Index: mozilla/security/nss/lib/freebl/mpi/mpi.c |
=================================================================== |
--- mozilla/security/nss/lib/freebl/mpi/mpi.c (revision 191424) |
+++ mozilla/security/nss/lib/freebl/mpi/mpi.c (working copy) |
@@ -1,4821 +0,0 @@ |
-/* |
- * mpi.c |
- * |
- * Arbitrary precision integer arithmetic library |
- * |
- * This Source Code Form is subject to the terms of the Mozilla Public |
- * License, v. 2.0. If a copy of the MPL was not distributed with this |
- * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
-/* $Id: mpi.c,v 1.51 2012/04/25 14:49:50 gerv%gerv.net Exp $ */ |
- |
-#include "mpi-priv.h" |
-#if defined(OSF1) |
-#include <c_asm.h> |
-#endif |
- |
-#if defined(__arm__) && \ |
- ((defined(__thumb__) && !defined(__thumb2__)) || defined(__ARM_ARCH_3__)) |
-/* 16-bit thumb or ARM v3 doesn't work inlined assember version */ |
-#undef MP_ASSEMBLY_MULTIPLY |
-#undef MP_ASSEMBLY_SQUARE |
-#endif |
- |
-#if MP_LOGTAB |
-/* |
- A table of the logs of 2 for various bases (the 0 and 1 entries of |
- this table are meaningless and should not be referenced). |
- |
- This table is used to compute output lengths for the mp_toradix() |
- function. Since a number n in radix r takes up about log_r(n) |
- digits, we estimate the output size by taking the least integer |
- greater than log_r(n), where: |
- |
- log_r(n) = log_2(n) * log_r(2) |
- |
- This table, therefore, is a table of log_r(2) for 2 <= r <= 36, |
- which are the output bases supported. |
- */ |
-#include "logtab.h" |
-#endif |
- |
-/* {{{ Constant strings */ |
- |
-/* Constant strings returned by mp_strerror() */ |
-static const char *mp_err_string[] = { |
- "unknown result code", /* say what? */ |
- "boolean true", /* MP_OKAY, MP_YES */ |
- "boolean false", /* MP_NO */ |
- "out of memory", /* MP_MEM */ |
- "argument out of range", /* MP_RANGE */ |
- "invalid input parameter", /* MP_BADARG */ |
- "result is undefined" /* MP_UNDEF */ |
-}; |
- |
-/* Value to digit maps for radix conversion */ |
- |
-/* s_dmap_1 - standard digits and letters */ |
-static const char *s_dmap_1 = |
- "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/"; |
- |
-/* }}} */ |
- |
-unsigned long mp_allocs; |
-unsigned long mp_frees; |
-unsigned long mp_copies; |
- |
-/* {{{ Default precision manipulation */ |
- |
-/* Default precision for newly created mp_int's */ |
-static mp_size s_mp_defprec = MP_DEFPREC; |
- |
-mp_size mp_get_prec(void) |
-{ |
- return s_mp_defprec; |
- |
-} /* end mp_get_prec() */ |
- |
-void mp_set_prec(mp_size prec) |
-{ |
- if(prec == 0) |
- s_mp_defprec = MP_DEFPREC; |
- else |
- s_mp_defprec = prec; |
- |
-} /* end mp_set_prec() */ |
- |
-/* }}} */ |
- |
-/*------------------------------------------------------------------------*/ |
-/* {{{ mp_init(mp) */ |
- |
-/* |
- mp_init(mp) |
- |
- Initialize a new zero-valued mp_int. Returns MP_OKAY if successful, |
- MP_MEM if memory could not be allocated for the structure. |
- */ |
- |
-mp_err mp_init(mp_int *mp) |
-{ |
- return mp_init_size(mp, s_mp_defprec); |
- |
-} /* end mp_init() */ |
- |
-/* }}} */ |
- |
-/* {{{ mp_init_size(mp, prec) */ |
- |
-/* |
- mp_init_size(mp, prec) |
- |
- Initialize a new zero-valued mp_int with at least the given |
- precision; returns MP_OKAY if successful, or MP_MEM if memory could |
- not be allocated for the structure. |
- */ |
- |
-mp_err mp_init_size(mp_int *mp, mp_size prec) |
-{ |
- ARGCHK(mp != NULL && prec > 0, MP_BADARG); |
- |
- prec = MP_ROUNDUP(prec, s_mp_defprec); |
- if((DIGITS(mp) = s_mp_alloc(prec, sizeof(mp_digit))) == NULL) |
- return MP_MEM; |
- |
- SIGN(mp) = ZPOS; |
- USED(mp) = 1; |
- ALLOC(mp) = prec; |
- |
- return MP_OKAY; |
- |
-} /* end mp_init_size() */ |
- |
-/* }}} */ |
- |
-/* {{{ mp_init_copy(mp, from) */ |
- |
-/* |
- mp_init_copy(mp, from) |
- |
- Initialize mp as an exact copy of from. Returns MP_OKAY if |
- successful, MP_MEM if memory could not be allocated for the new |
- structure. |
- */ |
- |
-mp_err mp_init_copy(mp_int *mp, const mp_int *from) |
-{ |
- ARGCHK(mp != NULL && from != NULL, MP_BADARG); |
