| Index: mozilla/security/nss/lib/freebl/alg2268.c | 
| =================================================================== | 
| --- mozilla/security/nss/lib/freebl/alg2268.c	(revision 191424) | 
| +++ mozilla/security/nss/lib/freebl/alg2268.c	(working copy) | 
| @@ -1,487 +0,0 @@ | 
| -/* | 
| - * alg2268.c - implementation of the algorithm in RFC 2268 | 
| - * | 
| - * This Source Code Form is subject to the terms of the Mozilla Public | 
| - * License, v. 2.0. If a copy of the MPL was not distributed with this | 
| - * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ | 
| - | 
| -/* $Id: alg2268.c,v 1.10 2012/04/25 14:49:43 gerv%gerv.net Exp $ */ | 
| - | 
| -#ifdef FREEBL_NO_DEPEND | 
| -#include "stubs.h" | 
| -#endif | 
| - | 
| -#include "blapi.h" | 
| -#include "secerr.h" | 
| -#ifdef XP_UNIX_XXX | 
| -#include <stddef.h>	/* for ptrdiff_t */ | 
| -#endif | 
| - | 
| -/* | 
| -** RC2 symmetric block cypher | 
| -*/ | 
| - | 
| -typedef SECStatus (rc2Func)(RC2Context *cx, unsigned char *output, | 
| -		           const unsigned char *input, unsigned int inputLen); | 
| - | 
| -/* forward declarations */ | 
| -static rc2Func rc2_EncryptECB; | 
| -static rc2Func rc2_DecryptECB; | 
| -static rc2Func rc2_EncryptCBC; | 
| -static rc2Func rc2_DecryptCBC; | 
| - | 
| -typedef union { | 
| -    PRUint32	l[2]; | 
| -    PRUint16	s[4]; | 
| -    PRUint8	b[8]; | 
| -} RC2Block; | 
| - | 
| -struct RC2ContextStr { | 
| -    union { | 
| -    	PRUint8  Kb[128]; | 
| -	PRUint16 Kw[64]; | 
| -    } u; | 
| -    RC2Block     iv; | 
| -    rc2Func      *enc; | 
| -    rc2Func      *dec; | 
| -}; | 
| - | 
| -#define B u.Kb | 
| -#define K u.Kw | 
| -#define BYTESWAP(x) ((x) << 8 | (x) >> 8) | 
| -#define SWAPK(i)  cx->K[i] = (tmpS = cx->K[i], BYTESWAP(tmpS)) | 
| -#define RC2_BLOCK_SIZE 8 | 
| - | 
| -#define LOAD_HARD(R) \ | 
| -    R[0] = (PRUint16)input[1] << 8 | input[0]; \ | 
| -    R[1] = (PRUint16)input[3] << 8 | input[2]; \ | 
| -    R[2] = (PRUint16)input[5] << 8 | input[4]; \ | 
| -    R[3] = (PRUint16)input[7] << 8 | input[6]; | 
| -#define LOAD_EASY(R) \ | 
| -    R[0] = ((PRUint16 *)input)[0]; \ | 
| -    R[1] = ((PRUint16 *)input)[1]; \ | 
| -    R[2] = ((PRUint16 *)input)[2]; \ | 
| -    R[3] = ((PRUint16 *)input)[3]; | 
| -#define STORE_HARD(R) \ | 
| -    output[0] =  (PRUint8)(R[0]);   output[1] = (PRUint8)(R[0] >> 8); \ | 
| -    output[2] =  (PRUint8)(R[1]);   output[3] = (PRUint8)(R[1] >> 8); \ | 
| -    output[4] =  (PRUint8)(R[2]);   output[5] = (PRUint8)(R[2] >> 8); \ | 
| -    output[6] =  (PRUint8)(R[3]);   output[7] = (PRUint8)(R[3] >> 8); | 
| -#define STORE_EASY(R) \ | 
| -    ((PRUint16 *)output)[0] =  R[0]; \ | 
