| Index: tests/BlendTest.cpp
|
| diff --git a/tests/BlendTest.cpp b/tests/BlendTest.cpp
|
| index d816b7225058573329aab7b88e8dee641a67ce2e..518a7e241d43ef36578922607075579711dad325 100644
|
| --- a/tests/BlendTest.cpp
|
| +++ b/tests/BlendTest.cpp
|
| @@ -10,262 +10,63 @@
|
| #include "SkColorPriv.h"
|
| #include "SkTaskGroup.h"
|
| #include "SkXfermode.h"
|
| -
|
| -#define ASSERT(x) REPORTER_ASSERT(r, x)
|
| -
|
| -static uint8_t double_to_u8(double d) {
|
| - SkASSERT(d >= 0);
|
| - SkASSERT(d < 256);
|
| - return uint8_t(d);
|
| -}
|
| -
|
| -// All algorithms we're testing have this interface.
|
| -// We want a single channel blend, src over dst, assuming src is premultiplied by srcAlpha.
|
| -typedef uint8_t(*Blend)(uint8_t dst, uint8_t src, uint8_t srcAlpha);
|
| -
|
| -// This is our golden algorithm.
|
| -static uint8_t blend_double_round(uint8_t dst, uint8_t src, uint8_t srcAlpha) {
|
| - SkASSERT(src <= srcAlpha);
|
| - return double_to_u8(0.5 + src + dst * (255.0 - srcAlpha) / 255.0);
|
| -}
|
| -
|
| -static uint8_t abs_diff(uint8_t a, uint8_t b) {
|
| - const int diff = a - b;
|
| - return diff > 0 ? diff : -diff;
|
| -}
|
| -
|
| -static void test(skiatest::Reporter* r, int maxDiff, Blend algorithm,
|
| - uint8_t dst, uint8_t src, uint8_t alpha) {
|
| - const uint8_t golden = blend_double_round(dst, src, alpha);
|
| - const uint8_t blend = algorithm(dst, src, alpha);
|
| - if (abs_diff(blend, golden) > maxDiff) {
|
| - SkDebugf("dst %02x, src %02x, alpha %02x, |%02x - %02x| > %d\n",
|
| - dst, src, alpha, blend, golden, maxDiff);
|
| - ASSERT(abs_diff(blend, golden) <= maxDiff);
|
| - }
|
| -}
|
| -
|
| -// Exhaustively compare an algorithm against our golden, for a given alpha.
|
| -static void test_alpha(skiatest::Reporter* r, uint8_t alpha, int maxDiff, Blend algorithm) {
|
| - SkASSERT(maxDiff >= 0);
|
| -
|
| - for (unsigned src = 0; src <= alpha; src++) {
|
| - for (unsigned dst = 0; dst < 256; dst++) {
|
| - test(r, maxDiff, algorithm, dst, src, alpha);
|
| - }
|
| - }
|
| -}
|
| -
|
| -// Exhaustively compare an algorithm against our golden, for a given dst.
|
| -static void test_dst(skiatest::Reporter* r, uint8_t dst, int maxDiff, Blend algorithm) {
|
| - SkASSERT(maxDiff >= 0);
|
| -
|
| - for (unsigned alpha = 0; alpha < 256; alpha++) {
|
| - for (unsigned src = 0; src <= alpha; src++) {
|
| - test(r, maxDiff, algorithm, dst, src, alpha);
|
| +#include <functional>
|
| +
|
| +struct Results { int diffs, diffs_0x00, diffs_0xff, diffs_by_1; };
|
| +
|
| +static bool acceptable(const Results& r) {
|
| +#if 0
|
| + SkDebugf("%d diffs, %d at 0x00, %d at 0xff, %d off by 1, all out of 65536\n",
|
| + r.diffs, r.diffs_0x00, r.diffs_0xff, r.diffs_by_1);
|
| +#endif
|
| + return r.diffs_by_1 == r.diffs // never off by more than 1
|
| + && r.diffs_0x00 == 0 // transparent must stay transparent
|
| + && r.diffs_0xff == 0; // opaque must stay opaque
|
| +}
|
| +
|
| +template <typename Fn>
|
