Index: mozilla/security/nss/lib/freebl/alg2268.c |
=================================================================== |
--- mozilla/security/nss/lib/freebl/alg2268.c (revision 191424) |
+++ mozilla/security/nss/lib/freebl/alg2268.c (working copy) |
@@ -1,487 +0,0 @@ |
-/* |
- * alg2268.c - implementation of the algorithm in RFC 2268 |
- * |
- * This Source Code Form is subject to the terms of the Mozilla Public |
- * License, v. 2.0. If a copy of the MPL was not distributed with this |
- * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
- |
-/* $Id: alg2268.c,v 1.10 2012/04/25 14:49:43 gerv%gerv.net Exp $ */ |
- |
-#ifdef FREEBL_NO_DEPEND |
-#include "stubs.h" |
-#endif |
- |
-#include "blapi.h" |
-#include "secerr.h" |
-#ifdef XP_UNIX_XXX |
-#include <stddef.h> /* for ptrdiff_t */ |
-#endif |
- |
-/* |
-** RC2 symmetric block cypher |
-*/ |
- |
-typedef SECStatus (rc2Func)(RC2Context *cx, unsigned char *output, |
- const unsigned char *input, unsigned int inputLen); |
- |
-/* forward declarations */ |
-static rc2Func rc2_EncryptECB; |
-static rc2Func rc2_DecryptECB; |
-static rc2Func rc2_EncryptCBC; |
-static rc2Func rc2_DecryptCBC; |
- |
-typedef union { |
- PRUint32 l[2]; |
- PRUint16 s[4]; |
- PRUint8 b[8]; |
-} RC2Block; |
- |
-struct RC2ContextStr { |
- union { |
- PRUint8 Kb[128]; |
- PRUint16 Kw[64]; |
- } u; |
- RC2Block iv; |
- rc2Func *enc; |
- rc2Func *dec; |
-}; |
- |
-#define B u.Kb |
-#define K u.Kw |
-#define BYTESWAP(x) ((x) << 8 | (x) >> 8) |
-#define SWAPK(i) cx->K[i] = (tmpS = cx->K[i], BYTESWAP(tmpS)) |
-#define RC2_BLOCK_SIZE 8 |
- |
-#define LOAD_HARD(R) \ |
- R[0] = (PRUint16)input[1] << 8 | input[0]; \ |
- R[1] = (PRUint16)input[3] << 8 | input[2]; \ |
- R[2] = (PRUint16)input[5] << 8 | input[4]; \ |
- R[3] = (PRUint16)input[7] << 8 | input[6]; |
-#define LOAD_EASY(R) \ |
- R[0] = ((PRUint16 *)input)[0]; \ |
- R[1] = ((PRUint16 *)input)[1]; \ |
- R[2] = ((PRUint16 *)input)[2]; \ |
- R[3] = ((PRUint16 *)input)[3]; |
-#define STORE_HARD(R) \ |
- output[0] = (PRUint8)(R[0]); output[1] = (PRUint8)(R[0] >> 8); \ |
- output[2] = (PRUint8)(R[1]); output[3] = (PRUint8)(R[1] >> 8); \ |
- output[4] = (PRUint8)(R[2]); output[5] = (PRUint8)(R[2] >> 8); \ |
- output[6] = (PRUint8)(R[3]); output[7] = (PRUint8)(R[3] >> 8); |
-#define STORE_EASY(R) \ |
- ((PRUint16 *)output)[0] = R[0]; \ |
- ((PRUint16 *)output)[1] = R[1]; \ |
- ((PRUint16 *)output)[2] = R[2]; \ |
- ((PRUint16 *)output)[3] = R[3]; |
- |
-#if defined (NSS_X86_OR_X64) |
-#define LOAD(R) LOAD_EASY(R) |
-#define STORE(R) STORE_EASY(R) |
-#elif !defined(IS_LITTLE_ENDIAN) |
-#define LOAD(R) LOAD_HARD(R) |
-#define STORE(R) STORE_HARD(R) |
-#else |
-#define LOAD(R) if ((ptrdiff_t)input & 1) { LOAD_HARD(R) } else { LOAD_EASY(R) } |
