Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(83)

Side by Side Diff: mozilla/security/nss/lib/freebl/alg2268.c

Issue 14249009: Change the NSS and NSPR source tree to the new directory structure to be (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/deps/third_party/nss/
Patch Set: Created 7 years, 8 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « mozilla/security/nss/lib/freebl/aeskeywrap.c ('k') | mozilla/security/nss/lib/freebl/alghmac.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 /*
2 * alg2268.c - implementation of the algorithm in RFC 2268
3 *
4 * This Source Code Form is subject to the terms of the Mozilla Public
5 * License, v. 2.0. If a copy of the MPL was not distributed with this
6 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7
8 /* $Id: alg2268.c,v 1.10 2012/04/25 14:49:43 gerv%gerv.net Exp $ */
9
10 #ifdef FREEBL_NO_DEPEND
11 #include "stubs.h"
12 #endif
13
14 #include "blapi.h"
15 #include "secerr.h"
16 #ifdef XP_UNIX_XXX
17 #include <stddef.h> /* for ptrdiff_t */
18 #endif
19
20 /*
21 ** RC2 symmetric block cypher
22 */
23
24 typedef SECStatus (rc2Func)(RC2Context *cx, unsigned char *output,
25 const unsigned char *input, unsigned int inputLen);
26
27 /* forward declarations */
28 static rc2Func rc2_EncryptECB;
29 static rc2Func rc2_DecryptECB;
30 static rc2Func rc2_EncryptCBC;
31 static rc2Func rc2_DecryptCBC;
32
33 typedef union {
34 PRUint32 l[2];
35 PRUint16 s[4];
36 PRUint8 b[8];
37 } RC2Block;
38
39 struct RC2ContextStr {
40 union {
41 PRUint8 Kb[128];
42 PRUint16 Kw[64];
43 } u;
44 RC2Block iv;
45 rc2Func *enc;
46 rc2Func *dec;
47 };
48
49 #define B u.Kb
50 #define K u.Kw
51 #define BYTESWAP(x) ((x) << 8 | (x) >> 8)
52 #define SWAPK(i) cx->K[i] = (tmpS = cx->K[i], BYTESWAP(tmpS))
53 #define RC2_BLOCK_SIZE 8
54
55 #define LOAD_HARD(R) \
56 R[0] = (PRUint16)input[1] << 8 | input[0]; \
57 R[1] = (PRUint16)input[3] << 8 | input[2]; \
58 R[2] = (PRUint16)input[5] << 8 | input[4]; \
59 R[3] = (PRUint16)input[7] << 8 | input[6];
60 #define LOAD_EASY(R) \
61 R[0] = ((PRUint16 *)input)[0]; \
62 R[1] = ((PRUint16 *)input)[1]; \
63 R[2] = ((PRUint16 *)input)[2]; \
64 R[3] = ((PRUint16 *)input)[3];
65 #define STORE_HARD(R) \
66 output[0] = (PRUint8)(R[0]); output[1] = (PRUint8)(R[0] >> 8); \
67 output[2] = (PRUint8)(R[1]); output[3] = (PRUint8)(R[1] >> 8); \
68 output[4] = (PRUint8)(R[2]); output[5] = (PRUint8)(R[2] >> 8); \
69 output[6] = (PRUint8)(R[3]); output[7] = (PRUint8)(R[3] >> 8);
70 #define STORE_EASY(R) \
71 ((PRUint16 *)output)[0] = R[0]; \
72 ((PRUint16 *)output)[1] = R[1]; \
73 ((PRUint16 *)output)[2] = R[2]; \
74 ((PRUint16 *)output)[3] = R[3];
75
76 #if defined (NSS_X86_OR_X64)
77 #define LOAD(R) LOAD_EASY(R)
78 #define STORE(R) STORE_EASY(R)
79 #elif !defined(IS_LITTLE_ENDIAN)
80 #define LOAD(R) LOAD_HARD(R)
81 #define STORE(R) STORE_HARD(R)
82 #else
83 #define LOAD(R) if ((ptrdiff_t)input & 1) { LOAD_HARD(R) } else { LOAD_EASY(R) }
84 #define STORE(R) if ((ptrdiff_t)input & 1) { STORE_HARD(R) } else { STORE_EASY(R ) }
85 #endif
86
87 static const PRUint8 S[256] = {
88 0331,0170,0371,0304,0031,0335,0265,0355,0050,0351,0375,0171,0112,0240,0330,0235,
