Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(385)

Side by Side Diff: src/ast.cc

Issue 1481613002: Create ast/ and parsing/ subdirectories and move appropriate files (Closed) Base URL: https://chromium.googlesource.com/v8/v8.git@master
Patch Set: Rebase Created 5 years ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « src/ast.h ('k') | src/ast-expression-visitor.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/ast.h"
6
7 #include <cmath> // For isfinite.
8 #include "src/builtins.h"
9 #include "src/code-stubs.h"
10 #include "src/contexts.h"
11 #include "src/conversions.h"
12 #include "src/hashmap.h"
13 #include "src/parser.h"
14 #include "src/property.h"
15 #include "src/property-details.h"
16 #include "src/scopes.h"
17 #include "src/string-stream.h"
18 #include "src/type-info.h"
19
20 namespace v8 {
21 namespace internal {
22
23 // ----------------------------------------------------------------------------
24 // All the Accept member functions for each syntax tree node type.
25
26 #define DECL_ACCEPT(type) \
27 void type::Accept(AstVisitor* v) { v->Visit##type(this); }
28 AST_NODE_LIST(DECL_ACCEPT)
29 #undef DECL_ACCEPT
30
31
32 // ----------------------------------------------------------------------------
33 // Implementation of other node functionality.
34
35
36 bool Expression::IsSmiLiteral() const {
37 return IsLiteral() && AsLiteral()->value()->IsSmi();
38 }
39
40
41 bool Expression::IsStringLiteral() const {
42 return IsLiteral() && AsLiteral()->value()->IsString();
43 }
44
45
46 bool Expression::IsNullLiteral() const {
47 return IsLiteral() && AsLiteral()->value()->IsNull();
48 }
49
50
51 bool Expression::IsUndefinedLiteral(Isolate* isolate) const {
52 const VariableProxy* var_proxy = AsVariableProxy();
53 if (var_proxy == NULL) return false;
54 Variable* var = var_proxy->var();
55 // The global identifier "undefined" is immutable. Everything
56 // else could be reassigned.
57 return var != NULL && var->IsUnallocatedOrGlobalSlot() &&
58 var_proxy->raw_name()->IsOneByteEqualTo("undefined");
59 }
60
61
62 bool Expression::IsValidReferenceExpressionOrThis() const {
63 return IsValidReferenceExpression() ||
64 (IsVariableProxy() && AsVariableProxy()->is_this());
65 }
66
67
68 VariableProxy::VariableProxy(Zone* zone, Variable* var, int start_position,
69 int end_position)
70 : Expression(zone, start_position),
71 bit_field_(IsThisField::encode(var->is_this()) |
72 IsAssignedField::encode(false) |
73 IsResolvedField::encode(false)),
74 raw_name_(var->raw_name()),
75 end_position_(end_position) {
76 BindTo(var);
77 }
78
79
80 VariableProxy::VariableProxy(Zone* zone, const AstRawString* name,
81 Variable::Kind variable_kind, int start_position,
82 int end_position)
83 : Expression(zone, start_position),
84 bit_field_(IsThisField::encode(variable_kind == Variable::THIS) |
85 IsAssignedField::encode(false) |
86 IsResolvedField::encode(false)),
87 raw_name_(name),
88 end_position_(end_position) {}
89
90
91 void VariableProxy::BindTo(Variable* var) {
92 DCHECK((is_this() && var->is_this()) || raw_name() == var->raw_name());
93 set_var(var);
94 set_is_resolved();
95 var->set_is_used();
96 }
97
98
99 void VariableProxy::AssignFeedbackVectorSlots(Isolate* isolate,
100 FeedbackVectorSpec* spec,
101 FeedbackVectorSlotCache* cache) {
102 if (UsesVariableFeedbackSlot()) {
103 // VariableProxies that point to the same Variable within a function can
104 // make their loads from the same IC slot.
105 if (var()->IsUnallocated()) {
106 ZoneHashMap::Entry* entry = cache->Get(var());
107 if (entry != NULL) {
108 variable_feedback_slot_ = FeedbackVectorSlot(
109 static_cast<int>(reinterpret_cast<intptr_t>(entry->value)));
110 return;
111 }
112 }
113 variable_feedback_slot_ = spec->AddLoadICSlot();
114 if (var()->IsUnallocated()) {
115 cache->Put(var(), variable_feedback_slot_);
116 }
117 }
118 }
119
120
121 static void AssignVectorSlots(Expression* expr, FeedbackVectorSpec* spec,
122 FeedbackVectorSlot* out_slot) {
123 Property* property = expr->AsProperty();
124 LhsKind assign_type = Property::GetAssignType(property);
125 if ((assign_type == VARIABLE &&
126 expr->AsVariableProxy()->var()->IsUnallocated()) ||
127 assign_type == NAMED_PROPERTY || assign_type == KEYED_PROPERTY) {
128 // TODO(ishell): consider using ICSlotCache for variables here.
