| Index: mozilla/security/nss/lib/freebl/ecl/ecl_mult.c
|
| ===================================================================
|
| --- mozilla/security/nss/lib/freebl/ecl/ecl_mult.c (revision 191424)
|
| +++ mozilla/security/nss/lib/freebl/ecl/ecl_mult.c (working copy)
|
| @@ -1,322 +0,0 @@
|
| -/* This Source Code Form is subject to the terms of the Mozilla Public
|
| - * License, v. 2.0. If a copy of the MPL was not distributed with this
|
| - * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
| -
|
| -#include "mpi.h"
|
| -#include "mplogic.h"
|
| -#include "ecl.h"
|
| -#include "ecl-priv.h"
|
| -#include <stdlib.h>
|
| -
|
| -/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k * P(x,
|
| - * y). If x, y = NULL, then P is assumed to be the generator (base point)
|
| - * of the group of points on the elliptic curve. Input and output values
|
| - * are assumed to be NOT field-encoded. */
|
| -mp_err
|
| -ECPoint_mul(const ECGroup *group, const mp_int *k, const mp_int *px,
|
| - const mp_int *py, mp_int *rx, mp_int *ry)
|
| -{
|
| - mp_err res = MP_OKAY;
|
| - mp_int kt;
|
| -
|
| - ARGCHK((k != NULL) && (group != NULL), MP_BADARG);
|
| - MP_DIGITS(&kt) = 0;
|
| -
|
| - /* want scalar to be less than or equal to group order */
|
| - if (mp_cmp(k, &group->order) > 0) {
|
| - MP_CHECKOK(mp_init(&kt));
|
| - MP_CHECKOK(mp_mod(k, &group->order, &kt));
|
| - } else {
|
| - MP_SIGN(&kt) = MP_ZPOS;
|
| - MP_USED(&kt) = MP_USED(k);
|
| - MP_ALLOC(&kt) = MP_ALLOC(k);
|
| - MP_DIGITS(&kt) = MP_DIGITS(k);
|
| - }
|
| -
|
| - if ((px == NULL) || (py == NULL)) {
|
| - if (group->base_point_mul) {
|
| - MP_CHECKOK(group->base_point_mul(&kt, rx, ry, group));
|
| - } else {
|
| - MP_CHECKOK(group->
|
| - point_mul(&kt, &group->genx, &group->geny, rx, ry,
|
| - group));
|
| - }
|
| - } else {
|
| - if (group->meth->field_enc) {
|
| - MP_CHECKOK(group->meth->field_enc(px, rx, group->meth));
|
| - MP_CHECKOK(group->meth->field_enc(py, ry, group->meth));
|
| - MP_CHECKOK(group->point_mul(&kt, rx, ry, rx, ry, group));
|
| - } else {
|
| - MP_CHECKOK(group->point_mul(&kt, px, py, rx, ry, group));
|
| - }
|
| - }
|
| - if (group->meth->field_dec) {
|
| - MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
|
| - MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
|
| - }
|
| -
|
| - CLEANUP:
|
| - if (MP_DIGITS(&kt) != MP_DIGITS(k)) {
|
| - mp_clear(&kt);
|
| - }
|
| - return res;
|
| -}
|
| -
|
| -/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
|
| - * k2 * P(x, y), where G is the generator (base point) of the group of
|
| - * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
|
| - * Input and output values are assumed to be NOT field-encoded. */
|
| -mp_err
|
| -ec_pts_mul_basic(const mp_int *k1, const mp_int *k2, const mp_int *px,
|
| - const mp_int *py, mp_int *rx, mp_int *ry,
|
| - const ECGroup *group)
|
| -{
|
| - mp_err res = MP_OKAY;
|
| - mp_int sx, sy;
|
| -
|
| - ARGCHK(group != NULL, MP_BADARG);
|
| - ARGCHK(!((k1 == NULL)
|
| - && ((k2 == NULL) || (px == NULL)
|
| - || (py == NULL))), MP_BADARG);
|
| -
|
| - /* if some arguments are not defined used ECPoint_mul */
|
| - if (k1 == NULL) {
|
| - return ECPoint_mul(group, k2, px, py, rx, ry);
|
| - } else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
|
| - return ECPoint_mul(group, k1, NULL, NULL, rx, ry);
|
| - }
|
| -
|
| - MP_DIGITS(&sx) = 0;
|
| - MP_DIGITS(&sy) = 0;
|
| - MP_CHECKOK(mp_init(&sx));
|
| - MP_CHECKOK(mp_init(&sy));
|
| -
|
| - MP_CHECKOK(ECPoint_mul(group, k1, NULL, NULL, &sx, &sy));
|
| - MP_CHECKOK(ECPoint_mul(group, k2, px, py, rx, ry));
|
| -
|
| - if (group->meth->field_enc) {
|
| - MP_CHECKOK(group->meth->field_enc(&sx, &sx, group->meth));