89 0306,0176,0067,0203,0053,0166,0123,0216,0142,0114,0144,0210,0104,0213,0373,0242,
90 0027,0232,0131,0365,0207,0263,0117,0023,0141,0105,0155,0215,0011,0201,0175,0062,
91 0275,0217,0100,0353,0206,0267,0173,0013,0360,0225,0041,0042,0134,0153,0116,0202,
92 0124,0326,0145,0223,0316,0140,0262,0034,0163,0126,0300,0024,0247,0214,0361,0334,
93 0022,0165,0312,0037,0073,0276,0344,0321,0102,0075,0324,0060,0243,0074,0266,0046,
94 0157,0277,0016,0332,0106,0151,0007,0127,0047,0362,0035,0233,0274,0224,0103,0003,
95 0370,0021,0307,0366,0220,0357,0076,0347,0006,0303,0325,0057,0310,0146,0036,0327,
96 0010,0350,0352,0336,0200,0122,0356,0367,0204,0252,0162,0254,0065,0115,0152,0052,
97 0226,0032,0322,0161,0132,0025,0111,0164,0113,0237,0320,0136,0004,0030,0244,0354,
98 0302,0340,0101,0156,0017,0121,0313,0314,0044,0221,0257,0120,0241,0364,0160,0071,
99 0231,0174,0072,0205,0043,0270,0264,0172,0374,0002,0066,0133,0045,0125,0227,0061,
100 0055,0135,0372,0230,0343,0212,0222,0256,0005,0337,0051,0020,0147,0154,0272,0311,
101 0323,0000,0346,0317,0341,0236,0250,0054,0143,0026,0001,0077,0130,0342,0211,0251,
102 0015,0070,0064,0033,0253,0063,0377,0260,0273,0110,0014,0137,0271,0261,0315,0056,
103 0305,0363,0333,0107,0345,0245,0234,0167,0012,0246,0040,0150,0376,0177,0301,0255
104 };
105
106 RC2Context * RC2_AllocateContext(void)
107 {
108 return PORT_ZNew(RC2Context);
109 }
110 SECStatus
111 RC2_InitContext(RC2Context *cx, const unsigned char *key, unsigned int len,
112 const unsigned char *input, int mode, unsigned int efLen8,
113 unsigned int unused)
114 {
115 PRUint8 *L,*L2;
116 int i;
117 #if !defined(IS_LITTLE_ENDIAN)
118 PRUint16 tmpS;
119 #endif
120 PRUint8 tmpB;
121
122 if (!key || !cx || !len || len > (sizeof cx->B) ||
123 efLen8 > (sizeof cx->B)) {
124 PORT_SetError(SEC_ERROR_INVALID_ARGS);
125 return SECFailure;
126 }
127 if (mode == NSS_RC2) {
128 /* groovy */
129 } else if (mode == NSS_RC2_CBC) {
130 if (!input) {
131 PORT_SetError(SEC_ERROR_INVALID_ARGS);
132 return SECFailure;
133 }
134 } else {
135 PORT_SetError(SEC_ERROR_INVALID_ARGS);
136 return SECFailure;
137 }
138
139 if (mode == NSS_RC2_CBC) {
140 cx->enc = & rc2_EncryptCBC;
141 cx->dec = & rc2_DecryptCBC;
142 LOAD(cx->iv.s);
143 } else {
144 cx->enc = & rc2_EncryptECB;
145 cx->dec = & rc2_DecryptECB;
146 }
147
148 /* Step 0. Copy key into table. */
149 memcpy(cx->B, key, len);
150
151 /* Step 1. Compute all values to the right of the key. */
152 L2 = cx->B;
153 L = L2 + len;
154 tmpB = L[-1];
155 for (i = (sizeof cx->B) - len; i > 0; --i) {
156 *L++ = tmpB = S[ (PRUint8)(tmpB + *L2++) ];
157 }
158
159 /* step 2. Adjust left most byte of effective key. */
160 i = (sizeof cx->B) - efLen8;
161 L = cx->B + i;
162 *L = tmpB = S[*L]; /* mask is always 0xff */
163
164 /* step 3. Recompute all values to the left of effective key. */
165 L2 = --L + efLen8;
166 while(L >= cx->B) {
167 *L-- = tmpB = S[ tmpB ^ *L2-- ];
168 }
169
170 #if !defined(IS_LITTLE_ENDIAN)
171 for (i = 63; i >= 0; --i) {
172 SWAPK(i); /* candidate for unrolling */
173 }
174 #endif
175 return SECSuccess;
176 }
177
178 /*
179 ** Create a new RC2 context suitable for RC2 encryption/decryption.