| -    ((PRUint16 *)output)[1] =  R[1]; \ | 
| -    ((PRUint16 *)output)[2] =  R[2]; \ | 
| -    ((PRUint16 *)output)[3] =  R[3]; | 
| - | 
| -#if defined (NSS_X86_OR_X64) | 
| -#define LOAD(R)  LOAD_EASY(R) | 
| -#define STORE(R) STORE_EASY(R) | 
| -#elif !defined(IS_LITTLE_ENDIAN) | 
| -#define LOAD(R)  LOAD_HARD(R) | 
| -#define STORE(R) STORE_HARD(R) | 
| -#else | 
| -#define LOAD(R) if ((ptrdiff_t)input & 1) { LOAD_HARD(R) } else { LOAD_EASY(R) } | 
| -#define STORE(R) if ((ptrdiff_t)input & 1) { STORE_HARD(R) } else { STORE_EASY(R) } | 
| -#endif | 
| - | 
| -static const PRUint8 S[256] = { | 
| -0331,0170,0371,0304,0031,0335,0265,0355,0050,0351,0375,0171,0112,0240,0330,0235, | 
| -0306,0176,0067,0203,0053,0166,0123,0216,0142,0114,0144,0210,0104,0213,0373,0242, | 
| -0027,0232,0131,0365,0207,0263,0117,0023,0141,0105,0155,0215,0011,0201,0175,0062, | 
| -0275,0217,0100,0353,0206,0267,0173,0013,0360,0225,0041,0042,0134,0153,0116,0202, | 
| -0124,0326,0145,0223,0316,0140,0262,0034,0163,0126,0300,0024,0247,0214,0361,0334, | 
| -0022,0165,0312,0037,0073,0276,0344,0321,0102,0075,0324,0060,0243,0074,0266,0046, | 
| -0157,0277,0016,0332,0106,0151,0007,0127,0047,0362,0035,0233,0274,0224,0103,0003, | 
| -0370,0021,0307,0366,0220,0357,0076,0347,0006,0303,0325,0057,0310,0146,0036,0327, | 
| -0010,0350,0352,0336,0200,0122,0356,0367,0204,0252,0162,0254,0065,0115,0152,0052, | 
| -0226,0032,0322,0161,0132,0025,0111,0164,0113,0237,0320,0136,0004,0030,0244,0354, | 
| -0302,0340,0101,0156,0017,0121,0313,0314,0044,0221,0257,0120,0241,0364,0160,0071, | 
| -0231,0174,0072,0205,0043,0270,0264,0172,0374,0002,0066,0133,0045,0125,0227,0061, | 
| -0055,0135,0372,0230,0343,0212,0222,0256,0005,0337,0051,0020,0147,0154,0272,0311, | 
| -0323,0000,0346,0317,0341,0236,0250,0054,0143,0026,0001,0077,0130,0342,0211,0251, | 
| -0015,0070,0064,0033,0253,0063,0377,0260,0273,0110,0014,0137,0271,0261,0315,0056, | 
| -0305,0363,0333,0107,0345,0245,0234,0167,0012,0246,0040,0150,0376,0177,0301,0255 | 
| -}; | 
| - | 
| -RC2Context * RC2_AllocateContext(void) | 
| -{ | 
| -    return PORT_ZNew(RC2Context); | 
| -} | 
| -SECStatus | 
| -RC2_InitContext(RC2Context *cx, const unsigned char *key, unsigned int len, | 
| -	        const unsigned char *input, int mode, unsigned int efLen8, | 
| -		unsigned int unused) | 
| -{ | 
| -    PRUint8    *L,*L2; | 
| -    int         i; | 
| -#if !defined(IS_LITTLE_ENDIAN) | 
| -    PRUint16    tmpS; | 
| -#endif | 
| -    PRUint8     tmpB; | 
| - | 
| -    if (!key || !cx || !len || len > (sizeof cx->B) || | 
| -	efLen8 > (sizeof cx->B)) { | 
| -	PORT_SetError(SEC_ERROR_INVALID_ARGS); | 
| -    	return SECFailure; | 
| -    } | 
| -    if (mode == NSS_RC2) { | 
