| Index: src/ast.cc
|
| diff --git a/src/ast.cc b/src/ast.cc
|
| deleted file mode 100644
|
| index 07a5dea06243ce9d359b7ad2878bc7862137cc93..0000000000000000000000000000000000000000
|
| --- a/src/ast.cc
|
| +++ /dev/null
|
| @@ -1,1152 +0,0 @@
|
| -// Copyright 2012 the V8 project authors. All rights reserved.
|
| -// Use of this source code is governed by a BSD-style license that can be
|
| -// found in the LICENSE file.
|
| -
|
| -#include "src/ast.h"
|
| -
|
| -#include <cmath> // For isfinite.
|
| -#include "src/builtins.h"
|
| -#include "src/code-stubs.h"
|
| -#include "src/contexts.h"
|
| -#include "src/conversions.h"
|
| -#include "src/hashmap.h"
|
| -#include "src/parser.h"
|
| -#include "src/property.h"
|
| -#include "src/property-details.h"
|
| -#include "src/scopes.h"
|
| -#include "src/string-stream.h"
|
| -#include "src/type-info.h"
|
| -
|
| -namespace v8 {
|
| -namespace internal {
|
| -
|
| -// ----------------------------------------------------------------------------
|
| -// All the Accept member functions for each syntax tree node type.
|
| -
|
| -#define DECL_ACCEPT(type) \
|
| - void type::Accept(AstVisitor* v) { v->Visit##type(this); }
|
| -AST_NODE_LIST(DECL_ACCEPT)
|
| -#undef DECL_ACCEPT
|
| -
|
| -
|
| -// ----------------------------------------------------------------------------
|
| -// Implementation of other node functionality.
|
| -
|
| -
|
| -bool Expression::IsSmiLiteral() const {
|
| - return IsLiteral() && AsLiteral()->value()->IsSmi();
|
| -}
|
| -
|
| -
|
| -bool Expression::IsStringLiteral() const {
|
| - return IsLiteral() && AsLiteral()->value()->IsString();
|
| -}
|
| -
|
| -
|
| -bool Expression::IsNullLiteral() const {
|
| - return IsLiteral() && AsLiteral()->value()->IsNull();
|
| -}
|
| -
|
| -
|
| -bool Expression::IsUndefinedLiteral(Isolate* isolate) const {
|
| - const VariableProxy* var_proxy = AsVariableProxy();
|
| - if (var_proxy == NULL) return false;
|
| - Variable* var = var_proxy->var();
|
| - // The global identifier "undefined" is immutable. Everything
|
| - // else could be reassigned.
|
| - return var != NULL && var->IsUnallocatedOrGlobalSlot() &&
|
| - var_proxy->raw_name()->IsOneByteEqualTo("undefined");
|
| -}
|
| -
|
| -
|
| -bool Expression::IsValidReferenceExpressionOrThis() const {
|
| - return IsValidReferenceExpression() ||
|
| - (IsVariableProxy() && AsVariableProxy()->is_this());
|
| -}
|
| -
|
| -
|
| -VariableProxy::VariableProxy(Zone* zone, Variable* var, int start_position,
|
| - int end_position)
|
| - : Expression(zone, start_position),
|
| - bit_field_(IsThisField::encode(var->is_this()) |
|
| - IsAssignedField::encode(false) |
|
| - IsResolvedField::encode(false)),
|
| - raw_name_(var->raw_name()),
|
| - end_position_(end_position) {
|
| - BindTo(var);
|
| -}
|
| -
|
| -
|
| -VariableProxy::VariableProxy(Zone* zone, const AstRawString* name,
|
| - Variable::Kind variable_kind, int start_position,
|
| - int end_position)
|
| - : Expression(zone, start_position),
|
| - bit_field_(IsThisField::encode(variable_kind == Variable::THIS) |
|
| - IsAssignedField::encode(false) |
|
| - IsResolvedField::encode(false)),
|
| - raw_name_(name),
|
| - end_position_(end_position) {}
|
| -
|
| -
|
| -void VariableProxy::BindTo(Variable* var) {
|
| - DCHECK((is_this() && var->is_this()) || raw_name() == var->raw_name());
|
| - set_var(var);
|
| - set_is_resolved();
|
| - var->set_is_used();
|
| -}
|
| -
|
| -
|
| -void VariableProxy::AssignFeedbackVectorSlots(Isolate* isolate,
|
| - FeedbackVectorSpec* spec,
|
| - FeedbackVectorSlotCache* cache) {
|
| - if (UsesVariableFeedbackSlot()) {
|
| - // VariableProxies that point to the same Variable within a function can
|
| - // make their loads from the same IC slot.
|
| - if (var()->IsUnallocated()) {
|
| - ZoneHashMap::Entry* entry = cache->Get(var());
|
| - if (entry != NULL) {
|
| - variable_feedback_slot_ = FeedbackVectorSlot(
|
| - static_cast<int>(reinterpret_cast<intptr_t>(entry->value)));
|
| - return;
|
| - }
|
| - }
|
| - variable_feedback_slot_ = spec->AddLoadICSlot();
|
| - if (var()->IsUnallocated()) {
|
| - cache->Put(var(), variable_feedback_slot_);
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -static void AssignVectorSlots(Expression* expr, FeedbackVectorSpec* spec,
|
| - FeedbackVectorSlot* out_slot) {
|
| - Property* property = expr->AsProperty();
|
| - LhsKind assign_type = Property::GetAssignType(property);
|
| - if ((assign_type == VARIABLE &&
|
| - expr->AsVariableProxy()->var()->IsUnallocated()) ||
|
| - assign_type == NAMED_PROPERTY || assign_type == KEYED_PROPERTY) {
|
| - // TODO(ishell): consider using ICSlotCache for variables here.