129 FeedbackVectorSlotKind kind = assign_type == KEYED_PROPERTY
130 ? FeedbackVectorSlotKind::KEYED_STORE_IC
131 : FeedbackVectorSlotKind::STORE_IC;
132 *out_slot = spec->AddSlot(kind);
133 }
134 }
135
136
137 void ForEachStatement::AssignFeedbackVectorSlots(
138 Isolate* isolate, FeedbackVectorSpec* spec,
139 FeedbackVectorSlotCache* cache) {
140 AssignVectorSlots(each(), spec, &each_slot_);
141 }
142
143
144 Assignment::Assignment(Zone* zone, Token::Value op, Expression* target,
145 Expression* value, int pos)
146 : Expression(zone, pos),
147 bit_field_(
148 IsUninitializedField::encode(false) | KeyTypeField::encode(ELEMENT) |
149 StoreModeField::encode(STANDARD_STORE) | TokenField::encode(op)),
150 target_(target),
151 value_(value),
152 binary_operation_(NULL) {}
153
154
155 void Assignment::AssignFeedbackVectorSlots(Isolate* isolate,
156 FeedbackVectorSpec* spec,
157 FeedbackVectorSlotCache* cache) {
158 AssignVectorSlots(target(), spec, &slot_);
159 }
160
161
162 void CountOperation::AssignFeedbackVectorSlots(Isolate* isolate,
163 FeedbackVectorSpec* spec,
164 FeedbackVectorSlotCache* cache) {
165 AssignVectorSlots(expression(), spec, &slot_);
166 }
167
168
169 Token::Value Assignment::binary_op() const {
170 switch (op()) {
171 case Token::ASSIGN_BIT_OR: return Token::BIT_OR;
172 case Token::ASSIGN_BIT_XOR: return Token::BIT_XOR;
173 case Token::ASSIGN_BIT_AND: return Token::BIT_AND;
174 case Token::ASSIGN_SHL: return Token::SHL;
175 case Token::ASSIGN_SAR: return Token::SAR;
176 case Token::ASSIGN_SHR: return Token::SHR;
177 case Token::ASSIGN_ADD: return Token::ADD;
178 case Token::ASSIGN_SUB: return Token::SUB;
179 case Token::ASSIGN_MUL: return Token::MUL;
180 case Token::ASSIGN_DIV: return Token::DIV;
181 case Token::ASSIGN_MOD: return Token::MOD;
182 default: UNREACHABLE();
183 }
184 return Token::ILLEGAL;
185 }
186
187
188 bool FunctionLiteral::AllowsLazyCompilation() {
189 return scope()->AllowsLazyCompilation();
190 }
191
192
193 bool FunctionLiteral::AllowsLazyCompilationWithoutContext() {
194 return scope()->AllowsLazyCompilationWithoutContext();
195 }
196
197
198 int FunctionLiteral::start_position() const {
199 return scope()->start_position();
200 }
201
202
203 int FunctionLiteral::end_position() const {
204 return scope()->end_position();
205 }
206
207
208 LanguageMode FunctionLiteral::language_mode() const {
209 return scope()->language_mode();
210 }
211
212
213 bool FunctionLiteral::NeedsHomeObject(Expression* expr) {
214 if (expr == nullptr || !expr->IsFunctionLiteral()) return false;
215 DCHECK_NOT_NULL(expr->AsFunctionLiteral()->scope());
216 return expr->AsFunctionLiteral()->scope()->NeedsHomeObject();
217 }
218
219
220 ObjectLiteralProperty::ObjectLiteralProperty(Expression* key, Expression* value,
221 Kind kind, bool is_static,
222 bool is_computed_name)
223 : key_(key),
224 value_(value),
225 kind_(kind),
226 emit_store_(true),
227 is_static_(is_static),
228 is_computed_name_(is_computed_name) {}
229
230
231 ObjectLiteralProperty::ObjectLiteralProperty(AstValueFactory* ast_value_factory,
232 Expression* key, Expression* value,
233 bool is_static,
234 bool is_computed_name)
235 : key_(key),
236 value_(value),
237 emit_store_(true),
238 is_static_(is_static),
239 is_computed_name_(is_computed_name) {
240 if (!is_computed_name &&
241 key->AsLiteral()->raw_value()->EqualsString(
242 ast_value_factory->proto_string())) {
243 kind_ = PROTOTYPE;
244 } else if (value_->AsMaterializedLiteral() != NULL) {
245 kind_ = MATERIALIZED_LITERAL;
246 } else if (value_->IsLiteral()) {
247 kind_ = CONSTANT;
248 } else {
249 kind_ = COMPUTED;
250 }
251 }
252
253
254 void ClassLiteral::AssignFeedbackVectorSlots(Isolate* isolate,
255 FeedbackVectorSpec* spec,
256 FeedbackVectorSlotCache* cache) {
257 // This logic that computes the number of slots needed for vector store
258 // ICs must mirror FullCodeGenerator::VisitClassLiteral.
259 if (NeedsProxySlot()) {
260 slot_ = spec->AddStoreICSlot();
261 }
262
263 for (int i = 0; i < properties()->length(); i++) {
264 ObjectLiteral::Property* property = properties()->at(i);
265 Expression* value = property->value();
266 if (FunctionLiteral::NeedsHomeObject(value)) {
267 property->SetSlot(spec->AddStoreICSlot());
268 }
269 }
270 }
271
272
273 bool ObjectLiteral::Property::IsCompileTimeValue() {
274 return kind_ == CONSTANT ||
275 (kind_ == MATERIALIZED_LITERAL &&
276 CompileTimeValue::IsCompileTimeValue(value_));
277 }
278
279
280 void ObjectLiteral::Property::set_emit_store(bool emit_store) {
281 emit_store_ = emit_store;
282 }
283
284
285 bool ObjectLiteral::Property::emit_store() {
286 return emit_store_;
287 }
288
289
290 void ObjectLiteral::AssignFeedbackVectorSlots(Isolate* isolate,
291 FeedbackVectorSpec* spec,
292 FeedbackVectorSlotCache* cache) {
293 // This logic that computes the number of slots needed for vector store
294 // ics must mirror FullCodeGenerator::VisitObjectLiteral.