| -    	/* groovy */ | 
| -    } else if (mode == NSS_RC2_CBC) { | 
| -    	if (!input) { | 
| -	    PORT_SetError(SEC_ERROR_INVALID_ARGS); | 
| -	    return SECFailure; | 
| -	} | 
| -    } else { | 
| -	PORT_SetError(SEC_ERROR_INVALID_ARGS); | 
| -	return SECFailure; | 
| -    } | 
| - | 
| -    if (mode == NSS_RC2_CBC) { | 
| -    	cx->enc = & rc2_EncryptCBC; | 
| -	cx->dec = & rc2_DecryptCBC; | 
| -	LOAD(cx->iv.s); | 
| -    } else { | 
| -    	cx->enc = & rc2_EncryptECB; | 
| -	cx->dec = & rc2_DecryptECB; | 
| -    } | 
| - | 
| -    /* Step 0. Copy key into table. */ | 
| -    memcpy(cx->B, key, len); | 
| - | 
| -    /* Step 1. Compute all values to the right of the key. */ | 
| -    L2 = cx->B; | 
| -    L = L2 + len; | 
| -    tmpB = L[-1]; | 
| -    for (i = (sizeof cx->B) - len; i > 0; --i) { | 
| -	*L++ = tmpB = S[ (PRUint8)(tmpB + *L2++) ]; | 
| -    } | 
| - | 
| -    /* step 2. Adjust left most byte of effective key. */ | 
| -    i = (sizeof cx->B) - efLen8; | 
| -    L = cx->B + i; | 
| -    *L = tmpB = S[*L];				/* mask is always 0xff */ | 
| - | 
| -    /* step 3. Recompute all values to the left of effective key. */ | 
| -    L2 = --L + efLen8; | 
| -    while(L >= cx->B) { | 
| -	*L-- = tmpB = S[ tmpB ^ *L2-- ]; | 
| -    } | 
| - | 
| -#if !defined(IS_LITTLE_ENDIAN) | 
| -    for (i = 63; i >= 0; --i) { | 
| -        SWAPK(i);		/* candidate for unrolling */ | 
| -    } | 
| -#endif | 
| -    return SECSuccess; | 
| -} | 
| - | 
| -/* | 
| -** Create a new RC2 context suitable for RC2 encryption/decryption. | 
| -** 	"key" raw key data | 
| -** 	"len" the number of bytes of key data | 
| -** 	"iv" is the CBC initialization vector (if mode is NSS_RC2_CBC) | 
| -** 	"mode" one of NSS_RC2 or NSS_RC2_CBC | 
| -**	"effectiveKeyLen" in bytes, not bits. | 
| -** | 
| -** When mode is set to NSS_RC2_CBC the RC2 cipher is run in "cipher block | 
| -** chaining" mode. | 
| -*/ | 
| -RC2Context * | 
| -RC2_CreateContext(const unsigned char *key, unsigned int len, | 
| -		  const unsigned char *iv, int mode, unsigned efLen8) | 
| -{ | 
| -    RC2Context *cx = PORT_ZNew(RC2Context); | 
| -    if (cx) { | 
| -	SECStatus rv = RC2_InitContext(cx, key, len, iv, mode, efLen8, 0); | 
| -	if (rv != SECSuccess) { | 
| -	    RC2_DestroyContext(cx, PR_TRUE); | 
| -	    cx = NULL; | 
| -	} | 
| -    } | 
| -    return cx; | 
| -} | 
| - | 
| -/* | 
| -** Destroy an RC2 encryption/decryption context. | 
| -**	"cx" the context | 
| -**	"freeit" if PR_TRUE then free the object as well as its sub-objects | 
| -*/ | 
| -void | 
| -RC2_DestroyContext(RC2Context *cx, PRBool freeit) | 
| -{ | 
| -    if (cx) { | 
| -	memset(cx, 0, sizeof *cx); | 
| -	if (freeit) { | 