180 ** "key" raw key data
181 ** "len" the number of bytes of key data
182 ** "iv" is the CBC initialization vector (if mode is NSS_RC2_CBC)
183 ** "mode" one of NSS_RC2 or NSS_RC2_CBC
184 ** "effectiveKeyLen" in bytes, not bits.
185 **
186 ** When mode is set to NSS_RC2_CBC the RC2 cipher is run in "cipher block
187 ** chaining" mode.
188 */
189 RC2Context *
190 RC2_CreateContext(const unsigned char *key, unsigned int len,
191 const unsigned char *iv, int mode, unsigned efLen8)
192 {
193 RC2Context *cx = PORT_ZNew(RC2Context);
194 if (cx) {
195 SECStatus rv = RC2_InitContext(cx, key, len, iv, mode, efLen8, 0);
196 if (rv != SECSuccess) {
197 RC2_DestroyContext(cx, PR_TRUE);
198 cx = NULL;
199 }
200 }
201 return cx;
202 }
203
204 /*
205 ** Destroy an RC2 encryption/decryption context.
206 ** "cx" the context
207 ** "freeit" if PR_TRUE then free the object as well as its sub-objects
208 */
209 void
210 RC2_DestroyContext(RC2Context *cx, PRBool freeit)
211 {
212 if (cx) {
213 memset(cx, 0, sizeof *cx);
214 if (freeit) {
215 PORT_Free(cx);
216 }
217 }
218 }
219
220 #define ROL(x,k) (x << k | x >> (16-k))
221 #define MIX(j) \
222 R0 = R0 + cx->K[ 4*j+0] + (R3 & R2) + (~R3 & R1); R0 = ROL(R0,1);\
223 R1 = R1 + cx->K[ 4*j+1] + (R0 & R3) + (~R0 & R2); R1 = ROL(R1,2);\
224 R2 = R2 + cx->K[ 4*j+2] + (R1 & R0) + (~R1 & R3); R2 = ROL(R2,3);\
225 R3 = R3 + cx->K[ 4*j+3] + (R2 & R1) + (~R2 & R0); R3 = ROL(R3,5)
226 #define MASH \
227 R0 = R0 + cx->K[R3 & 63];\
228 R1 = R1 + cx->K[R0 & 63];\
229 R2 = R2 + cx->K[R1 & 63];\
230 R3 = R3 + cx->K[R2 & 63]
231
232 /* Encrypt one block */
233 static void
234 rc2_Encrypt1Block(RC2Context *cx, RC2Block *output, RC2Block *input)
235 {
236 register PRUint16 R0, R1, R2, R3;
237
238 /* step 1. Initialize input. */
239 R0 = input->s[0];
240 R1 = input->s[1];
241 R2 = input->s[2];
242 R3 = input->s[3];
243
244 /* step 2. Expand Key (already done, in context) */
245 /* step 3. j = 0 */
246 /* step 4. Perform 5 mixing rounds. */
247
248 MIX(0);
249 MIX(1);
250 MIX(2);
251 MIX(3);
252 MIX(4);
253
254 /* step 5. Perform 1 mashing round. */
255 MASH;
256
257 /* step 6. Perform 6 mixing rounds. */
258
259 MIX(5);
260 MIX(6);
261 MIX(7);
262 MIX(8);
263 MIX(9);
264 MIX(10);
265
266 /* step 7. Perform 1 mashing round. */
267 MASH;
268
269 /* step 8. Perform 5 mixing rounds. */
270
271 MIX(11);
272 MIX(12);
273 MIX(13);
274 MIX(14);
275 MIX(15);
276
277 /* output results */
278 output->s[0] = R0;
279 output->s[1] = R1;
280 output->s[2] = R2;
281 output->s[3] = R3;
282 }
283
284 #define ROR(x,k) (x >> k | x << (16-k))
285 #define R_MIX(j) \
286 R3 = ROR(R3,5); R3 = R3 - cx->K[ 4*j+3] - (R2 & R1) - (~R2 & R0); \