- |
- if(mp == from) |
- return MP_OKAY; |
- |
- if((DIGITS(mp) = s_mp_alloc(ALLOC(from), sizeof(mp_digit))) == NULL) |
- return MP_MEM; |
- |
- s_mp_copy(DIGITS(from), DIGITS(mp), USED(from)); |
- USED(mp) = USED(from); |
- ALLOC(mp) = ALLOC(from); |
- SIGN(mp) = SIGN(from); |
- |
- return MP_OKAY; |
- |
-} /* end mp_init_copy() */ |
- |
-/* }}} */ |
- |
-/* {{{ mp_copy(from, to) */ |
- |
-/* |
- mp_copy(from, to) |
- |
- Copies the mp_int 'from' to the mp_int 'to'. It is presumed that |
- 'to' has already been initialized (if not, use mp_init_copy() |
- instead). If 'from' and 'to' are identical, nothing happens. |
- */ |
- |
-mp_err mp_copy(const mp_int *from, mp_int *to) |
-{ |
- ARGCHK(from != NULL && to != NULL, MP_BADARG); |
- |
- if(from == to) |
- return MP_OKAY; |
- |
- { /* copy */ |
- mp_digit *tmp; |
- |
- /* |
- If the allocated buffer in 'to' already has enough space to hold |
- all the used digits of 'from', we'll re-use it to avoid hitting |
- the memory allocater more than necessary; otherwise, we'd have |
- to grow anyway, so we just allocate a hunk and make the copy as |
- usual |
- */ |
- if(ALLOC(to) >= USED(from)) { |
- s_mp_setz(DIGITS(to) + USED(from), ALLOC(to) - USED(from)); |
- s_mp_copy(DIGITS(from), DIGITS(to), USED(from)); |
- |
- } else { |
- if((tmp = s_mp_alloc(ALLOC(from), sizeof(mp_digit))) == NULL) |
- return MP_MEM; |
- |
- s_mp_copy(DIGITS(from), tmp, USED(from)); |
- |
- if(DIGITS(to) != NULL) { |
-#if MP_CRYPTO |
- s_mp_setz(DIGITS(to), ALLOC(to)); |
-#endif |
- s_mp_free(DIGITS(to)); |
- } |
- |
- DIGITS(to) = tmp; |
- ALLOC(to) = ALLOC(from); |
- } |
- |
- /* Copy the precision and sign from the original */ |
- USED(to) = USED(from); |
- SIGN(to) = SIGN(from); |
- } /* end copy */ |
- |
- return MP_OKAY; |
- |
-} /* end mp_copy() */ |
- |
-/* }}} */ |
- |
-/* {{{ mp_exch(mp1, mp2) */ |
- |
-/* |
- mp_exch(mp1, mp2) |
- |
- Exchange mp1 and mp2 without allocating any intermediate memory |
- (well, unless you count the stack space needed for this call and the |
- locals it creates...). This cannot fail. |
- */ |
- |
-void mp_exch(mp_int *mp1, mp_int *mp2) |
-{ |
-#if MP_ARGCHK == 2 |
- assert(mp1 != NULL && mp2 != NULL); |
-#else |
- if(mp1 == NULL || mp2 == NULL) |
- return; |
-#endif |
- |
- s_mp_exch(mp1, mp2); |
- |
-} /* end mp_exch() */ |
- |
-/* }}} */ |
- |
-/* {{{ mp_clear(mp) */ |
- |
-/* |
- mp_clear(mp) |
- |
- Release the storage used by an mp_int, and void its fields so that |
- if someone calls mp_clear() again for the same int later, we won't |
- get tollchocked. |
- */ |
- |
-void mp_clear(mp_int *mp) |
-{ |
- if(mp == NULL) |
- return; |
- |
- if(DIGITS(mp) != NULL) { |
-#if MP_CRYPTO |
- s_mp_setz(DIGITS(mp), ALLOC(mp)); |
-#endif |
- s_mp_free(DIGITS(mp)); |
- DIGITS(mp) = NULL; |
- } |
- |
- USED(mp) = 0; |
- ALLOC(mp) = 0; |
- |
-} /* end mp_clear() */ |
- |
-/* }}} */ |
- |
-/* {{{ mp_zero(mp) */ |
- |
-/* |
- mp_zero(mp) |
- |
- Set mp to zero. Does not change the allocated size of the structure, |
- and therefore cannot fail (except on a bad argument, which we ignore) |
- */ |
-void mp_zero(mp_int *mp) |
-{ |
- if(mp == NULL) |
- return; |
- |
- s_mp_setz(DIGITS(mp), ALLOC(mp)); |
- USED(mp) = 1; |
- SIGN(mp) = ZPOS; |
- |
-} /* end mp_zero() */ |
- |
-/* }}} */ |
- |
-/* {{{ mp_set(mp, d) */ |
- |
-void mp_set(mp_int *mp, mp_digit d) |
-{ |
- if(mp == NULL) |
- return; |
- |
- mp_zero(mp); |
- DIGIT(mp, 0) = d; |
- |
-} /* end mp_set() */ |
- |
-/* }}} */ |
- |
-/* {{{ mp_set_int(mp, z) */ |
- |
-mp_err mp_set_int(mp_int *mp, long z) |
-{ |
- int ix; |
- unsigned long v = labs(z); |
- mp_err res; |
- |
- ARGCHK(mp != NULL, MP_BADARG); |
- |
- mp_zero(mp); |
- if(z == 0) |
- return MP_OKAY; /* shortcut for zero */ |
- |
- if (sizeof v <= sizeof(mp_digit)) { |
- DIGIT(mp,0) = v; |
- } else { |
- for (ix = sizeof(long) - 1; ix >= 0; ix--) { |
- if ((res = s_mp_mul_d(mp, (UCHAR_MAX + 1))) != MP_OKAY) |
- return res; |
- |
- res = s_mp_add_d(mp, (mp_digit)((v >> (ix * CHAR_BIT)) & UCHAR_MAX)); |
- if (res != MP_OKAY) |
- return res; |
- } |