| -	    PORT_Free(cx); | 
| -	} | 
| -    } | 
| -} | 
| - | 
| -#define ROL(x,k) (x << k | x >> (16-k)) | 
| -#define MIX(j) \ | 
| -    R0 = R0 + cx->K[ 4*j+0] + (R3 & R2) + (~R3 & R1);  R0 = ROL(R0,1);\ | 
| -    R1 = R1 + cx->K[ 4*j+1] + (R0 & R3) + (~R0 & R2);  R1 = ROL(R1,2);\ | 
| -    R2 = R2 + cx->K[ 4*j+2] + (R1 & R0) + (~R1 & R3);  R2 = ROL(R2,3);\ | 
| -    R3 = R3 + cx->K[ 4*j+3] + (R2 & R1) + (~R2 & R0);  R3 = ROL(R3,5) | 
| -#define MASH \ | 
| -    R0 = R0 + cx->K[R3 & 63];\ | 
| -    R1 = R1 + cx->K[R0 & 63];\ | 
| -    R2 = R2 + cx->K[R1 & 63];\ | 
| -    R3 = R3 + cx->K[R2 & 63] | 
| - | 
| -/* Encrypt one block */ | 
| -static void | 
| -rc2_Encrypt1Block(RC2Context *cx, RC2Block *output, RC2Block *input) | 
| -{ | 
| -    register PRUint16 R0, R1, R2, R3; | 
| - | 
| -    /* step 1. Initialize input. */ | 
| -    R0 = input->s[0]; | 
| -    R1 = input->s[1]; | 
| -    R2 = input->s[2]; | 
| -    R3 = input->s[3]; | 
| - | 
| -    /* step 2.  Expand Key (already done, in context) */ | 
| -    /* step 3.  j = 0 */ | 
| -    /* step 4.  Perform 5 mixing rounds. */ | 
| - | 
| -    MIX(0); | 
| -    MIX(1); | 
| -    MIX(2); | 
| -    MIX(3); | 
| -    MIX(4); | 
| - | 
| -    /* step 5. Perform 1 mashing round. */ | 
| -    MASH; | 
| - | 
| -    /* step 6. Perform 6 mixing rounds. */ | 
| - | 
| -    MIX(5); | 
| -    MIX(6); | 
| -    MIX(7); | 
| -    MIX(8); | 
| -    MIX(9); | 
| -    MIX(10); | 
| - | 
| -    /* step 7. Perform 1 mashing round. */ | 
| -    MASH; | 
| - | 
| -    /* step 8. Perform 5 mixing rounds. */ | 
| - | 
| -    MIX(11); | 
| -    MIX(12); | 
| -    MIX(13); | 
| -    MIX(14); | 
| -    MIX(15); | 
| - | 
| -    /* output results */ | 
| -    output->s[0] = R0; | 
| -    output->s[1] = R1; | 
| -    output->s[2] = R2; | 
| -    output->s[3] = R3; | 
| -} | 
| - | 
| -#define ROR(x,k) (x >> k | x << (16-k)) | 
| -#define R_MIX(j) \ | 
| -    R3 = ROR(R3,5); R3 = R3 - cx->K[ 4*j+3] - (R2 & R1) - (~R2 & R0);  \ | 
| -    R2 = ROR(R2,3); R2 = R2 - cx->K[ 4*j+2] - (R1 & R0) - (~R1 & R3);  \ | 
| -    R1 = ROR(R1,2); R1 = R1 - cx->K[ 4*j+1] - (R0 & R3) - (~R0 & R2);  \ | 
| -    R0 = ROR(R0,1); R0 = R0 - cx->K[ 4*j+0] - (R3 & R2) - (~R3 & R1) | 
| -#define R_MASH \ | 
| -    R3 = R3 - cx->K[R2 & 63];\ | 
| -    R2 = R2 - cx->K[R1 & 63];\ | 
| -    R1 = R1 - cx->K[R0 & 63];\ | 
| -    R0 = R0 - cx->K[R3 & 63] | 
| - | 
| -/* Encrypt one block */ | 
| -static void | 
| -rc2_Decrypt1Block(RC2Context *cx, RC2Block *output, RC2Block *input) | 
| -{ | 
| -    register PRUint16 R0, R1, R2, R3; | 
| - | 
| -    /* step 1. Initialize input. */ | 
| -    R0 = input->s[0]; | 
| -    R1 = input->s[1]; | 
| -    R2 = input->s[2]; | 