|
| - FeedbackVectorSlotKind kind = assign_type == KEYED_PROPERTY
|
| - ? FeedbackVectorSlotKind::KEYED_STORE_IC
|
| - : FeedbackVectorSlotKind::STORE_IC;
|
| - *out_slot = spec->AddSlot(kind);
|
| - }
|
| -}
|
| -
|
| -
|
| -void ForEachStatement::AssignFeedbackVectorSlots(
|
| - Isolate* isolate, FeedbackVectorSpec* spec,
|
| - FeedbackVectorSlotCache* cache) {
|
| - AssignVectorSlots(each(), spec, &each_slot_);
|
| -}
|
| -
|
| -
|
| -Assignment::Assignment(Zone* zone, Token::Value op, Expression* target,
|
| - Expression* value, int pos)
|
| - : Expression(zone, pos),
|
| - bit_field_(
|
| - IsUninitializedField::encode(false) | KeyTypeField::encode(ELEMENT) |
|
| - StoreModeField::encode(STANDARD_STORE) | TokenField::encode(op)),
|
| - target_(target),
|
| - value_(value),
|
| - binary_operation_(NULL) {}
|
| -
|
| -
|
| -void Assignment::AssignFeedbackVectorSlots(Isolate* isolate,
|
| - FeedbackVectorSpec* spec,
|
| - FeedbackVectorSlotCache* cache) {
|
| - AssignVectorSlots(target(), spec, &slot_);
|
| -}
|
| -
|
| -
|
| -void CountOperation::AssignFeedbackVectorSlots(Isolate* isolate,
|
| - FeedbackVectorSpec* spec,
|
| - FeedbackVectorSlotCache* cache) {
|
| - AssignVectorSlots(expression(), spec, &slot_);
|
| -}
|
| -
|
| -
|
| -Token::Value Assignment::binary_op() const {
|
| - switch (op()) {
|
| - case Token::ASSIGN_BIT_OR: return Token::BIT_OR;
|
| - case Token::ASSIGN_BIT_XOR: return Token::BIT_XOR;
|
| - case Token::ASSIGN_BIT_AND: return Token::BIT_AND;
|
| - case Token::ASSIGN_SHL: return Token::SHL;
|
| - case Token::ASSIGN_SAR: return Token::SAR;
|
| - case Token::ASSIGN_SHR: return Token::SHR;
|
| - case Token::ASSIGN_ADD: return Token::ADD;
|
| - case Token::ASSIGN_SUB: return Token::SUB;
|
| - case Token::ASSIGN_MUL: return Token::MUL;
|
| - case Token::ASSIGN_DIV: return Token::DIV;
|
| - case Token::ASSIGN_MOD: return Token::MOD;
|
| - default: UNREACHABLE();
|
| - }
|
| - return Token::ILLEGAL;
|
| -}
|
| -
|
| -
|
| -bool FunctionLiteral::AllowsLazyCompilation() {
|
| - return scope()->AllowsLazyCompilation();
|
| -}
|
| -
|
| -
|
| -bool FunctionLiteral::AllowsLazyCompilationWithoutContext() {
|
| - return scope()->AllowsLazyCompilationWithoutContext();
|
| -}
|
| -
|
| -
|
| -int FunctionLiteral::start_position() const {
|
| - return scope()->start_position();
|
| -}
|
| -
|
| -
|
| -int FunctionLiteral::end_position() const {
|
| - return scope()->end_position();
|
| -}
|
| -
|
| -
|
| -LanguageMode FunctionLiteral::language_mode() const {
|
| - return scope()->language_mode();
|
| -}
|
| -
|
| -
|
| -bool FunctionLiteral::NeedsHomeObject(Expression* expr) {
|
| - if (expr == nullptr || !expr->IsFunctionLiteral()) return false;
|
| - DCHECK_NOT_NULL(expr->AsFunctionLiteral()->scope());
|
| - return expr->AsFunctionLiteral()->scope()->NeedsHomeObject();
|
| -}
|
| -
|
| -
|
| -ObjectLiteralProperty::ObjectLiteralProperty(Expression* key, Expression* value,
|
| - Kind kind, bool is_static,
|
| - bool is_computed_name)
|
| - : key_(key),
|
| - value_(value),
|
| - kind_(kind),
|
| - emit_store_(true),
|
| - is_static_(is_static),
|
| - is_computed_name_(is_computed_name) {}
|
| -
|
| -
|
| -ObjectLiteralProperty::ObjectLiteralProperty(AstValueFactory* ast_value_factory,
|
| - Expression* key, Expression* value,
|
| - bool is_static,
|
| - bool is_computed_name)
|
| - : key_(key),
|
| - value_(value),
|
| - emit_store_(true),
|
| - is_static_(is_static),
|
| - is_computed_name_(is_computed_name) {
|
| - if (!is_computed_name &&
|
| - key->AsLiteral()->raw_value()->EqualsString(
|
| - ast_value_factory->proto_string())) {
|
| - kind_ = PROTOTYPE;
|
| - } else if (value_->AsMaterializedLiteral() != NULL) {
|
| - kind_ = MATERIALIZED_LITERAL;
|
| - } else if (value_->IsLiteral()) {
|
| - kind_ = CONSTANT;
|
| - } else {
|
| - kind_ = COMPUTED;
|
| - }
|
| -}
|
| -
|
| -
|
| -void ClassLiteral::AssignFeedbackVectorSlots(Isolate* isolate,
|
| - FeedbackVectorSpec* spec,
|
| - FeedbackVectorSlotCache* cache) {
|
| - // This logic that computes the number of slots needed for vector store
|
| - // ICs must mirror FullCodeGenerator::VisitClassLiteral.
|
| - if (NeedsProxySlot()) {
|
| - slot_ = spec->AddStoreICSlot();
|
| - }
|
| -
|
| - for (int i = 0; i < properties()->length(); i++) {
|
| - ObjectLiteral::Property* property = properties()->at(i);
|
| - Expression* value = property->value();
|
| - if (FunctionLiteral::NeedsHomeObject(value)) {
|
| - property->SetSlot(spec->AddStoreICSlot());
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -bool ObjectLiteral::Property::IsCompileTimeValue() {
|
| - return kind_ == CONSTANT ||
|
| - (kind_ == MATERIALIZED_LITERAL &&
|
| - CompileTimeValue::IsCompileTimeValue(value_));
|
| -}
|
| -
|
| -
|
| -void ObjectLiteral::Property::set_emit_store(bool emit_store) {
|
| - emit_store_ = emit_store;
|
| -}
|
| -
|
| -
|
| -bool ObjectLiteral::Property::emit_store() {
|
| - return emit_store_;
|
| -}
|
| -
|
| -
|
| -void ObjectLiteral::AssignFeedbackVectorSlots(Isolate* isolate,
|
| - FeedbackVectorSpec* spec,
|
| - FeedbackVectorSlotCache* cache) {
|
| - // This logic that computes the number of slots needed for vector store
|
| - // ics must mirror FullCodeGenerator::VisitObjectLiteral.
