OLD | NEW |
1 /* | 1 /* |
2 * Copyright 2015 Google Inc. | 2 * Copyright 2015 Google Inc. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
6 */ | 6 */ |
7 | 7 |
8 #include "Test.h" | 8 #include "Test.h" |
9 #include "SkColor.h" | 9 #include "SkColor.h" |
10 #include "SkColorPriv.h" | 10 #include "SkColorPriv.h" |
11 #include "SkTaskGroup.h" | 11 #include "SkTaskGroup.h" |
12 #include "SkXfermode.h" | 12 #include "SkXfermode.h" |
| 13 #include <functional> |
13 | 14 |
14 #define ASSERT(x) REPORTER_ASSERT(r, x) | 15 struct Results { int diffs, diffs_0x00, diffs_0xff, diffs_by_1; }; |
15 | 16 |
16 static uint8_t double_to_u8(double d) { | 17 static bool acceptable(const Results& r) { |
17 SkASSERT(d >= 0); | 18 #if 0 |
18 SkASSERT(d < 256); | 19 SkDebugf("%d diffs, %d at 0x00, %d at 0xff, %d off by 1, all out of 65536\n"
, |
19 return uint8_t(d); | 20 r.diffs, r.diffs_0x00, r.diffs_0xff, r.diffs_by_1); |
| 21 #endif |
| 22 return r.diffs_by_1 == r.diffs // never off by more than 1 |
| 23 && r.diffs_0x00 == 0 // transparent must stay transparent |
| 24 && r.diffs_0xff == 0; // opaque must stay opaque |
20 } | 25 } |
21 | 26 |
22 // All algorithms we're testing have this interface. | 27 template <typename Fn> |
23 // We want a single channel blend, src over dst, assuming src is premultiplied b
y srcAlpha. | 28 static Results test(Fn&& multiply) { |
24 typedef uint8_t(*Blend)(uint8_t dst, uint8_t src, uint8_t srcAlpha); | 29 Results r = { 0,0,0,0 }; |
25 | 30 for (int x = 0; x < 256; x++) { |
26 // This is our golden algorithm. | 31 for (int y = 0; y < 256; y++) { |
27 static uint8_t blend_double_round(uint8_t dst, uint8_t src, uint8_t srcAlpha) { | 32 int p = multiply(x, y), |
28 SkASSERT(src <= srcAlpha); | 33 ideal = (x*y+127)/255; |
29 return double_to_u8(0.5 + src + dst * (255.0 - srcAlpha) / 255.0); | 34 if (p != ideal) { |
| 35 r.diffs++; |
| 36 if (x == 0x00 || y == 0x00) { r.diffs_0x00++; } |
| 37 if (x == 0xff || y == 0xff) { r.diffs_0xff++; } |
| 38 if (SkTAbs(ideal - p) == 1) { r.diffs_by_1++; } |
| 39 } |
| 40 }} |
| 41 return r; |
30 } | 42 } |
31 | 43 |
32 static uint8_t abs_diff(uint8_t a, uint8_t b) { | 44 DEF_TEST(Blend_byte_multiply, r) { |
33 const int diff = a - b; | 45 // These are all temptingly close but fundamentally broken. |
34 return diff > 0 ? diff : -diff; | 46 int (*broken[])(int, int) = { |
| 47 [](int x, int y) { return (x*y)>>8; }, |
| 48 [](int x, int y) { return (x*y+128)>>8; }, |
| 49 [](int x, int y) { y += y>>7; return (x*y)>>8; }, |
| 50 }; |
| 51 for (auto multiply : broken) { REPORTER_ASSERT(r, !acceptable(test(multiply)
)); } |
| 52 |
| 53 // These are fine to use, but not perfect. |
| 54 int (*fine[])(int, int) = { |
| 55 [](int x, int y) { return (x*y+x)>>8; }, |
| 56 [](int x, int y) { return (x*y+y)>>8; }, |
| 57 [](int x, int y) { return (x*y+255)>>8; }, |
| 58 [](int x, int y) { y += y>>7; return (x*y+128)>>8; }, |
| 59 }; |
| 60 for (auto multiply : fine) { REPORTER_ASSERT(r, acceptable(test(multiply)));
} |
| 61 |
| 62 // These are pefect. |
| 63 int (*perfect[])(int, int) = { |
| 64 [](int x, int y) { return (x*y+127)/255; }, // Duh. |
| 65 [](int x, int y) { int p = (x*y+128); return (p+(p>>8))>>8; }, |
| 66 [](int x, int y) { return ((x*y+128)*257)>>16; }, |
| 67 }; |
| 68 for (auto multiply : perfect) { REPORTER_ASSERT(r, test(multiply).diffs == 0
); } |
35 } | 69 } |
36 | 70 |
37 static void test(skiatest::Reporter* r, int maxDiff, Blend algorithm, | |