-#define STORE(R) if ((ptrdiff_t)input & 1) { STORE_HARD(R) } else { STORE_EASY(R) } |
-#endif |
- |
-static const PRUint8 S[256] = { |
-0331,0170,0371,0304,0031,0335,0265,0355,0050,0351,0375,0171,0112,0240,0330,0235, |
-0306,0176,0067,0203,0053,0166,0123,0216,0142,0114,0144,0210,0104,0213,0373,0242, |
-0027,0232,0131,0365,0207,0263,0117,0023,0141,0105,0155,0215,0011,0201,0175,0062, |
-0275,0217,0100,0353,0206,0267,0173,0013,0360,0225,0041,0042,0134,0153,0116,0202, |
-0124,0326,0145,0223,0316,0140,0262,0034,0163,0126,0300,0024,0247,0214,0361,0334, |
-0022,0165,0312,0037,0073,0276,0344,0321,0102,0075,0324,0060,0243,0074,0266,0046, |
-0157,0277,0016,0332,0106,0151,0007,0127,0047,0362,0035,0233,0274,0224,0103,0003, |
-0370,0021,0307,0366,0220,0357,0076,0347,0006,0303,0325,0057,0310,0146,0036,0327, |
-0010,0350,0352,0336,0200,0122,0356,0367,0204,0252,0162,0254,0065,0115,0152,0052, |
-0226,0032,0322,0161,0132,0025,0111,0164,0113,0237,0320,0136,0004,0030,0244,0354, |
-0302,0340,0101,0156,0017,0121,0313,0314,0044,0221,0257,0120,0241,0364,0160,0071, |
-0231,0174,0072,0205,0043,0270,0264,0172,0374,0002,0066,0133,0045,0125,0227,0061, |
-0055,0135,0372,0230,0343,0212,0222,0256,0005,0337,0051,0020,0147,0154,0272,0311, |
-0323,0000,0346,0317,0341,0236,0250,0054,0143,0026,0001,0077,0130,0342,0211,0251, |
-0015,0070,0064,0033,0253,0063,0377,0260,0273,0110,0014,0137,0271,0261,0315,0056, |
-0305,0363,0333,0107,0345,0245,0234,0167,0012,0246,0040,0150,0376,0177,0301,0255 |
-}; |
- |
-RC2Context * RC2_AllocateContext(void) |
-{ |
- return PORT_ZNew(RC2Context); |
-} |
-SECStatus |
-RC2_InitContext(RC2Context *cx, const unsigned char *key, unsigned int len, |
- const unsigned char *input, int mode, unsigned int efLen8, |
- unsigned int unused) |
-{ |
- PRUint8 *L,*L2; |
- int i; |
-#if !defined(IS_LITTLE_ENDIAN) |
- PRUint16 tmpS; |
-#endif |
- PRUint8 tmpB; |
- |
- if (!key || !cx || !len || len > (sizeof cx->B) || |
- efLen8 > (sizeof cx->B)) { |
- PORT_SetError(SEC_ERROR_INVALID_ARGS); |
- return SECFailure; |
- } |
- if (mode == NSS_RC2) { |
- /* groovy */ |
- } else if (mode == NSS_RC2_CBC) { |
- if (!input) { |
- PORT_SetError(SEC_ERROR_INVALID_ARGS); |
- return SECFailure; |
- } |
- } else { |
- PORT_SetError(SEC_ERROR_INVALID_ARGS); |
- return SECFailure; |
- } |
- |
- if (mode == NSS_RC2_CBC) { |
- cx->enc = & rc2_EncryptCBC; |
- cx->dec = & rc2_DecryptCBC; |
- LOAD(cx->iv.s); |
- } else { |
- cx->enc = & rc2_EncryptECB; |
- cx->dec = & rc2_DecryptECB; |
- } |
- |
- /* Step 0. Copy key into table. */ |
- memcpy(cx->B, key, len); |
- |
- /* Step 1. Compute all values to the right of the key. */ |
- L2 = cx->B; |
- L = L2 + len; |
- tmpB = L[-1]; |
- for (i = (sizeof cx->B) - len; i > 0; --i) { |
- *L++ = tmpB = S[ (PRUint8)(tmpB + *L2++) ]; |
- } |
- |
