(i),
+ clr_reg_value,
+ sreg(i),
+ clr_normal);
+ }
+ // Cache the new register value so the next run can detect any changes.
+ last_regs[i] = dreg_bits(i);
+ }
+ first_run = false;
+}
+
+
+void Simulator::PrintProcessorState() {
+ PrintSystemRegisters();
+ PrintRegisters();
+ PrintFPRegisters();
+}
+
+
+void Simulator::PrintWrite(uint8_t* address,
+ uint64_t value,
+ unsigned num_bytes) {
+ // Define some color codes to use for memory logging.
+ const char* const clr_normal = (FLAG_log_colour) ? ("\033[m")
+ : ("");
+ const char* const clr_memory_value = (FLAG_log_colour) ? ("\033[1;32m")
+ : ("");
+ const char* const clr_memory_address = (FLAG_log_colour) ? ("\033[32m")
+ : ("");
+
+ // The template is "# value -> address". The template is not directly used
+ // in the printf since compilers tend to struggle with the parametrized
+ // width (%0*).
+ const char* format = "# %s0x%0*" PRIx64 "%s -> %s0x%016" PRIx64 "%s\n";
+ fprintf(stream_,
+ format,
+ clr_memory_value,
+ num_bytes * 2, // The width in hexa characters.
+ value,
+ clr_normal,
+ clr_memory_address,
+ address,
+ clr_normal);
+}
+
+
+// Visitors---------------------------------------------------------------------
+
+void Simulator::VisitUnimplemented(Instruction* instr) {
+ fprintf(stream_, "Unimplemented instruction at %p: 0x%08" PRIx32 "\n",
+ reinterpret_cast<void*>(instr), instr->InstructionBits());
+ UNIMPLEMENTED();
+}
+
+
+void Simulator::VisitUnallocated(Instruction* instr) {
+ fprintf(stream_, "Unallocated instruction at %p: 0x%08" PRIx32 "\n",
+ reinterpret_cast<void*>(instr), instr->InstructionBits());
+ UNIMPLEMENTED();
+}
+
+
+void Simulator::VisitPCRelAddressing(Instruction* instr) {
+ switch (instr->Mask(PCRelAddressingMask)) {
+ case ADR:
+ set_reg(instr->Rd(), instr->ImmPCOffsetTarget());
+ break;
+ case ADRP: // Not implemented in the assembler.
+ UNIMPLEMENTED();
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+}
+
+
+void Simulator::VisitUnconditionalBranch(Instruction* instr) {
+ switch (instr->Mask(UnconditionalBranchMask)) {
+ case BL:
+ set_lr(instr->NextInstruction());
+ // Fall through.
+ case B:
+ set_pc(instr->ImmPCOffsetTarget());
+ break;
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+void Simulator::VisitConditionalBranch(Instruction* instr) {
+ ASSERT(instr->Mask(ConditionalBranchMask) == B_cond);
+ if (ConditionPassed(static_cast<Condition>(instr->ConditionBranch()))) {
+ set_pc(instr->ImmPCOffsetTarget());
+ }
+}
+
+
+void Simulator::VisitUnconditionalBranchToRegister(Instruction* instr) {
+ Instruction* target = reg<Instruction*>(instr->Rn());
+ switch (instr->Mask(UnconditionalBranchToRegisterMask)) {
+ case BLR: {
+ set_lr(instr->NextInstruction());
+ // Fall through.
+ }
+ case BR:
+ case RET: set_pc(target); break;
+ default: UNIMPLEMENTED();
+ }
+}
+
+
+void Simulator::VisitTestBranch(Instruction* instr) {
+ unsigned bit_pos = (instr->ImmTestBranchBit5() << 5) |
+ instr->ImmTestBranchBit40();
+ bool take_branch = ((xreg(instr->Rt()) & (1UL << bit_pos)) == 0);
+ switch (instr->Mask(TestBranchMask)) {
+ case TBZ: break;
+ case TBNZ: take_branch = !take_branch; break;
+ default: UNIMPLEMENTED();
+ }
+ if (take_branch) {
+ set_pc(instr->ImmPCOffsetTarget());
+ }
+}
+
+
+void Simulator::VisitCompareBranch(Instruction* instr) {
+ unsigned rt = instr->Rt();
+ bool take_branch = false;
+ switch (instr->Mask(CompareBranchMask)) {
+ case CBZ_w: take_branch = (wreg(rt) == 0); break;
+ case CBZ_x: take_branch = (xreg(rt) == 0); break;
+ case CBNZ_w: take_branch = (wreg(rt) != 0); break;
+ case CBNZ_x: take_branch = (xreg(rt) != 0); break;
+ default: UNIMPLEMENTED();
+ }
+ if (take_branch) {
+ set_pc(instr->ImmPCOffsetTarget());
+ }
+}
+
+
+void Simulator::AddSubHelper(Instruction* instr, int64_t op2) {
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
+ bool set_flags = instr->FlagsUpdate();
+ int64_t new_val = 0;
+ Instr operation = instr->Mask(AddSubOpMask);
+
+ switch (operation) {
+ case ADD:
+ case ADDS: {
+ new_val = AddWithCarry(reg_size,
+ set_flags,
+ reg(reg_size, instr->Rn(), instr->RnMode()),
+ op2);
+ break;
+ }
+ case SUB:
+ case SUBS: {
+ new_val = AddWithCarry(reg_size,
+ set_flags,
+ reg(reg_size, instr->Rn(), instr->RnMode()),
+ ~op2,
+ 1);
+ break;
+ }
+ default: UNREACHABLE();
+ }
+
+ set_reg(reg_size, instr->Rd(), new_val, instr->RdMode());
+}
+
+
+void Simulator::VisitAddSubShifted(Instruction* instr) {
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
+ int64_t op2 = ShiftOperand(reg_size,
+ reg(reg_size, instr->Rm()),
+ static_cast<Shift>(instr->ShiftDP()),
+ instr->ImmDPShift());
+ AddSubHelper(instr, op2);
+}
+
+
+void Simulator::VisitAddSubImmediate(Instruction* instr) {
+ int64_t op2 = instr->ImmAddSub() << ((instr->ShiftAddSub() == 1) ? 12 : 0);
+ AddSubHelper(instr, op2);
+}
+
+
+void Simulator::VisitAddSubExtended(Instruction* instr) {
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
+ int64_t op2 = ExtendValue(reg_size,
+ reg(reg_size, instr->Rm()),
+ static_cast<Extend>(instr->ExtendMode()),
+ instr->ImmExtendShift());
+ AddSubHelper(instr, op2);
+}
+
+
+void Simulator::VisitAddSubWithCarry(Instruction* instr) {
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
+ int64_t op2 = reg(reg_size, instr->Rm());
+ int64_t new_val;
+
+ if ((instr->Mask(AddSubOpMask) == SUB) || instr->Mask(AddSubOpMask) == SUBS) {
+ op2 = ~op2;
+ }
+
+ new_val = AddWithCarry(reg_size,
+ instr->FlagsUpdate(),
+ reg(reg_size, instr->Rn()),
+ op2,
+ C());
+
+ set_reg(reg_size, instr->Rd(), new_val);
+}
+
+
+void Simulator::VisitLogicalShifted(Instruction* instr) {
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
+ Shift shift_type = static_cast<Shift>(instr->ShiftDP());
+ unsigned shift_amount = instr->ImmDPShift();
+ int64_t op2 = ShiftOperand(reg_size, reg(reg_size, instr->Rm()), shift_type,
+ shift_amount);
+ if (instr->Mask(NOT) == NOT) {
+ op2 = ~op2;
+ }
+ LogicalHelper(instr, op2);
+}
+
+
+void Simulator::VisitLogicalImmediate(Instruction* instr) {
+ LogicalHelper(instr, instr->ImmLogical());
+}
+
+
+void Simulator::LogicalHelper(Instruction* instr, int64_t op2) {
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
+ int64_t op1 = reg(reg_size, instr->Rn());
+ int64_t result = 0;
+ bool update_flags = false;
+
+ // Switch on the logical operation, stripping out the NOT bit, as it has a
+ // different meaning for logical immediate instructions.
+ switch (instr->Mask(LogicalOpMask & ~NOT)) {
+ case ANDS: update_flags = true; // Fall through.
+ case AND: result = op1 & op2; break;
+ case ORR: result = op1 | op2; break;
+ case EOR: result = op1 ^ op2; break;
+ default:
+ UNIMPLEMENTED();
+ }
+
+ if (update_flags) {
+ nzcv().SetN(CalcNFlag(result, reg_size));
+ nzcv().SetZ(CalcZFlag(result));
+ nzcv().SetC(0);
+ nzcv().SetV(0);
+ }
+
+ set_reg(reg_size, instr->Rd(), result, instr->RdMode());
+}
+
+
+void Simulator::VisitConditionalCompareRegister(Instruction* instr) {
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
+ ConditionalCompareHelper(instr, reg(reg_size, instr->Rm()));
+}
+
+
+void Simulator::VisitConditionalCompareImmediate(Instruction* instr) {
+ ConditionalCompareHelper(instr, instr->ImmCondCmp());
+}
+
+
+void Simulator::ConditionalCompareHelper(Instruction* instr, int64_t op2) {
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
+ int64_t op1 = reg(reg_size, instr->Rn());
+
+ if (ConditionPassed(static_cast<Condition>(instr->Condition()))) {
+ // If the condition passes, set the status flags to the result of comparing
+ // the operands.
+ if (instr->Mask(ConditionalCompareMask) == CCMP) {
+ AddWithCarry(reg_size, true, op1, ~op2, 1);
+ } else {
+ ASSERT(instr->Mask(ConditionalCompareMask) == CCMN);
+ AddWithCarry(reg_size, true, op1, op2, 0);
+ }
+ } else {
+ // If the condition fails, set the status flags to the nzcv immediate.
+ nzcv().SetFlags(instr->Nzcv());
+ }
+}
+
+
+void Simulator::VisitLoadStoreUnsignedOffset(Instruction* instr) {
+ int offset = instr->ImmLSUnsigned() << instr->SizeLS();
+ LoadStoreHelper(instr, offset, Offset);
+}
+
+
+void Simulator::VisitLoadStoreUnscaledOffset(Instruction* instr) {
+ LoadStoreHelper(instr, instr->ImmLS(), Offset);
+}
+
+
+void Simulator::VisitLoadStorePreIndex(Instruction* instr) {
+ LoadStoreHelper(instr, instr->ImmLS(), PreIndex);
+}
+
+
+void Simulator::VisitLoadStorePostIndex(Instruction* instr) {
+ LoadStoreHelper(instr, instr->ImmLS(), PostIndex);
+}
+
+
+void Simulator::VisitLoadStoreRegisterOffset(Instruction* instr) {
+ Extend ext = static_cast<Extend>(instr->ExtendMode());
+ ASSERT((ext == UXTW) || (ext == UXTX) || (ext == SXTW) || (ext == SXTX));
+ unsigned shift_amount = instr->ImmShiftLS() * instr->SizeLS();
+
+ int64_t offset = ExtendValue(kXRegSize, xreg(instr->Rm()), ext,
+ shift_amount);
+ LoadStoreHelper(instr, offset, Offset);
+}
+
+
+void Simulator::LoadStoreHelper(Instruction* instr,
+ int64_t offset,
+ AddrMode addrmode) {
+ unsigned srcdst = instr->Rt();
+ unsigned addr_reg = instr->Rn();
+ uint8_t* address = LoadStoreAddress(addr_reg, offset, addrmode);
+ int num_bytes = 1 << instr->SizeLS();
+ uint8_t* stack = NULL;
+
+ // Handle the writeback for stores before the store. On a CPU the writeback
+ // and the store are atomic, but when running on the simulator it is possible
+ // to be interrupted in between. The simulator is not thread safe and V8 does
+ // not require it to be to run JavaScript therefore the profiler may sample
+ // the "simulated" CPU in the middle of load/store with writeback. The code
+ // below ensures that push operations are safe even when interrupted: the
+ // stack pointer will be decremented before adding an element to the stack.
+ if (instr->IsStore()) {
+ LoadStoreWriteBack(addr_reg, offset, addrmode);
+
+ // For store the address post writeback is used to check access below the
+ // stack.