295 int property_index = 0;
296 for (; property_index < properties()->length(); property_index++) {
297 ObjectLiteral::Property* property = properties()->at(property_index);
298 if (property->is_computed_name()) break;
299 if (property->IsCompileTimeValue()) continue;
300
301 Literal* key = property->key()->AsLiteral();
302 Expression* value = property->value();
303 switch (property->kind()) {
304 case ObjectLiteral::Property::CONSTANT:
305 UNREACHABLE();
306 case ObjectLiteral::Property::MATERIALIZED_LITERAL:
307 // Fall through.
308 case ObjectLiteral::Property::COMPUTED:
309 // It is safe to use [[Put]] here because the boilerplate already
310 // contains computed properties with an uninitialized value.
311 if (key->value()->IsInternalizedString()) {
312 if (property->emit_store()) {
313 property->SetSlot(spec->AddStoreICSlot());
314 if (FunctionLiteral::NeedsHomeObject(value)) {
315 property->SetSlot(spec->AddStoreICSlot(), 1);
316 }
317 }
318 break;
319 }
320 if (property->emit_store() && FunctionLiteral::NeedsHomeObject(value)) {
321 property->SetSlot(spec->AddStoreICSlot());
322 }
323 break;
324 case ObjectLiteral::Property::PROTOTYPE:
325 break;
326 case ObjectLiteral::Property::GETTER:
327 if (property->emit_store() && FunctionLiteral::NeedsHomeObject(value)) {
328 property->SetSlot(spec->AddStoreICSlot());
329 }
330 break;
331 case ObjectLiteral::Property::SETTER:
332 if (property->emit_store() && FunctionLiteral::NeedsHomeObject(value)) {
333 property->SetSlot(spec->AddStoreICSlot());
334 }
335 break;
336 }
337 }
338
339 for (; property_index < properties()->length(); property_index++) {
340 ObjectLiteral::Property* property = properties()->at(property_index);
341
342 Expression* value = property->value();
343 if (property->kind() != ObjectLiteral::Property::PROTOTYPE) {
344 if (FunctionLiteral::NeedsHomeObject(value)) {
345 property->SetSlot(spec->AddStoreICSlot());
346 }
347 }
348 }
349 }
350
351
352 void ObjectLiteral::CalculateEmitStore(Zone* zone) {
353 const auto GETTER = ObjectLiteral::Property::GETTER;
354 const auto SETTER = ObjectLiteral::Property::SETTER;
355
356 ZoneAllocationPolicy allocator(zone);
357
358 ZoneHashMap table(Literal::Match, ZoneHashMap::kDefaultHashMapCapacity,
359 allocator);
360 for (int i = properties()->length() - 1; i >= 0; i--) {
361 ObjectLiteral::Property* property = properties()->at(i);
362 if (property->is_computed_name()) continue;
363 if (property->kind() == ObjectLiteral::Property::PROTOTYPE) continue;
364 Literal* literal = property->key()->AsLiteral();
365 DCHECK(!literal->value()->IsNull());
366
367 // If there is an existing entry do not emit a store unless the previous
368 // entry was also an accessor.
369 uint32_t hash = literal->Hash();
370 ZoneHashMap::Entry* entry = table.LookupOrInsert(literal, hash, allocator);
371 if (entry->value != NULL) {
372 auto previous_kind =
373 static_cast<ObjectLiteral::Property*>(entry->value)->kind();
374 if (!((property->kind() == GETTER && previous_kind == SETTER) ||
375 (property->kind() == SETTER && previous_kind == GETTER))) {
376 property->set_emit_store(false);
377 }
378 }
379 entry->value = property;
380 }
381 }
382
383
384 bool ObjectLiteral::IsBoilerplateProperty(ObjectLiteral::Property* property) {
385 return property != NULL &&
386 property->kind() != ObjectLiteral::Property::PROTOTYPE;
387 }
388
389
390 void ObjectLiteral::BuildConstantProperties(Isolate* isolate) {
391 if (!constant_properties_.is_null()) return;
392
393 // Allocate a fixed array to hold all the constant properties.
394 Handle<FixedArray> constant_properties = isolate->factory()->NewFixedArray(
395 boilerplate_properties_ * 2, TENURED);
396
397 int position = 0;
398 // Accumulate the value in local variables and store it at the end.
399 bool is_simple = true;
400 int depth_acc = 1;
401 uint32_t max_element_index = 0;
402 uint32_t elements = 0;
403 for (int i = 0; i < properties()->length(); i++) {
404 ObjectLiteral::Property* property = properties()->at(i);
405 if (!IsBoilerplateProperty(property)) {
406 is_simple = false;
407 continue;
408 }
409
410 if (position == boilerplate_properties_ * 2) {
411 DCHECK(property->is_computed_name());
412 is_simple = false;
413 break;
414 }
415 DCHECK(!property->is_computed_name());
416
417 MaterializedLiteral* m_literal = property->value()->AsMaterializedLiteral();
418 if (m_literal != NULL) {
419 m_literal->BuildConstants(isolate);
420 if (m_literal->depth() >= depth_acc) depth_acc = m_literal->depth() + 1;
421 }
422
423 // Add CONSTANT and COMPUTED properties to boilerplate. Use undefined
424 // value for COMPUTED properties, the real value is filled in at
425 // runtime. The enumeration order is maintained.