|
| - int property_index = 0;
|
| - for (; property_index < properties()->length(); property_index++) {
|
| - ObjectLiteral::Property* property = properties()->at(property_index);
|
| - if (property->is_computed_name()) break;
|
| - if (property->IsCompileTimeValue()) continue;
|
| -
|
| - Literal* key = property->key()->AsLiteral();
|
| - Expression* value = property->value();
|
| - switch (property->kind()) {
|
| - case ObjectLiteral::Property::CONSTANT:
|
| - UNREACHABLE();
|
| - case ObjectLiteral::Property::MATERIALIZED_LITERAL:
|
| - // Fall through.
|
| - case ObjectLiteral::Property::COMPUTED:
|
| - // It is safe to use [[Put]] here because the boilerplate already
|
| - // contains computed properties with an uninitialized value.
|
| - if (key->value()->IsInternalizedString()) {
|
| - if (property->emit_store()) {
|
| - property->SetSlot(spec->AddStoreICSlot());
|
| - if (FunctionLiteral::NeedsHomeObject(value)) {
|
| - property->SetSlot(spec->AddStoreICSlot(), 1);
|
| - }
|
| - }
|
| - break;
|
| - }
|
| - if (property->emit_store() && FunctionLiteral::NeedsHomeObject(value)) {
|
| - property->SetSlot(spec->AddStoreICSlot());
|
| - }
|
| - break;
|
| - case ObjectLiteral::Property::PROTOTYPE:
|
| - break;
|
| - case ObjectLiteral::Property::GETTER:
|
| - if (property->emit_store() && FunctionLiteral::NeedsHomeObject(value)) {
|
| - property->SetSlot(spec->AddStoreICSlot());
|
| - }
|
| - break;
|
| - case ObjectLiteral::Property::SETTER:
|
| - if (property->emit_store() && FunctionLiteral::NeedsHomeObject(value)) {
|
| - property->SetSlot(spec->AddStoreICSlot());
|
| - }
|
| - break;
|
| - }
|
| - }
|
| -
|
| - for (; property_index < properties()->length(); property_index++) {
|
| - ObjectLiteral::Property* property = properties()->at(property_index);
|
| -
|
| - Expression* value = property->value();
|
| - if (property->kind() != ObjectLiteral::Property::PROTOTYPE) {
|
| - if (FunctionLiteral::NeedsHomeObject(value)) {
|
| - property->SetSlot(spec->AddStoreICSlot());
|
| - }
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void ObjectLiteral::CalculateEmitStore(Zone* zone) {
|
| - const auto GETTER = ObjectLiteral::Property::GETTER;
|
| - const auto SETTER = ObjectLiteral::Property::SETTER;
|
| -
|
| - ZoneAllocationPolicy allocator(zone);
|
| -
|
| - ZoneHashMap table(Literal::Match, ZoneHashMap::kDefaultHashMapCapacity,
|
| - allocator);
|
| - for (int i = properties()->length() - 1; i >= 0; i--) {
|
| - ObjectLiteral::Property* property = properties()->at(i);
|
| - if (property->is_computed_name()) continue;
|
| - if (property->kind() == ObjectLiteral::Property::PROTOTYPE) continue;
|
| - Literal* literal = property->key()->AsLiteral();
|
| - DCHECK(!literal->value()->IsNull());
|
| -
|
| - // If there is an existing entry do not emit a store unless the previous
|
| - // entry was also an accessor.
|
| - uint32_t hash = literal->Hash();
|
| - ZoneHashMap::Entry* entry = table.LookupOrInsert(literal, hash, allocator);
|
| - if (entry->value != NULL) {
|
| - auto previous_kind =
|
| - static_cast<ObjectLiteral::Property*>(entry->value)->kind();
|
| - if (!((property->kind() == GETTER && previous_kind == SETTER) ||
|
| - (property->kind() == SETTER && previous_kind == GETTER))) {
|
| - property->set_emit_store(false);
|
| - }
|
| - }
|
| - entry->value = property;
|
| - }
|
| -}
|
| -
|
| -
|
| -bool ObjectLiteral::IsBoilerplateProperty(ObjectLiteral::Property* property) {
|
| - return property != NULL &&
|
| - property->kind() != ObjectLiteral::Property::PROTOTYPE;
|
| -}
|
| -
|
| -
|
| -void ObjectLiteral::BuildConstantProperties(Isolate* isolate) {
|
| - if (!constant_properties_.is_null()) return;
|
| -
|
| - // Allocate a fixed array to hold all the constant properties.
|
| - Handle<FixedArray> constant_properties = isolate->factory()->NewFixedArray(
|
| - boilerplate_properties_ * 2, TENURED);
|
| -
|
| - int position = 0;
|
| - // Accumulate the value in local variables and store it at the end.
|
| - bool is_simple = true;
|
| - int depth_acc = 1;
|
| - uint32_t max_element_index = 0;
|
| - uint32_t elements = 0;
|
| - for (int i = 0; i < properties()->length(); i++) {
|
| - ObjectLiteral::Property* property = properties()->at(i);
|
| - if (!IsBoilerplateProperty(property)) {
|
| - is_simple = false;
|
| - continue;
|
| - }
|
| -
|
| - if (position == boilerplate_properties_ * 2) {
|
| - DCHECK(property->is_computed_name());
|
| - is_simple = false;
|
| - break;
|
| - }
|
| - DCHECK(!property->is_computed_name());
|
| -
|
| - MaterializedLiteral* m_literal = property->value()->AsMaterializedLiteral();
|
| - if (m_literal != NULL) {
|
| - m_literal->BuildConstants(isolate);
|
| - if (m_literal->depth() >= depth_acc) depth_acc = m_literal->depth() + 1;
|
| - }
|
| -
|
| - // Add CONSTANT and COMPUTED properties to boilerplate. Use undefined
|
| - // value for COMPUTED properties, the real value is filled in at
|
| - // runtime. The enumeration order is maintained.