+ stack = reinterpret_cast<uint8_t*>(sp());
+ }
+
+ LoadStoreOp op = static_cast<LoadStoreOp>(instr->Mask(LoadStoreOpMask));
+ switch (op) {
+ case LDRB_w:
+ case LDRH_w:
+ case LDR_w:
+ case LDR_x: set_xreg(srcdst, MemoryRead(address, num_bytes)); break;
+ case STRB_w:
+ case STRH_w:
+ case STR_w:
+ case STR_x: MemoryWrite(address, xreg(srcdst), num_bytes); break;
+ case LDRSB_w: {
+ set_wreg(srcdst, ExtendValue(kWRegSize, MemoryRead8(address), SXTB));
+ break;
+ }
+ case LDRSB_x: {
+ set_xreg(srcdst, ExtendValue(kXRegSize, MemoryRead8(address), SXTB));
+ break;
+ }
+ case LDRSH_w: {
+ set_wreg(srcdst, ExtendValue(kWRegSize, MemoryRead16(address), SXTH));
+ break;
+ }
+ case LDRSH_x: {
+ set_xreg(srcdst, ExtendValue(kXRegSize, MemoryRead16(address), SXTH));
+ break;
+ }
+ case LDRSW_x: {
+ set_xreg(srcdst, ExtendValue(kXRegSize, MemoryRead32(address), SXTW));
+ break;
+ }
+ case LDR_s: set_sreg(srcdst, MemoryReadFP32(address)); break;
+ case LDR_d: set_dreg(srcdst, MemoryReadFP64(address)); break;
+ case STR_s: MemoryWriteFP32(address, sreg(srcdst)); break;
+ case STR_d: MemoryWriteFP64(address, dreg(srcdst)); break;
+ default: UNIMPLEMENTED();
+ }
+
+ // Handle the writeback for loads after the load to ensure safe pop
+ // operation even when interrupted in the middle of it. The stack pointer
+ // is only updated after the load so pop(fp) will never break the invariant
+ // sp <= fp expected while walking the stack in the sampler.
+ if (instr->IsLoad()) {
+ // For loads the address pre writeback is used to check access below the
+ // stack.
+ stack = reinterpret_cast<uint8_t*>(sp());
+
+ LoadStoreWriteBack(addr_reg, offset, addrmode);
+ }
+
+ // Accesses below the stack pointer (but above the platform stack limit) are
+ // not allowed in the ABI.
+ CheckMemoryAccess(address, stack);
+}
+
+
+void Simulator::VisitLoadStorePairOffset(Instruction* instr) {
+ LoadStorePairHelper(instr, Offset);
+}
+
+
+void Simulator::VisitLoadStorePairPreIndex(Instruction* instr) {
+ LoadStorePairHelper(instr, PreIndex);
+}
+
+
+void Simulator::VisitLoadStorePairPostIndex(Instruction* instr) {
+ LoadStorePairHelper(instr, PostIndex);
+}
+
+
+void Simulator::VisitLoadStorePairNonTemporal(Instruction* instr) {
+ LoadStorePairHelper(instr, Offset);
+}
+
+
+void Simulator::LoadStorePairHelper(Instruction* instr,
+ AddrMode addrmode) {
+ unsigned rt = instr->Rt();
+ unsigned rt2 = instr->Rt2();
+ unsigned addr_reg = instr->Rn();
+ int offset = instr->ImmLSPair() << instr->SizeLSPair();
+ uint8_t* address = LoadStoreAddress(addr_reg, offset, addrmode);
+ uint8_t* stack = NULL;
+
+ // Handle the writeback for stores before the store. On a CPU the writeback
+ // and the store are atomic, but when running on the simulator it is possible
+ // to be interrupted in between. The simulator is not thread safe and V8 does
+ // not require it to be to run JavaScript therefore the profiler may sample
+ // the "simulated" CPU in the middle of load/store with writeback. The code
+ // below ensures that push operations are safe even when interrupted: the
+ // stack pointer will be decremented before adding an element to the stack.
+ if (instr->IsStore()) {
+ LoadStoreWriteBack(addr_reg, offset, addrmode);
+
+ // For store the address post writeback is used to check access below the
+ // stack.
+ stack = reinterpret_cast<uint8_t*>(sp());
+ }
+
+ LoadStorePairOp op =
+ static_cast<LoadStorePairOp>(instr->Mask(LoadStorePairMask));
+
+ // 'rt' and 'rt2' can only be aliased for stores.
+ ASSERT(((op & LoadStorePairLBit) == 0) || (rt != rt2));
+
+ switch (op) {
+ case LDP_w: {
+ set_wreg(rt, MemoryRead32(address));
+ set_wreg(rt2, MemoryRead32(address + kWRegSizeInBytes));
+ break;
+ }
+ case LDP_s: {
+ set_sreg(rt, MemoryReadFP32(address));
+ set_sreg(rt2, MemoryReadFP32(address + kSRegSizeInBytes));
+ break;
+ }
+ case LDP_x: {
+ set_xreg(rt, MemoryRead64(address));
+ set_xreg(rt2, MemoryRead64(address + kXRegSizeInBytes));
+ break;
+ }
+ case LDP_d: {
+ set_dreg(rt, MemoryReadFP64(address));
+ set_dreg(rt2, MemoryReadFP64(address + kDRegSizeInBytes));
+ break;
+ }
+ case LDPSW_x: {
+ set_xreg(rt, ExtendValue(kXRegSize, MemoryRead32(address), SXTW));
+ set_xreg(rt2, ExtendValue(kXRegSize,
+ MemoryRead32(address + kWRegSizeInBytes), SXTW));
+ break;
+ }
+ case STP_w: {
+ MemoryWrite32(address, wreg(rt));
+ MemoryWrite32(address + kWRegSizeInBytes, wreg(rt2));
+ break;
+ }
+ case STP_s: {
+ MemoryWriteFP32(address, sreg(rt));
+ MemoryWriteFP32(address + kSRegSizeInBytes, sreg(rt2));
+ break;
+ }
+ case STP_x: {
+ MemoryWrite64(address, xreg(rt));
+ MemoryWrite64(address + kXRegSizeInBytes, xreg(rt2));
+ break;
+ }
+ case STP_d: {
+ MemoryWriteFP64(address, dreg(rt));
+ MemoryWriteFP64(address + kDRegSizeInBytes, dreg(rt2));
+ break;
+ }
+ default: UNREACHABLE();
+ }
+
+ // Handle the writeback for loads after the load to ensure safe pop
+ // operation even when interrupted in the middle of it. The stack pointer
+ // is only updated after the load so pop(fp) will never break the invariant
+ // sp <= fp expected while walking the stack in the sampler.
+ if (instr->IsLoad()) {
+ // For loads the address pre writeback is used to check access below the
+ // stack.
+ stack = reinterpret_cast<uint8_t*>(sp());
+
+ LoadStoreWriteBack(addr_reg, offset, addrmode);
+ }
+
+ // Accesses below the stack pointer (but above the platform stack limit) are
+ // not allowed in the ABI.
+ CheckMemoryAccess(address, stack);
+}
+
+
+void Simulator::VisitLoadLiteral(Instruction* instr) {
+ uint8_t* address = instr->LiteralAddress();
+ unsigned rt = instr->Rt();
+
+ switch (instr->Mask(LoadLiteralMask)) {
+ case LDR_w_lit: set_wreg(rt, MemoryRead32(address)); break;
+ case LDR_x_lit: set_xreg(rt, MemoryRead64(address)); break;
+ case LDR_s_lit: set_sreg(rt, MemoryReadFP32(address)); break;
+ case LDR_d_lit: set_dreg(rt, MemoryReadFP64(address)); break;
+ default: UNREACHABLE();
+ }
+}
+
+
+uint8_t* Simulator::LoadStoreAddress(unsigned addr_reg,
+ int64_t offset,
+ AddrMode addrmode) {
+ const unsigned kSPRegCode = kSPRegInternalCode & kRegCodeMask;
+ int64_t address = xreg(addr_reg, Reg31IsStackPointer);
+ if ((addr_reg == kSPRegCode) && ((address % 16) != 0)) {
+ // When the base register is SP the stack pointer is required to be
+ // quadword aligned prior to the address calculation and write-backs.
+ // Misalignment will cause a stack alignment fault.
+ ALIGNMENT_EXCEPTION();
+ }
+
+ if ((addrmode == Offset) || (addrmode == PreIndex)) {
+ address += offset;
+ }
+
+ return reinterpret_cast<uint8_t*>(address);
+}
+
+
+void Simulator::LoadStoreWriteBack(unsigned addr_reg,
+ int64_t offset,
+ AddrMode addrmode) {
+ if ((addrmode == PreIndex) || (addrmode == PostIndex)) {
+ ASSERT(offset != 0);
+ uint64_t address = xreg(addr_reg, Reg31IsStackPointer);
+ set_reg(addr_reg, address + offset, Reg31IsStackPointer);
+ }
+}
+
+
+void Simulator::CheckMemoryAccess(uint8_t* address, uint8_t* stack) {
+ if ((address >= stack_limit_) && (address < stack)) {
+ fprintf(stream_, "ACCESS BELOW STACK POINTER:\n");
+ fprintf(stream_, " sp is here: 0x%16p\n", stack);
+ fprintf(stream_, " access was here: 0x%16p\n", address);
+ fprintf(stream_, " stack limit is here: 0x%16p\n", stack_limit_);
+ fprintf(stream_, "\n");
+ ABORT();
+ }
+}
+
+
+uint64_t Simulator::MemoryRead(uint8_t* address, unsigned num_bytes) {
+ ASSERT(address != NULL);
+ ASSERT((num_bytes > 0) && (num_bytes <= sizeof(uint64_t)));
+ uint64_t read = 0;
+ memcpy(&read, address, num_bytes);
+ return read;
+}
+
+
+uint8_t Simulator::MemoryRead8(uint8_t* address) {
+ return MemoryRead(address, sizeof(uint8_t));
+}
+
+
+uint16_t Simulator::MemoryRead16(uint8_t* address) {
+ return MemoryRead(address, sizeof(uint16_t));
+}
+
+
+uint32_t Simulator::MemoryRead32(uint8_t* address) {
+ return MemoryRead(address, sizeof(uint32_t));
+}
+
+
+float Simulator::MemoryReadFP32(uint8_t* address) {
+ return rawbits_to_float(MemoryRead32(address));
+}
+
+
+uint64_t Simulator::MemoryRead64(uint8_t* address) {
+ return MemoryRead(address, sizeof(uint64_t));
+}
+
+
+double Simulator::MemoryReadFP64(uint8_t* address) {
+ return rawbits_to_double(MemoryRead64(address));
+}
+
+
+void Simulator::MemoryWrite(uint8_t* address,
+ uint64_t value,
+ unsigned num_bytes) {
+ ASSERT(address != NULL);
+ ASSERT((num_bytes > 0) && (num_bytes <= sizeof(uint64_t)));
+
+ LogWrite(address, value, num_bytes);
+ memcpy(address, &value, num_bytes);
+}
+
+
+void Simulator::MemoryWrite32(uint8_t* address, uint32_t value) {
+ MemoryWrite(address, value, sizeof(uint32_t));
+}
+
+
+void Simulator::MemoryWriteFP32(uint8_t* address, float value) {
+ MemoryWrite32(address, float_to_rawbits(value));
+}
+
+
+void Simulator::MemoryWrite64(uint8_t* address, uint64_t value) {
+ MemoryWrite(address, value, sizeof(uint64_t));
+}
+
+
+void Simulator::MemoryWriteFP64(uint8_t* address, double value) {
+ MemoryWrite64(address, double_to_rawbits(value));
+}
+
+
+void Simulator::VisitMoveWideImmediate(Instruction* instr) {
+ MoveWideImmediateOp mov_op =
+ static_cast<MoveWideImmediateOp>(instr->Mask(MoveWideImmediateMask));
+ int64_t new_xn_val = 0;
+
+ bool is_64_bits = instr->SixtyFourBits() == 1;
+ // Shift is limited for W operations.
+ ASSERT(is_64_bits || (instr->ShiftMoveWide() < 2));
+
+ // Get the shifted immediate.
+ int64_t shift = instr->ShiftMoveWide() * 16;
+ int64_t shifted_imm16 = instr->ImmMoveWide() << shift;
+
+ // Compute the new value.
+ switch (mov_op) {
+ case MOVN_w:
+ case MOVN_x: {
+ new_xn_val = ~shifted_imm16;
+ if (!is_64_bits) new_xn_val &= kWRegMask;
+ break;
+ }
+ case MOVK_w:
+ case MOVK_x: {
+ unsigned reg_code = instr->Rd();
+ int64_t prev_xn_val = is_64_bits ? xreg(reg_code)
+ : wreg(reg_code);
+ new_xn_val = (prev_xn_val & ~(0xffffL << shift)) | shifted_imm16;
+ break;
+ }
+ case MOVZ_w:
+ case MOVZ_x: {
+ new_xn_val = shifted_imm16;
+ break;
+ }
+ default:
+ UNREACHABLE();
+ }
+
+ // Update the destination register.