426 Handle<Object> key = property->key()->AsLiteral()->value();
427 Handle<Object> value = GetBoilerplateValue(property->value(), isolate);
428
429 // Ensure objects that may, at any point in time, contain fields with double
430 // representation are always treated as nested objects. This is true for
431 // computed fields (value is undefined), and smi and double literals
432 // (value->IsNumber()).
433 // TODO(verwaest): Remove once we can store them inline.
434 if (FLAG_track_double_fields &&
435 (value->IsNumber() || value->IsUninitialized())) {
436 may_store_doubles_ = true;
437 }
438
439 is_simple = is_simple && !value->IsUninitialized();
440
441 // Keep track of the number of elements in the object literal and
442 // the largest element index. If the largest element index is
443 // much larger than the number of elements, creating an object
444 // literal with fast elements will be a waste of space.
445 uint32_t element_index = 0;
446 if (key->IsString()
447 && Handle<String>::cast(key)->AsArrayIndex(&element_index)
448 && element_index > max_element_index) {
449 max_element_index = element_index;
450 elements++;
451 } else if (key->IsSmi()) {
452 int key_value = Smi::cast(*key)->value();
453 if (key_value > 0
454 && static_cast<uint32_t>(key_value) > max_element_index) {
455 max_element_index = key_value;
456 }
457 elements++;
458 }
459
460 // Add name, value pair to the fixed array.
461 constant_properties->set(position++, *key);
462 constant_properties->set(position++, *value);
463 }
464
465 constant_properties_ = constant_properties;
466 fast_elements_ =
467 (max_element_index <= 32) || ((2 * elements) >= max_element_index);
468 has_elements_ = elements > 0;
469 set_is_simple(is_simple);
470 set_depth(depth_acc);
471 }
472
473
474 void ArrayLiteral::BuildConstantElements(Isolate* isolate) {
475 if (!constant_elements_.is_null()) return;
476
477 int constants_length =
478 first_spread_index_ >= 0 ? first_spread_index_ : values()->length();
479
480 // Allocate a fixed array to hold all the object literals.
481 Handle<JSArray> array = isolate->factory()->NewJSArray(
482 FAST_HOLEY_SMI_ELEMENTS, constants_length, constants_length,
483 Strength::WEAK, INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
484
485 // Fill in the literals.
486 bool is_simple = (first_spread_index_ < 0);
487 int depth_acc = 1;
488 bool is_holey = false;
489 int array_index = 0;
490 for (; array_index < constants_length; array_index++) {
491 Expression* element = values()->at(array_index);
492 DCHECK(!element->IsSpread());
493 MaterializedLiteral* m_literal = element->AsMaterializedLiteral();
494 if (m_literal != NULL) {
495 m_literal->BuildConstants(isolate);
496 if (m_literal->depth() + 1 > depth_acc) {
497 depth_acc = m_literal->depth() + 1;
498 }
499 }
500
501 // New handle scope here, needs to be after BuildContants().
502 HandleScope scope(isolate);
503 Handle<Object> boilerplate_value = GetBoilerplateValue(element, isolate);
504 if (boilerplate_value->IsTheHole()) {
505 is_holey = true;
506 continue;
507 }
508
509 if (boilerplate_value->IsUninitialized()) {
510 boilerplate_value = handle(Smi::FromInt(0), isolate);
511 is_simple = false;
512 }
513
514 JSObject::AddDataElement(array, array_index, boilerplate_value, NONE)
515 .Assert();
516 }
517
518 JSObject::ValidateElements(array);
519 Handle<FixedArrayBase> element_values(array->elements());
520
521 // Simple and shallow arrays can be lazily copied, we transform the
522 // elements array to a copy-on-write array.
523 if (is_simple && depth_acc == 1 && array_index > 0 &&
524 array->HasFastSmiOrObjectElements()) {
525 element_values->set_map(isolate->heap()->fixed_cow_array_map());
526 }
527
528 // Remember both the literal's constant values as well as the ElementsKind
529 // in a 2-element FixedArray.
530 Handle<FixedArray> literals = isolate->factory()->NewFixedArray(2, TENURED);
531
532 ElementsKind kind = array->GetElementsKind();
533 kind = is_holey ? GetHoleyElementsKind(kind) : GetPackedElementsKind(kind);
534
535 literals->set(0, Smi::FromInt(kind));
536 literals->set(1, *element_values);
537
538 constant_elements_ = literals;
539 set_is_simple(is_simple);
540 set_depth(depth_acc);
541 }
542
543
544 void ArrayLiteral::AssignFeedbackVectorSlots(Isolate* isolate,
545 FeedbackVectorSpec* spec,
546 FeedbackVectorSlotCache* cache) {
547 // This logic that computes the number of slots needed for vector store
548 // ics must mirror FullCodeGenerator::VisitArrayLiteral.
549 int array_index = 0;
550 for (; array_index < values()->length(); array_index++) {
551 Expression* subexpr = values()->at(array_index);
552 if (subexpr->IsSpread()) break;
553 if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
554
555 // We'll reuse the same literal slot for all of the non-constant
556 // subexpressions that use a keyed store IC.