| -    R3 = input->s[3]; | 
| - | 
| -    /* step 2.  Expand Key (already done, in context) */ | 
| -    /* step 3.  j = 63 */ | 
| -    /* step 4.  Perform 5 r_mixing rounds. */ | 
| -    R_MIX(15); | 
| -    R_MIX(14); | 
| -    R_MIX(13); | 
| -    R_MIX(12); | 
| -    R_MIX(11); | 
| - | 
| -    /* step 5.  Perform 1 r_mashing round. */ | 
| -    R_MASH; | 
| - | 
| -    /* step 6.  Perform 6 r_mixing rounds. */ | 
| -    R_MIX(10); | 
| -    R_MIX(9); | 
| -    R_MIX(8); | 
| -    R_MIX(7); | 
| -    R_MIX(6); | 
| -    R_MIX(5); | 
| - | 
| -    /* step 7.  Perform 1 r_mashing round. */ | 
| -    R_MASH; | 
| - | 
| -    /* step 8.  Perform 5 r_mixing rounds. */ | 
| -    R_MIX(4); | 
| -    R_MIX(3); | 
| -    R_MIX(2); | 
| -    R_MIX(1); | 
| -    R_MIX(0); | 
| - | 
| -    /* output results */ | 
| -    output->s[0] = R0; | 
| -    output->s[1] = R1; | 
| -    output->s[2] = R2; | 
| -    output->s[3] = R3; | 
| -} | 
| - | 
| -static SECStatus | 
| -rc2_EncryptECB(RC2Context *cx, unsigned char *output, | 
| -	       const unsigned char *input, unsigned int inputLen) | 
| -{ | 
| -    RC2Block  iBlock; | 
| - | 
| -    while (inputLen > 0) { | 
| -    	LOAD(iBlock.s) | 
| -	rc2_Encrypt1Block(cx, &iBlock, &iBlock); | 
| -	STORE(iBlock.s) | 
| -	output   += RC2_BLOCK_SIZE; | 
| -	input    += RC2_BLOCK_SIZE; | 
| -	inputLen -= RC2_BLOCK_SIZE; | 
| -    } | 
| -    return SECSuccess; | 
| -} | 
| - | 
| -static SECStatus | 
| -rc2_DecryptECB(RC2Context *cx, unsigned char *output, | 
| -	       const unsigned char *input, unsigned int inputLen) | 
| -{ | 
| -    RC2Block  iBlock; | 
| - | 
| -    while (inputLen > 0) { | 
| -    	LOAD(iBlock.s) | 
| -	rc2_Decrypt1Block(cx, &iBlock, &iBlock); | 
| -	STORE(iBlock.s) | 
| -	output   += RC2_BLOCK_SIZE; | 
| -	input    += RC2_BLOCK_SIZE; | 
| -	inputLen -= RC2_BLOCK_SIZE; | 
| -    } | 
| -    return SECSuccess; | 
| -} | 
| - | 
| -static SECStatus | 
| -rc2_EncryptCBC(RC2Context *cx, unsigned char *output, | 
| -	       const unsigned char *input, unsigned int inputLen) | 
| -{ | 
| -    RC2Block  iBlock; | 
| - | 
| -    while (inputLen > 0) { | 
| - | 
| -	LOAD(iBlock.s) | 
| -	iBlock.l[0] ^= cx->iv.l[0]; | 
| -	iBlock.l[1] ^= cx->iv.l[1]; | 
| -	rc2_Encrypt1Block(cx, &iBlock, &iBlock); | 
| -	cx->iv = iBlock; | 
| -	STORE(iBlock.s) | 
| -	output   += RC2_BLOCK_SIZE; | 
| -	input    += RC2_BLOCK_SIZE; | 
| -	inputLen -= RC2_BLOCK_SIZE; | 
| -    } | 
| -    return SECSuccess; | 
| -} | 
| - | 
| -static SECStatus | 
| -rc2_DecryptCBC(RC2Context *cx, unsigned char *output, | 
| -	       const unsigned char *input, unsigned int inputLen) | 
| -{ | 
| -    RC2Block  iBlock; | 
| -    RC2Block  oBlock; | 