- } |
- if(z < 0) |
- SIGN(mp) = NEG; |
- |
- return MP_OKAY; |
- |
-} /* end mp_set_int() */ |
- |
-/* }}} */ |
- |
-/* {{{ mp_set_ulong(mp, z) */ |
- |
-mp_err mp_set_ulong(mp_int *mp, unsigned long z) |
-{ |
- int ix; |
- mp_err res; |
- |
- ARGCHK(mp != NULL, MP_BADARG); |
- |
- mp_zero(mp); |
- if(z == 0) |
- return MP_OKAY; /* shortcut for zero */ |
- |
- if (sizeof z <= sizeof(mp_digit)) { |
- DIGIT(mp,0) = z; |
- } else { |
- for (ix = sizeof(long) - 1; ix >= 0; ix--) { |
- if ((res = s_mp_mul_d(mp, (UCHAR_MAX + 1))) != MP_OKAY) |
- return res; |
- |
- res = s_mp_add_d(mp, (mp_digit)((z >> (ix * CHAR_BIT)) & UCHAR_MAX)); |
- if (res != MP_OKAY) |
- return res; |
- } |
- } |
- return MP_OKAY; |
-} /* end mp_set_ulong() */ |
- |
-/* }}} */ |
- |
-/*------------------------------------------------------------------------*/ |
-/* {{{ Digit arithmetic */ |
- |
-/* {{{ mp_add_d(a, d, b) */ |
- |
-/* |
- mp_add_d(a, d, b) |
- |
- Compute the sum b = a + d, for a single digit d. Respects the sign of |
- its primary addend (single digits are unsigned anyway). |
- */ |
- |
-mp_err mp_add_d(const mp_int *a, mp_digit d, mp_int *b) |
-{ |
- mp_int tmp; |
- mp_err res; |
- |
- ARGCHK(a != NULL && b != NULL, MP_BADARG); |
- |
- if((res = mp_init_copy(&tmp, a)) != MP_OKAY) |
- return res; |
- |
- if(SIGN(&tmp) == ZPOS) { |
- if((res = s_mp_add_d(&tmp, d)) != MP_OKAY) |
- goto CLEANUP; |
- } else if(s_mp_cmp_d(&tmp, d) >= 0) { |
- if((res = s_mp_sub_d(&tmp, d)) != MP_OKAY) |
- goto CLEANUP; |
- } else { |
- mp_neg(&tmp, &tmp); |
- |
- DIGIT(&tmp, 0) = d - DIGIT(&tmp, 0); |
- } |
- |
- if(s_mp_cmp_d(&tmp, 0) == 0) |
- SIGN(&tmp) = ZPOS; |
- |
- s_mp_exch(&tmp, b); |
- |
-CLEANUP: |
- mp_clear(&tmp); |
- return res; |
- |
-} /* end mp_add_d() */ |
- |
-/* }}} */ |
- |
-/* {{{ mp_sub_d(a, d, b) */ |
- |
-/* |
- mp_sub_d(a, d, b) |
- |
- Compute the difference b = a - d, for a single digit d. Respects the |
- sign of its subtrahend (single digits are unsigned anyway). |
- */ |
- |
-mp_err mp_sub_d(const mp_int *a, mp_digit d, mp_int *b) |
-{ |
- mp_int tmp; |
- mp_err res; |
- |
- ARGCHK(a != NULL && b != NULL, MP_BADARG); |
- |
- if((res = mp_init_copy(&tmp, a)) != MP_OKAY) |
- return res; |
- |
- if(SIGN(&tmp) == NEG) { |
- if((res = s_mp_add_d(&tmp, d)) != MP_OKAY) |
- goto CLEANUP; |
- } else if(s_mp_cmp_d(&tmp, d) >= 0) { |
- if((res = s_mp_sub_d(&tmp, d)) != MP_OKAY) |
- goto CLEANUP; |
- } else { |
- mp_neg(&tmp, &tmp); |
- |
- DIGIT(&tmp, 0) = d - DIGIT(&tmp, 0); |
- SIGN(&tmp) = NEG; |
- } |
- |
- if(s_mp_cmp_d(&tmp, 0) == 0) |
- SIGN(&tmp) = ZPOS; |
- |
- s_mp_exch(&tmp, b); |
- |
-CLEANUP: |
- mp_clear(&tmp); |
- return res; |
- |
-} /* end mp_sub_d() */ |
- |
-/* }}} */ |
- |
-/* {{{ mp_mul_d(a, d, b) */ |
- |
-/* |
- mp_mul_d(a, d, b) |
- |
- Compute the product b = a * d, for a single digit d. Respects the sign |
- of its multiplicand (single digits are unsigned anyway) |
- */ |
- |
-mp_err mp_mul_d(const mp_int *a, mp_digit d, mp_int *b) |
-{ |
- mp_err res; |
- |
- ARGCHK(a != NULL && b != NULL, MP_BADARG); |
- |
- if(d == 0) { |
- mp_zero(b); |
- return MP_OKAY; |
- } |
- |
- if((res = mp_copy(a, b)) != MP_OKAY) |
- return res; |
- |
- res = s_mp_mul_d(b, d); |
- |
- return res; |
- |
-} /* end mp_mul_d() */ |
- |
-/* }}} */ |
- |
-/* {{{ mp_mul_2(a, c) */ |
- |
-mp_err mp_mul_2(const mp_int *a, mp_int *c) |
-{ |
- mp_err res; |
- |
- ARGCHK(a != NULL && c != NULL, MP_BADARG); |
- |
- if((res = mp_copy(a, c)) != MP_OKAY) |
- return res; |
- |
- return s_mp_mul_2(c); |
- |
-} /* end mp_mul_2() */ |
- |
-/* }}} */ |
- |
-/* {{{ mp_div_d(a, d, q, r) */ |
- |
-/* |
- mp_div_d(a, d, q, r) |
- |
- Compute the quotient q = a / d and remainder r = a mod d, for a |
- single digit d. Respects the sign of its divisor (single digits are |
- unsigned anyway). |
- */ |
- |
-mp_err mp_div_d(const mp_int *a, mp_digit d, mp_int *q, mp_digit *r) |
-{ |
- mp_err res; |
- mp_int qp; |
- mp_digit rem; |
- int pow; |
- |
- ARGCHK(a != NULL, MP_BADARG); |
- |
- if(d == 0) |
- return MP_RANGE; |
- |
- /* Shortcut for powers of two ... */ |