|
| - Handle<Object> key = property->key()->AsLiteral()->value();
|
| - Handle<Object> value = GetBoilerplateValue(property->value(), isolate);
|
| -
|
| - // Ensure objects that may, at any point in time, contain fields with double
|
| - // representation are always treated as nested objects. This is true for
|
| - // computed fields (value is undefined), and smi and double literals
|
| - // (value->IsNumber()).
|
| - // TODO(verwaest): Remove once we can store them inline.
|
| - if (FLAG_track_double_fields &&
|
| - (value->IsNumber() || value->IsUninitialized())) {
|
| - may_store_doubles_ = true;
|
| - }
|
| -
|
| - is_simple = is_simple && !value->IsUninitialized();
|
| -
|
| - // Keep track of the number of elements in the object literal and
|
| - // the largest element index. If the largest element index is
|
| - // much larger than the number of elements, creating an object
|
| - // literal with fast elements will be a waste of space.
|
| - uint32_t element_index = 0;
|
| - if (key->IsString()
|
| - && Handle<String>::cast(key)->AsArrayIndex(&element_index)
|
| - && element_index > max_element_index) {
|
| - max_element_index = element_index;
|
| - elements++;
|
| - } else if (key->IsSmi()) {
|
| - int key_value = Smi::cast(*key)->value();
|
| - if (key_value > 0
|
| - && static_cast<uint32_t>(key_value) > max_element_index) {
|
| - max_element_index = key_value;
|
| - }
|
| - elements++;
|
| - }
|
| -
|
| - // Add name, value pair to the fixed array.
|
| - constant_properties->set(position++, *key);
|
| - constant_properties->set(position++, *value);
|
| - }
|
| -
|
| - constant_properties_ = constant_properties;
|
| - fast_elements_ =
|
| - (max_element_index <= 32) || ((2 * elements) >= max_element_index);
|
| - has_elements_ = elements > 0;
|
| - set_is_simple(is_simple);
|
| - set_depth(depth_acc);
|
| -}
|
| -
|
| -
|
| -void ArrayLiteral::BuildConstantElements(Isolate* isolate) {
|
| - if (!constant_elements_.is_null()) return;
|
| -
|
| - int constants_length =
|
| - first_spread_index_ >= 0 ? first_spread_index_ : values()->length();
|
| -
|
| - // Allocate a fixed array to hold all the object literals.
|
| - Handle<JSArray> array = isolate->factory()->NewJSArray(
|
| - FAST_HOLEY_SMI_ELEMENTS, constants_length, constants_length,
|
| - Strength::WEAK, INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
|
| -
|
| - // Fill in the literals.
|
| - bool is_simple = (first_spread_index_ < 0);
|
| - int depth_acc = 1;
|
| - bool is_holey = false;
|
| - int array_index = 0;
|
| - for (; array_index < constants_length; array_index++) {
|
| - Expression* element = values()->at(array_index);
|
| - DCHECK(!element->IsSpread());
|
| - MaterializedLiteral* m_literal = element->AsMaterializedLiteral();
|
| - if (m_literal != NULL) {
|
| - m_literal->BuildConstants(isolate);
|
| - if (m_literal->depth() + 1 > depth_acc) {
|
| - depth_acc = m_literal->depth() + 1;
|
| - }
|
| - }
|
| -
|
| - // New handle scope here, needs to be after BuildContants().
|
| - HandleScope scope(isolate);
|
| - Handle<Object> boilerplate_value = GetBoilerplateValue(element, isolate);
|
| - if (boilerplate_value->IsTheHole()) {
|
| - is_holey = true;
|
| - continue;
|
| - }
|
| -
|
| - if (boilerplate_value->IsUninitialized()) {
|
| - boilerplate_value = handle(Smi::FromInt(0), isolate);
|
| - is_simple = false;
|
| - }
|
| -
|
| - JSObject::AddDataElement(array, array_index, boilerplate_value, NONE)
|
| - .Assert();
|
| - }
|
| -
|
| - JSObject::ValidateElements(array);
|
| - Handle<FixedArrayBase> element_values(array->elements());
|
| -
|
| - // Simple and shallow arrays can be lazily copied, we transform the
|
| - // elements array to a copy-on-write array.
|
| - if (is_simple && depth_acc == 1 && array_index > 0 &&
|
| - array->HasFastSmiOrObjectElements()) {
|
| - element_values->set_map(isolate->heap()->fixed_cow_array_map());
|
| - }
|
| -
|
| - // Remember both the literal's constant values as well as the ElementsKind
|
| - // in a 2-element FixedArray.
|
| - Handle<FixedArray> literals = isolate->factory()->NewFixedArray(2, TENURED);
|
| -
|
| - ElementsKind kind = array->GetElementsKind();
|
| - kind = is_holey ? GetHoleyElementsKind(kind) : GetPackedElementsKind(kind);
|
| -
|
| - literals->set(0, Smi::FromInt(kind));
|
| - literals->set(1, *element_values);
|
| -
|
| - constant_elements_ = literals;
|
| - set_is_simple(is_simple);
|
| - set_depth(depth_acc);
|
| -}
|
| -
|
| -
|
| -void ArrayLiteral::AssignFeedbackVectorSlots(Isolate* isolate,
|
| - FeedbackVectorSpec* spec,
|
| - FeedbackVectorSlotCache* cache) {
|
| - // This logic that computes the number of slots needed for vector store
|
| - // ics must mirror FullCodeGenerator::VisitArrayLiteral.