38 uint8_t dst, uint8_t src, uint8_t alpha) { | |
39 const uint8_t golden = blend_double_round(dst, src, alpha); | |
40 const uint8_t blend = algorithm(dst, src, alpha); | |
41 if (abs_diff(blend, golden) > maxDiff) { | |
42 SkDebugf("dst %02x, src %02x, alpha %02x, |%02x - %02x| > %d\n", | |
43 dst, src, alpha, blend, golden, maxDiff); | |
44 ASSERT(abs_diff(blend, golden) <= maxDiff); | |
45 } | |
46 } | |
47 | |
48 // Exhaustively compare an algorithm against our golden, for a given alpha. | |
49 static void test_alpha(skiatest::Reporter* r, uint8_t alpha, int maxDiff, Blend
algorithm) { | |
50 SkASSERT(maxDiff >= 0); | |
51 | |
52 for (unsigned src = 0; src <= alpha; src++) { | |
53 for (unsigned dst = 0; dst < 256; dst++) { | |
54 test(r, maxDiff, algorithm, dst, src, alpha); | |
55 } | |
56 } | |
57 } | |
58 | |
59 // Exhaustively compare an algorithm against our golden, for a given dst. | |
60 static void test_dst(skiatest::Reporter* r, uint8_t dst, int maxDiff, Blend algo
rithm) { | |
61 SkASSERT(maxDiff >= 0); | |
62 | |
63 for (unsigned alpha = 0; alpha < 256; alpha++) { | |
64 for (unsigned src = 0; src <= alpha; src++) { | |
65 test(r, maxDiff, algorithm, dst, src, alpha); | |
66 } | |
67 } | |
68 } | |
69 | |
70 static uint8_t blend_double_trunc(uint8_t dst, uint8_t src, uint8_t srcAlpha) { | |
71 return double_to_u8(src + dst * (255.0 - srcAlpha) / 255.0); | |
72 } | |
73 | |
74 static uint8_t blend_float_trunc(uint8_t dst, uint8_t src, uint8_t srcAlpha) { | |
75 return double_to_u8(src + dst * (255.0f - srcAlpha) / 255.0f); | |
76 } | |
77 | |
78 static uint8_t blend_float_round(uint8_t dst, uint8_t src, uint8_t srcAlpha) { | |
79 return double_to_u8(0.5f + src + dst * (255.0f - srcAlpha) / 255.0f); | |
80 } | |
81 | |
82 static uint8_t blend_255_trunc(uint8_t dst, uint8_t src, uint8_t srcAlpha) { | |
83 const uint16_t invAlpha = 255 - srcAlpha; | |
84 const uint16_t product = dst * invAlpha; | |
85 return src + (product >> 8); | |
86 } | |
87 | |
88 static uint8_t blend_255_round(uint8_t dst, uint8_t src, uint8_t srcAlpha) { | |
89 const uint16_t invAlpha = 255 - srcAlpha; | |
90 const uint16_t product = dst * invAlpha + 128; | |
91 return src + (product >> 8); | |
92 } | |
93 | |
94 static uint8_t blend_256_trunc(uint8_t dst, uint8_t src, uint8_t srcAlpha) { | |
95 const uint16_t invAlpha = 256 - (srcAlpha + (srcAlpha >> 7)); | |
96 const uint16_t product = dst * invAlpha; | |
97 return src + (product >> 8); | |
98 } | |
99 | |
100 static uint8_t blend_256_round(uint8_t dst, uint8_t src, uint8_t srcAlpha) { | |
101 const uint16_t invAlpha = 256 - (srcAlpha + (srcAlpha >> 7)); | |
102 const uint16_t product = dst * invAlpha + 128; | |
103 return src + (product >> 8); | |
104 } | |
105 | |
106 static uint8_t blend_256_round_alt(uint8_t dst, uint8_t src, uint8_t srcAlpha) { | |
107 const uint8_t invAlpha8 = 255 - srcAlpha; | |
108 const uint16_t invAlpha = invAlpha8 + (invAlpha8 >> 7); | |
109 const uint16_t product = dst * invAlpha + 128; | |
110 return src + (product >> 8); | |
111 } | |
112 | |
113 static uint8_t blend_256_plus1_trunc(uint8_t dst, uint8_t src, uint8_t srcAlpha)
{ | |
114 const uint16_t invAlpha = 256 - (srcAlpha + 1); | |
115 const uint16_t product = dst * invAlpha; | |
116 return src + (product >> 8); | |
117 } | |
118 | |
119 static uint8_t blend_256_plus1_round(uint8_t dst, uint8_t src, uint8_t srcAlpha)
{ | |
120 const uint16_t invAlpha = 256 - (srcAlpha + 1); | |
121 const uint16_t product = dst * invAlpha + 128; | |