+ set_xreg(instr->Rd(), new_xn_val);
+}
+
+
+void Simulator::VisitConditionalSelect(Instruction* instr) {
+ uint64_t new_val = xreg(instr->Rn());
+
+ if (ConditionFailed(static_cast<Condition>(instr->Condition()))) {
+ new_val = xreg(instr->Rm());
+ switch (instr->Mask(ConditionalSelectMask)) {
+ case CSEL_w:
+ case CSEL_x: break;
+ case CSINC_w:
+ case CSINC_x: new_val++; break;
+ case CSINV_w:
+ case CSINV_x: new_val = ~new_val; break;
+ case CSNEG_w:
+ case CSNEG_x: new_val = -new_val; break;
+ default: UNIMPLEMENTED();
+ }
+ }
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
+ set_reg(reg_size, instr->Rd(), new_val);
+}
+
+
+void Simulator::VisitDataProcessing1Source(Instruction* instr) {
+ unsigned dst = instr->Rd();
+ unsigned src = instr->Rn();
+
+ switch (instr->Mask(DataProcessing1SourceMask)) {
+ case RBIT_w: set_wreg(dst, ReverseBits(wreg(src), kWRegSize)); break;
+ case RBIT_x: set_xreg(dst, ReverseBits(xreg(src), kXRegSize)); break;
+ case REV16_w: set_wreg(dst, ReverseBytes(wreg(src), Reverse16)); break;
+ case REV16_x: set_xreg(dst, ReverseBytes(xreg(src), Reverse16)); break;
+ case REV_w: set_wreg(dst, ReverseBytes(wreg(src), Reverse32)); break;
+ case REV32_x: set_xreg(dst, ReverseBytes(xreg(src), Reverse32)); break;
+ case REV_x: set_xreg(dst, ReverseBytes(xreg(src), Reverse64)); break;
+ case CLZ_w: set_wreg(dst, CountLeadingZeros(wreg(src), kWRegSize)); break;
+ case CLZ_x: set_xreg(dst, CountLeadingZeros(xreg(src), kXRegSize)); break;
+ case CLS_w: {
+ set_wreg(dst, CountLeadingSignBits(wreg(src), kWRegSize));
+ break;
+ }
+ case CLS_x: {
+ set_xreg(dst, CountLeadingSignBits(xreg(src), kXRegSize));
+ break;
+ }
+ default: UNIMPLEMENTED();
+ }
+}
+
+
+uint64_t Simulator::ReverseBits(uint64_t value, unsigned num_bits) {
+ ASSERT((num_bits == kWRegSize) || (num_bits == kXRegSize));
+ uint64_t result = 0;
+ for (unsigned i = 0; i < num_bits; i++) {
+ result = (result << 1) | (value & 1);
+ value >>= 1;
+ }
+ return result;
+}
+
+
+uint64_t Simulator::ReverseBytes(uint64_t value, ReverseByteMode mode) {
+ // Split the 64-bit value into an 8-bit array, where b[0] is the least
+ // significant byte, and b[7] is the most significant.
+ uint8_t bytes[8];
+ uint64_t mask = 0xff00000000000000UL;
+ for (int i = 7; i >= 0; i--) {
+ bytes[i] = (value & mask) >> (i * 8);
+ mask >>= 8;
+ }
+
+ // Permutation tables for REV instructions.
+ // permute_table[Reverse16] is used by REV16_x, REV16_w
+ // permute_table[Reverse32] is used by REV32_x, REV_w
+ // permute_table[Reverse64] is used by REV_x
+ ASSERT((Reverse16 == 0) && (Reverse32 == 1) && (Reverse64 == 2));
+ static const uint8_t permute_table[3][8] = { {6, 7, 4, 5, 2, 3, 0, 1},
+ {4, 5, 6, 7, 0, 1, 2, 3},
+ {0, 1, 2, 3, 4, 5, 6, 7} };
+ uint64_t result = 0;
+ for (int i = 0; i < 8; i++) {
+ result <<= 8;
+ result |= bytes[permute_table[mode][i]];
+ }
+ return result;
+}
+
+
+void Simulator::VisitDataProcessing2Source(Instruction* instr) {
+ // TODO(mcapewel) move these to a higher level file, as they are global
+ // assumptions.
+ ASSERT((static_cast<int32_t>(-1) >> 1) == -1);
+ ASSERT((static_cast<uint32_t>(-1) >> 1) == 0x7FFFFFFF);
+
+ Shift shift_op = NO_SHIFT;
+ int64_t result = 0;
+ switch (instr->Mask(DataProcessing2SourceMask)) {
+ case SDIV_w: {
+ int32_t rn = wreg(instr->Rn());
+ int32_t rm = wreg(instr->Rm());
+ if ((rn == kWMinInt) && (rm == -1)) {
+ result = kWMinInt;
+ } else if (rm == 0) {
+ // Division by zero can be trapped, but not on A-class processors.
+ result = 0;
+ } else {
+ result = rn / rm;
+ }
+ break;
+ }
+ case SDIV_x: {
+ int64_t rn = xreg(instr->Rn());
+ int64_t rm = xreg(instr->Rm());
+ if ((rn == kXMinInt) && (rm == -1)) {
+ result = kXMinInt;
+ } else if (rm == 0) {
+ // Division by zero can be trapped, but not on A-class processors.
+ result = 0;
+ } else {
+ result = rn / rm;
+ }
+ break;
+ }
+ case UDIV_w: {
+ uint32_t rn = static_cast<uint32_t>(wreg(instr->Rn()));
+ uint32_t rm = static_cast<uint32_t>(wreg(instr->Rm()));
+ if (rm == 0) {
+ // Division by zero can be trapped, but not on A-class processors.
+ result = 0;
+ } else {
+ result = rn / rm;
+ }
+ break;
+ }
+ case UDIV_x: {
+ uint64_t rn = static_cast<uint64_t>(xreg(instr->Rn()));
+ uint64_t rm = static_cast<uint64_t>(xreg(instr->Rm()));
+ if (rm == 0) {
+ // Division by zero can be trapped, but not on A-class processors.
+ result = 0;
+ } else {
+ result = rn / rm;
+ }
+ break;
+ }
+ case LSLV_w:
+ case LSLV_x: shift_op = LSL; break;
+ case LSRV_w:
+ case LSRV_x: shift_op = LSR; break;
+ case ASRV_w:
+ case ASRV_x: shift_op = ASR; break;
+ case RORV_w:
+ case RORV_x: shift_op = ROR; break;
+ default: UNIMPLEMENTED();
+ }
+
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
+ if (shift_op != NO_SHIFT) {
+ // Shift distance encoded in the least-significant five/six bits of the
+ // register.
+ int mask = (instr->SixtyFourBits() == 1) ? 0x3f : 0x1f;
+ unsigned shift = wreg(instr->Rm()) & mask;
+ result = ShiftOperand(reg_size, reg(reg_size, instr->Rn()), shift_op,
+ shift);
+ }
+ set_reg(reg_size, instr->Rd(), result);
+}
+
+
+// The algorithm used is described in section 8.2 of
+// Hacker's Delight, by Henry S. Warren, Jr.
+// It assumes that a right shift on a signed integer is an arithmetic shift.
+static int64_t MultiplyHighSigned(int64_t u, int64_t v) {
+ uint64_t u0, v0, w0;
+ int64_t u1, v1, w1, w2, t;
+
+ u0 = u & 0xffffffffL;
+ u1 = u >> 32;
+ v0 = v & 0xffffffffL;
+ v1 = v >> 32;
+
+ w0 = u0 * v0;
+ t = u1 * v0 + (w0 >> 32);
+ w1 = t & 0xffffffffL;
+ w2 = t >> 32;
+ w1 = u0 * v1 + w1;
+
+ return u1 * v1 + w2 + (w1 >> 32);
+}
+
+
+void Simulator::VisitDataProcessing3Source(Instruction* instr) {
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
+
+ int64_t result = 0;
+ // Extract and sign- or zero-extend 32-bit arguments for widening operations.
+ uint64_t rn_u32 = reg<uint32_t>(instr->Rn());
+ uint64_t rm_u32 = reg<uint32_t>(instr->Rm());
+ int64_t rn_s32 = reg<int32_t>(instr->Rn());
+ int64_t rm_s32 = reg<int32_t>(instr->Rm());
+ switch (instr->Mask(DataProcessing3SourceMask)) {
+ case MADD_w:
+ case MADD_x:
+ result = xreg(instr->Ra()) + (xreg(instr->Rn()) * xreg(instr->Rm()));
+ break;
+ case MSUB_w:
+ case MSUB_x:
+ result = xreg(instr->Ra()) - (xreg(instr->Rn()) * xreg(instr->Rm()));
+ break;
+ case SMADDL_x: result = xreg(instr->Ra()) + (rn_s32 * rm_s32); break;
+ case SMSUBL_x: result = xreg(instr->Ra()) - (rn_s32 * rm_s32); break;
+ case UMADDL_x: result = xreg(instr->Ra()) + (rn_u32 * rm_u32); break;
+ case UMSUBL_x: result = xreg(instr->Ra()) - (rn_u32 * rm_u32); break;
+ case SMULH_x:
+ ASSERT(instr->Ra() == kZeroRegCode);
+ result = MultiplyHighSigned(xreg(instr->Rn()), xreg(instr->Rm()));
+ break;
+ default: UNIMPLEMENTED();
+ }
+ set_reg(reg_size, instr->Rd(), result);
+}
+
+
+void Simulator::VisitBitfield(Instruction* instr) {
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
+ int64_t reg_mask = instr->SixtyFourBits() ? kXRegMask : kWRegMask;
+ int64_t R = instr->ImmR();
+ int64_t S = instr->ImmS();
+ int64_t diff = S - R;
+ int64_t mask;
+ if (diff >= 0) {
+ mask = diff < reg_size - 1 ? (1L << (diff + 1)) - 1
+ : reg_mask;
+ } else {
+ mask = ((1L << (S + 1)) - 1);
+ mask = (static_cast<uint64_t>(mask) >> R) | (mask << (reg_size - R));
+ diff += reg_size;
+ }
+
+ // inzero indicates if the extracted bitfield is inserted into the
+ // destination register value or in zero.
+ // If extend is true, extend the sign of the extracted bitfield.
+ bool inzero = false;
+ bool extend = false;
+ switch (instr->Mask(BitfieldMask)) {
+ case BFM_x:
+ case BFM_w:
+ break;
+ case SBFM_x:
+ case SBFM_w:
+ inzero = true;
+ extend = true;
+ break;
+ case UBFM_x:
+ case UBFM_w:
+ inzero = true;
+ break;
+ default:
+ UNIMPLEMENTED();
+ }
+
+ int64_t dst = inzero ? 0 : reg(reg_size, instr->Rd());
+ int64_t src = reg(reg_size, instr->Rn());
+ // Rotate source bitfield into place.
+ int64_t result = (static_cast<uint64_t>(src) >> R) | (src << (reg_size - R));
+ // Determine the sign extension.
+ int64_t topbits = ((1L << (reg_size - diff - 1)) - 1) << (diff + 1);
+ int64_t signbits = extend && ((src >> S) & 1) ? topbits : 0;
+
+ // Merge sign extension, dest/zero and bitfield.
