| Index: cc/animation/timing_function.cc
|
| diff --git a/cc/animation/timing_function.cc b/cc/animation/timing_function.cc
|
| index 7fdb37fed962a48fa68a3e9b58252b694c50f4ca..bf11c20fe03a13f448f486ff600aef2005ea9d4c 100644
|
| --- a/cc/animation/timing_function.cc
|
| +++ b/cc/animation/timing_function.cc
|
| @@ -2,67 +2,11 @@
|
| // Use of this source code is governed by a BSD-style license that can be
|
| // found in the LICENSE file.
|
|
|
| -#include <algorithm>
|
| -#include <cmath>
|
| -
|
| #include "base/logging.h"
|
| #include "cc/animation/timing_function.h"
|
|
|
| namespace cc {
|
|
|
| -namespace {
|
| -
|
| -static const double kBezierEpsilon = 1e-7;
|
| -static const int MAX_STEPS = 30;
|
| -
|
| -static double eval_bezier(double x1, double x2, double t) {
|
| - const double x1_times_3 = 3.0 * x1;
|
| - const double x2_times_3 = 3.0 * x2;
|
| - const double h3 = x1_times_3;
|
| - const double h1 = x1_times_3 - x2_times_3 + 1.0;
|
| - const double h2 = x2_times_3 - 6.0 * x1;
|
| - return t * (t * (t * h1 + h2) + h3);
|
| -}
|
| -
|
| -static double bezier_interp(double x1,
|
| - double y1,
|
| - double x2,
|
| - double y2,
|
| - double x) {
|
| - DCHECK_GE(1.0, x1);
|
| - DCHECK_LE(0.0, x1);
|
| - DCHECK_GE(1.0, x2);
|
| - DCHECK_LE(0.0, x2);
|
| -
|
| - x1 = std::min(std::max(x1, 0.0), 1.0);
|
| - x2 = std::min(std::max(x2, 0.0), 1.0);
|
| - x = std::min(std::max(x, 0.0), 1.0);
|
| -
|
| - // Step 1. Find the t corresponding to the given x. I.e., we want t such that
|
| - // eval_bezier(x1, x2, t) = x. There is a unique solution if x1 and x2 lie
|
| - // within (0, 1).
|
| - //
|
| - // We're just going to do bisection for now (for simplicity), but we could
|
| - // easily do some newton steps if this turns out to be a bottleneck.
|
| - double t = 0.0;
|
| - double step = 1.0;
|
| - for (int i = 0; i < MAX_STEPS; ++i, step *= 0.5) {
|
| - const double error = eval_bezier(x1, x2, t) - x;
|
| - if (std::abs(error) < kBezierEpsilon)
|
| - break;
|
| - t += error > 0.0 ? -step : step;
|
| - }
|
| -
|
| - // We should have terminated the above loop because we got close to x, not
|
| - // because we exceeded MAX_STEPS. Do a DCHECK here to confirm.
|
| - DCHECK_GT(kBezierEpsilon, std::abs(eval_bezier(x1, x2, t) - x));
|
| -
|
| - // Step 2. Return the interpolated y values at the t we computed above.
|
| - return eval_bezier(y1, y2, t);
|
| -}
|
| -
|
| -} // namespace
|
| -
|
| TimingFunction::TimingFunction() {}
|
|
|
| TimingFunction::~TimingFunction() {}
|
| @@ -80,12 +24,12 @@ CubicBezierTimingFunction::CubicBezierTimingFunction(double x1,
|
| double y1,
|
| double x2,
|
| double y2)
|
| - : x1_(x1), y1_(y1), x2_(x2), y2_(y2) {}
|
| + : bezier_(x1, y1, x2, y2) {}
|
|
|
| CubicBezierTimingFunction::~CubicBezierTimingFunction() {}
|
|
|
| float CubicBezierTimingFunction::GetValue(double x) const {
|
| - return static_cast<float>(bezier_interp(x1_, y1_, x2_, y2_, x));
|
| + return static_cast<float>(bezier_.Solve(x));
|
| }
|
|
|
| scoped_ptr<AnimationCurve> CubicBezierTimingFunction::Clone() const {
|
| @@ -94,50 +38,11 @@ scoped_ptr<AnimationCurve> CubicBezierTimingFunction::Clone() const {
|
| }
|
|
|
| void CubicBezierTimingFunction::Range(float* min, float* max) const {
|
| - *min = 0.f;
|
| - *max = 1.f;
|
| - if (0.f <= y1_ && y1_ < 1.f && 0.f <= y2_ && y2_ <= 1.f)
|
| - return;
|
| -
|
| - // Represent the function's derivative in the form at^2 + bt + c.
|
| - float a = 3.f * (y1_ - y2_) + 1.f;
|
| - float b = 2.f * (y2_ - 2.f * y1_);
|
| - float c = y1_;
|
| -
|
| - // Check if the derivative is constant.
|
| - if (std::abs(a) < kBezierEpsilon &&
|
| - std::abs(b) < kBezierEpsilon)
|
| - return;
|
| -
|
| - // Zeros of the function's derivative.
|
| - float t_1 = 0.f;
|
| - float t_2 = 0.f;
|
| -
|
| - if (std::abs(a) < kBezierEpsilon) {
|
| - // The function's derivative is linear.
|
| - t_1 = -c / b;
|
| - } else {
|
| - // The function's derivative is a quadratic. We find the zeros of this
|
| - // quadratic using the quadratic formula.
|
| - float discriminant = b * b - 4 * a * c;
|
| - if (discriminant < 0.f)
|
| - return;
|
| - float discriminant_sqrt = sqrt(discriminant);
|
| - t_1 = (-b + discriminant_sqrt) / (2.f * a);
|
| - t_2 = (-b - discriminant_sqrt) / (2.f * a);
|
| - }
|
| -
|
| - float sol_1 = 0.f;
|
| - float sol_2 = 0.f;
|
| -
|
| - if (0.f < t_1 && t_1 < 1.f)
|
| - sol_1 = eval_bezier(y1_, y2_, t_1);
|
| -
|
| - if (0.f < t_2 && t_2 < 1.f)
|
| - sol_2 = eval_bezier(y1_, y2_, t_2);
|
| -
|
| - *min = std::min(std::min(*min, sol_1), sol_2);
|
| - *max = std::max(std::max(*max, sol_1), sol_2);
|
| + double min_d = 0;
|
| + double max_d = 1;
|
| + bezier_.Range(&min_d, &max_d);
|
| + *min = static_cast<float>(min_d);
|
| + *max = static_cast<float>(max_d);
|
| }
|
|
|
| // These numbers come from
|
|
|