OLD | NEW |
1 // Copyright 2012 The Chromium Authors. All rights reserved. | 1 // Copyright 2012 The Chromium Authors. All rights reserved. |
2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
4 | 4 |
5 #include <algorithm> | |
6 #include <cmath> | |
7 | |
8 #include "base/logging.h" | 5 #include "base/logging.h" |
9 #include "cc/animation/timing_function.h" | 6 #include "cc/animation/timing_function.h" |
10 | 7 |
11 namespace cc { | 8 namespace cc { |
12 | 9 |
13 namespace { | |
14 | |
15 static const double kBezierEpsilon = 1e-7; | |
16 static const int MAX_STEPS = 30; | |
17 | |
18 static double eval_bezier(double x1, double x2, double t) { | |
19 const double x1_times_3 = 3.0 * x1; | |
20 const double x2_times_3 = 3.0 * x2; | |
21 const double h3 = x1_times_3; | |
22 const double h1 = x1_times_3 - x2_times_3 + 1.0; | |
23 const double h2 = x2_times_3 - 6.0 * x1; | |
24 return t * (t * (t * h1 + h2) + h3); | |
25 } | |
26 | |
27 static double bezier_interp(double x1, | |
28 double y1, | |
29 double x2, | |
30 double y2, | |
31 double x) { | |
32 DCHECK_GE(1.0, x1); | |
33 DCHECK_LE(0.0, x1); | |
34 DCHECK_GE(1.0, x2); | |
35 DCHECK_LE(0.0, x2); | |
36 | |
37 x1 = std::min(std::max(x1, 0.0), 1.0); | |
38 x2 = std::min(std::max(x2, 0.0), 1.0); | |
39 x = std::min(std::max(x, 0.0), 1.0); | |
40 | |
41 // Step 1. Find the t corresponding to the given x. I.e., we want t such that | |
42 // eval_bezier(x1, x2, t) = x. There is a unique solution if x1 and x2 lie | |
43 // within (0, 1). | |
44 // | |
45 // We're just going to do bisection for now (for simplicity), but we could | |
46 // easily do some newton steps if this turns out to be a bottleneck. | |
47 double t = 0.0; | |
48 double step = 1.0; | |
49 for (int i = 0; i < MAX_STEPS; ++i, step *= 0.5) { | |
50 const double error = eval_bezier(x1, x2, t) - x; | |
51 if (std::abs(error) < kBezierEpsilon) | |
52 break; | |
53 t += error > 0.0 ? -step : step; | |
54 } | |
55 | |
56 // We should have terminated the above loop because we got close to x, not | |
57 // because we exceeded MAX_STEPS. Do a DCHECK here to confirm. | |
58 DCHECK_GT(kBezierEpsilon, std::abs(eval_bezier(x1, x2, t) - x)); | |
59 | |
60 // Step 2. Return the interpolated y values at the t we computed above. | |
61 return eval_bezier(y1, y2, t); | |
62 } | |
63 | |
64 } // namespace | |
65 | |
66 TimingFunction::TimingFunction() {} | 10 TimingFunction::TimingFunction() {} |
67 | 11 |
68 TimingFunction::~TimingFunction() {} | 12 TimingFunction::~TimingFunction() {} |
69 | 13 |
70 double TimingFunction::Duration() const { | 14 double TimingFunction::Duration() const { |
71 return 1.0; | 15 return 1.0; |
72 } | 16 } |
73 | 17 |
74 scoped_ptr<CubicBezierTimingFunction> CubicBezierTimingFunction::Create( | 18 scoped_ptr<CubicBezierTimingFunction> CubicBezierTimingFunction::Create( |
75 double x1, double y1, double x2, double y2) { | 19 double x1, double y1, double x2, double y2) { |
76 return make_scoped_ptr(new CubicBezierTimingFunction(x1, y1, x2, y2)); | 20 return make_scoped_ptr(new CubicBezierTimingFunction(x1, y1, x2, y2)); |
77 } | 21 } |
78 | 22 |
79 CubicBezierTimingFunction::CubicBezierTimingFunction(double x1, | 23 CubicBezierTimingFunction::CubicBezierTimingFunction(double x1, |
80 double y1, | 24 double y1, |
81 double x2, | 25 double x2, |
82 double y2) | 26 double y2) |
83 : x1_(x1), y1_(y1), x2_(x2), y2_(y2) {} | 27 : bezier_(x1, y1, x2, y2) {} |
84 | 28 |
85 CubicBezierTimingFunction::~CubicBezierTimingFunction() {} | 29 CubicBezierTimingFunction::~CubicBezierTimingFunction() {} |
86 | 30 |
87 float CubicBezierTimingFunction::GetValue(double x) const { | 31 float CubicBezierTimingFunction::GetValue(double x) const { |
88 return static_cast<float>(bezier_interp(x1_, y1_, x2_, y2_, x)); | 32 return static_cast<float>(bezier_.Solve(x)); |
89 } | 33 } |
90 | 34 |