+ result = signbits | (result & mask) | (dst & ~mask);
+
+ set_reg(reg_size, instr->Rd(), result);
+}
+
+
+void Simulator::VisitExtract(Instruction* instr) {
+ unsigned lsb = instr->ImmS();
+ unsigned reg_size = (instr->SixtyFourBits() == 1) ? kXRegSize
+ : kWRegSize;
+ set_reg(reg_size,
+ instr->Rd(),
+ (static_cast<uint64_t>(reg(reg_size, instr->Rm())) >> lsb) |
+ (reg(reg_size, instr->Rn()) << (reg_size - lsb)));
+}
+
+
+void Simulator::VisitFPImmediate(Instruction* instr) {
+ AssertSupportedFPCR();
+
+ unsigned dest = instr->Rd();
+ switch (instr->Mask(FPImmediateMask)) {
+ case FMOV_s_imm: set_sreg(dest, instr->ImmFP32()); break;
+ case FMOV_d_imm: set_dreg(dest, instr->ImmFP64()); break;
+ default: UNREACHABLE();
+ }
+}
+
+
+void Simulator::VisitFPIntegerConvert(Instruction* instr) {
+ AssertSupportedFPCR();
+
+ unsigned dst = instr->Rd();
+ unsigned src = instr->Rn();
+
+ FPRounding round = RMode();
+
+ switch (instr->Mask(FPIntegerConvertMask)) {
+ case FCVTAS_ws: set_wreg(dst, FPToInt32(sreg(src), FPTieAway)); break;
+ case FCVTAS_xs: set_xreg(dst, FPToInt64(sreg(src), FPTieAway)); break;
+ case FCVTAS_wd: set_wreg(dst, FPToInt32(dreg(src), FPTieAway)); break;
+ case FCVTAS_xd: set_xreg(dst, FPToInt64(dreg(src), FPTieAway)); break;
+ case FCVTAU_ws: set_wreg(dst, FPToUInt32(sreg(src), FPTieAway)); break;
+ case FCVTAU_xs: set_xreg(dst, FPToUInt64(sreg(src), FPTieAway)); break;
+ case FCVTAU_wd: set_wreg(dst, FPToUInt32(dreg(src), FPTieAway)); break;
+ case FCVTAU_xd: set_xreg(dst, FPToUInt64(dreg(src), FPTieAway)); break;
+ case FCVTMS_ws:
+ set_wreg(dst, FPToInt32(sreg(src), FPNegativeInfinity));
+ break;
+ case FCVTMS_xs:
+ set_xreg(dst, FPToInt64(sreg(src), FPNegativeInfinity));
+ break;
+ case FCVTMS_wd:
+ set_wreg(dst, FPToInt32(dreg(src), FPNegativeInfinity));
+ break;
+ case FCVTMS_xd:
+ set_xreg(dst, FPToInt64(dreg(src), FPNegativeInfinity));
+ break;
+ case FCVTMU_ws:
+ set_wreg(dst, FPToUInt32(sreg(src), FPNegativeInfinity));
+ break;
+ case FCVTMU_xs:
+ set_xreg(dst, FPToUInt64(sreg(src), FPNegativeInfinity));
+ break;
+ case FCVTMU_wd:
+ set_wreg(dst, FPToUInt32(dreg(src), FPNegativeInfinity));
+ break;
+ case FCVTMU_xd:
+ set_xreg(dst, FPToUInt64(dreg(src), FPNegativeInfinity));
+ break;
+ case FCVTNS_ws: set_wreg(dst, FPToInt32(sreg(src), FPTieEven)); break;
+ case FCVTNS_xs: set_xreg(dst, FPToInt64(sreg(src), FPTieEven)); break;
+ case FCVTNS_wd: set_wreg(dst, FPToInt32(dreg(src), FPTieEven)); break;
+ case FCVTNS_xd: set_xreg(dst, FPToInt64(dreg(src), FPTieEven)); break;
+ case FCVTNU_ws: set_wreg(dst, FPToUInt32(sreg(src), FPTieEven)); break;
+ case FCVTNU_xs: set_xreg(dst, FPToUInt64(sreg(src), FPTieEven)); break;
+ case FCVTNU_wd: set_wreg(dst, FPToUInt32(dreg(src), FPTieEven)); break;
+ case FCVTNU_xd: set_xreg(dst, FPToUInt64(dreg(src), FPTieEven)); break;
+ case FCVTZS_ws: set_wreg(dst, FPToInt32(sreg(src), FPZero)); break;
+ case FCVTZS_xs: set_xreg(dst, FPToInt64(sreg(src), FPZero)); break;
+ case FCVTZS_wd: set_wreg(dst, FPToInt32(dreg(src), FPZero)); break;
+ case FCVTZS_xd: set_xreg(dst, FPToInt64(dreg(src), FPZero)); break;
+ case FCVTZU_ws: set_wreg(dst, FPToUInt32(sreg(src), FPZero)); break;
+ case FCVTZU_xs: set_xreg(dst, FPToUInt64(sreg(src), FPZero)); break;
+ case FCVTZU_wd: set_wreg(dst, FPToUInt32(dreg(src), FPZero)); break;
+ case FCVTZU_xd: set_xreg(dst, FPToUInt64(dreg(src), FPZero)); break;
+ case FMOV_ws: set_wreg(dst, sreg_bits(src)); break;
+ case FMOV_xd: set_xreg(dst, dreg_bits(src)); break;
+ case FMOV_sw: set_sreg_bits(dst, wreg(src)); break;
+ case FMOV_dx: set_dreg_bits(dst, xreg(src)); break;
+
+ // A 32-bit input can be handled in the same way as a 64-bit input, since
+ // the sign- or zero-extension will not affect the conversion.
+ case SCVTF_dx: set_dreg(dst, FixedToDouble(xreg(src), 0, round)); break;
+ case SCVTF_dw: set_dreg(dst, FixedToDouble(wreg(src), 0, round)); break;
+ case UCVTF_dx: set_dreg(dst, UFixedToDouble(xreg(src), 0, round)); break;
+ case UCVTF_dw: {
+ set_dreg(dst, UFixedToDouble(reg<uint32_t>(src), 0, round));
+ break;
+ }
+ case SCVTF_sx: set_sreg(dst, FixedToFloat(xreg(src), 0, round)); break;
+ case SCVTF_sw: set_sreg(dst, FixedToFloat(wreg(src), 0, round)); break;
+ case UCVTF_sx: set_sreg(dst, UFixedToFloat(xreg(src), 0, round)); break;
+ case UCVTF_sw: {
+ set_sreg(dst, UFixedToFloat(reg<uint32_t>(src), 0, round));
+ break;
+ }
+
+ default: UNREACHABLE();
+ }
+}
+
+
+void Simulator::VisitFPFixedPointConvert(Instruction* instr) {
+ AssertSupportedFPCR();
+
+ unsigned dst = instr->Rd();
+ unsigned src = instr->Rn();
+ int fbits = 64 - instr->FPScale();
+
+ FPRounding round = RMode();
+
+ switch (instr->Mask(FPFixedPointConvertMask)) {
+ // A 32-bit input can be handled in the same way as a 64-bit input, since
+ // the sign- or zero-extension will not affect the conversion.
+ case SCVTF_dx_fixed:
+ set_dreg(dst, FixedToDouble(xreg(src), fbits, round));
+ break;
+ case SCVTF_dw_fixed:
+ set_dreg(dst, FixedToDouble(wreg(src), fbits, round));
+ break;
+ case UCVTF_dx_fixed:
+ set_dreg(dst, UFixedToDouble(xreg(src), fbits, round));
+ break;
+ case UCVTF_dw_fixed: {
+ set_dreg(dst,
+ UFixedToDouble(reg<uint32_t>(src), fbits, round));
+ break;
+ }
+ case SCVTF_sx_fixed:
+ set_sreg(dst, FixedToFloat(xreg(src), fbits, round));
+ break;
+ case SCVTF_sw_fixed:
+ set_sreg(dst, FixedToFloat(wreg(src), fbits, round));
+ break;
+ case UCVTF_sx_fixed:
+ set_sreg(dst, UFixedToFloat(xreg(src), fbits, round));
+ break;
+ case UCVTF_sw_fixed: {
+ set_sreg(dst,
+ UFixedToFloat(reg<uint32_t>(src), fbits, round));
+ break;
+ }
+ default: UNREACHABLE();
+ }
+}
+
+
+int32_t Simulator::FPToInt32(double value, FPRounding rmode) {
+ value = FPRoundInt(value, rmode);
+ if (value >= kWMaxInt) {
+ return kWMaxInt;
+ } else if (value < kWMinInt) {
+ return kWMinInt;
+ }
+ return std::isnan(value) ? 0 : static_cast<int32_t>(value);
+}
+
+
+int64_t Simulator::FPToInt64(double value, FPRounding rmode) {
+ value = FPRoundInt(value, rmode);
+ if (value >= kXMaxInt) {
+ return kXMaxInt;
+ } else if (value < kXMinInt) {
+ return kXMinInt;
+ }
+ return std::isnan(value) ? 0 : static_cast<int64_t>(value);
+}
+
+
+uint32_t Simulator::FPToUInt32(double value, FPRounding rmode) {
+ value = FPRoundInt(value, rmode);
+ if (value >= kWMaxUInt) {
+ return kWMaxUInt;
+ } else if (value < 0.0) {
+ return 0;
+ }
+ return std::isnan(value) ? 0 : static_cast<uint32_t>(value);
+}
+
+
+uint64_t Simulator::FPToUInt64(double value, FPRounding rmode) {
+ value = FPRoundInt(value, rmode);
+ if (value >= kXMaxUInt) {
+ return kXMaxUInt;
+ } else if (value < 0.0) {
+ return 0;
+ }
+ return std::isnan(value) ? 0 : static_cast<uint64_t>(value);
+}
+
+
+void Simulator::VisitFPCompare(Instruction* instr) {
+ AssertSupportedFPCR();
+
+ unsigned reg_size = instr->FPType() == FP32 ? kSRegSize : kDRegSize;
+ double fn_val = fpreg(reg_size, instr->Rn());
+
+ switch (instr->Mask(FPCompareMask)) {
+ case FCMP_s:
+ case FCMP_d: FPCompare(fn_val, fpreg(reg_size, instr->Rm())); break;
+ case FCMP_s_zero:
+ case FCMP_d_zero: FPCompare(fn_val, 0.0); break;
+ default: UNIMPLEMENTED();
+ }
+}
+
+
+void Simulator::VisitFPConditionalCompare(Instruction* instr) {
+ AssertSupportedFPCR();
+
+ switch (instr->Mask(FPConditionalCompareMask)) {
+ case FCCMP_s:
+ case FCCMP_d: {
+ if (ConditionPassed(static_cast<Condition>(instr->Condition()))) {
+ // If the condition passes, set the status flags to the result of
+ // comparing the operands.
+ unsigned reg_size = instr->FPType() == FP32 ? kSRegSize : kDRegSize;
+ FPCompare(fpreg(reg_size, instr->Rn()), fpreg(reg_size, instr->Rm()));
+ } else {
+ // If the condition fails, set the status flags to the nzcv immediate.
+ nzcv().SetFlags(instr->Nzcv());
+ }
+ break;
+ }
+ default: UNIMPLEMENTED();
+ }
+}
+
+
+void Simulator::VisitFPConditionalSelect(Instruction* instr) {
+ AssertSupportedFPCR();
+
+ Instr selected;
+ if (ConditionPassed(static_cast<Condition>(instr->Condition()))) {
+ selected = instr->Rn();
+ } else {
+ selected = instr->Rm();
+ }
+
+ switch (instr->Mask(FPConditionalSelectMask)) {
+ case FCSEL_s: set_sreg(instr->Rd(), sreg(selected)); break;
+ case FCSEL_d: set_dreg(instr->Rd(), dreg(selected)); break;
+ default: UNIMPLEMENTED();
+ }
+}
+
+
+void Simulator::VisitFPDataProcessing1Source(Instruction* instr) {
+ AssertSupportedFPCR();
+
+ unsigned fd = instr->Rd();
+ unsigned fn = instr->Rn();
+
+ switch (instr->Mask(FPDataProcessing1SourceMask)) {
+ case FMOV_s: set_sreg(fd, sreg(fn)); break;
+ case FMOV_d: set_dreg(fd, dreg(fn)); break;
+ case FABS_s: set_sreg(fd, std::fabs(sreg(fn))); break;
+ case FABS_d: set_dreg(fd, std::fabs(dreg(fn))); break;
+ case FNEG_s: set_sreg(fd, -sreg(fn)); break;
+ case FNEG_d: set_dreg(fd, -dreg(fn)); break;
+ case FSQRT_s: set_sreg(fd, std::sqrt(sreg(fn))); break;
+ case FSQRT_d: set_dreg(fd, std::sqrt(dreg(fn))); break;
+ case FRINTA_s: set_sreg(fd, FPRoundInt(sreg(fn), FPTieAway)); break;
+ case FRINTA_d: set_dreg(fd, FPRoundInt(dreg(fn), FPTieAway)); break;
+ case FRINTN_s: set_sreg(fd, FPRoundInt(sreg(fn), FPTieEven)); break;
+ case FRINTN_d: set_dreg(fd, FPRoundInt(dreg(fn), FPTieEven)); break;
+ case FRINTZ_s: set_sreg(fd, FPRoundInt(sreg(fn), FPZero)); break;
+ case FRINTZ_d: set_dreg(fd, FPRoundInt(dreg(fn), FPZero)); break;
+ case FCVT_ds: set_dreg(fd, FPToDouble(sreg(fn))); break;
+ case FCVT_sd: set_sreg(fd, FPToFloat(dreg(fn), FPTieEven)); break;
+ default: UNIMPLEMENTED();
+ }
+}
+
+
+// Assemble the specified IEEE-754 components into the target type and apply
+// appropriate rounding.
+// sign: 0 = positive, 1 = negative
+// exponent: Unbiased IEEE-754 exponent.
+// mantissa: The mantissa of the input. The top bit (which is not encoded for
+// normal IEEE-754 values) must not be omitted. This bit has the
+// value 'pow(2, exponent)'.
+//
+// The input value is assumed to be a normalized value. That is, the input may
+// not be infinity or NaN. If the source value is subnormal, it must be
+// normalized before calling this function such that the highest set bit in the
+// mantissa has the value 'pow(2, exponent)'.
+//
+// Callers should use FPRoundToFloat or FPRoundToDouble directly, rather than
+// calling a templated FPRound.