| +static Results test(Fn&& multiply) {
|
| + Results r = { 0,0,0,0 };
|
| + for (int x = 0; x < 256; x++) {
|
| + for (int y = 0; y < 256; y++) {
|
| + int p = multiply(x, y),
|
| + ideal = (x*y+127)/255;
|
| + if (p != ideal) {
|
| + r.diffs++;
|
| + if (x == 0x00 || y == 0x00) { r.diffs_0x00++; }
|
| + if (x == 0xff || y == 0xff) { r.diffs_0xff++; }
|
| + if (SkTAbs(ideal - p) == 1) { r.diffs_by_1++; }
|
| }
|
| - }
|
| -}
|
| -
|
| -static uint8_t blend_double_trunc(uint8_t dst, uint8_t src, uint8_t srcAlpha) {
|
| - return double_to_u8(src + dst * (255.0 - srcAlpha) / 255.0);
|
| -}
|
| -
|
| -static uint8_t blend_float_trunc(uint8_t dst, uint8_t src, uint8_t srcAlpha) {
|
| - return double_to_u8(src + dst * (255.0f - srcAlpha) / 255.0f);
|
| -}
|
| -
|
| -static uint8_t blend_float_round(uint8_t dst, uint8_t src, uint8_t srcAlpha) {
|
| - return double_to_u8(0.5f + src + dst * (255.0f - srcAlpha) / 255.0f);
|
| -}
|
| -
|
| -static uint8_t blend_255_trunc(uint8_t dst, uint8_t src, uint8_t srcAlpha) {
|
| - const uint16_t invAlpha = 255 - srcAlpha;
|
| - const uint16_t product = dst * invAlpha;
|
| - return src + (product >> 8);
|
| -}
|
| -
|
| -static uint8_t blend_255_round(uint8_t dst, uint8_t src, uint8_t srcAlpha) {
|
| - const uint16_t invAlpha = 255 - srcAlpha;
|
| - const uint16_t product = dst * invAlpha + 128;
|
| - return src + (product >> 8);
|
| -}
|
| -
|
| -static uint8_t blend_256_trunc(uint8_t dst, uint8_t src, uint8_t srcAlpha) {
|
| - const uint16_t invAlpha = 256 - (srcAlpha + (srcAlpha >> 7));
|
| - const uint16_t product = dst * invAlpha;
|
| - return src + (product >> 8);
|
| -}
|
| -
|
| -static uint8_t blend_256_round(uint8_t dst, uint8_t src, uint8_t srcAlpha) {
|
| - const uint16_t invAlpha = 256 - (srcAlpha + (srcAlpha >> 7));
|
| - const uint16_t product = dst * invAlpha + 128;
|
| - return src + (product >> 8);
|
| -}
|
| -
|
| -static uint8_t blend_256_round_alt(uint8_t dst, uint8_t src, uint8_t srcAlpha) {
|
| - const uint8_t invAlpha8 = 255 - srcAlpha;
|
| - const uint16_t invAlpha = invAlpha8 + (invAlpha8 >> 7);
|
| - const uint16_t product = dst * invAlpha + 128;
|
| - return src + (product >> 8);
|
| -}
|
| -
|
| -static uint8_t blend_256_plus1_trunc(uint8_t dst, uint8_t src, uint8_t srcAlpha) {
|
| - const uint16_t invAlpha = 256 - (srcAlpha + 1);
|
| - const uint16_t product = dst * invAlpha;
|
| - return src + (product >> 8);
|
| -}
|
| -
|
| -static uint8_t blend_256_plus1_round(uint8_t dst, uint8_t src, uint8_t srcAlpha) {
|
| - const uint16_t invAlpha = 256 - (srcAlpha + 1);
|
| - const uint16_t product = dst * invAlpha + 128;
|
| - return src + (product >> 8);
|
| -}
|
| -
|
| -static uint8_t blend_perfect(uint8_t dst, uint8_t src, uint8_t srcAlpha) {
|
| - const uint8_t invAlpha = 255 - srcAlpha;
|
| - const uint16_t product = dst * invAlpha + 128;
|
| - return src + ((product + (product >> 8)) >> 8);
|
| -}
|
| -
|
| -
|
| -// We want 0 diff whenever src is fully transparent.