- if((pow = s_mp_ispow2d(d)) >= 0) { |
- mp_digit mask; |
- |
- mask = ((mp_digit)1 << pow) - 1; |
- rem = DIGIT(a, 0) & mask; |
- |
- if(q) { |
- mp_copy(a, q); |
- s_mp_div_2d(q, pow); |
- } |
- |
- if(r) |
- *r = rem; |
- |
- return MP_OKAY; |
- } |
- |
- if((res = mp_init_copy(&qp, a)) != MP_OKAY) |
- return res; |
- |
- res = s_mp_div_d(&qp, d, &rem); |
- |
- if(s_mp_cmp_d(&qp, 0) == 0) |
- SIGN(q) = ZPOS; |
- |
- if(r) |
- *r = rem; |
- |
- if(q) |
- s_mp_exch(&qp, q); |
- |
- mp_clear(&qp); |
- return res; |
- |
-} /* end mp_div_d() */ |
- |
-/* }}} */ |
- |
-/* {{{ mp_div_2(a, c) */ |
- |
-/* |
- mp_div_2(a, c) |
- |
- Compute c = a / 2, disregarding the remainder. |
- */ |
- |
-mp_err mp_div_2(const mp_int *a, mp_int *c) |
-{ |
- mp_err res; |
- |
- ARGCHK(a != NULL && c != NULL, MP_BADARG); |
- |
- if((res = mp_copy(a, c)) != MP_OKAY) |
- return res; |
- |
- s_mp_div_2(c); |
- |
- return MP_OKAY; |
- |
-} /* end mp_div_2() */ |
- |
-/* }}} */ |
- |
-/* {{{ mp_expt_d(a, d, b) */ |
- |
-mp_err mp_expt_d(const mp_int *a, mp_digit d, mp_int *c) |
-{ |
- mp_int s, x; |
- mp_err res; |
- |
- ARGCHK(a != NULL && c != NULL, MP_BADARG); |
- |
- if((res = mp_init(&s)) != MP_OKAY) |
- return res; |
- if((res = mp_init_copy(&x, a)) != MP_OKAY) |
- goto X; |
- |
- DIGIT(&s, 0) = 1; |
- |
- while(d != 0) { |
- if(d & 1) { |
- if((res = s_mp_mul(&s, &x)) != MP_OKAY) |
- goto CLEANUP; |
- } |
- |
- d /= 2; |
- |
- if((res = s_mp_sqr(&x)) != MP_OKAY) |
- goto CLEANUP; |
- } |
- |
- s_mp_exch(&s, c); |
- |
-CLEANUP: |
- mp_clear(&x); |
-X: |
- mp_clear(&s); |
- |
- return res; |
- |
-} /* end mp_expt_d() */ |
- |
-/* }}} */ |
- |
-/* }}} */ |
- |
-/*------------------------------------------------------------------------*/ |
-/* {{{ Full arithmetic */ |
- |
-/* {{{ mp_abs(a, b) */ |
- |
-/* |
- mp_abs(a, b) |
- |
- Compute b = |a|. 'a' and 'b' may be identical. |
- */ |
- |
-mp_err mp_abs(const mp_int *a, mp_int *b) |
-{ |
- mp_err res; |
- |
- ARGCHK(a != NULL && b != NULL, MP_BADARG); |
- |
- if((res = mp_copy(a, b)) != MP_OKAY) |
- return res; |
- |
- SIGN(b) = ZPOS; |
- |
- return MP_OKAY; |
- |
-} /* end mp_abs() */ |
- |
-/* }}} */ |
- |
-/* {{{ mp_neg(a, b) */ |
- |
-/* |
- mp_neg(a, b) |
- |
- Compute b = -a. 'a' and 'b' may be identical. |
- */ |
- |
-mp_err mp_neg(const mp_int *a, mp_int *b) |
-{ |
- mp_err res; |
- |
- ARGCHK(a != NULL && b != NULL, MP_BADARG); |
- |
- if((res = mp_copy(a, b)) != MP_OKAY) |
- return res; |
- |
- if(s_mp_cmp_d(b, 0) == MP_EQ) |
- SIGN(b) = ZPOS; |
- else |
- SIGN(b) = (SIGN(b) == NEG) ? ZPOS : NEG; |
- |
- return MP_OKAY; |
- |
-} /* end mp_neg() */ |
- |
-/* }}} */ |
- |
-/* {{{ mp_add(a, b, c) */ |
- |
-/* |
- mp_add(a, b, c) |
- |
- Compute c = a + b. All parameters may be identical. |
- */ |
- |
-mp_err mp_add(const mp_int *a, const mp_int *b, mp_int *c) |
-{ |
- mp_err res; |
- |
- ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
- |
- if(SIGN(a) == SIGN(b)) { /* same sign: add values, keep sign */ |
- MP_CHECKOK( s_mp_add_3arg(a, b, c) ); |
- } else if(s_mp_cmp(a, b) >= 0) { /* different sign: |a| >= |b| */ |
- MP_CHECKOK( s_mp_sub_3arg(a, b, c) ); |
- } else { /* different sign: |a| < |b| */ |
- MP_CHECKOK( s_mp_sub_3arg(b, a, c) ); |
- } |
- |
- if (s_mp_cmp_d(c, 0) == MP_EQ) |
- SIGN(c) = ZPOS; |
- |
-CLEANUP: |
- return res; |
- |
-} /* end mp_add() */ |
- |
-/* }}} */ |
- |
-/* {{{ mp_sub(a, b, c) */ |
- |
-/* |
- mp_sub(a, b, c) |
- |
- Compute c = a - b. All parameters may be identical. |
- */ |
- |
-mp_err mp_sub(const mp_int *a, const mp_int *b, mp_int *c) |
-{ |
- mp_err res; |
- int magDiff; |
- |
- ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
- |
- if (a == b) { |
- mp_zero(c); |
- return MP_OKAY; |
- } |
- |
- if (MP_SIGN(a) != MP_SIGN(b)) { |
- MP_CHECKOK( s_mp_add_3arg(a, b, c) ); |
- } else if (!(magDiff = s_mp_cmp(a, b))) { |
- mp_zero(c); |
- res = MP_OKAY; |
- } else if (magDiff > 0) { |
- MP_CHECKOK( s_mp_sub_3arg(a, b, c) ); |
- } else { |
- MP_CHECKOK( s_mp_sub_3arg(b, a, c) ); |
- MP_SIGN(c) = !MP_SIGN(a); |
- } |
- |
- if (s_mp_cmp_d(c, 0) == MP_EQ) |