557 literal_slot_ = spec->AddKeyedStoreICSlot();
558 return;
559 }
560 }
561
562
563 Handle<Object> MaterializedLiteral::GetBoilerplateValue(Expression* expression,
564 Isolate* isolate) {
565 if (expression->IsLiteral()) {
566 return expression->AsLiteral()->value();
567 }
568 if (CompileTimeValue::IsCompileTimeValue(expression)) {
569 return CompileTimeValue::GetValue(isolate, expression);
570 }
571 return isolate->factory()->uninitialized_value();
572 }
573
574
575 void MaterializedLiteral::BuildConstants(Isolate* isolate) {
576 if (IsArrayLiteral()) {
577 return AsArrayLiteral()->BuildConstantElements(isolate);
578 }
579 if (IsObjectLiteral()) {
580 return AsObjectLiteral()->BuildConstantProperties(isolate);
581 }
582 DCHECK(IsRegExpLiteral());
583 DCHECK(depth() >= 1); // Depth should be initialized.
584 }
585
586
587 void UnaryOperation::RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle) {
588 // TODO(olivf) If this Operation is used in a test context, then the
589 // expression has a ToBoolean stub and we want to collect the type
590 // information. However the GraphBuilder expects it to be on the instruction
591 // corresponding to the TestContext, therefore we have to store it here and
592 // not on the operand.
593 set_to_boolean_types(oracle->ToBooleanTypes(expression()->test_id()));
594 }
595
596
597 void BinaryOperation::RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle) {
598 // TODO(olivf) If this Operation is used in a test context, then the right
599 // hand side has a ToBoolean stub and we want to collect the type information.
600 // However the GraphBuilder expects it to be on the instruction corresponding
601 // to the TestContext, therefore we have to store it here and not on the
602 // right hand operand.
603 set_to_boolean_types(oracle->ToBooleanTypes(right()->test_id()));
604 }
605
606
607 static bool IsTypeof(Expression* expr) {
608 UnaryOperation* maybe_unary = expr->AsUnaryOperation();
609 return maybe_unary != NULL && maybe_unary->op() == Token::TYPEOF;
610 }
611
612
613 // Check for the pattern: typeof <expression> equals <string literal>.
614 static bool MatchLiteralCompareTypeof(Expression* left,
615 Token::Value op,
616 Expression* right,
617 Expression** expr,
618 Handle<String>* check) {
619 if (IsTypeof(left) && right->IsStringLiteral() && Token::IsEqualityOp(op)) {
620 *expr = left->AsUnaryOperation()->expression();
621 *check = Handle<String>::cast(right->AsLiteral()->value());
622 return true;
623 }
624 return false;
625 }
626
627
628 bool CompareOperation::IsLiteralCompareTypeof(Expression** expr,
629 Handle<String>* check) {
630 return MatchLiteralCompareTypeof(left_, op_, right_, expr, check) ||
631 MatchLiteralCompareTypeof(right_, op_, left_, expr, check);
632 }
633
634
635 static bool IsVoidOfLiteral(Expression* expr) {
636 UnaryOperation* maybe_unary = expr->AsUnaryOperation();
637 return maybe_unary != NULL &&
638 maybe_unary->op() == Token::VOID &&
639 maybe_unary->expression()->IsLiteral();
640 }
641
642
643 // Check for the pattern: void <literal> equals <expression> or
644 // undefined equals <expression>
645 static bool MatchLiteralCompareUndefined(Expression* left,
646 Token::Value op,
647 Expression* right,
648 Expression** expr,
649 Isolate* isolate) {
650 if (IsVoidOfLiteral(left) && Token::IsEqualityOp(op)) {
651 *expr = right;
652 return true;
653 }
654 if (left->IsUndefinedLiteral(isolate) && Token::IsEqualityOp(op)) {
655 *expr = right;
656 return true;
657 }
658 return false;
659 }
660
661
662 bool CompareOperation::IsLiteralCompareUndefined(
663 Expression** expr, Isolate* isolate) {
664 return MatchLiteralCompareUndefined(left_, op_, right_, expr, isolate) ||
665 MatchLiteralCompareUndefined(right_, op_, left_, expr, isolate);
666 }
667
668
669 // Check for the pattern: null equals <expression>
670 static bool MatchLiteralCompareNull(Expression* left,
671 Token::Value op,
672 Expression* right,
673 Expression** expr) {
674 if (left->IsNullLiteral() && Token::IsEqualityOp(op)) {
675 *expr = right;
676 return true;
677 }
678 return false;
679 }
680
681
682 bool CompareOperation::IsLiteralCompareNull(Expression** expr) {
683 return MatchLiteralCompareNull(left_, op_, right_, expr) ||
684 MatchLiteralCompareNull(right_, op_, left_, expr);
685 }
686
687
688 // ----------------------------------------------------------------------------
689 // Inlining support
690
691 bool Declaration::IsInlineable() const {
692 return proxy()->var()->IsStackAllocated();
693 }
694
695 bool FunctionDeclaration::IsInlineable() const {
696 return false;
697 }
698
699
700 // ----------------------------------------------------------------------------
701 // Recording of type feedback
702
703 // TODO(rossberg): all RecordTypeFeedback functions should disappear
704 // once we use the common type field in the AST consistently.