|
| -DEF_TEST(Blend_alpha_0x00, r) {
|
| - const uint8_t alpha = 0x00;
|
| -
|
| - // GOOD
|
| - test_alpha(r, alpha, 0, blend_256_round);
|
| - test_alpha(r, alpha, 0, blend_256_round_alt);
|
| - test_alpha(r, alpha, 0, blend_256_trunc);
|
| - test_alpha(r, alpha, 0, blend_double_trunc);
|
| - test_alpha(r, alpha, 0, blend_float_round);
|
| - test_alpha(r, alpha, 0, blend_float_trunc);
|
| - test_alpha(r, alpha, 0, blend_perfect);
|
| -
|
| - // BAD
|
| - test_alpha(r, alpha, 1, blend_255_round);
|
| - test_alpha(r, alpha, 1, blend_255_trunc);
|
| - test_alpha(r, alpha, 1, blend_256_plus1_round);
|
| - test_alpha(r, alpha, 1, blend_256_plus1_trunc);
|
| -}
|
| -
|
| -// We want 0 diff whenever dst is 0.
|
| -DEF_TEST(Blend_dst_0x00, r) {
|
| - const uint8_t dst = 0x00;
|
| -
|
| - // GOOD
|
| - test_dst(r, dst, 0, blend_255_round);
|
| - test_dst(r, dst, 0, blend_255_trunc);
|
| - test_dst(r, dst, 0, blend_256_plus1_round);
|
| - test_dst(r, dst, 0, blend_256_plus1_trunc);
|
| - test_dst(r, dst, 0, blend_256_round);
|
| - test_dst(r, dst, 0, blend_256_round_alt);
|
| - test_dst(r, dst, 0, blend_256_trunc);
|
| - test_dst(r, dst, 0, blend_double_trunc);
|
| - test_dst(r, dst, 0, blend_float_round);
|
| - test_dst(r, dst, 0, blend_float_trunc);
|
| - test_dst(r, dst, 0, blend_perfect);
|
| -
|
| - // BAD
|
| -}
|
| -
|
| -// We want 0 diff whenever src is fully opaque.
|
| -DEF_TEST(Blend_alpha_0xFF, r) {
|
| - const uint8_t alpha = 0xFF;
|
| -
|
| - // GOOD
|
| - test_alpha(r, alpha, 0, blend_255_round);
|
| - test_alpha(r, alpha, 0, blend_255_trunc);
|
| - test_alpha(r, alpha, 0, blend_256_plus1_round);
|
| - test_alpha(r, alpha, 0, blend_256_plus1_trunc);
|
| - test_alpha(r, alpha, 0, blend_256_round);
|
| - test_alpha(r, alpha, 0, blend_256_round_alt);
|
| - test_alpha(r, alpha, 0, blend_256_trunc);
|
| - test_alpha(r, alpha, 0, blend_double_trunc);
|
| - test_alpha(r, alpha, 0, blend_float_round);
|
| - test_alpha(r, alpha, 0, blend_float_trunc);
|
| - test_alpha(r, alpha, 0, blend_perfect);
|
| -
|
| - // BAD
|
| + }}
|
| + return r;
|
| }
|
|
|
| -// We want 0 diff whenever dst is 0xFF.
|
| -DEF_TEST(Blend_dst_0xFF, r) {
|
| - const uint8_t dst = 0xFF;
|
| -
|
| - // GOOD
|
| - test_dst(r, dst, 0, blend_256_round);
|
| - test_dst(r, dst, 0, blend_256_round_alt);
|
| - test_dst(r, dst, 0, blend_double_trunc);
|
| - test_dst(r, dst, 0, blend_float_round);
|
| - test_dst(r, dst, 0, blend_float_trunc);
|
| - test_dst(r, dst, 0, blend_perfect);
|
| -
|
| - // BAD
|
| - test_dst(r, dst, 1, blend_255_round);
|
| - test_dst(r, dst, 1, blend_255_trunc);
|
| - test_dst(r, dst, 1, blend_256_plus1_round);
|
| - test_dst(r, dst, 1, blend_256_plus1_trunc);
|
| - test_dst(r, dst, 1, blend_256_trunc);
|
| -}
|
| -
|
| -// We'd like diff <= 1 everywhere.