122 return src + (product >> 8); | |
123 } | |
124 | |
125 static uint8_t blend_perfect(uint8_t dst, uint8_t src, uint8_t srcAlpha) { | |
126 const uint8_t invAlpha = 255 - srcAlpha; | |
127 const uint16_t product = dst * invAlpha + 128; | |
128 return src + ((product + (product >> 8)) >> 8); | |
129 } | |
130 | |
131 | |
132 // We want 0 diff whenever src is fully transparent. | |
133 DEF_TEST(Blend_alpha_0x00, r) { | |
134 const uint8_t alpha = 0x00; | |
135 | |
136 // GOOD | |
137 test_alpha(r, alpha, 0, blend_256_round); | |
138 test_alpha(r, alpha, 0, blend_256_round_alt); | |
139 test_alpha(r, alpha, 0, blend_256_trunc); | |
140 test_alpha(r, alpha, 0, blend_double_trunc); | |
141 test_alpha(r, alpha, 0, blend_float_round); | |
142 test_alpha(r, alpha, 0, blend_float_trunc); | |
143 test_alpha(r, alpha, 0, blend_perfect); | |
144 | |
145 // BAD | |
146 test_alpha(r, alpha, 1, blend_255_round); | |
147 test_alpha(r, alpha, 1, blend_255_trunc); | |
148 test_alpha(r, alpha, 1, blend_256_plus1_round); | |
149 test_alpha(r, alpha, 1, blend_256_plus1_trunc); | |
150 } | |
151 | |
152 // We want 0 diff whenever dst is 0. | |
153 DEF_TEST(Blend_dst_0x00, r) { | |
154 const uint8_t dst = 0x00; | |
155 | |
156 // GOOD | |
157 test_dst(r, dst, 0, blend_255_round); | |
158 test_dst(r, dst, 0, blend_255_trunc); | |
159 test_dst(r, dst, 0, blend_256_plus1_round); | |
160 test_dst(r, dst, 0, blend_256_plus1_trunc); | |
161 test_dst(r, dst, 0, blend_256_round); | |
162 test_dst(r, dst, 0, blend_256_round_alt); | |
163 test_dst(r, dst, 0, blend_256_trunc); | |
164 test_dst(r, dst, 0, blend_double_trunc); | |
165 test_dst(r, dst, 0, blend_float_round); | |
166 test_dst(r, dst, 0, blend_float_trunc); | |
167 test_dst(r, dst, 0, blend_perfect); | |
168 | |
169 // BAD | |
170 } | |
171 | |
172 // We want 0 diff whenever src is fully opaque. | |
173 DEF_TEST(Blend_alpha_0xFF, r) { | |
174 const uint8_t alpha = 0xFF; | |
175 | |
176 // GOOD | |
177 test_alpha(r, alpha, 0, blend_255_round); | |
178 test_alpha(r, alpha, 0, blend_255_trunc); | |
179 test_alpha(r, alpha, 0, blend_256_plus1_round); | |
180 test_alpha(r, alpha, 0, blend_256_plus1_trunc); | |
181 test_alpha(r, alpha, 0, blend_256_round); | |
182 test_alpha(r, alpha, 0, blend_256_round_alt); | |
183 test_alpha(r, alpha, 0, blend_256_trunc); | |
184 test_alpha(r, alpha, 0, blend_double_trunc); | |
185 test_alpha(r, alpha, 0, blend_float_round); | |
186 test_alpha(r, alpha, 0, blend_float_trunc); | |
187 test_alpha(r, alpha, 0, blend_perfect); | |
188 | |
189 // BAD | |
190 } | |
191 | |
192 // We want 0 diff whenever dst is 0xFF. | |
193 DEF_TEST(Blend_dst_0xFF, r) { | |
194 const uint8_t dst = 0xFF; | |
195 | |
196 // GOOD | |
197 test_dst(r, dst, 0, blend_256_round); | |
198 test_dst(r, dst, 0, blend_256_round_alt); | |
199 test_dst(r, dst, 0, blend_double_trunc); | |
200 test_dst(r, dst, 0, blend_float_round); | |
201 test_dst(r, dst, 0, blend_float_trunc); | |
202 test_dst(r, dst, 0, blend_perfect); | |
203 | |
204 // BAD | |
205 test_dst(r, dst, 1, blend_255_round); | |
206 test_dst(r, dst, 1, blend_255_trunc); | |
207 test_dst(r, dst, 1, blend_256_plus1_round); | |
208 test_dst(r, dst, 1, blend_256_plus1_trunc); | |
209 test_dst(r, dst, 1, blend_256_trunc); | |
210 } | |
211 | |
212 // We'd like diff <= 1 everywhere. | |
213 DEF_TEST(Blend_alpha_Exhaustive, r) { | |
214 for (unsigned alpha = 0; alpha < 256; alpha++) { | |
215 // PERFECT | |