705
706 void Expression::RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle) {
707 set_to_boolean_types(oracle->ToBooleanTypes(test_id()));
708 }
709
710
711 bool Call::IsUsingCallFeedbackICSlot(Isolate* isolate) const {
712 CallType call_type = GetCallType(isolate);
713 if (call_type == POSSIBLY_EVAL_CALL) {
714 return false;
715 }
716 return true;
717 }
718
719
720 bool Call::IsUsingCallFeedbackSlot(Isolate* isolate) const {
721 // SuperConstructorCall uses a CallConstructStub, which wants
722 // a Slot, in addition to any IC slots requested elsewhere.
723 return GetCallType(isolate) == SUPER_CALL;
724 }
725
726
727 void Call::AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
728 FeedbackVectorSlotCache* cache) {
729 if (IsUsingCallFeedbackICSlot(isolate)) {
730 ic_slot_ = spec->AddCallICSlot();
731 }
732 if (IsUsingCallFeedbackSlot(isolate)) {
733 stub_slot_ = spec->AddGeneralSlot();
734 }
735 }
736
737
738 Call::CallType Call::GetCallType(Isolate* isolate) const {
739 VariableProxy* proxy = expression()->AsVariableProxy();
740 if (proxy != NULL) {
741 if (proxy->var()->is_possibly_eval(isolate)) {
742 return POSSIBLY_EVAL_CALL;
743 } else if (proxy->var()->IsUnallocatedOrGlobalSlot()) {
744 return GLOBAL_CALL;
745 } else if (proxy->var()->IsLookupSlot()) {
746 return LOOKUP_SLOT_CALL;
747 }
748 }
749
750 if (expression()->IsSuperCallReference()) return SUPER_CALL;
751
752 Property* property = expression()->AsProperty();
753 if (property != nullptr) {
754 bool is_super = property->IsSuperAccess();
755 if (property->key()->IsPropertyName()) {
756 return is_super ? NAMED_SUPER_PROPERTY_CALL : NAMED_PROPERTY_CALL;
757 } else {
758 return is_super ? KEYED_SUPER_PROPERTY_CALL : KEYED_PROPERTY_CALL;
759 }
760 }
761
762 return OTHER_CALL;
763 }
764
765
766 // ----------------------------------------------------------------------------
767 // Implementation of AstVisitor
768
769 void AstVisitor::VisitDeclarations(ZoneList<Declaration*>* declarations) {
770 for (int i = 0; i < declarations->length(); i++) {
771 Visit(declarations->at(i));
772 }
773 }
774
775
776 void AstVisitor::VisitStatements(ZoneList<Statement*>* statements) {
777 for (int i = 0; i < statements->length(); i++) {
778 Statement* stmt = statements->at(i);
779 Visit(stmt);
780 if (stmt->IsJump()) break;
781 }
782 }
783
784
785 void AstVisitor::VisitExpressions(ZoneList<Expression*>* expressions) {
786 for (int i = 0; i < expressions->length(); i++) {
787 // The variable statement visiting code may pass NULL expressions
788 // to this code. Maybe this should be handled by introducing an
789 // undefined expression or literal? Revisit this code if this
790 // changes
791 Expression* expression = expressions->at(i);
792 if (expression != NULL) Visit(expression);
793 }
794 }
795
796
797 // ----------------------------------------------------------------------------
798 // Regular expressions
799
800 #define MAKE_ACCEPT(Name) \
801 void* RegExp##Name::Accept(RegExpVisitor* visitor, void* data) { \
802 return visitor->Visit##Name(this, data); \
803 }
804 FOR_EACH_REG_EXP_TREE_TYPE(MAKE_ACCEPT)
805 #undef MAKE_ACCEPT
806
807 #define MAKE_TYPE_CASE(Name) \
808 RegExp##Name* RegExpTree::As##Name() { \
809 return NULL; \
810 } \
811 bool RegExpTree::Is##Name() { return false; }
812 FOR_EACH_REG_EXP_TREE_TYPE(MAKE_TYPE_CASE)
813 #undef MAKE_TYPE_CASE
814
815 #define MAKE_TYPE_CASE(Name) \
816 RegExp##Name* RegExp##Name::As##Name() { \
817 return this; \
818 } \
819 bool RegExp##Name::Is##Name() { return true; }
820 FOR_EACH_REG_EXP_TREE_TYPE(MAKE_TYPE_CASE)
821 #undef MAKE_TYPE_CASE
822
823
824 static Interval ListCaptureRegisters(ZoneList<RegExpTree*>* children) {
825 Interval result = Interval::Empty();
826 for (int i = 0; i < children->length(); i++)
827 result = result.Union(children->at(i)->CaptureRegisters());
828 return result;
829 }
830
831
832 Interval RegExpAlternative::CaptureRegisters() {
833 return ListCaptureRegisters(nodes());
834 }
835
836
837 Interval RegExpDisjunction::CaptureRegisters() {
838 return ListCaptureRegisters(alternatives());
839 }
840
841
842 Interval RegExpLookaround::CaptureRegisters() {
843 return body()->CaptureRegisters();
844 }
845
846
847 Interval RegExpCapture::CaptureRegisters() {
848 Interval self(StartRegister(index()), EndRegister(index()));