287 R2 = ROR(R2,3); R2 = R2 - cx->K[ 4*j+2] - (R1 & R0) - (~R1 & R3); \
288 R1 = ROR(R1,2); R1 = R1 - cx->K[ 4*j+1] - (R0 & R3) - (~R0 & R2); \
289 R0 = ROR(R0,1); R0 = R0 - cx->K[ 4*j+0] - (R3 & R2) - (~R3 & R1)
290 #define R_MASH \
291 R3 = R3 - cx->K[R2 & 63];\
292 R2 = R2 - cx->K[R1 & 63];\
293 R1 = R1 - cx->K[R0 & 63];\
294 R0 = R0 - cx->K[R3 & 63]
295
296 /* Encrypt one block */
297 static void
298 rc2_Decrypt1Block(RC2Context *cx, RC2Block *output, RC2Block *input)
299 {
300 register PRUint16 R0, R1, R2, R3;
301
302 /* step 1. Initialize input. */
303 R0 = input->s[0];
304 R1 = input->s[1];
305 R2 = input->s[2];
306 R3 = input->s[3];
307
308 /* step 2. Expand Key (already done, in context) */
309 /* step 3. j = 63 */
310 /* step 4. Perform 5 r_mixing rounds. */
311 R_MIX(15);
312 R_MIX(14);
313 R_MIX(13);
314 R_MIX(12);
315 R_MIX(11);
316
317 /* step 5. Perform 1 r_mashing round. */
318 R_MASH;
319
320 /* step 6. Perform 6 r_mixing rounds. */
321 R_MIX(10);
322 R_MIX(9);
323 R_MIX(8);
324 R_MIX(7);
325 R_MIX(6);
326 R_MIX(5);
327
328 /* step 7. Perform 1 r_mashing round. */
329 R_MASH;
330
331 /* step 8. Perform 5 r_mixing rounds. */
332 R_MIX(4);
333 R_MIX(3);
334 R_MIX(2);
335 R_MIX(1);
336 R_MIX(0);
337
338 /* output results */
339 output->s[0] = R0;
340 output->s[1] = R1;
341 output->s[2] = R2;
342 output->s[3] = R3;
343 }
344
345 static SECStatus
346 rc2_EncryptECB(RC2Context *cx, unsigned char *output,
347 const unsigned char *input, unsigned int inputLen)
348 {
349 RC2Block iBlock;
350
351 while (inputLen > 0) {
352 LOAD(iBlock.s)
353 rc2_Encrypt1Block(cx, &iBlock, &iBlock);
354 STORE(iBlock.s)
355 output += RC2_BLOCK_SIZE;
356 input += RC2_BLOCK_SIZE;
357 inputLen -= RC2_BLOCK_SIZE;
358 }
359 return SECSuccess;
360 }
361
362 static SECStatus
363 rc2_DecryptECB(RC2Context *cx, unsigned char *output,
364 const unsigned char *input, unsigned int inputLen)
365 {
366 RC2Block iBlock;
367
368 while (inputLen > 0) {
369 LOAD(iBlock.s)
370 rc2_Decrypt1Block(cx, &iBlock, &iBlock);
371 STORE(iBlock.s)
372 output += RC2_BLOCK_SIZE;
373 input += RC2_BLOCK_SIZE;
374 inputLen -= RC2_BLOCK_SIZE;
375 }
376 return SECSuccess;
377 }
378
379 static SECStatus
380 rc2_EncryptCBC(RC2Context *cx, unsigned char *output,
381 const unsigned char *input, unsigned int inputLen)
382 {
383 RC2Block iBlock;
384
385 while (inputLen > 0) {
386
387 LOAD(iBlock.s)
388 iBlock.l[0] ^= cx->iv.l[0];
389 iBlock.l[1] ^= cx->iv.l[1];
390 rc2_Encrypt1Block(cx, &iBlock, &iBlock);
391 cx->iv = iBlock;
392 STORE(iBlock.s)
393 output += RC2_BLOCK_SIZE;
394 input += RC2_BLOCK_SIZE;
395 inputLen -= RC2_BLOCK_SIZE;
396 }
397 return SECSuccess;
398 }
399
400 static SECStatus
