| Index: test/cctest/test-utils-a64.h
|
| diff --git a/test/cctest/test-utils-a64.h b/test/cctest/test-utils-a64.h
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..d8fa9a8de5e552e8f8277a045c988fe481a2b98f
|
| --- /dev/null
|
| +++ b/test/cctest/test-utils-a64.h
|
| @@ -0,0 +1,232 @@
|
| +// Copyright 2013 the V8 project authors. All rights reserved.
|
| +// Redistribution and use in source and binary forms, with or without
|
| +// modification, are permitted provided that the following conditions are
|
| +// met:
|
| +//
|
| +// * Redistributions of source code must retain the above copyright
|
| +// notice, this list of conditions and the following disclaimer.
|
| +// * Redistributions in binary form must reproduce the above
|
| +// copyright notice, this list of conditions and the following
|
| +// disclaimer in the documentation and/or other materials provided
|
| +// with the distribution.
|
| +// * Neither the name of Google Inc. nor the names of its
|
| +// contributors may be used to endorse or promote products derived
|
| +// from this software without specific prior written permission.
|
| +//
|
| +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
| +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
| +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
| +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
| +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
| +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
| +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
| +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
| +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| +
|
| +#ifndef V8_A64_TEST_UTILS_A64_H_
|
| +#define V8_A64_TEST_UTILS_A64_H_
|
| +
|
| +#include "v8.h"
|
| +
|
| +#include "macro-assembler.h"
|
| +#include "a64/macro-assembler-a64.h"
|
| +#include "a64/utils-a64.h"
|
| +#include "cctest.h"
|
| +
|
| +
|
| +using namespace v8::internal;
|
| +
|
| +
|
| +// RegisterDump: Object allowing integer, floating point and flags registers
|
| +// to be saved to itself for future reference.
|
| +class RegisterDump {
|
| + public:
|
| + RegisterDump() : completed_(false) {}
|
| +
|
| + // The Dump method generates code to store a snapshot of the register values.
|
| + // It needs to be able to use the stack temporarily, and requires that the
|
| + // current stack pointer is csp, and is properly aligned.
|
| + //
|
| + // The dumping code is generated though the given MacroAssembler. No registers
|
| + // are corrupted in the process, but the stack is used briefly. The flags will
|
| + // be corrupted during this call.
|
| + void Dump(MacroAssembler* assm);
|
| +
|
| + // Register accessors.
|
| + inline int32_t wreg(unsigned code) const {
|
| + if (code == kSPRegInternalCode) {
|
| + return wspreg();
|
| + }
|
| + ASSERT(RegAliasesMatch(code));
|
| + return dump_.w_[code];
|
| + }
|
| +
|
| + inline int64_t xreg(unsigned code) const {
|
| + if (code == kSPRegInternalCode) {
|
| + return spreg();
|
| + }
|
| + ASSERT(RegAliasesMatch(code));
|
| + return dump_.x_[code];
|
| + }
|
| +
|
| + // FPRegister accessors.
|
| + inline uint32_t sreg_bits(unsigned code) const {
|
| + ASSERT(FPRegAliasesMatch(code));
|
| + return dump_.s_[code];
|
| + }
|
| +
|
| + inline float sreg(unsigned code) const {
|
| + return rawbits_to_float(sreg_bits(code));
|
| + }
|
| +
|
| + inline uint64_t dreg_bits(unsigned code) const {
|
| + ASSERT(FPRegAliasesMatch(code));
|
| + return dump_.d_[code];
|
| + }
|
| +
|
| + inline double dreg(unsigned code) const {
|
| + return rawbits_to_double(dreg_bits(code));
|
| + }
|
| +
|
| + // Stack pointer accessors.
|
| + inline int64_t spreg() const {
|
| + ASSERT(SPRegAliasesMatch());
|
| + return dump_.sp_;
|
| + }
|
| +
|
| + inline int64_t wspreg() const {
|
| + ASSERT(SPRegAliasesMatch());
|
| + return dump_.wsp_;
|
| + }
|
| +
|
| + // Flags accessors.
|
| + inline uint64_t flags_nzcv() const {
|
| + ASSERT(IsComplete());
|
| + ASSERT((dump_.flags_ & ~Flags_mask) == 0);
|
| + return dump_.flags_ & Flags_mask;
|
| + }
|
| +
|
| + inline bool IsComplete() const {
|
| + return completed_;
|
| + }
|
| +
|
| + private:
|
| + // Indicate whether the dump operation has been completed.
|
| + bool completed_;
|
| +
|
| + // Check that the lower 32 bits of x<code> exactly match the 32 bits of
|
| + // w<code>. A failure of this test most likely represents a failure in the
|
| + // ::Dump method, or a failure in the simulator.
|
| + bool RegAliasesMatch(unsigned code) const {
|
| + ASSERT(IsComplete());
|
| + ASSERT(code < kNumberOfRegisters);
|
| + return ((dump_.x_[code] & kWRegMask) == dump_.w_[code]);
|
| + }
|
| +
|
| + // As RegAliasesMatch, but for the stack pointer.
|
| + bool SPRegAliasesMatch() const {
|
| + ASSERT(IsComplete());
|
| + return ((dump_.sp_ & kWRegMask) == dump_.wsp_);
|
| + }
|
| +
|
| + // As RegAliasesMatch, but for floating-point registers.