|
| - int array_index = 0;
|
| - for (; array_index < values()->length(); array_index++) {
|
| - Expression* subexpr = values()->at(array_index);
|
| - if (subexpr->IsSpread()) break;
|
| - if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
|
| -
|
| - // We'll reuse the same literal slot for all of the non-constant
|
| - // subexpressions that use a keyed store IC.
|
| - literal_slot_ = spec->AddKeyedStoreICSlot();
|
| - return;
|
| - }
|
| -}
|
| -
|
| -
|
| -Handle<Object> MaterializedLiteral::GetBoilerplateValue(Expression* expression,
|
| - Isolate* isolate) {
|
| - if (expression->IsLiteral()) {
|
| - return expression->AsLiteral()->value();
|
| - }
|
| - if (CompileTimeValue::IsCompileTimeValue(expression)) {
|
| - return CompileTimeValue::GetValue(isolate, expression);
|
| - }
|
| - return isolate->factory()->uninitialized_value();
|
| -}
|
| -
|
| -
|
| -void MaterializedLiteral::BuildConstants(Isolate* isolate) {
|
| - if (IsArrayLiteral()) {
|
| - return AsArrayLiteral()->BuildConstantElements(isolate);
|
| - }
|
| - if (IsObjectLiteral()) {
|
| - return AsObjectLiteral()->BuildConstantProperties(isolate);
|
| - }
|
| - DCHECK(IsRegExpLiteral());
|
| - DCHECK(depth() >= 1); // Depth should be initialized.
|
| -}
|
| -
|
| -
|
| -void UnaryOperation::RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle) {
|
| - // TODO(olivf) If this Operation is used in a test context, then the
|
| - // expression has a ToBoolean stub and we want to collect the type
|
| - // information. However the GraphBuilder expects it to be on the instruction
|
| - // corresponding to the TestContext, therefore we have to store it here and
|
| - // not on the operand.
|
| - set_to_boolean_types(oracle->ToBooleanTypes(expression()->test_id()));
|
| -}
|
| -
|
| -
|
| -void BinaryOperation::RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle) {
|
| - // TODO(olivf) If this Operation is used in a test context, then the right
|
| - // hand side has a ToBoolean stub and we want to collect the type information.
|
| - // However the GraphBuilder expects it to be on the instruction corresponding
|
| - // to the TestContext, therefore we have to store it here and not on the
|
| - // right hand operand.
|
| - set_to_boolean_types(oracle->ToBooleanTypes(right()->test_id()));
|
| -}
|
| -
|
| -
|
| -static bool IsTypeof(Expression* expr) {
|
| - UnaryOperation* maybe_unary = expr->AsUnaryOperation();
|
| - return maybe_unary != NULL && maybe_unary->op() == Token::TYPEOF;
|
| -}
|
| -
|
| -
|
| -// Check for the pattern: typeof <expression> equals <string literal>.
|
| -static bool MatchLiteralCompareTypeof(Expression* left,
|
| - Token::Value op,
|
| - Expression* right,
|
| - Expression** expr,
|
| - Handle<String>* check) {
|
| - if (IsTypeof(left) && right->IsStringLiteral() && Token::IsEqualityOp(op)) {
|
| - *expr = left->AsUnaryOperation()->expression();
|
| - *check = Handle<String>::cast(right->AsLiteral()->value());
|
| - return true;
|
| - }
|
| - return false;
|
| -}
|
| -
|
| -
|
| -bool CompareOperation::IsLiteralCompareTypeof(Expression** expr,
|
| - Handle<String>* check) {
|
| - return MatchLiteralCompareTypeof(left_, op_, right_, expr, check) ||
|
| - MatchLiteralCompareTypeof(right_, op_, left_, expr, check);
|
| -}
|
| -
|
| -
|
| -static bool IsVoidOfLiteral(Expression* expr) {
|
| - UnaryOperation* maybe_unary = expr->AsUnaryOperation();
|
| - return maybe_unary != NULL &&
|
| - maybe_unary->op() == Token::VOID &&
|
| - maybe_unary->expression()->IsLiteral();
|
| -}
|
| -
|
| -
|
| -// Check for the pattern: void <literal> equals <expression> or
|
| -// undefined equals <expression>
|
| -static bool MatchLiteralCompareUndefined(Expression* left,
|
| - Token::Value op,
|
| - Expression* right,
|
| - Expression** expr,
|
| - Isolate* isolate) {
|
| - if (IsVoidOfLiteral(left) && Token::IsEqualityOp(op)) {
|
| - *expr = right;
|
| - return true;
|
| - }
|
| - if (left->IsUndefinedLiteral(isolate) && Token::IsEqualityOp(op)) {
|
| - *expr = right;
|
| - return true;
|
| - }
|
| - return false;
|
| -}
|
| -
|
| -
|
| -bool CompareOperation::IsLiteralCompareUndefined(
|
| - Expression** expr, Isolate* isolate) {
|
| - return MatchLiteralCompareUndefined(left_, op_, right_, expr, isolate) ||
|
| - MatchLiteralCompareUndefined(right_, op_, left_, expr, isolate);
|
| -}
|
| -
|
| -
|
| -// Check for the pattern: null equals <expression>
|
| -static bool MatchLiteralCompareNull(Expression* left,
|
| - Token::Value op,
|
| - Expression* right,
|
| - Expression** expr) {
|
| - if (left->IsNullLiteral() && Token::IsEqualityOp(op)) {
|
| - *expr = right;
|
| - return true;
|
| - }
|
| - return false;
|
| -}
|
| -
|
| -
|
| -bool CompareOperation::IsLiteralCompareNull(Expression** expr) {
|
| - return MatchLiteralCompareNull(left_, op_, right_, expr) ||
|
| - MatchLiteralCompareNull(right_, op_, left_, expr);
|
| -}
|
| -
|
| -
|
| -// ----------------------------------------------------------------------------
|
| -// Inlining support
|
| -
|
| -bool Declaration::IsInlineable() const {
|
| - return proxy()->var()->IsStackAllocated();
|
| -}
|
| -
|
| -bool FunctionDeclaration::IsInlineable() const {
|
| - return false;
|
| -}
|
| -
|
| -
|
| -// ----------------------------------------------------------------------------
|
| -// Recording of type feedback
|
| -
|
| -// TODO(rossberg): all RecordTypeFeedback functions should disappear
|
| -// once we use the common type field in the AST consistently.