91 scoped_ptr<AnimationCurve> CubicBezierTimingFunction::Clone() const { | 35 scoped_ptr<AnimationCurve> CubicBezierTimingFunction::Clone() const { |
92 return make_scoped_ptr( | 36 return make_scoped_ptr( |
93 new CubicBezierTimingFunction(*this)).PassAs<AnimationCurve>(); | 37 new CubicBezierTimingFunction(*this)).PassAs<AnimationCurve>(); |
94 } | 38 } |
95 | 39 |
96 void CubicBezierTimingFunction::Range(float* min, float* max) const { | 40 void CubicBezierTimingFunction::Range(float* min, float* max) const { |
97 *min = 0.f; | 41 double min_d = 0; |
98 *max = 1.f; | 42 double max_d = 1; |
99 if (0.f <= y1_ && y1_ < 1.f && 0.f <= y2_ && y2_ <= 1.f) | 43 bezier_.Range(&min_d, &max_d); |
100 return; | 44 *min = static_cast<float>(min_d); |
101 | 45 *max = static_cast<float>(max_d); |
102 // Represent the function's derivative in the form at^2 + bt + c. | |
103 float a = 3.f * (y1_ - y2_) + 1.f; | |
104 float b = 2.f * (y2_ - 2.f * y1_); | |
105 float c = y1_; | |
106 | |
107 // Check if the derivative is constant. | |
108 if (std::abs(a) < kBezierEpsilon && | |
109 std::abs(b) < kBezierEpsilon) | |
110 return; | |
111 | |
112 // Zeros of the function's derivative. | |
113 float t_1 = 0.f; | |
114 float t_2 = 0.f; | |
115 | |
116 if (std::abs(a) < kBezierEpsilon) { | |
117 // The function's derivative is linear. | |
118 t_1 = -c / b; | |
119 } else { | |
120 // The function's derivative is a quadratic. We find the zeros of this | |
121 // quadratic using the quadratic formula. | |
122 float discriminant = b * b - 4 * a * c; | |
123 if (discriminant < 0.f) | |
124 return; | |
125 float discriminant_sqrt = sqrt(discriminant); | |
126 t_1 = (-b + discriminant_sqrt) / (2.f * a); | |
127 t_2 = (-b - discriminant_sqrt) / (2.f * a); | |
128 } | |
129 | |
130 float sol_1 = 0.f; | |
131 float sol_2 = 0.f; | |
132 | |
133 if (0.f < t_1 && t_1 < 1.f) | |
134 sol_1 = eval_bezier(y1_, y2_, t_1); | |
135 | |
136 if (0.f < t_2 && t_2 < 1.f) | |
137 sol_2 = eval_bezier(y1_, y2_, t_2); | |
138 | |
139 *min = std::min(std::min(*min, sol_1), sol_2); | |
140 *max = std::max(std::max(*max, sol_1), sol_2); | |
141 } | 46 } |
142 | 47 |
143 // These numbers come from | 48 // These numbers come from |
144 // http://www.w3.org/TR/css3-transitions/#transition-timing-function_tag. | 49 // http://www.w3.org/TR/css3-transitions/#transition-timing-function_tag. |
145 scoped_ptr<TimingFunction> EaseTimingFunction::Create() { | 50 scoped_ptr<TimingFunction> EaseTimingFunction::Create() { |
146 return CubicBezierTimingFunction::Create( | 51 return CubicBezierTimingFunction::Create( |
147 0.25, 0.1, 0.25, 1.0).PassAs<TimingFunction>(); | 52 0.25, 0.1, 0.25, 1.0).PassAs<TimingFunction>(); |
148 } | 53 } |
149 | 54 |
150 scoped_ptr<TimingFunction> EaseInTimingFunction::Create() { | 55 scoped_ptr<TimingFunction> EaseInTimingFunction::Create() { |
151 return CubicBezierTimingFunction::Create( | 56 return CubicBezierTimingFunction::Create( |
152 0.42, 0.0, 1.0, 1.0).PassAs<TimingFunction>(); | 57 0.42, 0.0, 1.0, 1.0).PassAs<TimingFunction>(); |
153 } | 58 } |
154 | 59 |
155 scoped_ptr<TimingFunction> EaseOutTimingFunction::Create() { | 60 scoped_ptr<TimingFunction> EaseOutTimingFunction::Create() { |
156 return CubicBezierTimingFunction::Create( | 61 return CubicBezierTimingFunction::Create( |
157 0.0, 0.0, 0.58, 1.0).PassAs<TimingFunction>(); | 62 0.0, 0.0, 0.58, 1.0).PassAs<TimingFunction>(); |
158 } | 63 } |
159 | 64 |
160 scoped_ptr<TimingFunction> EaseInOutTimingFunction::Create() { | 65 scoped_ptr<TimingFunction> EaseInOutTimingFunction::Create() { |
161 return CubicBezierTimingFunction::Create( | 66 return CubicBezierTimingFunction::Create( |
162 0.42, 0.0, 0.58, 1).PassAs<TimingFunction>(); | 67 0.42, 0.0, 0.58, 1).PassAs<TimingFunction>(); |
163 } | 68 } |
164 | 69 |
165 } // namespace cc | 70 } // namespace cc |
OLD | NEW |