|
| -DEF_TEST(Blend_alpha_Exhaustive, r) {
|
| - for (unsigned alpha = 0; alpha < 256; alpha++) {
|
| - // PERFECT
|
| - test_alpha(r, alpha, 0, blend_float_round);
|
| - test_alpha(r, alpha, 0, blend_perfect);
|
| -
|
| - // GOOD
|
| - test_alpha(r, alpha, 1, blend_255_round);
|
| - test_alpha(r, alpha, 1, blend_256_plus1_round);
|
| - test_alpha(r, alpha, 1, blend_256_round);
|
| - test_alpha(r, alpha, 1, blend_256_round_alt);
|
| - test_alpha(r, alpha, 1, blend_256_trunc);
|
| - test_alpha(r, alpha, 1, blend_double_trunc);
|
| - test_alpha(r, alpha, 1, blend_float_trunc);
|
| -
|
| - // BAD
|
| - test_alpha(r, alpha, 2, blend_255_trunc);
|
| - test_alpha(r, alpha, 2, blend_256_plus1_trunc);
|
| - }
|
| -}
|
| -
|
| -// We'd like diff <= 1 everywhere.
|
| -DEF_TEST(Blend_dst_Exhaustive, r) {
|
| - for (unsigned dst = 0; dst < 256; dst++) {
|
| - // PERFECT
|
| - test_dst(r, dst, 0, blend_float_round);
|
| - test_dst(r, dst, 0, blend_perfect);
|
| -
|
| - // GOOD
|
| - test_dst(r, dst, 1, blend_255_round);
|
| - test_dst(r, dst, 1, blend_256_plus1_round);
|
| - test_dst(r, dst, 1, blend_256_round);
|
| - test_dst(r, dst, 1, blend_256_round_alt);
|
| - test_dst(r, dst, 1, blend_256_trunc);
|
| - test_dst(r, dst, 1, blend_double_trunc);
|
| - test_dst(r, dst, 1, blend_float_trunc);
|
| +DEF_TEST(Blend_byte_multiply, r) {
|
| + // These are all temptingly close but fundamentally broken.
|
| + int (*broken[])(int, int) = {
|
| + [](int x, int y) { return (x*y)>>8; },
|
| + [](int x, int y) { return (x*y+128)>>8; },
|
| + [](int x, int y) { y += y>>7; return (x*y)>>8; },
|
| + };
|
| + for (auto multiply : broken) { REPORTER_ASSERT(r, !acceptable(test(multiply))); }
|
| +
|
| + // These are fine to use, but not perfect.
|
| + int (*fine[])(int, int) = {
|
| + [](int x, int y) { return (x*y+x)>>8; },
|
| + [](int x, int y) { return (x*y+y)>>8; },
|
| + [](int x, int y) { return (x*y+255)>>8; },
|
| + [](int x, int y) { y += y>>7; return (x*y+128)>>8; },
|
| + };
|
| + for (auto multiply : fine) { REPORTER_ASSERT(r, acceptable(test(multiply))); }
|
|
|
| - // BAD
|
| - test_dst(r, dst, 2, blend_255_trunc);
|
| - test_dst(r, dst, 2, blend_256_plus1_trunc);
|
| - }
|
| + // These are pefect.
|
| + int (*perfect[])(int, int) = {
|
| + [](int x, int y) { return (x*y+127)/255; }, // Duh.
|
| + [](int x, int y) { int p = (x*y+128); return (p+(p>>8))>>8; },
|
| + [](int x, int y) { return ((x*y+128)*257)>>16; },
|
| + };
|
| + for (auto multiply : perfect) { REPORTER_ASSERT(r, test(multiply).diffs == 0); }
|
| }
|
| -// Overall summary:
|
| -// PERFECT
|
| -// blend_double_round
|
| -// blend_float_round
|
| -// blend_perfect
|
| -// GOOD ENOUGH
|
| -// blend_double_trunc
|
| -// blend_float_trunc
|
| -// blend_256_round
|
| -// blend_256_round_alt
|
| -// NOT GOOD ENOUGH
|
| -// all others
|
| -//
|
| -// Algorithms that make sense to use in Skia: blend_256_round, blend_256_round_alt, blend_perfect
|
|
|
| DEF_TEST(Blend_premul_begets_premul, r) {
|
| // This test is quite slow, even if you have enough cores to run each mode in parallel.
|
|
|