|
| -
|
| -void Expression::RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle) {
|
| - set_to_boolean_types(oracle->ToBooleanTypes(test_id()));
|
| -}
|
| -
|
| -
|
| -bool Call::IsUsingCallFeedbackICSlot(Isolate* isolate) const {
|
| - CallType call_type = GetCallType(isolate);
|
| - if (call_type == POSSIBLY_EVAL_CALL) {
|
| - return false;
|
| - }
|
| - return true;
|
| -}
|
| -
|
| -
|
| -bool Call::IsUsingCallFeedbackSlot(Isolate* isolate) const {
|
| - // SuperConstructorCall uses a CallConstructStub, which wants
|
| - // a Slot, in addition to any IC slots requested elsewhere.
|
| - return GetCallType(isolate) == SUPER_CALL;
|
| -}
|
| -
|
| -
|
| -void Call::AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
|
| - FeedbackVectorSlotCache* cache) {
|
| - if (IsUsingCallFeedbackICSlot(isolate)) {
|
| - ic_slot_ = spec->AddCallICSlot();
|
| - }
|
| - if (IsUsingCallFeedbackSlot(isolate)) {
|
| - stub_slot_ = spec->AddGeneralSlot();
|
| - }
|
| -}
|
| -
|
| -
|
| -Call::CallType Call::GetCallType(Isolate* isolate) const {
|
| - VariableProxy* proxy = expression()->AsVariableProxy();
|
| - if (proxy != NULL) {
|
| - if (proxy->var()->is_possibly_eval(isolate)) {
|
| - return POSSIBLY_EVAL_CALL;
|
| - } else if (proxy->var()->IsUnallocatedOrGlobalSlot()) {
|
| - return GLOBAL_CALL;
|
| - } else if (proxy->var()->IsLookupSlot()) {
|
| - return LOOKUP_SLOT_CALL;
|
| - }
|
| - }
|
| -
|
| - if (expression()->IsSuperCallReference()) return SUPER_CALL;
|
| -
|
| - Property* property = expression()->AsProperty();
|
| - if (property != nullptr) {
|
| - bool is_super = property->IsSuperAccess();
|
| - if (property->key()->IsPropertyName()) {
|
| - return is_super ? NAMED_SUPER_PROPERTY_CALL : NAMED_PROPERTY_CALL;
|
| - } else {
|
| - return is_super ? KEYED_SUPER_PROPERTY_CALL : KEYED_PROPERTY_CALL;
|
| - }
|
| - }
|
| -
|
| - return OTHER_CALL;
|
| -}
|
| -
|
| -
|
| -// ----------------------------------------------------------------------------
|
| -// Implementation of AstVisitor
|
| -
|
| -void AstVisitor::VisitDeclarations(ZoneList<Declaration*>* declarations) {
|
| - for (int i = 0; i < declarations->length(); i++) {
|
| - Visit(declarations->at(i));
|
| - }
|
| -}
|
| -
|
| -
|
| -void AstVisitor::VisitStatements(ZoneList<Statement*>* statements) {
|
| - for (int i = 0; i < statements->length(); i++) {
|
| - Statement* stmt = statements->at(i);
|
| - Visit(stmt);
|
| - if (stmt->IsJump()) break;
|
| - }
|
| -}
|
| -
|
| -
|
| -void AstVisitor::VisitExpressions(ZoneList<Expression*>* expressions) {
|
| - for (int i = 0; i < expressions->length(); i++) {
|
| - // The variable statement visiting code may pass NULL expressions
|
| - // to this code. Maybe this should be handled by introducing an
|
| - // undefined expression or literal? Revisit this code if this
|
| - // changes
|
| - Expression* expression = expressions->at(i);
|
| - if (expression != NULL) Visit(expression);
|
| - }
|
| -}
|
| -
|
| -
|
| -// ----------------------------------------------------------------------------
|
| -// Regular expressions
|
| -
|
| -#define MAKE_ACCEPT(Name) \
|
| - void* RegExp##Name::Accept(RegExpVisitor* visitor, void* data) { \
|
| - return visitor->Visit##Name(this, data); \
|
| - }
|
| -FOR_EACH_REG_EXP_TREE_TYPE(MAKE_ACCEPT)
|
| -#undef MAKE_ACCEPT
|
| -
|
| -#define MAKE_TYPE_CASE(Name) \
|
| - RegExp##Name* RegExpTree::As##Name() { \
|
| - return NULL; \
|
| - } \
|
| - bool RegExpTree::Is##Name() { return false; }
|
| -FOR_EACH_REG_EXP_TREE_TYPE(MAKE_TYPE_CASE)
|
| -#undef MAKE_TYPE_CASE
|
| -
|
| -#define MAKE_TYPE_CASE(Name) \
|
| - RegExp##Name* RegExp##Name::As##Name() { \
|
| - return this; \
|
| - } \
|
| - bool RegExp##Name::Is##Name() { return true; }
|
| -FOR_EACH_REG_EXP_TREE_TYPE(MAKE_TYPE_CASE)
|
| -#undef MAKE_TYPE_CASE
|
| -
|
| -
|
| -static Interval ListCaptureRegisters(ZoneList<RegExpTree*>* children) {
|
| - Interval result = Interval::Empty();
|
| - for (int i = 0; i < children->length(); i++)
|
| - result = result.Union(children->at(i)->CaptureRegisters());
|
| - return result;
|
| -}
|
| -
|
| -
|
| -Interval RegExpAlternative::CaptureRegisters() {
|
| - return ListCaptureRegisters(nodes());
|
| -}
|
| -
|
| -
|
| -Interval RegExpDisjunction::CaptureRegisters() {
|
| - return ListCaptureRegisters(alternatives());
|
| -}
|
| -
|
| -
|
| -Interval RegExpLookaround::CaptureRegisters() {
|
| - return body()->CaptureRegisters();
|
| -}
|
| -
|
| -
|
| -Interval RegExpCapture::CaptureRegisters() {