849 return self.Union(body()->CaptureRegisters());
850 }
851
852
853 Interval RegExpQuantifier::CaptureRegisters() {
854 return body()->CaptureRegisters();
855 }
856
857
858 bool RegExpAssertion::IsAnchoredAtStart() {
859 return assertion_type() == RegExpAssertion::START_OF_INPUT;
860 }
861
862
863 bool RegExpAssertion::IsAnchoredAtEnd() {
864 return assertion_type() == RegExpAssertion::END_OF_INPUT;
865 }
866
867
868 bool RegExpAlternative::IsAnchoredAtStart() {
869 ZoneList<RegExpTree*>* nodes = this->nodes();
870 for (int i = 0; i < nodes->length(); i++) {
871 RegExpTree* node = nodes->at(i);
872 if (node->IsAnchoredAtStart()) { return true; }
873 if (node->max_match() > 0) { return false; }
874 }
875 return false;
876 }
877
878
879 bool RegExpAlternative::IsAnchoredAtEnd() {
880 ZoneList<RegExpTree*>* nodes = this->nodes();
881 for (int i = nodes->length() - 1; i >= 0; i--) {
882 RegExpTree* node = nodes->at(i);
883 if (node->IsAnchoredAtEnd()) { return true; }
884 if (node->max_match() > 0) { return false; }
885 }
886 return false;
887 }
888
889
890 bool RegExpDisjunction::IsAnchoredAtStart() {
891 ZoneList<RegExpTree*>* alternatives = this->alternatives();
892 for (int i = 0; i < alternatives->length(); i++) {
893 if (!alternatives->at(i)->IsAnchoredAtStart())
894 return false;
895 }
896 return true;
897 }
898
899
900 bool RegExpDisjunction::IsAnchoredAtEnd() {
901 ZoneList<RegExpTree*>* alternatives = this->alternatives();
902 for (int i = 0; i < alternatives->length(); i++) {
903 if (!alternatives->at(i)->IsAnchoredAtEnd())
904 return false;
905 }
906 return true;
907 }
908
909
910 bool RegExpLookaround::IsAnchoredAtStart() {
911 return is_positive() && type() == LOOKAHEAD && body()->IsAnchoredAtStart();
912 }
913
914
915 bool RegExpCapture::IsAnchoredAtStart() {
916 return body()->IsAnchoredAtStart();
917 }
918
919
920 bool RegExpCapture::IsAnchoredAtEnd() {
921 return body()->IsAnchoredAtEnd();
922 }
923
924
925 // Convert regular expression trees to a simple sexp representation.
926 // This representation should be different from the input grammar
927 // in as many cases as possible, to make it more difficult for incorrect
928 // parses to look as correct ones which is likely if the input and
929 // output formats are alike.
930 class RegExpUnparser final : public RegExpVisitor {
931 public:
932 RegExpUnparser(std::ostream& os, Zone* zone) : os_(os), zone_(zone) {}
933 void VisitCharacterRange(CharacterRange that);
934 #define MAKE_CASE(Name) void* Visit##Name(RegExp##Name*, void* data) override;
935 FOR_EACH_REG_EXP_TREE_TYPE(MAKE_CASE)
936 #undef MAKE_CASE
937 private:
938 std::ostream& os_;
939 Zone* zone_;
940 };
941
942
943 void* RegExpUnparser::VisitDisjunction(RegExpDisjunction* that, void* data) {
944 os_ << "(|";
945 for (int i = 0; i < that->alternatives()->length(); i++) {
946 os_ << " ";
947 that->alternatives()->at(i)->Accept(this, data);
948 }
949 os_ << ")";
950 return NULL;
951 }
952
953
954 void* RegExpUnparser::VisitAlternative(RegExpAlternative* that, void* data) {
955 os_ << "(:";
956 for (int i = 0; i < that->nodes()->length(); i++) {
957 os_ << " ";
958 that->nodes()->at(i)->Accept(this, data);
959 }
960 os_ << ")";
961 return NULL;
962 }
963
964
965 void RegExpUnparser::VisitCharacterRange(CharacterRange that) {
966 os_ << AsUC16(that.from());
967 if (!that.IsSingleton()) {
968 os_ << "-" << AsUC16(that.to());
969 }
970 }
971
972
973
974 void* RegExpUnparser::VisitCharacterClass(RegExpCharacterClass* that,
975 void* data) {
976 if (that->is_negated()) os_ << "^";
977 os_ << "[";
978 for (int i = 0; i < that->ranges(zone_)->length(); i++) {
979 if (i > 0) os_ << " ";
980 VisitCharacterRange(that->ranges(zone_)->at(i));
981 }
982 os_ << "]";
983 return NULL;
984 }
985
986
987 void* RegExpUnparser::VisitAssertion(RegExpAssertion* that, void* data) {
988 switch (that->assertion_type()) {
989 case RegExpAssertion::START_OF_INPUT:
990 os_ << "@^i";
991 break;
992 case RegExpAssertion::END_OF_INPUT:
993 os_ << "@$i";
994 break;
995 case RegExpAssertion::START_OF_LINE:
996 os_ << "@^l";
997 break;
998 case RegExpAssertion::END_OF_LINE:
999 os_ << "@$l";
1000 break;
1001 case RegExpAssertion::BOUNDARY:
1002 os_ << "@b";
1003 break;
1004 case RegExpAssertion::NON_BOUNDARY:
1005 os_ << "@B";
1006 break;
1007 }
1008 return NULL;
1009 }
1010
1011