+template <class T, int ebits, int mbits>
+static T FPRound(int64_t sign, int64_t exponent, uint64_t mantissa,
+ FPRounding round_mode) {
+ ASSERT((sign == 0) || (sign == 1));
+
+ // Only the FPTieEven rounding mode is implemented.
+ ASSERT(round_mode == FPTieEven);
+ USE(round_mode);
+
+ // Rounding can promote subnormals to normals, and normals to infinities. For
+ // example, a double with exponent 127 (FLT_MAX_EXP) would appear to be
+ // encodable as a float, but rounding based on the low-order mantissa bits
+ // could make it overflow. With ties-to-even rounding, this value would become
+ // an infinity.
+
+ // ---- Rounding Method ----
+ //
+ // The exponent is irrelevant in the rounding operation, so we treat the
+ // lowest-order bit that will fit into the result ('onebit') as having
+ // the value '1'. Similarly, the highest-order bit that won't fit into
+ // the result ('halfbit') has the value '0.5'. The 'point' sits between
+ // 'onebit' and 'halfbit':
+ //
+ // These bits fit into the result.
+ // |---------------------|
+ // mantissa = 0bxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
+ // ||
+ // / |
+ // / halfbit
+ // onebit
+ //
+ // For subnormal outputs, the range of representable bits is smaller and
+ // the position of onebit and halfbit depends on the exponent of the
+ // input, but the method is otherwise similar.
+ //
+ // onebit(frac)
+ // |
+ // | halfbit(frac) halfbit(adjusted)
+ // | / /
+ // | | |
+ // 0b00.0 (exact) -> 0b00.0 (exact) -> 0b00
+ // 0b00.0... -> 0b00.0... -> 0b00
+ // 0b00.1 (exact) -> 0b00.0111..111 -> 0b00
+ // 0b00.1... -> 0b00.1... -> 0b01
+ // 0b01.0 (exact) -> 0b01.0 (exact) -> 0b01
+ // 0b01.0... -> 0b01.0... -> 0b01
+ // 0b01.1 (exact) -> 0b01.1 (exact) -> 0b10
+ // 0b01.1... -> 0b01.1... -> 0b10
+ // 0b10.0 (exact) -> 0b10.0 (exact) -> 0b10
+ // 0b10.0... -> 0b10.0... -> 0b10
+ // 0b10.1 (exact) -> 0b10.0111..111 -> 0b10
+ // 0b10.1... -> 0b10.1... -> 0b11
+ // 0b11.0 (exact) -> 0b11.0 (exact) -> 0b11
+ // ... / | / |
+ // / | / |
+ // / |
+ // adjusted = frac - (halfbit(mantissa) & ~onebit(frac)); / |
+ //
+ // mantissa = (mantissa >> shift) + halfbit(adjusted);
+
+ static const int mantissa_offset = 0;
+ static const int exponent_offset = mantissa_offset + mbits;
+ static const int sign_offset = exponent_offset + ebits;
+ STATIC_ASSERT(sign_offset == (sizeof(T) * kByteSize - 1));
+
+ // Bail out early for zero inputs.
+ if (mantissa == 0) {
+ return sign << sign_offset;
+ }
+
+ // If all bits in the exponent are set, the value is infinite or NaN.
+ // This is true for all binary IEEE-754 formats.
+ static const int infinite_exponent = (1 << ebits) - 1;
+ static const int max_normal_exponent = infinite_exponent - 1;
+
+ // Apply the exponent bias to encode it for the result. Doing this early makes
+ // it easy to detect values that will be infinite or subnormal.
+ exponent += max_normal_exponent >> 1;
+
+ if (exponent > max_normal_exponent) {
+ // Overflow: The input is too large for the result type to represent. The
+ // FPTieEven rounding mode handles overflows using infinities.
+ exponent = infinite_exponent;
+ mantissa = 0;
+ return (sign << sign_offset) |
+ (exponent << exponent_offset) |
+ (mantissa << mantissa_offset);
+ }
+
+ // Calculate the shift required to move the top mantissa bit to the proper
+ // place in the destination type.
+ const int highest_significant_bit = 63 - CountLeadingZeros(mantissa, 64);
+ int shift = highest_significant_bit - mbits;
+
+ if (exponent <= 0) {
+ // The output will be subnormal (before rounding).
+
+ // For subnormal outputs, the shift must be adjusted by the exponent. The +1
+ // is necessary because the exponent of a subnormal value (encoded as 0) is
+ // the same as the exponent of the smallest normal value (encoded as 1).
+ shift += -exponent + 1;
+
+ // Handle inputs that would produce a zero output.
+ //
+ // Shifts higher than highest_significant_bit+1 will always produce a zero
+ // result. A shift of exactly highest_significant_bit+1 might produce a
+ // non-zero result after rounding.
+ if (shift > (highest_significant_bit + 1)) {
+ // The result will always be +/-0.0.
+ return sign << sign_offset;
+ }
+
+ // Properly encode the exponent for a subnormal output.
+ exponent = 0;
+ } else {
+ // Clear the topmost mantissa bit, since this is not encoded in IEEE-754
+ // normal values.
+ mantissa &= ~(1UL << highest_significant_bit);
+ }
+
+ if (shift > 0) {
+ // We have to shift the mantissa to the right. Some precision is lost, so we
+ // need to apply rounding.
+ uint64_t onebit_mantissa = (mantissa >> (shift)) & 1;
+ uint64_t halfbit_mantissa = (mantissa >> (shift-1)) & 1;
+ uint64_t adjusted = mantissa - (halfbit_mantissa & ~onebit_mantissa);
+ T halfbit_adjusted = (adjusted >> (shift-1)) & 1;
+
+ T result = (sign << sign_offset) |
+ (exponent << exponent_offset) |
+ ((mantissa >> shift) << mantissa_offset);
+
+ // A very large mantissa can overflow during rounding. If this happens, the
+ // exponent should be incremented and the mantissa set to 1.0 (encoded as
+ // 0). Applying halfbit_adjusted after assembling the float has the nice
+ // side-effect that this case is handled for free.
+ //
+ // This also handles cases where a very large finite value overflows to
+ // infinity, or where a very large subnormal value overflows to become
+ // normal.
+ return result + halfbit_adjusted;
+ } else {
+ // We have to shift the mantissa to the left (or not at all). The input
+ // mantissa is exactly representable in the output mantissa, so apply no
+ // rounding correction.
+ return (sign << sign_offset) |
+ (exponent << exponent_offset) |
+ ((mantissa << -shift) << mantissa_offset);
+ }
+}
+
+
+// See FPRound for a description of this function.
+static inline double FPRoundToDouble(int64_t sign, int64_t exponent,
+ uint64_t mantissa, FPRounding round_mode) {
+ int64_t bits =
+ FPRound<int64_t, kDoubleExponentBits, kDoubleMantissaBits>(sign,
+ exponent,
+ mantissa,
+ round_mode);
+ return rawbits_to_double(bits);
+}
+
+
+// See FPRound for a description of this function.
+static inline float FPRoundToFloat(int64_t sign, int64_t exponent,
+ uint64_t mantissa, FPRounding round_mode) {
+ int32_t bits =
+ FPRound<int32_t, kFloatExponentBits, kFloatMantissaBits>(sign,
+ exponent,
+ mantissa,
+ round_mode);
+ return rawbits_to_float(bits);
+}
+
+
+double Simulator::FixedToDouble(int64_t src, int fbits, FPRounding round) {
+ if (src >= 0) {
+ return UFixedToDouble(src, fbits, round);
+ } else {
+ // This works for all negative values, including INT64_MIN.
+ return -UFixedToDouble(-src, fbits, round);
+ }
+}
+
+
+double Simulator::UFixedToDouble(uint64_t src, int fbits, FPRounding round) {
+ // An input of 0 is a special case because the result is effectively
+ // subnormal: The exponent is encoded as 0 and there is no implicit 1 bit.
+ if (src == 0) {
+ return 0.0;
+ }
+
+ // Calculate the exponent. The highest significant bit will have the value
+ // 2^exponent.
+ const int highest_significant_bit = 63 - CountLeadingZeros(src, 64);
+ const int64_t exponent = highest_significant_bit - fbits;
+
+ return FPRoundToDouble(0, exponent, src, round);
+}
+
+
+float Simulator::FixedToFloat(int64_t src, int fbits, FPRounding round) {
+ if (src >= 0) {
+ return UFixedToFloat(src, fbits, round);
+ } else {
+ // This works for all negative values, including INT64_MIN.
+ return -UFixedToFloat(-src, fbits, round);
+ }
+}
+
+
+float Simulator::UFixedToFloat(uint64_t src, int fbits, FPRounding round) {
+ // An input of 0 is a special case because the result is effectively
+ // subnormal: The exponent is encoded as 0 and there is no implicit 1 bit.
+ if (src == 0) {
+ return 0.0f;
+ }
+
+ // Calculate the exponent. The highest significant bit will have the value
+ // 2^exponent.
+ const int highest_significant_bit = 63 - CountLeadingZeros(src, 64);
+ const int32_t exponent = highest_significant_bit - fbits;
+
+ return FPRoundToFloat(0, exponent, src, round);
+}
+
+
+double Simulator::FPRoundInt(double value, FPRounding round_mode) {
+ if ((value == 0.0) || (value == kFP64PositiveInfinity) ||
+ (value == kFP64NegativeInfinity) || std::isnan(value)) {
+ return value;
+ }
+
+ double int_result = floor(value);
+ double error = value - int_result;
+ switch (round_mode) {
+ case FPTieAway: {
+ // If the error is greater than 0.5, or is equal to 0.5 and the integer
+ // result is positive, round up.
+ if ((error > 0.5) || ((error == 0.5) && (int_result >= 0.0))) {
+ int_result++;
+ }
+ break;
+ }
+ case FPTieEven: {
+ // If the error is greater than 0.5, or is equal to 0.5 and the integer
+ // result is odd, round up.
+ if ((error > 0.5) ||
+ ((error == 0.5) && (fmod(int_result, 2) != 0))) {
+ int_result++;
+ }
+ break;
+ }
+ case FPZero: {
+ // If value > 0 then we take floor(value)
+ // otherwise, ceil(value)
+ if (value < 0) {
+ int_result = ceil(value);
+ }
+ break;
+ }
+ case FPNegativeInfinity: {
+ // We always use floor(value).
+ break;
+ }
+ default: UNIMPLEMENTED();
+ }
+ return int_result;
+}
+
+
+double Simulator::FPToDouble(float value) {
+ switch (std::fpclassify(value)) {
+ case FP_NAN: {
+ // Convert NaNs as the processor would, assuming that FPCR.DN (default
+ // NaN) is not set:
+ // - The sign is propagated.
+ // - The payload (mantissa) is transferred entirely, except that the top
+ // bit is forced to '1', making the result a quiet NaN. The unused
+ // (low-order) payload bits are set to 0.
+ uint32_t raw = float_to_rawbits(value);
+
+ uint64_t sign = raw >> 31;
+ uint64_t exponent = (1 << 11) - 1;
+ uint64_t payload = unsigned_bitextract_64(21, 0, raw);
+ payload <<= (52 - 23); // The unused low-order bits should be 0.
+ payload |= (1L << 51); // Force a quiet NaN.
+
+ return rawbits_to_double((sign << 63) | (exponent << 52) | payload);
+ }
+
+ case FP_ZERO:
+ case FP_NORMAL:
+ case FP_SUBNORMAL:
+ case FP_INFINITE: {
+ // All other inputs are preserved in a standard cast, because every value
+ // representable using an IEEE-754 float is also representable using an
+ // IEEE-754 double.
+ return static_cast<double>(value);
+ }
+ }
+
+ UNREACHABLE();
+ return static_cast<double>(value);
+}
+
+
+float Simulator::FPToFloat(double value, FPRounding round_mode) {
+ // Only the FPTieEven rounding mode is implemented.
+ ASSERT(round_mode == FPTieEven);
+ USE(round_mode);
+
+ switch (std::fpclassify(value)) {
+ case FP_NAN: {
+ // Convert NaNs as the processor would, assuming that FPCR.DN (default
+ // NaN) is not set:
+ // - The sign is propagated.
+ // - The payload (mantissa) is transferred as much as possible, except
+ // that the top bit is forced to '1', making the result a quiet NaN.
+ uint64_t raw = double_to_rawbits(value);
+
+ uint32_t sign = raw >> 63;
+ uint32_t exponent = (1 << 8) - 1;
+ uint32_t payload = unsigned_bitextract_64(50, 52 - 23, raw);
+ payload |= (1 << 22); // Force a quiet NaN.
+
+ return rawbits_to_float((sign << 31) | (exponent << 23) | payload);
+ }
+
+ case FP_ZERO:
+ case FP_INFINITE: {
+ // In a C++ cast, any value representable in the target type will be
+ // unchanged. This is always the case for +/-0.0 and infinities.