- /* step 2. Adjust left most byte of effective key. */ |
- i = (sizeof cx->B) - efLen8; |
- L = cx->B + i; |
- *L = tmpB = S[*L]; /* mask is always 0xff */ |
- |
- /* step 3. Recompute all values to the left of effective key. */ |
- L2 = --L + efLen8; |
- while(L >= cx->B) { |
- *L-- = tmpB = S[ tmpB ^ *L2-- ]; |
- } |
- |
-#if !defined(IS_LITTLE_ENDIAN) |
- for (i = 63; i >= 0; --i) { |
- SWAPK(i); /* candidate for unrolling */ |
- } |
-#endif |
- return SECSuccess; |
-} |
- |
-/* |
-** Create a new RC2 context suitable for RC2 encryption/decryption. |
-** "key" raw key data |
-** "len" the number of bytes of key data |
-** "iv" is the CBC initialization vector (if mode is NSS_RC2_CBC) |
-** "mode" one of NSS_RC2 or NSS_RC2_CBC |
-** "effectiveKeyLen" in bytes, not bits. |
-** |
-** When mode is set to NSS_RC2_CBC the RC2 cipher is run in "cipher block |
-** chaining" mode. |
-*/ |
-RC2Context * |
-RC2_CreateContext(const unsigned char *key, unsigned int len, |
- const unsigned char *iv, int mode, unsigned efLen8) |
-{ |
- RC2Context *cx = PORT_ZNew(RC2Context); |
- if (cx) { |
- SECStatus rv = RC2_InitContext(cx, key, len, iv, mode, efLen8, 0); |
- if (rv != SECSuccess) { |
- RC2_DestroyContext(cx, PR_TRUE); |
- cx = NULL; |
- } |
- } |
- return cx; |
-} |
- |
-/* |
-** Destroy an RC2 encryption/decryption context. |
-** "cx" the context |
-** "freeit" if PR_TRUE then free the object as well as its sub-objects |
-*/ |
-void |
-RC2_DestroyContext(RC2Context *cx, PRBool freeit) |
-{ |
- if (cx) { |
- memset(cx, 0, sizeof *cx); |
- if (freeit) { |
- PORT_Free(cx); |
- } |
- } |
-} |
- |
-#define ROL(x,k) (x << k | x >> (16-k)) |
-#define MIX(j) \ |
- R0 = R0 + cx->K[ 4*j+0] + (R3 & R2) + (~R3 & R1); R0 = ROL(R0,1);\ |
- R1 = R1 + cx->K[ 4*j+1] + (R0 & R3) + (~R0 & R2); R1 = ROL(R1,2);\ |
- R2 = R2 + cx->K[ 4*j+2] + (R1 & R0) + (~R1 & R3); R2 = ROL(R2,3);\ |
- R3 = R3 + cx->K[ 4*j+3] + (R2 & R1) + (~R2 & R0); R3 = ROL(R3,5) |
-#define MASH \ |
- R0 = R0 + cx->K[R3 & 63];\ |
- R1 = R1 + cx->K[R0 & 63];\ |
- R2 = R2 + cx->K[R1 & 63];\ |
- R3 = R3 + cx->K[R2 & 63] |
- |
-/* Encrypt one block */ |
-static void |
-rc2_Encrypt1Block(RC2Context *cx, RC2Block *output, RC2Block *input) |
-{ |
- register PRUint16 R0, R1, R2, R3; |
- |
- /* step 1. Initialize input. */ |
- R0 = input->s[0]; |
- R1 = input->s[1]; |
- R2 = input->s[2]; |
- R3 = input->s[3]; |
- |
- /* step 2. Expand Key (already done, in context) */ |
- /* step 3. j = 0 */ |
- /* step 4. Perform 5 mixing rounds. */ |
- |
- MIX(0); |
- MIX(1); |
- MIX(2); |
- MIX(3); |
- MIX(4); |
- |
- /* step 5. Perform 1 mashing round. */ |
- MASH; |
- |
- /* step 6. Perform 6 mixing rounds. */ |
- |
- MIX(5); |
- MIX(6); |
- MIX(7); |
- MIX(8); |
- MIX(9); |
- MIX(10); |
- |
