Index: mozilla/security/nss/lib/freebl/ecl/ecp.h |
=================================================================== |
--- mozilla/security/nss/lib/freebl/ecl/ecp.h (revision 191424) |
+++ mozilla/security/nss/lib/freebl/ecl/ecp.h (working copy) |
@@ -1,106 +0,0 @@ |
-/* This Source Code Form is subject to the terms of the Mozilla Public |
- * License, v. 2.0. If a copy of the MPL was not distributed with this |
- * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
- |
-#ifndef __ecp_h_ |
-#define __ecp_h_ |
- |
-#include "ecl-priv.h" |
- |
-/* Checks if point P(px, py) is at infinity. Uses affine coordinates. */ |
-mp_err ec_GFp_pt_is_inf_aff(const mp_int *px, const mp_int *py); |
- |
-/* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */ |
-mp_err ec_GFp_pt_set_inf_aff(mp_int *px, mp_int *py); |
- |
-/* Computes R = P + Q where R is (rx, ry), P is (px, py) and Q is (qx, |
- * qy). Uses affine coordinates. */ |
-mp_err ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py, |
- const mp_int *qx, const mp_int *qy, mp_int *rx, |
- mp_int *ry, const ECGroup *group); |
- |
-/* Computes R = P - Q. Uses affine coordinates. */ |
-mp_err ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py, |
- const mp_int *qx, const mp_int *qy, mp_int *rx, |
- mp_int *ry, const ECGroup *group); |
- |
-/* Computes R = 2P. Uses affine coordinates. */ |
-mp_err ec_GFp_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx, |
- mp_int *ry, const ECGroup *group); |
- |
-/* Validates a point on a GFp curve. */ |
-mp_err ec_GFp_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group); |
- |
-#ifdef ECL_ENABLE_GFP_PT_MUL_AFF |
-/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters |
- * a, b and p are the elliptic curve coefficients and the prime that |
- * determines the field GFp. Uses affine coordinates. */ |
-mp_err ec_GFp_pt_mul_aff(const mp_int *n, const mp_int *px, |
- const mp_int *py, mp_int *rx, mp_int *ry, |
- const ECGroup *group); |
-#endif |
- |
-/* Converts a point P(px, py) from affine coordinates to Jacobian |
- * projective coordinates R(rx, ry, rz). */ |
-mp_err ec_GFp_pt_aff2jac(const mp_int *px, const mp_int *py, mp_int *rx, |
- mp_int *ry, mp_int *rz, const ECGroup *group); |
- |
-/* Converts a point P(px, py, pz) from Jacobian projective coordinates to |
- * affine coordinates R(rx, ry). */ |
-mp_err ec_GFp_pt_jac2aff(const mp_int *px, const mp_int *py, |
- const mp_int *pz, mp_int *rx, mp_int *ry, |
- const ECGroup *group); |
- |
-/* Checks if point P(px, py, pz) is at infinity. Uses Jacobian |
- * coordinates. */ |
-mp_err ec_GFp_pt_is_inf_jac(const mp_int *px, const mp_int *py, |
- const mp_int *pz); |
- |
-/* Sets P(px, py, pz) to be the point at infinity. Uses Jacobian |
- * coordinates. */ |
-mp_err ec_GFp_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz); |
- |
-/* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is |
- * (qx, qy, qz). Uses Jacobian coordinates. */ |
-mp_err ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py, |
- const mp_int *pz, const mp_int *qx, |
- const mp_int *qy, mp_int *rx, mp_int *ry, |
- mp_int *rz, const ECGroup *group); |
- |
-/* Computes R = 2P. Uses Jacobian coordinates. */ |
-mp_err ec_GFp_pt_dbl_jac(const mp_int *px, const mp_int *py, |
- const mp_int *pz, mp_int *rx, mp_int *ry, |
- mp_int *rz, const ECGroup *group); |
- |
-#ifdef ECL_ENABLE_GFP_PT_MUL_JAC |
-/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters |
- * a, b and p are the elliptic curve coefficients and the prime that |
- * determines the field GFp. Uses Jacobian coordinates. */ |
-mp_err ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px, |
- const mp_int *py, mp_int *rx, mp_int *ry, |
- const ECGroup *group); |
-#endif |
- |
-/* Computes R(x, y) = k1 * G + k2 * P(x, y), where G is the generator |
- * (base point) of the group of points on the elliptic curve. Allows k1 = |
- * NULL or { k2, P } = NULL. Implemented using mixed Jacobian-affine |
- * coordinates. Input and output values are assumed to be NOT |
- * field-encoded and are in affine form. */ |
-mp_err |
- ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px, |
- const mp_int *py, mp_int *rx, mp_int *ry, |
- const ECGroup *group); |
- |
-/* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic |
- * curve points P and R can be identical. Uses mixed Modified-Jacobian |
- * co-ordinates for doubling and Chudnovsky Jacobian coordinates for |
- * additions. Assumes input is already field-encoded using field_enc, and |
- * returns output that is still field-encoded. Uses 5-bit window NAF |
- * method (algorithm 11) for scalar-point multiplication from Brown, |
- * Hankerson, Lopez, Menezes. Software Implementation of the NIST Elliptic |
- * Curves Over Prime Fields. */ |
-mp_err |
- ec_GFp_pt_mul_jm_wNAF(const mp_int *n, const mp_int *px, const mp_int *py, |
- mp_int *rx, mp_int *ry, const ECGroup *group); |
- |
-#endif /* __ecp_h_ */ |