1012 void* RegExpUnparser::VisitAtom(RegExpAtom* that, void* data) {
1013 os_ << "'";
1014 Vector<const uc16> chardata = that->data();
1015 for (int i = 0; i < chardata.length(); i++) {
1016 os_ << AsUC16(chardata[i]);
1017 }
1018 os_ << "'";
1019 return NULL;
1020 }
1021
1022
1023 void* RegExpUnparser::VisitText(RegExpText* that, void* data) {
1024 if (that->elements()->length() == 1) {
1025 that->elements()->at(0).tree()->Accept(this, data);
1026 } else {
1027 os_ << "(!";
1028 for (int i = 0; i < that->elements()->length(); i++) {
1029 os_ << " ";
1030 that->elements()->at(i).tree()->Accept(this, data);
1031 }
1032 os_ << ")";
1033 }
1034 return NULL;
1035 }
1036
1037
1038 void* RegExpUnparser::VisitQuantifier(RegExpQuantifier* that, void* data) {
1039 os_ << "(# " << that->min() << " ";
1040 if (that->max() == RegExpTree::kInfinity) {
1041 os_ << "- ";
1042 } else {
1043 os_ << that->max() << " ";
1044 }
1045 os_ << (that->is_greedy() ? "g " : that->is_possessive() ? "p " : "n ");
1046 that->body()->Accept(this, data);
1047 os_ << ")";
1048 return NULL;
1049 }
1050
1051
1052 void* RegExpUnparser::VisitCapture(RegExpCapture* that, void* data) {
1053 os_ << "(^ ";
1054 that->body()->Accept(this, data);
1055 os_ << ")";
1056 return NULL;
1057 }
1058
1059
1060 void* RegExpUnparser::VisitLookaround(RegExpLookaround* that, void* data) {
1061 os_ << "(";
1062 os_ << (that->type() == RegExpLookaround::LOOKAHEAD ? "->" : "<-");
1063 os_ << (that->is_positive() ? " + " : " - ");
1064 that->body()->Accept(this, data);
1065 os_ << ")";
1066 return NULL;
1067 }
1068
1069
1070 void* RegExpUnparser::VisitBackReference(RegExpBackReference* that,
1071 void* data) {
1072 os_ << "(<- " << that->index() << ")";
1073 return NULL;
1074 }
1075
1076
1077 void* RegExpUnparser::VisitEmpty(RegExpEmpty* that, void* data) {
1078 os_ << '%';
1079 return NULL;
1080 }
1081
1082
1083 std::ostream& RegExpTree::Print(std::ostream& os, Zone* zone) { // NOLINT
1084 RegExpUnparser unparser(os, zone);
1085 Accept(&unparser, NULL);
1086 return os;
1087 }
1088
1089
1090 RegExpDisjunction::RegExpDisjunction(ZoneList<RegExpTree*>* alternatives)
1091 : alternatives_(alternatives) {
1092 DCHECK(alternatives->length() > 1);
1093 RegExpTree* first_alternative = alternatives->at(0);
1094 min_match_ = first_alternative->min_match();
1095 max_match_ = first_alternative->max_match();
1096 for (int i = 1; i < alternatives->length(); i++) {
1097 RegExpTree* alternative = alternatives->at(i);
1098 min_match_ = Min(min_match_, alternative->min_match());
1099 max_match_ = Max(max_match_, alternative->max_match());
1100 }
1101 }
1102
1103
1104 static int IncreaseBy(int previous, int increase) {
1105 if (RegExpTree::kInfinity - previous < increase) {
1106 return RegExpTree::kInfinity;
1107 } else {
1108 return previous + increase;
1109 }
1110 }
1111
1112 RegExpAlternative::RegExpAlternative(ZoneList<RegExpTree*>* nodes)
1113 : nodes_(nodes) {
1114 DCHECK(nodes->length() > 1);
1115 min_match_ = 0;
1116 max_match_ = 0;
1117 for (int i = 0; i < nodes->length(); i++) {
1118 RegExpTree* node = nodes->at(i);
1119 int node_min_match = node->min_match();
1120 min_match_ = IncreaseBy(min_match_, node_min_match);
1121 int node_max_match = node->max_match();
1122 max_match_ = IncreaseBy(max_match_, node_max_match);
1123 }
1124 }
1125
1126
1127 CaseClause::CaseClause(Zone* zone, Expression* label,
1128 ZoneList<Statement*>* statements, int pos)
1129 : Expression(zone, pos),
1130 label_(label),
1131 statements_(statements),
1132 compare_type_(Type::None(zone)) {}
1133
1134
1135 uint32_t Literal::Hash() {
1136 return raw_value()->IsString()
1137 ? raw_value()->AsString()->hash()
1138 : ComputeLongHash(double_to_uint64(raw_value()->AsNumber()));
1139 }
1140
1141
1142 // static
1143 bool Literal::Match(void* literal1, void* literal2) {
1144 const AstValue* x = static_cast<Literal*>(literal1)->raw_value();
1145 const AstValue* y = static_cast<Literal*>(literal2)->raw_value();
1146 return (x->IsString() && y->IsString() && x->AsString() == y->AsString()) ||
1147 (x->IsNumber() && y->IsNumber() && x->AsNumber() == y->AsNumber());
1148 }
1149
1150
1151 } // namespace internal
1152 } // namespace v8
OLDNEW
« no previous file with comments | « src/ast.h ('k') | src/ast-expression-visitor.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698