|
| - Interval self(StartRegister(index()), EndRegister(index()));
|
| - return self.Union(body()->CaptureRegisters());
|
| -}
|
| -
|
| -
|
| -Interval RegExpQuantifier::CaptureRegisters() {
|
| - return body()->CaptureRegisters();
|
| -}
|
| -
|
| -
|
| -bool RegExpAssertion::IsAnchoredAtStart() {
|
| - return assertion_type() == RegExpAssertion::START_OF_INPUT;
|
| -}
|
| -
|
| -
|
| -bool RegExpAssertion::IsAnchoredAtEnd() {
|
| - return assertion_type() == RegExpAssertion::END_OF_INPUT;
|
| -}
|
| -
|
| -
|
| -bool RegExpAlternative::IsAnchoredAtStart() {
|
| - ZoneList<RegExpTree*>* nodes = this->nodes();
|
| - for (int i = 0; i < nodes->length(); i++) {
|
| - RegExpTree* node = nodes->at(i);
|
| - if (node->IsAnchoredAtStart()) { return true; }
|
| - if (node->max_match() > 0) { return false; }
|
| - }
|
| - return false;
|
| -}
|
| -
|
| -
|
| -bool RegExpAlternative::IsAnchoredAtEnd() {
|
| - ZoneList<RegExpTree*>* nodes = this->nodes();
|
| - for (int i = nodes->length() - 1; i >= 0; i--) {
|
| - RegExpTree* node = nodes->at(i);
|
| - if (node->IsAnchoredAtEnd()) { return true; }
|
| - if (node->max_match() > 0) { return false; }
|
| - }
|
| - return false;
|
| -}
|
| -
|
| -
|
| -bool RegExpDisjunction::IsAnchoredAtStart() {
|
| - ZoneList<RegExpTree*>* alternatives = this->alternatives();
|
| - for (int i = 0; i < alternatives->length(); i++) {
|
| - if (!alternatives->at(i)->IsAnchoredAtStart())
|
| - return false;
|
| - }
|
| - return true;
|
| -}
|
| -
|
| -
|
| -bool RegExpDisjunction::IsAnchoredAtEnd() {
|
| - ZoneList<RegExpTree*>* alternatives = this->alternatives();
|
| - for (int i = 0; i < alternatives->length(); i++) {
|
| - if (!alternatives->at(i)->IsAnchoredAtEnd())
|
| - return false;
|
| - }
|
| - return true;
|
| -}
|
| -
|
| -
|
| -bool RegExpLookaround::IsAnchoredAtStart() {
|
| - return is_positive() && type() == LOOKAHEAD && body()->IsAnchoredAtStart();
|
| -}
|
| -
|
| -
|
| -bool RegExpCapture::IsAnchoredAtStart() {
|
| - return body()->IsAnchoredAtStart();
|
| -}
|
| -
|
| -
|
| -bool RegExpCapture::IsAnchoredAtEnd() {
|
| - return body()->IsAnchoredAtEnd();
|
| -}
|
| -
|
| -
|
| -// Convert regular expression trees to a simple sexp representation.
|
| -// This representation should be different from the input grammar
|
| -// in as many cases as possible, to make it more difficult for incorrect
|
| -// parses to look as correct ones which is likely if the input and
|
| -// output formats are alike.
|
| -class RegExpUnparser final : public RegExpVisitor {
|
| - public:
|
| - RegExpUnparser(std::ostream& os, Zone* zone) : os_(os), zone_(zone) {}
|
| - void VisitCharacterRange(CharacterRange that);
|
| -#define MAKE_CASE(Name) void* Visit##Name(RegExp##Name*, void* data) override;
|
| - FOR_EACH_REG_EXP_TREE_TYPE(MAKE_CASE)
|
| -#undef MAKE_CASE
|
| - private:
|
| - std::ostream& os_;
|
| - Zone* zone_;
|
| -};
|
| -
|
| -
|
| -void* RegExpUnparser::VisitDisjunction(RegExpDisjunction* that, void* data) {
|
| - os_ << "(|";
|
| - for (int i = 0; i < that->alternatives()->length(); i++) {
|
| - os_ << " ";
|
| - that->alternatives()->at(i)->Accept(this, data);
|
| - }
|
| - os_ << ")";
|
| - return NULL;
|
| -}
|
| -
|
| -
|
| -void* RegExpUnparser::VisitAlternative(RegExpAlternative* that, void* data) {
|
| - os_ << "(:";
|
| - for (int i = 0; i < that->nodes()->length(); i++) {
|
| - os_ << " ";
|
| - that->nodes()->at(i)->Accept(this, data);
|
| - }
|
| - os_ << ")";
|
| - return NULL;
|
| -}
|
| -
|
| -
|
| -void RegExpUnparser::VisitCharacterRange(CharacterRange that) {
|
| - os_ << AsUC16(that.from());
|
| - if (!that.IsSingleton()) {
|
| - os_ << "-" << AsUC16(that.to());
|
| - }
|
| -}
|
| -
|
| -
|
| -
|
| -void* RegExpUnparser::VisitCharacterClass(RegExpCharacterClass* that,
|
| - void* data) {
|
| - if (that->is_negated()) os_ << "^";
|
| - os_ << "[";
|
| - for (int i = 0; i < that->ranges(zone_)->length(); i++) {
|
| - if (i > 0) os_ << " ";
|
| - VisitCharacterRange(that->ranges(zone_)->at(i));
|
| - }
|
| - os_ << "]";
|
| - return NULL;
|
| -}
|
| -
|
| -
|
| -void* RegExpUnparser::VisitAssertion(RegExpAssertion* that, void* data) {
|
| - switch (that->assertion_type()) {
|
| - case RegExpAssertion::START_OF_INPUT:
|
| - os_ << "@^i";
|
| - break;
|
| - case RegExpAssertion::END_OF_INPUT:
|
| - os_ << "@$i";
|
| - break;
|
| - case RegExpAssertion::START_OF_LINE:
|
| - os_ << "@^l";
|
| - break;
|
| - case RegExpAssertion::END_OF_LINE:
|
| - os_ << "@$l";
|
| - break;
|
