| Index: test/cctest/test-utils-a64.cc
|
| diff --git a/test/cctest/test-utils-a64.cc b/test/cctest/test-utils-a64.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..5e5a2e1e4b79a07ec90a2415198a3e2b781047d1
|
| --- /dev/null
|
| +++ b/test/cctest/test-utils-a64.cc
|
| @@ -0,0 +1,426 @@
|
| +// Copyright 2013 the V8 project authors. All rights reserved.
|
| +// Redistribution and use in source and binary forms, with or without
|
| +// modification, are permitted provided that the following conditions are
|
| +// met:
|
| +//
|
| +// * Redistributions of source code must retain the above copyright
|
| +// notice, this list of conditions and the following disclaimer.
|
| +// * Redistributions in binary form must reproduce the above
|
| +// copyright notice, this list of conditions and the following
|
| +// disclaimer in the documentation and/or other materials provided
|
| +// with the distribution.
|
| +// * Neither the name of Google Inc. nor the names of its
|
| +// contributors may be used to endorse or promote products derived
|
| +// from this software without specific prior written permission.
|
| +//
|
| +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
| +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
| +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
| +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
| +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
| +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
| +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
| +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
| +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| +
|
| +#include "v8.h"
|
| +
|
| +#include "macro-assembler.h"
|
| +#include "a64/utils-a64.h"
|
| +#include "cctest.h"
|
| +#include "test-utils-a64.h"
|
| +
|
| +using namespace v8::internal;
|
| +
|
| +
|
| +#define __ masm->
|
| +
|
| +
|
| +bool Equal32(uint32_t expected, const RegisterDump*, uint32_t result) {
|
| + if (result != expected) {
|
| + printf("Expected 0x%08" PRIx32 "\t Found 0x%08" PRIx32 "\n",
|
| + expected, result);
|
| + }
|
| +
|
| + return expected == result;
|
| +}
|
| +
|
| +
|
| +bool Equal64(uint64_t expected, const RegisterDump*, uint64_t result) {
|
| + if (result != expected) {
|
| + printf("Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
|
| + expected, result);
|
| + }
|
| +
|
| + return expected == result;
|
| +}
|
| +
|
| +
|
| +bool EqualFP32(float expected, const RegisterDump*, float result) {
|
| + if (float_to_rawbits(expected) == float_to_rawbits(result)) {
|
| + return true;
|
| + } else {
|
| + if (isnan(expected) || (expected == 0.0)) {
|
| + printf("Expected 0x%08" PRIx32 "\t Found 0x%08" PRIx32 "\n",
|
| + float_to_rawbits(expected), float_to_rawbits(result));
|
| + } else {
|
| + printf("Expected %.9f (0x%08" PRIx32 ")\t "
|
| + "Found %.9f (0x%08" PRIx32 ")\n",
|
| + expected, float_to_rawbits(expected),
|
| + result, float_to_rawbits(result));
|
| + }
|
| + return false;
|
| + }
|
| +}
|
| +
|
| +
|
| +bool EqualFP64(double expected, const RegisterDump*, double result) {
|
| + if (double_to_rawbits(expected) == double_to_rawbits(result)) {
|
| + return true;
|
| + }
|
| +
|
| + if (isnan(expected) || (expected == 0.0)) {
|
| + printf("Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
|
| + double_to_rawbits(expected), double_to_rawbits(result));
|
| + } else {
|
| + printf("Expected %.17f (0x%016" PRIx64 ")\t "
|
| + "Found %.17f (0x%016" PRIx64 ")\n",
|
| + expected, double_to_rawbits(expected),
|
| + result, double_to_rawbits(result));
|
| + }
|
| + return false;
|
| +}
|
| +
|
| +
|
| +bool Equal32(uint32_t expected, const RegisterDump* core, const Register& reg) {
|
| + ASSERT(reg.Is32Bits());
|
| + // Retrieve the corresponding X register so we can check that the upper part
|
| + // was properly cleared.
|
| + int64_t result_x = core->xreg(reg.code());
|
| + if ((result_x & 0xffffffff00000000L) != 0) {
|
| + printf("Expected 0x%08" PRIx32 "\t Found 0x%016" PRIx64 "\n",
|
| + expected, result_x);
|
| + return false;
|
| + }
|
| + uint32_t result_w = core->wreg(reg.code());
|
| + return Equal32(expected, core, result_w);
|
| +}
|
| +
|
| +
|
| +bool Equal64(uint64_t expected,
|
| + const RegisterDump* core,
|
| + const Register& reg) {
|
| + ASSERT(reg.Is64Bits());
|
| + uint64_t result = core->xreg(reg.code());
|
| + return Equal64(expected, core, result);
|
| +}
|
| +
|
| +
|
| +bool EqualFP32(float expected,
|
| + const RegisterDump* core,
|
| + const FPRegister& fpreg) {
|
| + ASSERT(fpreg.Is32Bits());
|
| + // Retrieve the corresponding D register so we can check that the upper part
|
| + // was properly cleared.