+ return static_cast<float>(value);
+ }
+
+ case FP_NORMAL:
+ case FP_SUBNORMAL: {
+ // Convert double-to-float as the processor would, assuming that FPCR.FZ
+ // (flush-to-zero) is not set.
+ uint64_t raw = double_to_rawbits(value);
+ // Extract the IEEE-754 double components.
+ uint32_t sign = raw >> 63;
+ // Extract the exponent and remove the IEEE-754 encoding bias.
+ int32_t exponent = unsigned_bitextract_64(62, 52, raw) - 1023;
+ // Extract the mantissa and add the implicit '1' bit.
+ uint64_t mantissa = unsigned_bitextract_64(51, 0, raw);
+ if (std::fpclassify(value) == FP_NORMAL) {
+ mantissa |= (1UL << 52);
+ }
+ return FPRoundToFloat(sign, exponent, mantissa, round_mode);
+ }
+ }
+
+ UNREACHABLE();
+ return value;
+}
+
+
+void Simulator::VisitFPDataProcessing2Source(Instruction* instr) {
+ AssertSupportedFPCR();
+
+ unsigned fd = instr->Rd();
+ unsigned fn = instr->Rn();
+ unsigned fm = instr->Rm();
+
+ switch (instr->Mask(FPDataProcessing2SourceMask)) {
+ case FADD_s: set_sreg(fd, sreg(fn) + sreg(fm)); break;
+ case FADD_d: set_dreg(fd, dreg(fn) + dreg(fm)); break;
+ case FSUB_s: set_sreg(fd, sreg(fn) - sreg(fm)); break;
+ case FSUB_d: set_dreg(fd, dreg(fn) - dreg(fm)); break;
+ case FMUL_s: set_sreg(fd, sreg(fn) * sreg(fm)); break;
+ case FMUL_d: set_dreg(fd, dreg(fn) * dreg(fm)); break;
+ case FDIV_s: set_sreg(fd, sreg(fn) / sreg(fm)); break;
+ case FDIV_d: set_dreg(fd, dreg(fn) / dreg(fm)); break;
+ case FMAX_s: set_sreg(fd, FPMax(sreg(fn), sreg(fm))); break;
+ case FMAX_d: set_dreg(fd, FPMax(dreg(fn), dreg(fm))); break;
+ case FMIN_s: set_sreg(fd, FPMin(sreg(fn), sreg(fm))); break;
+ case FMIN_d: set_dreg(fd, FPMin(dreg(fn), dreg(fm))); break;
+ case FMAXNM_s: set_sreg(fd, FPMaxNM(sreg(fn), sreg(fm))); break;
+ case FMAXNM_d: set_dreg(fd, FPMaxNM(dreg(fn), dreg(fm))); break;
+ case FMINNM_s: set_sreg(fd, FPMinNM(sreg(fn), sreg(fm))); break;
+ case FMINNM_d: set_dreg(fd, FPMinNM(dreg(fn), dreg(fm))); break;
+ default: UNIMPLEMENTED();
+ }
+}
+
+
+void Simulator::VisitFPDataProcessing3Source(Instruction* instr) {
+ AssertSupportedFPCR();
+
+ unsigned fd = instr->Rd();
+ unsigned fn = instr->Rn();
+ unsigned fm = instr->Rm();
+ unsigned fa = instr->Ra();
+
+ // The C99 (and C++11) fma function performs a fused multiply-accumulate.
+ switch (instr->Mask(FPDataProcessing3SourceMask)) {
+ // fd = fa +/- (fn * fm)
+ case FMADD_s: set_sreg(fd, fmaf(sreg(fn), sreg(fm), sreg(fa))); break;
+ case FMSUB_s: set_sreg(fd, fmaf(-sreg(fn), sreg(fm), sreg(fa))); break;
+ case FMADD_d: set_dreg(fd, fma(dreg(fn), dreg(fm), dreg(fa))); break;
+ case FMSUB_d: set_dreg(fd, fma(-dreg(fn), dreg(fm), dreg(fa))); break;
+ // Variants of the above where the result is negated.
+ case FNMADD_s: set_sreg(fd, -fmaf(sreg(fn), sreg(fm), sreg(fa))); break;
+ case FNMSUB_s: set_sreg(fd, -fmaf(-sreg(fn), sreg(fm), sreg(fa))); break;
+ case FNMADD_d: set_dreg(fd, -fma(dreg(fn), dreg(fm), dreg(fa))); break;
+ case FNMSUB_d: set_dreg(fd, -fma(-dreg(fn), dreg(fm), dreg(fa))); break;
+ default: UNIMPLEMENTED();
+ }
+}
+
+
+template <typename T>
+T Simulator::FPMax(T a, T b) {
+ if (IsSignallingNaN(a)) {
+ return a;
+ } else if (IsSignallingNaN(b)) {
+ return b;
+ } else if (std::isnan(a)) {
+ ASSERT(IsQuietNaN(a));
+ return a;
+ } else if (std::isnan(b)) {
+ ASSERT(IsQuietNaN(b));
+ return b;
+ }
+
+ if ((a == 0.0) && (b == 0.0) &&
+ (copysign(1.0, a) != copysign(1.0, b))) {
+ // a and b are zero, and the sign differs: return +0.0.
+ return 0.0;
+ } else {
+ return (a > b) ? a : b;
+ }
+}
+
+
+template <typename T>
+T Simulator::FPMaxNM(T a, T b) {
+ if (IsQuietNaN(a) && !IsQuietNaN(b)) {
+ a = kFP64NegativeInfinity;
+ } else if (!IsQuietNaN(a) && IsQuietNaN(b)) {
+ b = kFP64NegativeInfinity;
+ }
+ return FPMax(a, b);
+}
+
+template <typename T>
+T Simulator::FPMin(T a, T b) {
+ if (IsSignallingNaN(a)) {
+ return a;
+ } else if (IsSignallingNaN(b)) {
+ return b;
+ } else if (std::isnan(a)) {
+ ASSERT(IsQuietNaN(a));
+ return a;
+ } else if (std::isnan(b)) {
+ ASSERT(IsQuietNaN(b));
+ return b;
+ }
+
+ if ((a == 0.0) && (b == 0.0) &&
+ (copysign(1.0, a) != copysign(1.0, b))) {
+ // a and b are zero, and the sign differs: return -0.0.
+ return -0.0;
+ } else {
+ return (a < b) ? a : b;
+ }
+}
+
+
+template <typename T>
+T Simulator::FPMinNM(T a, T b) {
+ if (IsQuietNaN(a) && !IsQuietNaN(b)) {
+ a = kFP64PositiveInfinity;
+ } else if (!IsQuietNaN(a) && IsQuietNaN(b)) {
+ b = kFP64PositiveInfinity;
+ }
+ return FPMin(a, b);
+}
+
+
+void Simulator::VisitSystem(Instruction* instr) {
+ // Some system instructions hijack their Op and Cp fields to represent a
+ // range of immediates instead of indicating a different instruction. This
+ // makes the decoding tricky.
+ if (instr->Mask(SystemSysRegFMask) == SystemSysRegFixed) {
+ switch (instr->Mask(SystemSysRegMask)) {
+ case MRS: {
+ switch (instr->ImmSystemRegister()) {
+ case NZCV: set_xreg(instr->Rt(), nzcv().RawValue()); break;
+ case FPCR: set_xreg(instr->Rt(), fpcr().RawValue()); break;
+ default: UNIMPLEMENTED();
+ }
+ break;
+ }
+ case MSR: {
+ switch (instr->ImmSystemRegister()) {
+ case NZCV: nzcv().SetRawValue(xreg(instr->Rt())); break;
+ case FPCR: fpcr().SetRawValue(xreg(instr->Rt())); break;
+ default: UNIMPLEMENTED();
+ }
+ break;
+ }
+ }
+ } else if (instr->Mask(SystemHintFMask) == SystemHintFixed) {
+ ASSERT(instr->Mask(SystemHintMask) == HINT);
+ switch (instr->ImmHint()) {
+ case NOP: break;
+ default: UNIMPLEMENTED();
+ }
+ } else if (instr->Mask(MemBarrierFMask) == MemBarrierFixed) {
+ __sync_synchronize();
+ } else {
+ UNIMPLEMENTED();
+ }
+}
+
+
+bool Simulator::GetValue(const char* desc, int64_t* value) {
+ int regnum = CodeFromName(desc);
+ if (regnum >= 0) {
+ unsigned code = regnum;
+ if (code == kZeroRegCode) {
+ // Catch the zero register and return 0.
+ *value = 0;
+ return true;
+ } else if (code == kSPRegInternalCode) {
+ // Translate the stack pointer code to 31, for Reg31IsStackPointer.
+ code = 31;
+ }
+ if (desc[0] == 'w') {
+ *value = wreg(code, Reg31IsStackPointer);
+ } else {
+ *value = xreg(code, Reg31IsStackPointer);
+ }
+ return true;
+ } else if (strncmp(desc, "0x", 2) == 0) {
+ return SScanF(desc + 2, "%" SCNx64,
+ reinterpret_cast<uint64_t*>(value)) == 1;
+ } else {
+ return SScanF(desc, "%" SCNu64,
+ reinterpret_cast<uint64_t*>(value)) == 1;
+ }
+}
+
+
+bool Simulator::PrintValue(const char* desc) {
+ // Define some colour codes to use for the register dump.
+ // TODO(jbramley): Find a more elegant way of defining these.
+ char const * const clr_normal = FLAG_log_colour ? "\033[m" : "";
+ char const * const clr_reg_name = FLAG_log_colour ? "\033[1;34m" : "";
+ char const * const clr_reg_value = FLAG_log_colour ? "\033[1;36m" : "";
+ char const * const clr_fpreg_name = FLAG_log_colour ? "\033[1;33m" : "";
+ char const * const clr_fpreg_value = FLAG_log_colour ? "\033[1;35m" : "";
+
+ if (strcmp(desc, "csp") == 0) {
+ ASSERT(CodeFromName(desc) == static_cast<int>(kSPRegInternalCode));
+ PrintF("%s csp:%s 0x%016" PRIx64 "%s\n",
+ clr_reg_name, clr_reg_value, xreg(31, Reg31IsStackPointer), clr_normal);
+ return true;
+ } else if (strcmp(desc, "wcsp") == 0) {
+ ASSERT(CodeFromName(desc) == static_cast<int>(kSPRegInternalCode));
+ PrintF("%s wcsp:%s 0x%08" PRIx32 "%s\n",
+ clr_reg_name, clr_reg_value, wreg(31, Reg31IsStackPointer), clr_normal);
+ return true;
+ }
+
+ int i = CodeFromName(desc);
+ if (i == -1) {
+ return false;
+ }
+ ASSERT(i >= 0);
+
+ if (desc[0] == 'v') {
+ PrintF("%s %s:%s 0x%016" PRIx64 "%s (%s%s:%s %g%s %s:%s %g%s)\n",
+ clr_fpreg_name, VRegNameForCode(i),
+ clr_fpreg_value, double_to_rawbits(dreg(i)),
+ clr_normal,
+ clr_fpreg_name, DRegNameForCode(i),
+ clr_fpreg_value, dreg(i),
+ clr_fpreg_name, SRegNameForCode(i),
+ clr_fpreg_value, sreg(i),
+ clr_normal);
+ return true;
+ } else if (desc[0] == 'd') {
+ PrintF("%s %s:%s %g%s\n",
+ clr_fpreg_name, DRegNameForCode(i),
+ clr_fpreg_value, dreg(i),
+ clr_normal);
+ return true;
+ } else if (desc[0] == 's') {
+ PrintF("%s %s:%s %g%s\n",
+ clr_fpreg_name, SRegNameForCode(i),
+ clr_fpreg_value, sreg(i),
+ clr_normal);
+ return true;
+ } else if (desc[0] == 'w') {
+ PrintF("%s %s:%s 0x%08" PRIx32 "%s\n",
+ clr_reg_name, WRegNameForCode(i), clr_reg_value, wreg(i), clr_normal);
+ return true;
+ } else {
+ // X register names have a wide variety of starting characters, but anything
+ // else will be an X register.
+ PrintF("%s %s:%s 0x%016" PRIx64 "%s\n",
+ clr_reg_name, XRegNameForCode(i), clr_reg_value, xreg(i), clr_normal);
+ return true;
+ }
+}
+
+
+void Simulator::Debug() {
+#define COMMAND_SIZE 63
+#define ARG_SIZE 255
+
+#define STR(a) #a
+#define XSTR(a) STR(a)
+
+ char cmd[COMMAND_SIZE + 1];
+ char arg1[ARG_SIZE + 1];
+ char arg2[ARG_SIZE + 1];
+ char* argv[3] = { cmd, arg1, arg2 };
+
+ // Make sure to have a proper terminating character if reaching the limit.