- MP_SIGN(c) = MP_ZPOS; |
- |
-CLEANUP: |
- return res; |
- |
-} /* end mp_sub() */ |
- |
-/* }}} */ |
- |
-/* {{{ mp_mul(a, b, c) */ |
- |
-/* |
- mp_mul(a, b, c) |
- |
- Compute c = a * b. All parameters may be identical. |
- */ |
-mp_err mp_mul(const mp_int *a, const mp_int *b, mp_int * c) |
-{ |
- mp_digit *pb; |
- mp_int tmp; |
- mp_err res; |
- mp_size ib; |
- mp_size useda, usedb; |
- |
- ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
- |
- if (a == c) { |
- if ((res = mp_init_copy(&tmp, a)) != MP_OKAY) |
- return res; |
- if (a == b) |
- b = &tmp; |
- a = &tmp; |
- } else if (b == c) { |
- if ((res = mp_init_copy(&tmp, b)) != MP_OKAY) |
- return res; |
- b = &tmp; |
- } else { |
- MP_DIGITS(&tmp) = 0; |
- } |
- |
- if (MP_USED(a) < MP_USED(b)) { |
- const mp_int *xch = b; /* switch a and b, to do fewer outer loops */ |
- b = a; |
- a = xch; |
- } |
- |
- MP_USED(c) = 1; MP_DIGIT(c, 0) = 0; |
- if((res = s_mp_pad(c, USED(a) + USED(b))) != MP_OKAY) |
- goto CLEANUP; |
- |
-#ifdef NSS_USE_COMBA |
- if ((MP_USED(a) == MP_USED(b)) && IS_POWER_OF_2(MP_USED(b))) { |
- if (MP_USED(a) == 4) { |
- s_mp_mul_comba_4(a, b, c); |
- goto CLEANUP; |
- } |
- if (MP_USED(a) == 8) { |
- s_mp_mul_comba_8(a, b, c); |
- goto CLEANUP; |
- } |
- if (MP_USED(a) == 16) { |
- s_mp_mul_comba_16(a, b, c); |
- goto CLEANUP; |
- } |
- if (MP_USED(a) == 32) { |
- s_mp_mul_comba_32(a, b, c); |
- goto CLEANUP; |
- } |
- } |
-#endif |
- |
- pb = MP_DIGITS(b); |
- s_mpv_mul_d(MP_DIGITS(a), MP_USED(a), *pb++, MP_DIGITS(c)); |
- |
- /* Outer loop: Digits of b */ |
- useda = MP_USED(a); |
- usedb = MP_USED(b); |
- for (ib = 1; ib < usedb; ib++) { |
- mp_digit b_i = *pb++; |
- |
- /* Inner product: Digits of a */ |
- if (b_i) |
- s_mpv_mul_d_add(MP_DIGITS(a), useda, b_i, MP_DIGITS(c) + ib); |
- else |
- MP_DIGIT(c, ib + useda) = b_i; |
- } |
- |
- s_mp_clamp(c); |
- |
- if(SIGN(a) == SIGN(b) || s_mp_cmp_d(c, 0) == MP_EQ) |
- SIGN(c) = ZPOS; |
- else |
- SIGN(c) = NEG; |
- |
-CLEANUP: |
- mp_clear(&tmp); |
- return res; |
-} /* end mp_mul() */ |
- |
-/* }}} */ |
- |
-/* {{{ mp_sqr(a, sqr) */ |
- |
-#if MP_SQUARE |
-/* |
- Computes the square of a. This can be done more |
- efficiently than a general multiplication, because many of the |
- computation steps are redundant when squaring. The inner product |
- step is a bit more complicated, but we save a fair number of |
- iterations of the multiplication loop. |
- */ |
- |
-/* sqr = a^2; Caller provides both a and tmp; */ |
-mp_err mp_sqr(const mp_int *a, mp_int *sqr) |
-{ |
- mp_digit *pa; |
- mp_digit d; |
- mp_err res; |
- mp_size ix; |
- mp_int tmp; |
- int count; |
- |
- ARGCHK(a != NULL && sqr != NULL, MP_BADARG); |
- |
- if (a == sqr) { |
- if((res = mp_init_copy(&tmp, a)) != MP_OKAY) |
- return res; |
- a = &tmp; |
- } else { |
- DIGITS(&tmp) = 0; |
- res = MP_OKAY; |
- } |
- |
- ix = 2 * MP_USED(a); |
- if (ix > MP_ALLOC(sqr)) { |
- MP_USED(sqr) = 1; |
- MP_CHECKOK( s_mp_grow(sqr, ix) ); |
- } |
- MP_USED(sqr) = ix; |
- MP_DIGIT(sqr, 0) = 0; |
- |
-#ifdef NSS_USE_COMBA |
- if (IS_POWER_OF_2(MP_USED(a))) { |
- if (MP_USED(a) == 4) { |
- s_mp_sqr_comba_4(a, sqr); |
- goto CLEANUP; |
- } |
- if (MP_USED(a) == 8) { |
- s_mp_sqr_comba_8(a, sqr); |
- goto CLEANUP; |
- } |
- if (MP_USED(a) == 16) { |
- s_mp_sqr_comba_16(a, sqr); |
- goto CLEANUP; |
- } |
- if (MP_USED(a) == 32) { |
- s_mp_sqr_comba_32(a, sqr); |
- goto CLEANUP; |
- } |
- } |
-#endif |
- |
- pa = MP_DIGITS(a); |
- count = MP_USED(a) - 1; |
- if (count > 0) { |
- d = *pa++; |
- s_mpv_mul_d(pa, count, d, MP_DIGITS(sqr) + 1); |
- for (ix = 3; --count > 0; ix += 2) { |
- d = *pa++; |
- s_mpv_mul_d_add(pa, count, d, MP_DIGITS(sqr) + ix); |
- } /* for(ix ...) */ |
- MP_DIGIT(sqr, MP_USED(sqr)-1) = 0; /* above loop stopped short of this. */ |
- |
- /* now sqr *= 2 */ |
- s_mp_mul_2(sqr); |
- } else { |
- MP_DIGIT(sqr, 1) = 0; |
- } |
- |
- /* now add the squares of the digits of a to sqr. */ |
- s_mpv_sqr_add_prop(MP_DIGITS(a), MP_USED(a), MP_DIGITS(sqr)); |
- |
- SIGN(sqr) = ZPOS; |
- s_mp_clamp(sqr); |
- |
-CLEANUP: |