401 rc2_DecryptCBC(RC2Context *cx, unsigned char *output,
402 const unsigned char *input, unsigned int inputLen)
403 {
404 RC2Block iBlock;
405 RC2Block oBlock;
406
407 while (inputLen > 0) {
408 LOAD(iBlock.s)
409 rc2_Decrypt1Block(cx, &oBlock, &iBlock);
410 oBlock.l[0] ^= cx->iv.l[0];
411 oBlock.l[1] ^= cx->iv.l[1];
412 cx->iv = iBlock;
413 STORE(oBlock.s)
414 output += RC2_BLOCK_SIZE;
415 input += RC2_BLOCK_SIZE;
416 inputLen -= RC2_BLOCK_SIZE;
417 }
418 return SECSuccess;
419 }
420
421
422 /*
423 ** Perform RC2 encryption.
424 ** "cx" the context
425 ** "output" the output buffer to store the encrypted data.
426 ** "outputLen" how much data is stored in "output". Set by the routine
427 ** after some data is stored in output.
428 ** "maxOutputLen" the maximum amount of data that can ever be
429 ** stored in "output"
430 ** "input" the input data
431 ** "inputLen" the amount of input data
432 */
433 SECStatus RC2_Encrypt(RC2Context *cx, unsigned char *output,
434 unsigned int *outputLen, unsigned int maxOutputLen,
435 const unsigned char *input, unsigned int inputLen)
436 {
437 SECStatus rv = SECSuccess;
438 if (inputLen) {
439 if (inputLen % RC2_BLOCK_SIZE) {
440 PORT_SetError(SEC_ERROR_INPUT_LEN);
441 return SECFailure;
442 }
443 if (maxOutputLen < inputLen) {
444 PORT_SetError(SEC_ERROR_OUTPUT_LEN);
445 return SECFailure;
446 }
447 rv = (*cx->enc)(cx, output, input, inputLen);
448 }
449 if (rv == SECSuccess) {
450 *outputLen = inputLen;
451 }
452 return rv;
453 }
454
455 /*
456 ** Perform RC2 decryption.
457 ** "cx" the context
458 ** "output" the output buffer to store the decrypted data.
459 ** "outputLen" how much data is stored in "output". Set by the routine
460 ** after some data is stored in output.
461 ** "maxOutputLen" the maximum amount of data that can ever be
462 ** stored in "output"
463 ** "input" the input data
464 ** "inputLen" the amount of input data
465 */
466 SECStatus RC2_Decrypt(RC2Context *cx, unsigned char *output,
467 unsigned int *outputLen, unsigned int maxOutputLen,
468 const unsigned char *input, unsigned int inputLen)
469 {
470 SECStatus rv = SECSuccess;
471 if (inputLen) {
472 if (inputLen % RC2_BLOCK_SIZE) {
473 PORT_SetError(SEC_ERROR_INPUT_LEN);
474 return SECFailure;
475 }
476 if (maxOutputLen < inputLen) {
477 PORT_SetError(SEC_ERROR_OUTPUT_LEN);
478 return SECFailure;
479 }
480 rv = (*cx->dec)(cx, output, input, inputLen);
481 }
482 if (rv == SECSuccess) {
483 *outputLen = inputLen;
484 }
485 return rv;
486 }
487
OLDNEW
« no previous file with comments | « mozilla/security/nss/lib/freebl/aeskeywrap.c ('k') | mozilla/security/nss/lib/freebl/alghmac.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698