|
| + uint64_t result_64 = core->dreg_bits(fpreg.code());
|
| + if ((result_64 & 0xffffffff00000000L) != 0) {
|
| + printf("Expected 0x%08" PRIx32 " (%f)\t Found 0x%016" PRIx64 "\n",
|
| + float_to_rawbits(expected), expected, result_64);
|
| + return false;
|
| + }
|
| +
|
| + return EqualFP32(expected, core, core->sreg(fpreg.code()));
|
| +}
|
| +
|
| +
|
| +bool EqualFP64(double expected,
|
| + const RegisterDump* core,
|
| + const FPRegister& fpreg) {
|
| + ASSERT(fpreg.Is64Bits());
|
| + return EqualFP64(expected, core, core->dreg(fpreg.code()));
|
| +}
|
| +
|
| +
|
| +bool Equal64(const Register& reg0,
|
| + const RegisterDump* core,
|
| + const Register& reg1) {
|
| + ASSERT(reg0.Is64Bits() && reg1.Is64Bits());
|
| + int64_t expected = core->xreg(reg0.code());
|
| + int64_t result = core->xreg(reg1.code());
|
| + return Equal64(expected, core, result);
|
| +}
|
| +
|
| +
|
| +static char FlagN(uint32_t flags) {
|
| + return (flags & NFlag) ? 'N' : 'n';
|
| +}
|
| +
|
| +
|
| +static char FlagZ(uint32_t flags) {
|
| + return (flags & ZFlag) ? 'Z' : 'z';
|
| +}
|
| +
|
| +
|
| +static char FlagC(uint32_t flags) {
|
| + return (flags & CFlag) ? 'C' : 'c';
|
| +}
|
| +
|
| +
|
| +static char FlagV(uint32_t flags) {
|
| + return (flags & VFlag) ? 'V' : 'v';
|
| +}
|
| +
|
| +
|
| +bool EqualNzcv(uint32_t expected, uint32_t result) {
|
| + ASSERT((expected & ~NZCVFlag) == 0);
|
| + ASSERT((result & ~NZCVFlag) == 0);
|
| + if (result != expected) {
|
| + printf("Expected: %c%c%c%c\t Found: %c%c%c%c\n",
|
| + FlagN(expected), FlagZ(expected), FlagC(expected), FlagV(expected),
|
| + FlagN(result), FlagZ(result), FlagC(result), FlagV(result));
|
| + return false;
|
| + }
|
| +
|
| + return true;
|
| +}
|
| +
|
| +
|
| +bool EqualRegisters(const RegisterDump* a, const RegisterDump* b) {
|
| + for (unsigned i = 0; i < kNumberOfRegisters; i++) {
|
| + if (a->xreg(i) != b->xreg(i)) {
|
| + printf("x%d\t Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
|
| + i, a->xreg(i), b->xreg(i));
|
| + return false;
|
| + }
|
| + }
|
| +
|
| + for (unsigned i = 0; i < kNumberOfFPRegisters; i++) {
|
| + uint64_t a_bits = a->dreg_bits(i);
|
| + uint64_t b_bits = b->dreg_bits(i);
|
| + if (a_bits != b_bits) {
|
| + printf("d%d\t Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
|
| + i, a_bits, b_bits);
|
| + return false;
|
| + }
|
| + }
|
| +
|
| + return true;
|
| +}
|
| +
|
| +
|
| +RegList PopulateRegisterArray(Register* w, Register* x, Register* r,
|
| + int reg_size, int reg_count, RegList allowed) {
|
| + RegList list = 0;
|
| + int i = 0;
|
| + for (unsigned n = 0; (n < kNumberOfRegisters) && (i < reg_count); n++) {
|
| + if (((1UL << n) & allowed) != 0) {
|
| + // Only assign allowed registers.
|
| + if (r) {
|
| + r[i] = Register::Create(n, reg_size);
|
| + }
|
| + if (x) {
|
| + x[i] = Register::Create(n, kXRegSize);
|
| + }
|
| + if (w) {
|
| + w[i] = Register::Create(n, kWRegSize);
|
| + }
|
| + list |= (1UL << n);
|
| + i++;
|
| + }
|
| + }
|
| + // Check that we got enough registers.