- mp_clear(&tmp); |
- return res; |
- |
-} /* end mp_sqr() */ |
-#endif |
- |
-/* }}} */ |
- |
-/* {{{ mp_div(a, b, q, r) */ |
- |
-/* |
- mp_div(a, b, q, r) |
- |
- Compute q = a / b and r = a mod b. Input parameters may be re-used |
- as output parameters. If q or r is NULL, that portion of the |
- computation will be discarded (although it will still be computed) |
- */ |
-mp_err mp_div(const mp_int *a, const mp_int *b, mp_int *q, mp_int *r) |
-{ |
- mp_err res; |
- mp_int *pQ, *pR; |
- mp_int qtmp, rtmp, btmp; |
- int cmp; |
- mp_sign signA; |
- mp_sign signB; |
- |
- ARGCHK(a != NULL && b != NULL, MP_BADARG); |
- |
- signA = MP_SIGN(a); |
- signB = MP_SIGN(b); |
- |
- if(mp_cmp_z(b) == MP_EQ) |
- return MP_RANGE; |
- |
- DIGITS(&qtmp) = 0; |
- DIGITS(&rtmp) = 0; |
- DIGITS(&btmp) = 0; |
- |
- /* Set up some temporaries... */ |
- if (!r || r == a || r == b) { |
- MP_CHECKOK( mp_init_copy(&rtmp, a) ); |
- pR = &rtmp; |
- } else { |
- MP_CHECKOK( mp_copy(a, r) ); |
- pR = r; |
- } |
- |
- if (!q || q == a || q == b) { |
- MP_CHECKOK( mp_init_size(&qtmp, MP_USED(a)) ); |
- pQ = &qtmp; |
- } else { |
- MP_CHECKOK( s_mp_pad(q, MP_USED(a)) ); |
- pQ = q; |
- mp_zero(pQ); |
- } |
- |
- /* |
- If |a| <= |b|, we can compute the solution without division; |
- otherwise, we actually do the work required. |
- */ |
- if ((cmp = s_mp_cmp(a, b)) <= 0) { |
- if (cmp) { |
- /* r was set to a above. */ |
- mp_zero(pQ); |
- } else { |
- mp_set(pQ, 1); |
- mp_zero(pR); |
- } |
- } else { |
- MP_CHECKOK( mp_init_copy(&btmp, b) ); |
- MP_CHECKOK( s_mp_div(pR, &btmp, pQ) ); |
- } |
- |
- /* Compute the signs for the output */ |
- MP_SIGN(pR) = signA; /* Sr = Sa */ |
- /* Sq = ZPOS if Sa == Sb */ /* Sq = NEG if Sa != Sb */ |
- MP_SIGN(pQ) = (signA == signB) ? ZPOS : NEG; |
- |
- if(s_mp_cmp_d(pQ, 0) == MP_EQ) |
- SIGN(pQ) = ZPOS; |
- if(s_mp_cmp_d(pR, 0) == MP_EQ) |
- SIGN(pR) = ZPOS; |
- |
- /* Copy output, if it is needed */ |
- if(q && q != pQ) |
- s_mp_exch(pQ, q); |
- |
- if(r && r != pR) |
- s_mp_exch(pR, r); |
- |
-CLEANUP: |
- mp_clear(&btmp); |
- mp_clear(&rtmp); |
- mp_clear(&qtmp); |
- |
- return res; |
- |
-} /* end mp_div() */ |
- |
-/* }}} */ |
- |
-/* {{{ mp_div_2d(a, d, q, r) */ |
- |
-mp_err mp_div_2d(const mp_int *a, mp_digit d, mp_int *q, mp_int *r) |
-{ |
- mp_err res; |
- |
- ARGCHK(a != NULL, MP_BADARG); |
- |
- if(q) { |
- if((res = mp_copy(a, q)) != MP_OKAY) |
- return res; |
- } |
- if(r) { |
- if((res = mp_copy(a, r)) != MP_OKAY) |
- return res; |
- } |
- if(q) { |
- s_mp_div_2d(q, d); |
- } |
- if(r) { |
- s_mp_mod_2d(r, d); |
- } |
- |
- return MP_OKAY; |
- |
-} /* end mp_div_2d() */ |
- |
-/* }}} */ |
- |
-/* {{{ mp_expt(a, b, c) */ |
- |
-/* |
- mp_expt(a, b, c) |
- |
- Compute c = a ** b, that is, raise a to the b power. Uses a |
- standard iterative square-and-multiply technique. |
- */ |
- |
-mp_err mp_expt(mp_int *a, mp_int *b, mp_int *c) |
-{ |
- mp_int s, x; |
- mp_err res; |
- mp_digit d; |
- int dig, bit; |
- |
- ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
- |
- if(mp_cmp_z(b) < 0) |
- return MP_RANGE; |
- |
- if((res = mp_init(&s)) != MP_OKAY) |
- return res; |
- |
- mp_set(&s, 1); |
- |
- if((res = mp_init_copy(&x, a)) != MP_OKAY) |
- goto X; |
- |
- /* Loop over low-order digits in ascending order */ |
- for(dig = 0; dig < (USED(b) - 1); dig++) { |
- d = DIGIT(b, dig); |
- |
- /* Loop over bits of each non-maximal digit */ |
- for(bit = 0; bit < DIGIT_BIT; bit++) { |
- if(d & 1) { |
- if((res = s_mp_mul(&s, &x)) != MP_OKAY) |
- goto CLEANUP; |
- } |
- |
- d >>= 1; |
- |
- if((res = s_mp_sqr(&x)) != MP_OKAY) |
- goto CLEANUP; |
- } |
- } |
- |
- /* Consider now the last digit... */ |
- d = DIGIT(b, dig); |
- |
- while(d) { |
- if(d & 1) { |
- if((res = s_mp_mul(&s, &x)) != MP_OKAY) |
- goto CLEANUP; |
- } |
- |
- d >>= 1; |
- |
- if((res = s_mp_sqr(&x)) != MP_OKAY) |
- goto CLEANUP; |
- } |
- |
- if(mp_iseven(b)) |
- SIGN(&s) = SIGN(a); |
- |
- res = mp_copy(&s, c); |
- |
-CLEANUP: |
- mp_clear(&x); |
-X: |
- mp_clear(&s); |
- |
- return res; |
- |
-} /* end mp_expt() */ |
- |