|
| - MP_CHECKOK(group->meth->field_enc(&sy, &sy, group->meth));
|
| - MP_CHECKOK(group->meth->field_enc(rx, rx, group->meth));
|
| - MP_CHECKOK(group->meth->field_enc(ry, ry, group->meth));
|
| - }
|
| -
|
| - MP_CHECKOK(group->point_add(&sx, &sy, rx, ry, rx, ry, group));
|
| -
|
| - if (group->meth->field_dec) {
|
| - MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
|
| - MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
|
| - }
|
| -
|
| - CLEANUP:
|
| - mp_clear(&sx);
|
| - mp_clear(&sy);
|
| - return res;
|
| -}
|
| -
|
| -/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
|
| - * k2 * P(x, y), where G is the generator (base point) of the group of
|
| - * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
|
| - * Input and output values are assumed to be NOT field-encoded. Uses
|
| - * algorithm 15 (simultaneous multiple point multiplication) from Brown,
|
| - * Hankerson, Lopez, Menezes. Software Implementation of the NIST
|
| - * Elliptic Curves over Prime Fields. */
|
| -mp_err
|
| -ec_pts_mul_simul_w2(const mp_int *k1, const mp_int *k2, const mp_int *px,
|
| - const mp_int *py, mp_int *rx, mp_int *ry,
|
| - const ECGroup *group)
|
| -{
|
| - mp_err res = MP_OKAY;
|
| - mp_int precomp[4][4][2];
|
| - const mp_int *a, *b;
|
| - int i, j;
|
| - int ai, bi, d;
|
| -
|
| - ARGCHK(group != NULL, MP_BADARG);
|
| - ARGCHK(!((k1 == NULL)
|
| - && ((k2 == NULL) || (px == NULL)
|
| - || (py == NULL))), MP_BADARG);
|
| -
|
| - /* if some arguments are not defined used ECPoint_mul */
|
| - if (k1 == NULL) {
|
| - return ECPoint_mul(group, k2, px, py, rx, ry);
|
| - } else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
|
| - return ECPoint_mul(group, k1, NULL, NULL, rx, ry);
|
| - }
|
| -
|
| - /* initialize precomputation table */
|
| - for (i = 0; i < 4; i++) {
|
| - for (j = 0; j < 4; j++) {
|
| - MP_DIGITS(&precomp[i][j][0]) = 0;
|
| - MP_DIGITS(&precomp[i][j][1]) = 0;
|
| - }
|
| - }
|
| - for (i = 0; i < 4; i++) {
|
| - for (j = 0; j < 4; j++) {
|
| - MP_CHECKOK( mp_init_size(&precomp[i][j][0],
|
| - ECL_MAX_FIELD_SIZE_DIGITS) );
|
| - MP_CHECKOK( mp_init_size(&precomp[i][j][1],
|
| - ECL_MAX_FIELD_SIZE_DIGITS) );
|
| - }
|
| - }
|
| -
|
| - /* fill precomputation table */
|
| - /* assign {k1, k2} = {a, b} such that len(a) >= len(b) */
|
| - if (mpl_significant_bits(k1) < mpl_significant_bits(k2)) {
|
| - a = k2;
|
| - b = k1;
|
| - if (group->meth->field_enc) {
|
| - MP_CHECKOK(group->meth->
|
| - field_enc(px, &precomp[1][0][0], group->meth));
|
| - MP_CHECKOK(group->meth->
|
| - field_enc(py, &precomp[1][0][1], group->meth));
|
| - } else {
|
| - MP_CHECKOK(mp_copy(px, &precomp[1][0][0]));
|
| - MP_CHECKOK(mp_copy(py, &precomp[1][0][1]));
|
| - }
|
| - MP_CHECKOK(mp_copy(&group->genx, &precomp[0][1][0]));
|
| - MP_CHECKOK(mp_copy(&group->geny, &precomp[0][1][1]));
|
| - } else {
|
| - a = k1;
|
| - b = k2;
|
| - MP_CHECKOK(mp_copy(&group->genx, &precomp[1][0][0]));
|
| - MP_CHECKOK(mp_copy(&group->geny, &precomp[1][0][1]));
|
| - if (group->meth->field_enc) {
|
| - MP_CHECKOK(group->meth->
|
| - field_enc(px, &precomp[0][1][0], group->meth));
|
| - MP_CHECKOK(group->meth->
|
| - field_enc(py, &precomp[0][1][1], group->meth));
|
| - } else {
|
| - MP_CHECKOK(mp_copy(px, &precomp[0][1][0]));
|
| - MP_CHECKOK(mp_copy(py, &precomp[0][1][1]));
|
| - }
|
| - }
|
| - /* precompute [*][0][*] */
|
| - mp_zero(&precomp[0][0][0]);
|
| - mp_zero(&precomp[0][0][1]);
|
| - MP_CHECKOK(group->
|
| - point_dbl(&precomp[1][0][0], &precomp[1][0][1],
|
| - &precomp[2][0][0], &precomp[2][0][1], group));
|
| - MP_CHECKOK(group->
|
| - point_add(&precomp[1][0][0], &precomp[1][0][1],
|