|
| + ASSERT(CountSetBits(list, kNumberOfRegisters) == reg_count);
|
| +
|
| + return list;
|
| +}
|
| +
|
| +
|
| +RegList PopulateFPRegisterArray(FPRegister* s, FPRegister* d, FPRegister* v,
|
| + int reg_size, int reg_count, RegList allowed) {
|
| + RegList list = 0;
|
| + int i = 0;
|
| + for (unsigned n = 0; (n < kNumberOfFPRegisters) && (i < reg_count); n++) {
|
| + if (((1UL << n) & allowed) != 0) {
|
| + // Only assigned allowed registers.
|
| + if (v) {
|
| + v[i] = FPRegister::Create(n, reg_size);
|
| + }
|
| + if (d) {
|
| + d[i] = FPRegister::Create(n, kDRegSize);
|
| + }
|
| + if (s) {
|
| + s[i] = FPRegister::Create(n, kSRegSize);
|
| + }
|
| + list |= (1UL << n);
|
| + i++;
|
| + }
|
| + }
|
| + // Check that we got enough registers.
|
| + ASSERT(CountSetBits(list, kNumberOfFPRegisters) == reg_count);
|
| +
|
| + return list;
|
| +}
|
| +
|
| +
|
| +void Clobber(MacroAssembler* masm, RegList reg_list, uint64_t const value) {
|
| + Register first = NoReg;
|
| + for (unsigned i = 0; i < kNumberOfRegisters; i++) {
|
| + if (reg_list & (1UL << i)) {
|
| + Register xn = Register::Create(i, kXRegSize);
|
| + // We should never write into csp here.
|
| + ASSERT(!xn.Is(csp));
|
| + if (!xn.IsZero()) {
|
| + if (!first.IsValid()) {
|
| + // This is the first register we've hit, so construct the literal.
|
| + __ Mov(xn, value);
|
| + first = xn;
|
| + } else {
|
| + // We've already loaded the literal, so re-use the value already
|
| + // loaded into the first register we hit.
|
| + __ Mov(xn, first);
|
| + }
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +void ClobberFP(MacroAssembler* masm, RegList reg_list, double const value) {
|
| + FPRegister first = NoFPReg;
|
| + for (unsigned i = 0; i < kNumberOfFPRegisters; i++) {
|
| + if (reg_list & (1UL << i)) {
|
| + FPRegister dn = FPRegister::Create(i, kDRegSize);
|
| + if (!first.IsValid()) {
|
| + // This is the first register we've hit, so construct the literal.
|
| + __ Fmov(dn, value);
|
| + first = dn;
|
| + } else {
|
| + // We've already loaded the literal, so re-use the value already loaded
|
| + // into the first register we hit.
|
| + __ Fmov(dn, first);
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +void Clobber(MacroAssembler* masm, CPURegList reg_list) {
|
| + if (reg_list.type() == CPURegister::kRegister) {
|
| + // This will always clobber X registers.
|
| + Clobber(masm, reg_list.list());
|
| + } else if (reg_list.type() == CPURegister::kFPRegister) {
|
| + // This will always clobber D registers.
|
| + ClobberFP(masm, reg_list.list());
|
| + } else {
|
| + UNREACHABLE();
|
| + }
|
| +}
|
| +
|
| +
|
| +void RegisterDump::Dump(MacroAssembler* masm) {
|
| + ASSERT(__ StackPointer().Is(csp));
|
| +
|
| + // Ensure that we don't unintentionally clobber any registers.
|
| + Register old_tmp0 = __ Tmp0();
|
| + Register old_tmp1 = __ Tmp1();
|
| + FPRegister old_fptmp0 = __ FPTmp0();
|
| + __ SetScratchRegisters(NoReg, NoReg);
|
| + __ SetFPScratchRegister(NoFPReg);
|
| +
|
| + // Preserve some temporary registers.
|
| + Register dump_base = x0;
|
| + Register dump = x1;
|
| + Register tmp = x2;
|
| + Register dump_base_w = dump_base.W();
|
| + Register dump_w = dump.W();
|
| + Register tmp_w = tmp.W();
|
| +
|
| + // Offsets into the dump_ structure.
|
| + const int x_offset = offsetof(dump_t, x_);
|
| + const int w_offset = offsetof(dump_t, w_);
|
| + const int d_offset = offsetof(dump_t, d_);
|
| + const int s_offset = offsetof(dump_t, s_);
|
| + const int sp_offset = offsetof(dump_t, sp_);
|
| + const int wsp_offset = offsetof(dump_t, wsp_);
|
| + const int flags_offset = offsetof(dump_t, flags_);
|
| +
|
| + __ Push(xzr, dump_base, dump, tmp);
|
| +
|
| + // Load the address where we will dump the state.