|
| + bool FPRegAliasesMatch(unsigned code) const {
|
| + ASSERT(IsComplete());
|
| + ASSERT(code < kNumberOfFPRegisters);
|
| + return (dump_.d_[code] & kSRegMask) == dump_.s_[code];
|
| + }
|
| +
|
| + // Store all the dumped elements in a simple struct so the implementation can
|
| + // use offsetof to quickly find the correct field.
|
| + struct dump_t {
|
| + // Core registers.
|
| + uint64_t x_[kNumberOfRegisters];
|
| + uint32_t w_[kNumberOfRegisters];
|
| +
|
| + // Floating-point registers, as raw bits.
|
| + uint64_t d_[kNumberOfFPRegisters];
|
| + uint32_t s_[kNumberOfFPRegisters];
|
| +
|
| + // The stack pointer.
|
| + uint64_t sp_;
|
| + uint64_t wsp_;
|
| +
|
| + // NZCV flags, stored in bits 28 to 31.
|
| + // bit[31] : Negative
|
| + // bit[30] : Zero
|
| + // bit[29] : Carry
|
| + // bit[28] : oVerflow
|
| + uint64_t flags_;
|
| + } dump_;
|
| +
|
| + STATIC_ASSERT(sizeof(dump_.d_[0]) == kDRegSizeInBytes);
|
| + STATIC_ASSERT(sizeof(dump_.s_[0]) == kSRegSizeInBytes);
|
| + STATIC_ASSERT(sizeof(dump_.d_[0]) == kXRegSizeInBytes);
|
| + STATIC_ASSERT(sizeof(dump_.s_[0]) == kWRegSizeInBytes);
|
| + STATIC_ASSERT(sizeof(dump_.x_[0]) == kXRegSizeInBytes);
|
| + STATIC_ASSERT(sizeof(dump_.w_[0]) == kWRegSizeInBytes);
|
| +};
|
| +
|
| +// Some of these methods don't use the RegisterDump argument, but they have to
|
| +// accept them so that they can overload those that take register arguments.
|
| +bool Equal32(uint32_t expected, const RegisterDump*, uint32_t result);
|
| +bool Equal64(uint64_t expected, const RegisterDump*, uint64_t result);
|
| +
|
| +bool EqualFP32(float expected, const RegisterDump*, float result);
|
| +bool EqualFP64(double expected, const RegisterDump*, double result);
|
| +
|
| +bool Equal32(uint32_t expected, const RegisterDump* core, const Register& reg);
|
| +bool Equal64(uint64_t expected, const RegisterDump* core, const Register& reg);
|
| +
|
| +bool EqualFP32(float expected, const RegisterDump* core,
|
| + const FPRegister& fpreg);
|
| +bool EqualFP64(double expected, const RegisterDump* core,
|
| + const FPRegister& fpreg);
|
| +
|
| +bool Equal64(const Register& reg0, const RegisterDump* core,
|
| + const Register& reg1);
|
| +
|
| +bool EqualNzcv(uint32_t expected, uint32_t result);
|
| +
|
| +bool EqualRegisters(const RegisterDump* a, const RegisterDump* b);
|
| +
|
| +// Populate the w, x and r arrays with registers from the 'allowed' mask. The
|
| +// r array will be populated with <reg_size>-sized registers,
|
| +//
|
| +// This allows for tests which use large, parameterized blocks of registers
|
| +// (such as the push and pop tests), but where certain registers must be
|
| +// avoided as they are used for other purposes.
|
| +//
|
| +// Any of w, x, or r can be NULL if they are not required.
|
| +//
|
| +// The return value is a RegList indicating which registers were allocated.
|
| +RegList PopulateRegisterArray(Register* w, Register* x, Register* r,
|
| + int reg_size, int reg_count, RegList allowed);
|
| +
|
| +// As PopulateRegisterArray, but for floating-point registers.
|
| +RegList PopulateFPRegisterArray(FPRegister* s, FPRegister* d, FPRegister* v,
|
| + int reg_size, int reg_count, RegList allowed);
|
| +
|
| +// Ovewrite the contents of the specified registers. This enables tests to
|
| +// check that register contents are written in cases where it's likely that the
|
| +// correct outcome could already be stored in the register.
|
| +//
|
| +// This always overwrites X-sized registers. If tests are operating on W
|
| +// registers, a subsequent write into an aliased W register should clear the
|
| +// top word anyway, so clobbering the full X registers should make tests more
|
| +// rigorous.
|
| +void Clobber(MacroAssembler* masm, RegList reg_list,
|
| + uint64_t const value = 0xfedcba9876543210UL);
|
| +
|
| +// As Clobber, but for FP registers.
|
| +void ClobberFP(MacroAssembler* masm, RegList reg_list,
|
| + double const value = kFP64SignallingNaN);
|
| +
|
| +// As Clobber, but for a CPURegList with either FP or integer registers. When
|
| +// using this method, the clobber value is always the default for the basic
|
| +// Clobber or ClobberFP functions.
|
| +void Clobber(MacroAssembler* masm, CPURegList reg_list);
|
| +
|
| +#endif // V8_A64_TEST_UTILS_A64_H_
|
|
|