| - case RegExpAssertion::BOUNDARY:
|
| - os_ << "@b";
|
| - break;
|
| - case RegExpAssertion::NON_BOUNDARY:
|
| - os_ << "@B";
|
| - break;
|
| - }
|
| - return NULL;
|
| -}
|
| -
|
| -
|
| -void* RegExpUnparser::VisitAtom(RegExpAtom* that, void* data) {
|
| - os_ << "'";
|
| - Vector<const uc16> chardata = that->data();
|
| - for (int i = 0; i < chardata.length(); i++) {
|
| - os_ << AsUC16(chardata[i]);
|
| - }
|
| - os_ << "'";
|
| - return NULL;
|
| -}
|
| -
|
| -
|
| -void* RegExpUnparser::VisitText(RegExpText* that, void* data) {
|
| - if (that->elements()->length() == 1) {
|
| - that->elements()->at(0).tree()->Accept(this, data);
|
| - } else {
|
| - os_ << "(!";
|
| - for (int i = 0; i < that->elements()->length(); i++) {
|
| - os_ << " ";
|
| - that->elements()->at(i).tree()->Accept(this, data);
|
| - }
|
| - os_ << ")";
|
| - }
|
| - return NULL;
|
| -}
|
| -
|
| -
|
| -void* RegExpUnparser::VisitQuantifier(RegExpQuantifier* that, void* data) {
|
| - os_ << "(# " << that->min() << " ";
|
| - if (that->max() == RegExpTree::kInfinity) {
|
| - os_ << "- ";
|
| - } else {
|
| - os_ << that->max() << " ";
|
| - }
|
| - os_ << (that->is_greedy() ? "g " : that->is_possessive() ? "p " : "n ");
|
| - that->body()->Accept(this, data);
|
| - os_ << ")";
|
| - return NULL;
|
| -}
|
| -
|
| -
|
| -void* RegExpUnparser::VisitCapture(RegExpCapture* that, void* data) {
|
| - os_ << "(^ ";
|
| - that->body()->Accept(this, data);
|
| - os_ << ")";
|
| - return NULL;
|
| -}
|
| -
|
| -
|
| -void* RegExpUnparser::VisitLookaround(RegExpLookaround* that, void* data) {
|
| - os_ << "(";
|
| - os_ << (that->type() == RegExpLookaround::LOOKAHEAD ? "->" : "<-");
|
| - os_ << (that->is_positive() ? " + " : " - ");
|
| - that->body()->Accept(this, data);
|
| - os_ << ")";
|
| - return NULL;
|
| -}
|
| -
|
| -
|
| -void* RegExpUnparser::VisitBackReference(RegExpBackReference* that,
|
| - void* data) {
|
| - os_ << "(<- " << that->index() << ")";
|
| - return NULL;
|
| -}
|
| -
|
| -
|
| -void* RegExpUnparser::VisitEmpty(RegExpEmpty* that, void* data) {
|
| - os_ << '%';
|
| - return NULL;
|
| -}
|
| -
|
| -
|
| -std::ostream& RegExpTree::Print(std::ostream& os, Zone* zone) { // NOLINT
|
| - RegExpUnparser unparser(os, zone);
|
| - Accept(&unparser, NULL);
|
| - return os;
|
| -}
|
| -
|
| -
|
| -RegExpDisjunction::RegExpDisjunction(ZoneList<RegExpTree*>* alternatives)
|
| - : alternatives_(alternatives) {
|
| - DCHECK(alternatives->length() > 1);
|
| - RegExpTree* first_alternative = alternatives->at(0);
|
| - min_match_ = first_alternative->min_match();
|
| - max_match_ = first_alternative->max_match();
|
| - for (int i = 1; i < alternatives->length(); i++) {
|
| - RegExpTree* alternative = alternatives->at(i);
|
| - min_match_ = Min(min_match_, alternative->min_match());
|
| - max_match_ = Max(max_match_, alternative->max_match());
|
| - }
|
| -}
|
| -
|
| -
|
| -static int IncreaseBy(int previous, int increase) {
|
| - if (RegExpTree::kInfinity - previous < increase) {
|
| - return RegExpTree::kInfinity;
|
| - } else {
|
| - return previous + increase;
|
| - }
|
| -}
|
| -
|
| -RegExpAlternative::RegExpAlternative(ZoneList<RegExpTree*>* nodes)
|
| - : nodes_(nodes) {
|
| - DCHECK(nodes->length() > 1);
|
| - min_match_ = 0;
|
| - max_match_ = 0;
|
| - for (int i = 0; i < nodes->length(); i++) {
|
| - RegExpTree* node = nodes->at(i);
|
| - int node_min_match = node->min_match();
|
| - min_match_ = IncreaseBy(min_match_, node_min_match);
|
| - int node_max_match = node->max_match();
|
| - max_match_ = IncreaseBy(max_match_, node_max_match);
|
| - }
|
| -}
|
| -
|
| -
|
| -CaseClause::CaseClause(Zone* zone, Expression* label,
|
| - ZoneList<Statement*>* statements, int pos)
|
| - : Expression(zone, pos),
|
| - label_(label),
|
| - statements_(statements),
|
| - compare_type_(Type::None(zone)) {}
|
| -
|
| -
|
| -uint32_t Literal::Hash() {
|
| - return raw_value()->IsString()
|
| - ? raw_value()->AsString()->hash()
|
| - : ComputeLongHash(double_to_uint64(raw_value()->AsNumber()));
|
| -}
|
| -
|
| -
|
| -// static
|
| -bool Literal::Match(void* literal1, void* literal2) {
|
| - const AstValue* x = static_cast<Literal*>(literal1)->raw_value();
|
| - const AstValue* y = static_cast<Literal*>(literal2)->raw_value();
|
| - return (x->IsString() && y->IsString() && x->AsString() == y->AsString()) ||
|
| - (x->IsNumber() && y->IsNumber() && x->AsNumber() == y->AsNumber());
|
| -}
|
| -
|
| -
|
| -} // namespace internal
|
| -} // namespace v8
|
|
|