| - &precomp[2][0][0], &precomp[2][0][1],
|
| - &precomp[3][0][0], &precomp[3][0][1], group));
|
| - /* precompute [*][1][*] */
|
| - for (i = 1; i < 4; i++) {
|
| - MP_CHECKOK(group->
|
| - point_add(&precomp[0][1][0], &precomp[0][1][1],
|
| - &precomp[i][0][0], &precomp[i][0][1],
|
| - &precomp[i][1][0], &precomp[i][1][1], group));
|
| - }
|
| - /* precompute [*][2][*] */
|
| - MP_CHECKOK(group->
|
| - point_dbl(&precomp[0][1][0], &precomp[0][1][1],
|
| - &precomp[0][2][0], &precomp[0][2][1], group));
|
| - for (i = 1; i < 4; i++) {
|
| - MP_CHECKOK(group->
|
| - point_add(&precomp[0][2][0], &precomp[0][2][1],
|
| - &precomp[i][0][0], &precomp[i][0][1],
|
| - &precomp[i][2][0], &precomp[i][2][1], group));
|
| - }
|
| - /* precompute [*][3][*] */
|
| - MP_CHECKOK(group->
|
| - point_add(&precomp[0][1][0], &precomp[0][1][1],
|
| - &precomp[0][2][0], &precomp[0][2][1],
|
| - &precomp[0][3][0], &precomp[0][3][1], group));
|
| - for (i = 1; i < 4; i++) {
|
| - MP_CHECKOK(group->
|
| - point_add(&precomp[0][3][0], &precomp[0][3][1],
|
| - &precomp[i][0][0], &precomp[i][0][1],
|
| - &precomp[i][3][0], &precomp[i][3][1], group));
|
| - }
|
| -
|
| - d = (mpl_significant_bits(a) + 1) / 2;
|
| -
|
| - /* R = inf */
|
| - mp_zero(rx);
|
| - mp_zero(ry);
|
| -
|
| - for (i = d - 1; i >= 0; i--) {
|
| - ai = MP_GET_BIT(a, 2 * i + 1);
|
| - ai <<= 1;
|
| - ai |= MP_GET_BIT(a, 2 * i);
|
| - bi = MP_GET_BIT(b, 2 * i + 1);
|
| - bi <<= 1;
|
| - bi |= MP_GET_BIT(b, 2 * i);
|
| - /* R = 2^2 * R */
|
| - MP_CHECKOK(group->point_dbl(rx, ry, rx, ry, group));
|
| - MP_CHECKOK(group->point_dbl(rx, ry, rx, ry, group));
|
| - /* R = R + (ai * A + bi * B) */
|
| - MP_CHECKOK(group->
|
| - point_add(rx, ry, &precomp[ai][bi][0],
|
| - &precomp[ai][bi][1], rx, ry, group));
|
| - }
|
| -
|
| - if (group->meth->field_dec) {
|
| - MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
|
| - MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
|
| - }
|
| -
|
| - CLEANUP:
|
| - for (i = 0; i < 4; i++) {
|
| - for (j = 0; j < 4; j++) {
|
| - mp_clear(&precomp[i][j][0]);
|
| - mp_clear(&precomp[i][j][1]);
|
| - }
|
| - }
|
| - return res;
|
| -}
|
| -
|
| -/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
|
| - * k2 * P(x, y), where G is the generator (base point) of the group of
|
| - * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
|
| - * Input and output values are assumed to be NOT field-encoded. */
|
| -mp_err
|
| -ECPoints_mul(const ECGroup *group, const mp_int *k1, const mp_int *k2,
|
| - const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry)
|
| -{
|
| - mp_err res = MP_OKAY;
|
| - mp_int k1t, k2t;
|
| - const mp_int *k1p, *k2p;
|
| -
|
| - MP_DIGITS(&k1t) = 0;
|
| - MP_DIGITS(&k2t) = 0;
|
| -
|
| - ARGCHK(group != NULL, MP_BADARG);
|
| -
|
| - /* want scalar to be less than or equal to group order */
|
| - if (k1 != NULL) {
|
| - if (mp_cmp(k1, &group->order) >= 0) {
|
| - MP_CHECKOK(mp_init(&k1t));
|
| - MP_CHECKOK(mp_mod(k1, &group->order, &k1t));
|
| - k1p = &k1t;
|
| - } else {
|
| - k1p = k1;
|
| - }
|
| - } else {
|
| - k1p = k1;
|
| - }
|
| - if (k2 != NULL) {
|
| - if (mp_cmp(k2, &group->order) >= 0) {
|
| - MP_CHECKOK(mp_init(&k2t));
|
| - MP_CHECKOK(mp_mod(k2, &group->order, &k2t));
|
| - k2p = &k2t;
|
| - } else {
|
| - k2p = k2;
|
| - }
|
| - } else {
|
| - k2p = k2;
|
| - }
|
| -
|
| - /* if points_mul is defined, then use it */
|
| - if (group->points_mul) {
|
| - res = group->points_mul(k1p, k2p, px, py, rx, ry, group);
|
| - } else {
|
| - res = ec_pts_mul_simul_w2(k1p, k2p, px, py, rx, ry, group);
|
| - }
|
| -
|
| - CLEANUP:
|
| - mp_clear(&k1t);
|
| - mp_clear(&k2t);
|
| - return res;
|
| -}
|
|
|