- /* step 7. Perform 1 mashing round. */ |
- MASH; |
- |
- /* step 8. Perform 5 mixing rounds. */ |
- |
- MIX(11); |
- MIX(12); |
- MIX(13); |
- MIX(14); |
- MIX(15); |
- |
- /* output results */ |
- output->s[0] = R0; |
- output->s[1] = R1; |
- output->s[2] = R2; |
- output->s[3] = R3; |
-} |
- |
-#define ROR(x,k) (x >> k | x << (16-k)) |
-#define R_MIX(j) \ |
- R3 = ROR(R3,5); R3 = R3 - cx->K[ 4*j+3] - (R2 & R1) - (~R2 & R0); \ |
- R2 = ROR(R2,3); R2 = R2 - cx->K[ 4*j+2] - (R1 & R0) - (~R1 & R3); \ |
- R1 = ROR(R1,2); R1 = R1 - cx->K[ 4*j+1] - (R0 & R3) - (~R0 & R2); \ |
- R0 = ROR(R0,1); R0 = R0 - cx->K[ 4*j+0] - (R3 & R2) - (~R3 & R1) |
-#define R_MASH \ |
- R3 = R3 - cx->K[R2 & 63];\ |
- R2 = R2 - cx->K[R1 & 63];\ |
- R1 = R1 - cx->K[R0 & 63];\ |
- R0 = R0 - cx->K[R3 & 63] |
- |
-/* Encrypt one block */ |
-static void |
-rc2_Decrypt1Block(RC2Context *cx, RC2Block *output, RC2Block *input) |
-{ |
- register PRUint16 R0, R1, R2, R3; |
- |
- /* step 1. Initialize input. */ |
- R0 = input->s[0]; |
- R1 = input->s[1]; |
- R2 = input->s[2]; |
- R3 = input->s[3]; |
- |
- /* step 2. Expand Key (already done, in context) */ |
- /* step 3. j = 63 */ |
- /* step 4. Perform 5 r_mixing rounds. */ |
- R_MIX(15); |
- R_MIX(14); |
- R_MIX(13); |
- R_MIX(12); |
- R_MIX(11); |
- |
- /* step 5. Perform 1 r_mashing round. */ |
- R_MASH; |
- |
- /* step 6. Perform 6 r_mixing rounds. */ |
- R_MIX(10); |
- R_MIX(9); |
- R_MIX(8); |
- R_MIX(7); |
- R_MIX(6); |
- R_MIX(5); |
- |
- /* step 7. Perform 1 r_mashing round. */ |
- R_MASH; |
- |
- /* step 8. Perform 5 r_mixing rounds. */ |
- R_MIX(4); |
- R_MIX(3); |
- R_MIX(2); |
- R_MIX(1); |
- R_MIX(0); |
- |
- /* output results */ |
- output->s[0] = R0; |
- output->s[1] = R1; |
- output->s[2] = R2; |
- output->s[3] = R3; |
-} |
- |
-static SECStatus |
-rc2_EncryptECB(RC2Context *cx, unsigned char *output, |
- const unsigned char *input, unsigned int inputLen) |
-{ |
- RC2Block iBlock; |
- |
- while (inputLen > 0) { |
- LOAD(iBlock.s) |
- rc2_Encrypt1Block(cx, &iBlock, &iBlock); |
- STORE(iBlock.s) |
- output += RC2_BLOCK_SIZE; |
- input += RC2_BLOCK_SIZE; |
- inputLen -= RC2_BLOCK_SIZE; |
- } |
- return SECSuccess; |
-} |
- |
-static SECStatus |
-rc2_DecryptECB(RC2Context *cx, unsigned char *output, |
- const unsigned char *input, unsigned int inputLen) |
-{ |
- RC2Block iBlock; |
- |
- while (inputLen > 0) { |
- LOAD(iBlock.s) |
- rc2_Decrypt1Block(cx, &iBlock, &iBlock); |
- STORE(iBlock.s) |
- output += RC2_BLOCK_SIZE; |
- input += RC2_BLOCK_SIZE; |
- inputLen -= RC2_BLOCK_SIZE; |
- } |
- return SECSuccess; |
-} |
- |
-static SECStatus |
-rc2_EncryptCBC(RC2Context *cx, unsigned char *output, |
- const unsigned char *input, unsigned int inputLen) |
-{ |
- RC2Block iBlock; |
- |
- while (inputLen > 0) { |
- |