|
| + __ Mov(dump_base, reinterpret_cast<uint64_t>(&dump_));
|
| +
|
| + // Dump the stack pointer (csp and wcsp).
|
| + // The stack pointer cannot be stored directly; it needs to be moved into
|
| + // another register first. Also, we pushed four X registers, so we need to
|
| + // compensate here.
|
| + __ Add(tmp, csp, 4 * kXRegSizeInBytes);
|
| + __ Str(tmp, MemOperand(dump_base, sp_offset));
|
| + __ Add(tmp_w, wcsp, 4 * kXRegSizeInBytes);
|
| + __ Str(tmp_w, MemOperand(dump_base, wsp_offset));
|
| +
|
| + // Dump X registers.
|
| + __ Add(dump, dump_base, x_offset);
|
| + for (unsigned i = 0; i < kNumberOfRegisters; i += 2) {
|
| + __ Stp(Register::XRegFromCode(i), Register::XRegFromCode(i + 1),
|
| + MemOperand(dump, i * kXRegSizeInBytes));
|
| + }
|
| +
|
| + // Dump W registers.
|
| + __ Add(dump, dump_base, w_offset);
|
| + for (unsigned i = 0; i < kNumberOfRegisters; i += 2) {
|
| + __ Stp(Register::WRegFromCode(i), Register::WRegFromCode(i + 1),
|
| + MemOperand(dump, i * kWRegSizeInBytes));
|
| + }
|
| +
|
| + // Dump D registers.
|
| + __ Add(dump, dump_base, d_offset);
|
| + for (unsigned i = 0; i < kNumberOfFPRegisters; i += 2) {
|
| + __ Stp(FPRegister::DRegFromCode(i), FPRegister::DRegFromCode(i + 1),
|
| + MemOperand(dump, i * kDRegSizeInBytes));
|
| + }
|
| +
|
| + // Dump S registers.
|
| + __ Add(dump, dump_base, s_offset);
|
| + for (unsigned i = 0; i < kNumberOfFPRegisters; i += 2) {
|
| + __ Stp(FPRegister::SRegFromCode(i), FPRegister::SRegFromCode(i + 1),
|
| + MemOperand(dump, i * kSRegSizeInBytes));
|
| + }
|
| +
|
| + // Dump the flags.
|
| + __ Mrs(tmp, NZCV);
|
| + __ Str(tmp, MemOperand(dump_base, flags_offset));
|
| +
|
| + // To dump the values that were in tmp amd dump, we need a new scratch
|
| + // register. We can use any of the already dumped registers since we can
|
| + // easily restore them.
|
| + Register dump2_base = x10;
|
| + Register dump2 = x11;
|
| + ASSERT(!AreAliased(dump_base, dump, tmp, dump2_base, dump2));
|
| +
|
| + // Don't lose the dump_ address.
|
| + __ Mov(dump2_base, dump_base);
|
| +
|
| + __ Pop(tmp, dump, dump_base, xzr);
|
| +
|
| + __ Add(dump2, dump2_base, w_offset);
|
| + __ Str(dump_base_w, MemOperand(dump2, dump_base.code() * kWRegSizeInBytes));
|
| + __ Str(dump_w, MemOperand(dump2, dump.code() * kWRegSizeInBytes));
|
| + __ Str(tmp_w, MemOperand(dump2, tmp.code() * kWRegSizeInBytes));
|
| +
|
| + __ Add(dump2, dump2_base, x_offset);
|
| + __ Str(dump_base, MemOperand(dump2, dump_base.code() * kXRegSizeInBytes));
|
| + __ Str(dump, MemOperand(dump2, dump.code() * kXRegSizeInBytes));
|
| + __ Str(tmp, MemOperand(dump2, tmp.code() * kXRegSizeInBytes));
|
| +
|
| + // Finally, restore dump2_base and dump2.
|
| + __ Ldr(dump2_base, MemOperand(dump2, dump2_base.code() * kXRegSizeInBytes));
|
| + __ Ldr(dump2, MemOperand(dump2, dump2.code() * kXRegSizeInBytes));
|
| +
|
| + // Restore the MacroAssembler's scratch registers.
|
| + __ SetScratchRegisters(old_tmp0, old_tmp1);
|
| + __ SetFPScratchRegister(old_fptmp0);
|
| +
|
| + completed_ = true;
|
| +}
|
|
|