-/* }}} */ |
- |
-/* {{{ mp_2expt(a, k) */ |
- |
-/* Compute a = 2^k */ |
- |
-mp_err mp_2expt(mp_int *a, mp_digit k) |
-{ |
- ARGCHK(a != NULL, MP_BADARG); |
- |
- return s_mp_2expt(a, k); |
- |
-} /* end mp_2expt() */ |
- |
-/* }}} */ |
- |
-/* {{{ mp_mod(a, m, c) */ |
- |
-/* |
- mp_mod(a, m, c) |
- |
- Compute c = a (mod m). Result will always be 0 <= c < m. |
- */ |
- |
-mp_err mp_mod(const mp_int *a, const mp_int *m, mp_int *c) |
-{ |
- mp_err res; |
- int mag; |
- |
- ARGCHK(a != NULL && m != NULL && c != NULL, MP_BADARG); |
- |
- if(SIGN(m) == NEG) |
- return MP_RANGE; |
- |
- /* |
- If |a| > m, we need to divide to get the remainder and take the |
- absolute value. |
- |
- If |a| < m, we don't need to do any division, just copy and adjust |
- the sign (if a is negative). |
- |
- If |a| == m, we can simply set the result to zero. |
- |
- This order is intended to minimize the average path length of the |
- comparison chain on common workloads -- the most frequent cases are |
- that |a| != m, so we do those first. |
- */ |
- if((mag = s_mp_cmp(a, m)) > 0) { |
- if((res = mp_div(a, m, NULL, c)) != MP_OKAY) |
- return res; |
- |
- if(SIGN(c) == NEG) { |
- if((res = mp_add(c, m, c)) != MP_OKAY) |
- return res; |
- } |
- |
- } else if(mag < 0) { |
- if((res = mp_copy(a, c)) != MP_OKAY) |
- return res; |
- |
- if(mp_cmp_z(a) < 0) { |
- if((res = mp_add(c, m, c)) != MP_OKAY) |
- return res; |
- |
- } |
- |
- } else { |
- mp_zero(c); |
- |
- } |
- |
- return MP_OKAY; |
- |
-} /* end mp_mod() */ |
- |
-/* }}} */ |
- |
-/* {{{ mp_mod_d(a, d, c) */ |
- |
-/* |
- mp_mod_d(a, d, c) |
- |
- Compute c = a (mod d). Result will always be 0 <= c < d |
- */ |
-mp_err mp_mod_d(const mp_int *a, mp_digit d, mp_digit *c) |
-{ |
- mp_err res; |
- mp_digit rem; |
- |
- ARGCHK(a != NULL && c != NULL, MP_BADARG); |
- |
- if(s_mp_cmp_d(a, d) > 0) { |
- if((res = mp_div_d(a, d, NULL, &rem)) != MP_OKAY) |
- return res; |
- |
- } else { |
- if(SIGN(a) == NEG) |
- rem = d - DIGIT(a, 0); |
- else |
- rem = DIGIT(a, 0); |
- } |
- |
- if(c) |
- *c = rem; |
- |
- return MP_OKAY; |
- |
-} /* end mp_mod_d() */ |
- |
-/* }}} */ |
- |
-/* {{{ mp_sqrt(a, b) */ |
- |
-/* |
- mp_sqrt(a, b) |
- |
- Compute the integer square root of a, and store the result in b. |
- Uses an integer-arithmetic version of Newton's iterative linear |
- approximation technique to determine this value; the result has the |
- following two properties: |
- |
- b^2 <= a |
- (b+1)^2 >= a |
- |
- It is a range error to pass a negative value. |
- */ |
-mp_err mp_sqrt(const mp_int *a, mp_int *b) |
-{ |
- mp_int x, t; |
- mp_err res; |
- mp_size used; |
- |
- ARGCHK(a != NULL && b != NULL, MP_BADARG); |
- |
- /* Cannot take square root of a negative value */ |
- if(SIGN(a) == NEG) |
- return MP_RANGE; |
- |
- /* Special cases for zero and one, trivial */ |
- if(mp_cmp_d(a, 1) <= 0) |
- return mp_copy(a, b); |
- |
- /* Initialize the temporaries we'll use below */ |
- if((res = mp_init_size(&t, USED(a))) != MP_OKAY) |
- return res; |
- |
- /* Compute an initial guess for the iteration as a itself */ |
- if((res = mp_init_copy(&x, a)) != MP_OKAY) |
- goto X; |
- |
- used = MP_USED(&x); |
- if (used > 1) { |
- s_mp_rshd(&x, used / 2); |
- } |
- |
- for(;;) { |
- /* t = (x * x) - a */ |
- mp_copy(&x, &t); /* can't fail, t is big enough for original x */ |
- if((res = mp_sqr(&t, &t)) != MP_OKAY || |
- (res = mp_sub(&t, a, &t)) != MP_OKAY) |
- goto CLEANUP; |
- |
- /* t = t / 2x */ |
- s_mp_mul_2(&x); |
- if((res = mp_div(&t, &x, &t, NULL)) != MP_OKAY) |
- goto CLEANUP; |
- s_mp_div_2(&x); |
- |
- /* Terminate the loop, if the quotient is zero */ |
- if(mp_cmp_z(&t) == MP_EQ) |
- break; |
- |
- /* x = x - t */ |
- if((res = mp_sub(&x, &t, &x)) != MP_OKAY) |
- goto CLEANUP; |
- |
- } |
- |
- /* Copy result to output parameter */ |
- mp_sub_d(&x, 1, &x); |
- s_mp_exch(&x, b); |
- |
- CLEANUP: |
- mp_clear(&x); |
- X: |
- mp_clear(&t); |
- |
- return res; |
- |
-} /* end mp_sqrt() */ |
- |
-/* }}} */ |
- |
-/* }}} */ |
- |
-/*------------------------------------------------------------------------*/ |