+ cmd[COMMAND_SIZE] = 0;
+ arg1[ARG_SIZE] = 0;
+ arg2[ARG_SIZE] = 0;
+
+ bool done = false;
+ bool cleared_log_disasm_bit = false;
+
+ while (!done) {
+ // Disassemble the next instruction to execute before doing anything else.
+ PrintInstructionsAt(pc_, 1);
+ // Read the command line.
+ char* line = ReadLine("sim> ");
+ if (line == NULL) {
+ break;
+ } else {
+ // Repeat last command by default.
+ char* last_input = last_debugger_input();
+ if (strcmp(line, "\n") == 0 && (last_input != NULL)) {
+ DeleteArray(line);
+ line = last_input;
+ } else {
+ // Update the latest command ran
+ set_last_debugger_input(line);
+ }
+
+ // Use sscanf to parse the individual parts of the command line. At the
+ // moment no command expects more than two parameters.
+ int argc = SScanF(line,
+ "%" XSTR(COMMAND_SIZE) "s "
+ "%" XSTR(ARG_SIZE) "s "
+ "%" XSTR(ARG_SIZE) "s",
+ cmd, arg1, arg2);
+
+ // stepi / si ------------------------------------------------------------
+ if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
+ // We are about to execute instructions, after which by default we
+ // should increment the pc_. If it was set when reaching this debug
+ // instruction, it has not been cleared because this instruction has not
+ // completed yet. So clear it manually.
+ pc_modified_ = false;
+
+ if (argc == 1) {
+ ExecuteInstruction();
+ } else {
+ int64_t number_of_instructions_to_execute = 1;
+ GetValue(arg1, &number_of_instructions_to_execute);
+
+ set_log_parameters(log_parameters() | LOG_DISASM);
+ while (number_of_instructions_to_execute-- > 0) {
+ ExecuteInstruction();
+ }
+ set_log_parameters(log_parameters() & ~LOG_DISASM);
+ PrintF("\n");
+ }
+
+ // If it was necessary, the pc has already been updated or incremented
+ // when executing the instruction. So we do not want it to be updated
+ // again. It will be cleared when exiting.
+ pc_modified_ = true;
+
+ // next / n --------------------------------------------------------------
+ } else if ((strcmp(cmd, "next") == 0) || (strcmp(cmd, "n") == 0)) {
+ // Tell the simulator to break after the next executed BL.
+ break_on_next_ = true;
+ // Continue.
+ done = true;
+
+ // continue / cont / c ---------------------------------------------------
+ } else if ((strcmp(cmd, "continue") == 0) ||
+ (strcmp(cmd, "cont") == 0) ||
+ (strcmp(cmd, "c") == 0)) {
+ // Leave the debugger shell.
+ done = true;
+
+ // disassemble / disasm / di ---------------------------------------------
+ } else if (strcmp(cmd, "disassemble") == 0 ||
+ strcmp(cmd, "disasm") == 0 ||
+ strcmp(cmd, "di") == 0) {
+ int64_t n_of_instrs_to_disasm = 10; // default value.
+ int64_t address = reinterpret_cast<int64_t>(pc_); // default value.
+ if (argc >= 2) { // disasm <n of instrs>
+ GetValue(arg1, &n_of_instrs_to_disasm);
+ }
+ if (argc >= 3) { // disasm <n of instrs> <address>
+ GetValue(arg2, &address);
+ }
+
+ // Disassemble.
+ PrintInstructionsAt(reinterpret_cast<Instruction*>(address),
+ n_of_instrs_to_disasm);
+ PrintF("\n");
+
+ // print / p -------------------------------------------------------------
+ } else if ((strcmp(cmd, "print") == 0) || (strcmp(cmd, "p") == 0)) {
+ if (argc == 2) {
+ if (strcmp(arg1, "all") == 0) {
+ // TODO(all): better support for printing in the debugger.
+ PrintRegisters(true);
+ PrintFPRegisters(true);
+ } else {
+ if (!PrintValue(arg1)) {
+ PrintF("%s unrecognized\n", arg1);
+ }
+ }
+ } else {
+ PrintF(
+ "print <register>\n"
+ " Print the content of a register. (alias 'p')\n"
+ " 'print all' will print all registers.\n"
+ " Use 'printobject' to get more details about the value.\n");
+ }
+
+ // printobject / po ------------------------------------------------------
+ } else if ((strcmp(cmd, "printobject") == 0) ||
+ (strcmp(cmd, "po") == 0)) {
+ if (argc == 2) {
+ int64_t value;
+ if (GetValue(arg1, &value)) {
+ Object* obj = reinterpret_cast<Object*>(value);
+ PrintF("%s: \n", arg1);
+#ifdef DEBUG
+ obj->PrintLn();
+#else
+ obj->ShortPrint();
+ PrintF("\n");
+#endif
+ } else {
+ PrintF("%s unrecognized\n", arg1);
+ }
+ } else {
+ PrintF("printobject <value>\n"
+ "printobject <register>\n"
+ " Print details about the value. (alias 'po')\n");
+ }
+
+ // stack / mem ----------------------------------------------------------
+ } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
+ int64_t* cur = NULL;
+ int64_t* end = NULL;
+ int next_arg = 1;
+
+ if (strcmp(cmd, "stack") == 0) {
+ cur = reinterpret_cast<int64_t*>(jssp());
+
+ } else { // "mem"
+ int64_t value;
+ if (!GetValue(arg1, &value)) {
+ PrintF("%s unrecognized\n", arg1);
+ continue;
+ }
+ cur = reinterpret_cast<int64_t*>(value);
+ next_arg++;
+ }
+
+ int64_t words;
+ if (argc == next_arg) {
+ words = 10;
+ } else if (argc == next_arg + 1) {
+ if (!GetValue(argv[next_arg], &words)) {
+ PrintF("%s unrecognized\n", argv[next_arg]);
+ PrintF("Printing 10 double words by default");
+ words = 10;
+ }
+ }
+ end = cur + words;
+
+ while (cur < end) {
+ PrintF(" 0x%016" PRIx64 ": 0x%016" PRIx64 " %10" PRId64,
+ reinterpret_cast<uint64_t>(cur), *cur, *cur);
+ HeapObject* obj = reinterpret_cast<HeapObject*>(*cur);
+ int64_t value = *cur;
+ Heap* current_heap = v8::internal::Isolate::Current()->heap();
+ if (((value & 1) == 0) || current_heap->Contains(obj)) {
+ PrintF(" (");
+ if ((value & kSmiTagMask) == 0) {
+ STATIC_ASSERT(kSmiValueSize == 32);
+ int32_t untagged = (value >> kSmiShift) & 0xffffffff;
+ PrintF("smi %" PRId32, untagged);
+ } else {
+ obj->ShortPrint();
+ }
+ PrintF(")");
+ }
+ PrintF("\n");
+ cur++;
+ }
+
+ // trace / t -------------------------------------------------------------
+ } else if (strcmp(cmd, "trace") == 0 || strcmp(cmd, "t") == 0) {
+ if ((log_parameters() & (LOG_DISASM | LOG_REGS)) !=
+ (LOG_DISASM | LOG_REGS)) {
+ PrintF("Enabling disassembly and registers tracing\n");
+ set_log_parameters(log_parameters() | LOG_DISASM | LOG_REGS);
+ } else {
+ PrintF("Disabling disassembly and registers tracing\n");
+ set_log_parameters(log_parameters() & ~(LOG_DISASM | LOG_REGS));
+ }
+
+ // break / b -------------------------------------------------------------
+ } else if (strcmp(cmd, "break") == 0 || strcmp(cmd, "b") == 0) {
+ if (argc == 2) {
+ int64_t value;
+ if (GetValue(arg1, &value)) {
+ SetBreakpoint(reinterpret_cast<Instruction*>(value));
+ } else {
+ PrintF("%s unrecognized\n", arg1);
+ }
+ } else {
+ ListBreakpoints();
+ PrintF("Use `break <address>` to set or disable a breakpoint\n");
+ }
+
+ // gdb -------------------------------------------------------------------
+ } else if (strcmp(cmd, "gdb") == 0) {
+ PrintF("Relinquishing control to gdb.\n");
+ OS::DebugBreak();
+ PrintF("Regaining control from gdb.\n");
+
+ // sysregs ---------------------------------------------------------------
+ } else if (strcmp(cmd, "sysregs") == 0) {
+ PrintSystemRegisters();
+
+ // help / h --------------------------------------------------------------
+ } else if (strcmp(cmd, "help") == 0 || strcmp(cmd, "h") == 0) {
+ PrintF(
+ "stepi / si\n"
+ " stepi <n>\n"
+ " Step <n> instructions.\n"
+ "next / n\n"
+ " Continue execution until a BL instruction is reached.\n"
+ " At this point a breakpoint is set just after this BL.\n"
+ " Then execution is resumed. It will probably later hit the\n"
+ " breakpoint just set.\n"
+ "continue / cont / c\n"
+ " Continue execution from here.\n"
+ "disassemble / disasm / di\n"
+ " disassemble <n> <address>\n"
+ " Disassemble <n> instructions from current <address>.\n"
+ " By default <n> is 20 and <address> is the current pc.\n"
+ "print / p\n"
+ " print <register>\n"
+ " Print the content of a register.\n"
+ " 'print all' will print all registers.\n"
+ " Use 'printobject' to get more details about the value.\n"
+ "printobject / po\n"
+ " printobject <value>\n"
+ " printobject <register>\n"
+ " Print details about the value.\n"
+ "stack\n"
+ " stack [<words>]\n"
+ " Dump stack content, default dump 10 words\n"
+ "mem\n"
+ " mem <address> [<words>]\n"
+ " Dump memory content, default dump 10 words\n"
+ "trace / t\n"
+ " Toggle disassembly and register tracing\n"
+ "break / b\n"
+ " break : list all breakpoints\n"
+ " break <address> : set / enable / disable a breakpoint.\n"
+ "gdb\n"
+ " Enter gdb.\n"
+ "sysregs\n"
+ " Print all system registers (including NZCV).\n");
+ } else {
+ PrintF("Unknown command: %s\n", cmd);
+ PrintF("Use 'help' for more information.\n");
+ }
+ }
+ if (cleared_log_disasm_bit == true) {
+ set_log_parameters(log_parameters_ | LOG_DISASM);
+ }
+ }
+}
+
+
+// Calls into the V8 runtime are based on this very simple interface.
+// Note: To be able to return two values from some calls the code in runtime.cc
+// uses the ObjectPair structure.
+// The simulator assumes all runtime calls return two 64-bits values. If they
+// don't, register x1 is clobbered. This is fine because x1 is caller-saved.
+struct ObjectPair {
+ int64_t res0;
+ int64_t res1;
+};
+
+
+typedef ObjectPair (*SimulatorRuntimeCall)(int64_t arg0,
+ int64_t arg1,
+ int64_t arg2,
+ int64_t arg3,
+ int64_t arg4,
+ int64_t arg5,
+ int64_t arg6,
+ int64_t arg7);
+
+typedef int64_t (*SimulatorRuntimeCompareCall)(double arg1, double arg2);
+typedef double (*SimulatorRuntimeFPFPCall)(double arg1, double arg2);
+typedef double (*SimulatorRuntimeFPCall)(double arg1);
+typedef double (*SimulatorRuntimeFPIntCall)(double arg1, int32_t arg2);
+
+// This signature supports direct call in to API function native callback
+// (refer to InvocationCallback in v8.h).
+typedef void (*SimulatorRuntimeDirectApiCall)(int64_t arg0);
+typedef void (*SimulatorRuntimeProfilingApiCall)(int64_t arg0, void* arg1);
+
+// This signature supports direct call to accessor getter callback.
+typedef void (*SimulatorRuntimeDirectGetterCall)(int64_t arg0, int64_t arg1);
+typedef void (*SimulatorRuntimeProfilingGetterCall)(int64_t arg0, int64_t arg1,
+ void* arg2);
+
+void Simulator::VisitException(Instruction* instr) {
+ // Define some colour codes to use for log messages.
+ // TODO(jbramley): Find a more elegant way of defining these.
+ char const* const clr_normal = (FLAG_log_colour) ? ("\033[m")
+ : ("");
+ char const* const clr_debug_number = (FLAG_log_colour) ? ("\033[1;33m")
+ : ("");
+ char const* const clr_debug_message = (FLAG_log_colour) ? ("\033[0;33m")
+ : ("");
+ char const* const clr_printf = (FLAG_log_colour) ? ("\033[0;32m")
+ : ("");
+
+ switch (instr->Mask(ExceptionMask)) {
+ case HLT: {
+ if (instr->ImmException() == kImmExceptionIsDebug) {
+ // Read the arguments encoded inline in the instruction stream.