| - | 
| -    while (inputLen > 0) { | 
| -	LOAD(iBlock.s) | 
| -	rc2_Decrypt1Block(cx, &oBlock, &iBlock); | 
| -	oBlock.l[0] ^= cx->iv.l[0]; | 
| -	oBlock.l[1] ^= cx->iv.l[1]; | 
| -	cx->iv = iBlock; | 
| -	STORE(oBlock.s) | 
| -	output   += RC2_BLOCK_SIZE; | 
| -	input    += RC2_BLOCK_SIZE; | 
| -	inputLen -= RC2_BLOCK_SIZE; | 
| -    } | 
| -    return SECSuccess; | 
| -} | 
| - | 
| - | 
| -/* | 
| -** Perform RC2 encryption. | 
| -**	"cx" the context | 
| -**	"output" the output buffer to store the encrypted data. | 
| -**	"outputLen" how much data is stored in "output". Set by the routine | 
| -**	   after some data is stored in output. | 
| -**	"maxOutputLen" the maximum amount of data that can ever be | 
| -**	   stored in "output" | 
| -**	"input" the input data | 
| -**	"inputLen" the amount of input data | 
| -*/ | 
| -SECStatus RC2_Encrypt(RC2Context *cx, unsigned char *output, | 
| -		      unsigned int *outputLen, unsigned int maxOutputLen, | 
| -		      const unsigned char *input, unsigned int inputLen) | 
| -{ | 
| -    SECStatus rv = SECSuccess; | 
| -    if (inputLen) { | 
| -	if (inputLen % RC2_BLOCK_SIZE) { | 
| -	    PORT_SetError(SEC_ERROR_INPUT_LEN); | 
| -	    return SECFailure; | 
| -	} | 
| -	if (maxOutputLen < inputLen) { | 
| -	    PORT_SetError(SEC_ERROR_OUTPUT_LEN); | 
| -	    return SECFailure; | 
| -	} | 
| -	rv = (*cx->enc)(cx, output, input, inputLen); | 
| -    } | 
| -    if (rv == SECSuccess) { | 
| -    	*outputLen = inputLen; | 
| -    } | 
| -    return rv; | 
| -} | 
| - | 
| -/* | 
| -** Perform RC2 decryption. | 
| -**	"cx" the context | 
| -**	"output" the output buffer to store the decrypted data. | 
| -**	"outputLen" how much data is stored in "output". Set by the routine | 
| -**	   after some data is stored in output. | 
| -**	"maxOutputLen" the maximum amount of data that can ever be | 
| -**	   stored in "output" | 
| -**	"input" the input data | 
| -**	"inputLen" the amount of input data | 
| -*/ | 
| -SECStatus RC2_Decrypt(RC2Context *cx, unsigned char *output, | 
| -		      unsigned int *outputLen, unsigned int maxOutputLen, | 
| -		      const unsigned char *input, unsigned int inputLen) | 
| -{ | 
| -    SECStatus rv = SECSuccess; | 
| -    if (inputLen) { | 
| -	if (inputLen % RC2_BLOCK_SIZE) { | 
| -	    PORT_SetError(SEC_ERROR_INPUT_LEN); | 
| -	    return SECFailure; | 
| -	} | 
| -	if (maxOutputLen < inputLen) { | 
| -	    PORT_SetError(SEC_ERROR_OUTPUT_LEN); | 
| -	    return SECFailure; | 
| -	} | 
| -	rv = (*cx->dec)(cx, output, input, inputLen); | 
| -    } | 
| -    if (rv == SECSuccess) { | 
| -	*outputLen = inputLen; | 
| -    } | 
| -    return rv; | 
| -} | 
| - | 
|  |