216 test_alpha(r, alpha, 0, blend_float_round); | |
217 test_alpha(r, alpha, 0, blend_perfect); | |
218 | |
219 // GOOD | |
220 test_alpha(r, alpha, 1, blend_255_round); | |
221 test_alpha(r, alpha, 1, blend_256_plus1_round); | |
222 test_alpha(r, alpha, 1, blend_256_round); | |
223 test_alpha(r, alpha, 1, blend_256_round_alt); | |
224 test_alpha(r, alpha, 1, blend_256_trunc); | |
225 test_alpha(r, alpha, 1, blend_double_trunc); | |
226 test_alpha(r, alpha, 1, blend_float_trunc); | |
227 | |
228 // BAD | |
229 test_alpha(r, alpha, 2, blend_255_trunc); | |
230 test_alpha(r, alpha, 2, blend_256_plus1_trunc); | |
231 } | |
232 } | |
233 | |
234 // We'd like diff <= 1 everywhere. | |
235 DEF_TEST(Blend_dst_Exhaustive, r) { | |
236 for (unsigned dst = 0; dst < 256; dst++) { | |
237 // PERFECT | |
238 test_dst(r, dst, 0, blend_float_round); | |
239 test_dst(r, dst, 0, blend_perfect); | |
240 | |
241 // GOOD | |
242 test_dst(r, dst, 1, blend_255_round); | |
243 test_dst(r, dst, 1, blend_256_plus1_round); | |
244 test_dst(r, dst, 1, blend_256_round); | |
245 test_dst(r, dst, 1, blend_256_round_alt); | |
246 test_dst(r, dst, 1, blend_256_trunc); | |
247 test_dst(r, dst, 1, blend_double_trunc); | |
248 test_dst(r, dst, 1, blend_float_trunc); | |
249 | |
250 // BAD | |
251 test_dst(r, dst, 2, blend_255_trunc); | |
252 test_dst(r, dst, 2, blend_256_plus1_trunc); | |
253 } | |
254 } | |
255 // Overall summary: | |
256 // PERFECT | |
257 // blend_double_round | |
258 // blend_float_round | |
259 // blend_perfect | |
260 // GOOD ENOUGH | |
261 // blend_double_trunc | |
262 // blend_float_trunc | |
263 // blend_256_round | |
264 // blend_256_round_alt | |
265 // NOT GOOD ENOUGH | |
266 // all others | |
267 // | |
268 // Algorithms that make sense to use in Skia: blend_256_round, blend_256_round_
alt, blend_perfect | |
269 | |
270 DEF_TEST(Blend_premul_begets_premul, r) { | 71 DEF_TEST(Blend_premul_begets_premul, r) { |
271 // This test is quite slow, even if you have enough cores to run each mode i
n parallel. | 72 // This test is quite slow, even if you have enough cores to run each mode i
n parallel. |
272 if (!r->allowExtendedTest()) { | 73 if (!r->allowExtendedTest()) { |
273 return; | 74 return; |
274 } | 75 } |
275 | 76 |
276 // No matter what xfermode we use, premul inputs should create premul output
s. | 77 // No matter what xfermode we use, premul inputs should create premul output
s. |
277 auto test_mode = [&](int m) { | 78 auto test_mode = [&](int m) { |
278 SkXfermode::Mode mode = (SkXfermode::Mode)m; | 79 SkXfermode::Mode mode = (SkXfermode::Mode)m; |
279 if (mode == SkXfermode::kSrcOver_Mode) { | 80 if (mode == SkXfermode::kSrcOver_Mode) { |
(...skipping 12 matching lines...) Expand all Loading... |
292 xfermode->xfer32(&dst, &src, 1, nullptr); // To keep it simple, no
AA. | 93 xfermode->xfer32(&dst, &src, 1, nullptr); // To keep it simple, no
AA. |
293 if (!SkPMColorValid(dst)) { | 94 if (!SkPMColorValid(dst)) { |
294 ERRORF(r, "%08x is not premul using %s", dst, SkXfermode::ModeNa
me(mode)); | 95 ERRORF(r, "%08x is not premul using %s", dst, SkXfermode::ModeNa
me(mode)); |
295 } | 96 } |
296 }}}} | 97 }}}} |
297 }; | 98 }; |
298 | 99 |
299 // Parallelism helps speed things up on my desktop from ~725s to ~50s. | 100 // Parallelism helps speed things up on my desktop from ~725s to ~50s. |
300 sk_parallel_for(SkXfermode::kLastMode, test_mode); | 101 sk_parallel_for(SkXfermode::kLastMode, test_mode); |
301 } | 102 } |
OLD | NEW |