+ uint32_t code;
+ uint32_t parameters;
+ char const * message;
+
+ ASSERT(sizeof(*pc_) == 1);
+ memcpy(&code, pc_ + kDebugCodeOffset, sizeof(code));
+ memcpy(&parameters, pc_ + kDebugParamsOffset, sizeof(parameters));
+ message = reinterpret_cast<char const *>(pc_ + kDebugMessageOffset);
+
+ // Always print something when we hit a debug point that breaks.
+ // We are going to break, so printing something is not an issue in
+ // terms of speed.
+ if (FLAG_trace_sim_messages || FLAG_trace_sim || (parameters & BREAK)) {
+ if (message != NULL) {
+ PrintF("%sDebugger hit %d: %s%s%s\n",
+ clr_debug_number,
+ code,
+ clr_debug_message,
+ message,
+ clr_normal);
+ } else {
+ PrintF("%sDebugger hit %d.%s\n",
+ clr_debug_number,
+ code,
+ clr_normal);
+ }
+ }
+
+ // Other options.
+ switch (parameters & kDebuggerTracingDirectivesMask) {
+ case TRACE_ENABLE:
+ set_log_parameters(log_parameters() | parameters);
+ if (parameters & LOG_SYS_REGS) { PrintSystemRegisters(); }
+ if (parameters & LOG_REGS) { PrintRegisters(); }
+ if (parameters & LOG_FP_REGS) { PrintFPRegisters(); }
+ break;
+ case TRACE_DISABLE:
+ set_log_parameters(log_parameters() & ~parameters);
+ break;
+ case TRACE_OVERRIDE:
+ set_log_parameters(parameters);
+ break;
+ default:
+ // We don't support a one-shot LOG_DISASM.
+ ASSERT((parameters & LOG_DISASM) == 0);
+ // Don't print information that is already being traced.
+ parameters &= ~log_parameters();
+ // Print the requested information.
+ if (parameters & LOG_SYS_REGS) PrintSystemRegisters(true);
+ if (parameters & LOG_REGS) PrintRegisters(true);
+ if (parameters & LOG_FP_REGS) PrintFPRegisters(true);
+ }
+
+ // The stop parameters are inlined in the code. Skip them:
+ // - Skip to the end of the message string.
+ pc_ += kDebugMessageOffset + strlen(message) + 1;
+ // - Advance to the next aligned location.
+ pc_ = AlignUp(pc_, kInstructionSize);
+ // - Verify that the unreachable marker is present.
+ ASSERT(pc_->Mask(ExceptionMask) == HLT);
+ ASSERT(pc_->ImmException() == kImmExceptionIsUnreachable);
+ // - Skip past the unreachable marker.
+ set_pc(pc_->NextInstruction());
+
+ // Check if the debugger should break.
+ if (parameters & BREAK) Debug();
+
+ } else if (instr->ImmException() == kImmExceptionIsRedirectedCall) {
+ // TODO(all): Extract the call redirection code into a separate
+ // function.
+
+ Redirection* redirection = Redirection::FromHltInstruction(instr);
+
+ // The called C code might itself call simulated code, so any
+ // caller-saved registers (including lr) could still be clobbered by a
+ // redirected call.
+ Instruction* return_address = lr();
+
+ // TODO(jbramley): Make external_function() a template so that we don't
+ // have to explicitly cast the result for each redirection type.
+ int64_t external =
+ reinterpret_cast<int64_t>(redirection->external_function());
+
+ TraceSim("Call to host function at %p\n",
+ reinterpret_cast<void*>(redirection->external_function()));
+
+ // SP must be 16 bytes aligned at the call interface.
+ bool stack_alignment_exception = ((sp() & 0xf) != 0);
+ if (stack_alignment_exception) {
+ TraceSim(" with unaligned stack 0x%016" PRIx64 ".\n", sp());
+ ALIGNMENT_EXCEPTION();
+ }
+
+ switch (redirection->type()) {
+ default:
+ TraceSim("Type: Unknown.\n");
+ UNREACHABLE();
+ break;
+
+ case ExternalReference::BUILTIN_CALL: {
+ // MaybeObject* f(v8::internal::Arguments).
+ TraceSim("Type: BUILTIN_CALL\n");
+ SimulatorRuntimeCall target =
+ reinterpret_cast<SimulatorRuntimeCall>(external);
+
+ // We don't know how many arguments are being passed, but we can
+ // pass 8 without touching the stack. They will be ignored by the
+ // host function if they aren't used.
+ TraceSim("Arguments: "
+ "0x%016" PRIx64 ", 0x%016" PRIx64 ", "
+ "0x%016" PRIx64 ", 0x%016" PRIx64 ", "
+ "0x%016" PRIx64 ", 0x%016" PRIx64 ", "
+ "0x%016" PRIx64 ", 0x%016" PRIx64,
+ xreg(0), xreg(1), xreg(2), xreg(3),
+ xreg(4), xreg(5), xreg(6), xreg(7));
+ ObjectPair result = target(xreg(0), xreg(1), xreg(2), xreg(3),
+ xreg(4), xreg(5), xreg(6), xreg(7));
+ TraceSim("Returned: {0x%" PRIx64 ", 0x%" PRIx64"}\n",
+ result.res0, result.res1);
+#ifdef DEBUG
+ CorruptAllCallerSavedCPURegisters();
+#endif
+ set_xreg(0, result.res0);
+ set_xreg(1, result.res1);
+ break;
+ }
+
+ case ExternalReference::DIRECT_API_CALL: {
+ // void f(v8::FunctionCallbackInfo&)
+ TraceSim("Type: DIRECT_API_CALL\n");
+ SimulatorRuntimeDirectApiCall target =
+ reinterpret_cast<SimulatorRuntimeDirectApiCall>(external);
+ TraceSim("Arguments: 0x%016" PRIx64 "\n", xreg(0));
+ target(xreg(0));
+ TraceSim("No return value.");
+#ifdef DEBUG
+ CorruptAllCallerSavedCPURegisters();
+#endif
+ break;
+ }
+
+ case ExternalReference::BUILTIN_COMPARE_CALL: {
+ // int f(double, double)
+ TraceSim("Type: BUILTIN_COMPARE_CALL\n");
+ SimulatorRuntimeCompareCall target =
+ reinterpret_cast<SimulatorRuntimeCompareCall>(external);
+ TraceSim("Arguments: %f, %f\n", dreg(0), dreg(1));
+ int64_t result = target(dreg(0), dreg(1));
+ TraceSim("Returned: %" PRId64 "\n", result);
+#ifdef DEBUG
+ CorruptAllCallerSavedCPURegisters();
+#endif
+ set_xreg(0, result);
+ break;
+ }
+
+ case ExternalReference::BUILTIN_FP_CALL: {
+ // double f(double)
+ TraceSim("Type: BUILTIN_FP_CALL\n");
+ SimulatorRuntimeFPCall target =
+ reinterpret_cast<SimulatorRuntimeFPCall>(external);
+ TraceSim("Argument: %f\n", dreg(0));
+ double result = target(dreg(0));
+ TraceSim("Returned: %f\n", result);
+#ifdef DEBUG
+ CorruptAllCallerSavedCPURegisters();
+#endif
+ set_dreg(0, result);
+ break;
+ }
+
+ case ExternalReference::BUILTIN_FP_FP_CALL: {
+ // double f(double, double)
+ TraceSim("Type: BUILTIN_FP_FP_CALL\n");
+ SimulatorRuntimeFPFPCall target =
+ reinterpret_cast<SimulatorRuntimeFPFPCall>(external);
+ TraceSim("Arguments: %f, %f\n", dreg(0), dreg(1));
+ double result = target(dreg(0), dreg(1));
+ TraceSim("Returned: %f\n", result);
+#ifdef DEBUG
+ CorruptAllCallerSavedCPURegisters();
+#endif
+ set_dreg(0, result);
+ break;
+ }
+
+ case ExternalReference::BUILTIN_FP_INT_CALL: {
+ // double f(double, int)
+ TraceSim("Type: BUILTIN_FP_INT_CALL\n");
+ SimulatorRuntimeFPIntCall target =
+ reinterpret_cast<SimulatorRuntimeFPIntCall>(external);
+ TraceSim("Arguments: %f, %d\n", dreg(0), wreg(0));
+ double result = target(dreg(0), wreg(0));
+ TraceSim("Returned: %f\n", result);
+#ifdef DEBUG
+ CorruptAllCallerSavedCPURegisters();
+#endif
+ set_dreg(0, result);
+ break;
+ }
+
+ case ExternalReference::DIRECT_GETTER_CALL: {
+ // void f(Local<String> property, PropertyCallbackInfo& info)
+ TraceSim("Type: DIRECT_GETTER_CALL\n");
+ SimulatorRuntimeDirectGetterCall target =
+ reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external);
+ TraceSim("Arguments: 0x%016" PRIx64 ", 0x%016" PRIx64 "\n",
+ xreg(0), xreg(1));
+ target(xreg(0), xreg(1));
+ TraceSim("No return value.");
+#ifdef DEBUG
+ CorruptAllCallerSavedCPURegisters();
+#endif
+ break;
+ }
+
+ case ExternalReference::PROFILING_API_CALL: {
+ // void f(v8::FunctionCallbackInfo&, v8::FunctionCallback)
+ TraceSim("Type: PROFILING_API_CALL\n");
+ SimulatorRuntimeProfilingApiCall target =
+ reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external);
+ void* arg1 = Redirection::ReverseRedirection(xreg(1));
+ TraceSim("Arguments: 0x%016" PRIx64 ", %p\n", xreg(0), arg1);
+ target(xreg(0), arg1);
+ TraceSim("No return value.");
+#ifdef DEBUG
+ CorruptAllCallerSavedCPURegisters();
+#endif
+ break;
+ }
+
+ case ExternalReference::PROFILING_GETTER_CALL: {
+ // void f(Local<String> property, PropertyCallbackInfo& info,
+ // AccessorGetterCallback callback)
+ TraceSim("Type: PROFILING_GETTER_CALL\n");
+ SimulatorRuntimeProfilingGetterCall target =
+ reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(
+ external);
+ void* arg2 = Redirection::ReverseRedirection(xreg(2));
+ TraceSim("Arguments: 0x%016" PRIx64 ", 0x%016" PRIx64 ", %p\n",
+ xreg(0), xreg(1), arg2);
+ target(xreg(0), xreg(1), arg2);
+ TraceSim("No return value.");
+#ifdef DEBUG
+ CorruptAllCallerSavedCPURegisters();
+#endif
+ break;
+ }
+ }
+
+ set_lr(return_address);
+ set_pc(return_address);
+ } else if (instr->ImmException() == kImmExceptionIsPrintf) {
+ // Read the argument encoded inline in the instruction stream.
+ uint32_t type;
+ ASSERT(sizeof(*pc_) == 1);
+ memcpy(&type, pc_ + kPrintfTypeOffset, sizeof(type));
+
+ const char* format = reg<const char*>(0);
+
+ // Pass all of the relevant PCS registers onto printf. It doesn't
+ // matter if we pass too many as the extra ones won't be read.
+ int result;
+ fputs(clr_printf, stream_);
+ if (type == CPURegister::kRegister) {
+ result = fprintf(stream_, format,
+ xreg(1), xreg(2), xreg(3), xreg(4),
+ xreg(5), xreg(6), xreg(7));
+ } else if (type == CPURegister::kFPRegister) {
+ result = fprintf(stream_, format,
+ dreg(0), dreg(1), dreg(2), dreg(3),
+ dreg(4), dreg(5), dreg(6), dreg(7));
+ } else {
+ ASSERT(type == CPURegister::kNoRegister);
+ result = fprintf(stream_, "%s", format);
+ }
+ fputs(clr_normal, stream_);
+ set_xreg(0, result);
+
+ // TODO(jbramley): Consider clobbering all caller-saved registers here.
+
+ // The printf parameters are inlined in the code, so skip them.
+ set_pc(pc_->InstructionAtOffset(kPrintfLength));
+
+ // Set LR as if we'd just called a native printf function.
+ set_lr(pc());
+
+ } else if (instr->ImmException() == kImmExceptionIsUnreachable) {
+ fprintf(stream_, "Hit UNREACHABLE marker at PC=%p.\n",
+ reinterpret_cast<void*>(pc_));
+ abort();
+
+ } else {
+ OS::DebugBreak();
+ }
+ break;
+ }
+
+ default:
+ UNIMPLEMENTED();
+ }
+}
+
+#endif // USE_SIMULATOR
+
+} } // namespace v8::internal
+
+#endif // V8_TARGET_ARCH_A64
« no previous file with comments | « src/a64/simulator-a64.h ('k') | src/a64/stub-cache-a64.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698