- LOAD(iBlock.s) |
- iBlock.l[0] ^= cx->iv.l[0]; |
- iBlock.l[1] ^= cx->iv.l[1]; |
- rc2_Encrypt1Block(cx, &iBlock, &iBlock); |
- cx->iv = iBlock; |
- STORE(iBlock.s) |
- output += RC2_BLOCK_SIZE; |
- input += RC2_BLOCK_SIZE; |
- inputLen -= RC2_BLOCK_SIZE; |
- } |
- return SECSuccess; |
-} |
- |
-static SECStatus |
-rc2_DecryptCBC(RC2Context *cx, unsigned char *output, |
- const unsigned char *input, unsigned int inputLen) |
-{ |
- RC2Block iBlock; |
- RC2Block oBlock; |
- |
- while (inputLen > 0) { |
- LOAD(iBlock.s) |
- rc2_Decrypt1Block(cx, &oBlock, &iBlock); |
- oBlock.l[0] ^= cx->iv.l[0]; |
- oBlock.l[1] ^= cx->iv.l[1]; |
- cx->iv = iBlock; |
- STORE(oBlock.s) |
- output += RC2_BLOCK_SIZE; |
- input += RC2_BLOCK_SIZE; |
- inputLen -= RC2_BLOCK_SIZE; |
- } |
- return SECSuccess; |
-} |
- |
- |
-/* |
-** Perform RC2 encryption. |
-** "cx" the context |
-** "output" the output buffer to store the encrypted data. |
-** "outputLen" how much data is stored in "output". Set by the routine |
-** after some data is stored in output. |
-** "maxOutputLen" the maximum amount of data that can ever be |
-** stored in "output" |
-** "input" the input data |
-** "inputLen" the amount of input data |
-*/ |
-SECStatus RC2_Encrypt(RC2Context *cx, unsigned char *output, |
- unsigned int *outputLen, unsigned int maxOutputLen, |
- const unsigned char *input, unsigned int inputLen) |
-{ |
- SECStatus rv = SECSuccess; |
- if (inputLen) { |
- if (inputLen % RC2_BLOCK_SIZE) { |
- PORT_SetError(SEC_ERROR_INPUT_LEN); |
- return SECFailure; |
- } |
- if (maxOutputLen < inputLen) { |
- PORT_SetError(SEC_ERROR_OUTPUT_LEN); |
- return SECFailure; |
- } |
- rv = (*cx->enc)(cx, output, input, inputLen); |
- } |
- if (rv == SECSuccess) { |
- *outputLen = inputLen; |
- } |
- return rv; |
-} |
- |
-/* |
-** Perform RC2 decryption. |
-** "cx" the context |
-** "output" the output buffer to store the decrypted data. |
-** "outputLen" how much data is stored in "output". Set by the routine |
-** after some data is stored in output. |
-** "maxOutputLen" the maximum amount of data that can ever be |
-** stored in "output" |
-** "input" the input data |
-** "inputLen" the amount of input data |
-*/ |
-SECStatus RC2_Decrypt(RC2Context *cx, unsigned char *output, |
- unsigned int *outputLen, unsigned int maxOutputLen, |
- const unsigned char *input, unsigned int inputLen) |
-{ |
- SECStatus rv = SECSuccess; |
- if (inputLen) { |
- if (inputLen % RC2_BLOCK_SIZE) { |
- PORT_SetError(SEC_ERROR_INPUT_LEN); |
- return SECFailure; |
- } |
- if (maxOutputLen < inputLen) { |
- PORT_SetError(SEC_ERROR_OUTPUT_LEN); |
- return SECFailure; |
- } |
- rv = (*cx->dec)(cx, output, input, inputLen); |
- } |
- if (rv == SECSuccess) { |
- *outputLen = inputLen; |
- } |
- return rv; |
-} |
- |