Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(6)

Unified Diff: cc/animation/timing_function.cc

Issue 143413020: Use a bezier timing function for the overview mode animation (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/src
Patch Set: Created 6 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « cc/animation/timing_function.h ('k') | cc/animation/timing_function_unittest.cc » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: cc/animation/timing_function.cc
diff --git a/cc/animation/timing_function.cc b/cc/animation/timing_function.cc
index 7fdb37fed962a48fa68a3e9b58252b694c50f4ca..bf11c20fe03a13f448f486ff600aef2005ea9d4c 100644
--- a/cc/animation/timing_function.cc
+++ b/cc/animation/timing_function.cc
@@ -2,67 +2,11 @@
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
-#include <algorithm>
-#include <cmath>
-
#include "base/logging.h"
#include "cc/animation/timing_function.h"
namespace cc {
-namespace {
-
-static const double kBezierEpsilon = 1e-7;
-static const int MAX_STEPS = 30;
-
-static double eval_bezier(double x1, double x2, double t) {
- const double x1_times_3 = 3.0 * x1;
- const double x2_times_3 = 3.0 * x2;
- const double h3 = x1_times_3;
- const double h1 = x1_times_3 - x2_times_3 + 1.0;
- const double h2 = x2_times_3 - 6.0 * x1;
- return t * (t * (t * h1 + h2) + h3);
-}
-
-static double bezier_interp(double x1,
- double y1,
- double x2,
- double y2,
- double x) {
- DCHECK_GE(1.0, x1);
- DCHECK_LE(0.0, x1);
- DCHECK_GE(1.0, x2);
- DCHECK_LE(0.0, x2);
-
- x1 = std::min(std::max(x1, 0.0), 1.0);
- x2 = std::min(std::max(x2, 0.0), 1.0);
- x = std::min(std::max(x, 0.0), 1.0);
-
- // Step 1. Find the t corresponding to the given x. I.e., we want t such that
- // eval_bezier(x1, x2, t) = x. There is a unique solution if x1 and x2 lie
- // within (0, 1).
- //
- // We're just going to do bisection for now (for simplicity), but we could
- // easily do some newton steps if this turns out to be a bottleneck.
- double t = 0.0;
- double step = 1.0;
- for (int i = 0; i < MAX_STEPS; ++i, step *= 0.5) {
- const double error = eval_bezier(x1, x2, t) - x;
- if (std::abs(error) < kBezierEpsilon)
- break;
- t += error > 0.0 ? -step : step;
- }
-
- // We should have terminated the above loop because we got close to x, not
- // because we exceeded MAX_STEPS. Do a DCHECK here to confirm.
- DCHECK_GT(kBezierEpsilon, std::abs(eval_bezier(x1, x2, t) - x));
-
- // Step 2. Return the interpolated y values at the t we computed above.
- return eval_bezier(y1, y2, t);
-}
-
-} // namespace
-
TimingFunction::TimingFunction() {}
TimingFunction::~TimingFunction() {}
@@ -80,12 +24,12 @@ CubicBezierTimingFunction::CubicBezierTimingFunction(double x1,
double y1,
double x2,
double y2)
- : x1_(x1), y1_(y1), x2_(x2), y2_(y2) {}
+ : bezier_(x1, y1, x2, y2) {}
CubicBezierTimingFunction::~CubicBezierTimingFunction() {}
float CubicBezierTimingFunction::GetValue(double x) const {
- return static_cast<float>(bezier_interp(x1_, y1_, x2_, y2_, x));
+ return static_cast<float>(bezier_.Solve(x));
}
scoped_ptr<AnimationCurve> CubicBezierTimingFunction::Clone() const {
@@ -94,50 +38,11 @@ scoped_ptr<AnimationCurve> CubicBezierTimingFunction::Clone() const {
}
void CubicBezierTimingFunction::Range(float* min, float* max) const {
- *min = 0.f;
- *max = 1.f;
- if (0.f <= y1_ && y1_ < 1.f && 0.f <= y2_ && y2_ <= 1.f)
- return;
-
- // Represent the function's derivative in the form at^2 + bt + c.
- float a = 3.f * (y1_ - y2_) + 1.f;
- float b = 2.f * (y2_ - 2.f * y1_);
- float c = y1_;
-
- // Check if the derivative is constant.
- if (std::abs(a) < kBezierEpsilon &&
- std::abs(b) < kBezierEpsilon)
- return;
-
- // Zeros of the function's derivative.
- float t_1 = 0.f;
- float t_2 = 0.f;
-
- if (std::abs(a) < kBezierEpsilon) {
- // The function's derivative is linear.
- t_1 = -c / b;
- } else {
- // The function's derivative is a quadratic. We find the zeros of this
- // quadratic using the quadratic formula.
- float discriminant = b * b - 4 * a * c;
- if (discriminant < 0.f)
- return;
- float discriminant_sqrt = sqrt(discriminant);
- t_1 = (-b + discriminant_sqrt) / (2.f * a);
- t_2 = (-b - discriminant_sqrt) / (2.f * a);
- }
-
- float sol_1 = 0.f;
- float sol_2 = 0.f;
-
- if (0.f < t_1 && t_1 < 1.f)
- sol_1 = eval_bezier(y1_, y2_, t_1);
-
- if (0.f < t_2 && t_2 < 1.f)
- sol_2 = eval_bezier(y1_, y2_, t_2);
-
- *min = std::min(std::min(*min, sol_1), sol_2);
- *max = std::max(std::max(*max, sol_1), sol_2);
+ double min_d = 0;
+ double max_d = 1;
+ bezier_.Range(&min_d, &max_d);
+ *min = static_cast<float>(min_d);
+ *max = static_cast<float>(max_d);
}
// These numbers come from
« no previous file with comments | « cc/animation/timing_function.h ('k') | cc/animation/timing_function_unittest.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698