-/* {{{ Modular arithmetic */ |
- |
-#if MP_MODARITH |
-/* {{{ mp_addmod(a, b, m, c) */ |
- |
-/* |
- mp_addmod(a, b, m, c) |
- |
- Compute c = (a + b) mod m |
- */ |
- |
-mp_err mp_addmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c) |
-{ |
- mp_err res; |
- |
- ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG); |
- |
- if((res = mp_add(a, b, c)) != MP_OKAY) |
- return res; |
- if((res = mp_mod(c, m, c)) != MP_OKAY) |
- return res; |
- |
- return MP_OKAY; |
- |
-} |
- |
-/* }}} */ |
- |
-/* {{{ mp_submod(a, b, m, c) */ |
- |
-/* |
- mp_submod(a, b, m, c) |
- |
- Compute c = (a - b) mod m |
- */ |
- |
-mp_err mp_submod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c) |
-{ |
- mp_err res; |
- |
- ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG); |
- |
- if((res = mp_sub(a, b, c)) != MP_OKAY) |
- return res; |
- if((res = mp_mod(c, m, c)) != MP_OKAY) |
- return res; |
- |
- return MP_OKAY; |
- |
-} |
- |
-/* }}} */ |
- |
-/* {{{ mp_mulmod(a, b, m, c) */ |
- |
-/* |
- mp_mulmod(a, b, m, c) |
- |
- Compute c = (a * b) mod m |
- */ |
- |
-mp_err mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c) |
-{ |
- mp_err res; |
- |
- ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG); |
- |
- if((res = mp_mul(a, b, c)) != MP_OKAY) |
- return res; |
- if((res = mp_mod(c, m, c)) != MP_OKAY) |
- return res; |
- |
- return MP_OKAY; |
- |
-} |
- |
-/* }}} */ |
- |
-/* {{{ mp_sqrmod(a, m, c) */ |
- |
-#if MP_SQUARE |
-mp_err mp_sqrmod(const mp_int *a, const mp_int *m, mp_int *c) |
-{ |
- mp_err res; |
- |
- ARGCHK(a != NULL && m != NULL && c != NULL, MP_BADARG); |
- |
- if((res = mp_sqr(a, c)) != MP_OKAY) |
- return res; |
- if((res = mp_mod(c, m, c)) != MP_OKAY) |
- return res; |
- |
- return MP_OKAY; |
- |
-} /* end mp_sqrmod() */ |
-#endif |
- |
-/* }}} */ |
- |
-/* {{{ s_mp_exptmod(a, b, m, c) */ |
- |
-/* |
- s_mp_exptmod(a, b, m, c) |
- |
- Compute c = (a ** b) mod m. Uses a standard square-and-multiply |
- method with modular reductions at each step. (This is basically the |
- same code as mp_expt(), except for the addition of the reductions) |
- |
- The modular reductions are done using Barrett's algorithm (see |
- s_mp_reduce() below for details) |
- */ |
- |
-mp_err s_mp_exptmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c) |
-{ |
- mp_int s, x, mu; |
- mp_err res; |
- mp_digit d; |
- int dig, bit; |
- |
- ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
- |
- if(mp_cmp_z(b) < 0 || mp_cmp_z(m) <= 0) |
- return MP_RANGE; |
- |
- if((res = mp_init(&s)) != MP_OKAY) |
- return res; |
- if((res = mp_init_copy(&x, a)) != MP_OKAY || |
- (res = mp_mod(&x, m, &x)) != MP_OKAY) |
- goto X; |
- if((res = mp_init(&mu)) != MP_OKAY) |
- goto MU; |
- |
- mp_set(&s, 1); |
- |
- /* mu = b^2k / m */ |
- s_mp_add_d(&mu, 1); |
- s_mp_lshd(&mu, 2 * USED(m)); |
- if((res = mp_div(&mu, m, &mu, NULL)) != MP_OKAY) |
- goto CLEANUP; |
- |
- /* Loop over digits of b in ascending order, except highest order */ |
- for(dig = 0; dig < (USED(b) - 1); dig++) { |
- d = DIGIT(b, dig); |
- |
- /* Loop over the bits of the lower-order digits */ |
- for(bit = 0; bit < DIGIT_BIT; bit++) { |
- if(d & 1) { |
- if((res = s_mp_mul(&s, &x)) != MP_OKAY) |
- goto CLEANUP; |
- if((res = s_mp_reduce(&s, m, &mu)) != MP_OKAY) |
- goto CLEANUP; |
- } |
- |
- d >>= 1; |
- |
- if((res = s_mp_sqr(&x)) != MP_OKAY) |
- goto CLEANUP; |
- if((res = s_mp_reduce(&x, m, &mu)) != MP_OKAY) |
- goto CLEANUP; |
- } |
- } |
- |
- /* Now do the last digit... */ |
- d = DIGIT(b, dig); |
- |
- while(d) { |
- if(d & 1) { |
- if((res = s_mp_mul(&s, &x)) != MP_OKAY) |
- goto CLEANUP; |
- if((res = s_mp_reduce(&s, m, &mu)) != MP_OKAY) |
- goto CLEANUP; |
- } |
- |
- d >>= 1; |
- |
- if((res = s_mp_sqr(&x)) != MP_OKAY) |
- goto CLEANUP; |
- if((res = s_mp_reduce(&x, m, &mu)) != MP_OKAY) |
- goto CLEANUP; |
- } |
- |
- s_mp_exch(&s, c); |
- |
- CLEANUP: |
- mp_clear(&mu); |
- MU: |
- mp_clear(&x); |
- X: |
- mp_clear(&s); |
- |
- return res; |
- |
-} /* end s_mp_exptmod() */ |
- |
-/* }}} */ |
- |
-/* {{{ mp_exptmod_d(a, d, m, c) */ |
- |
-mp_err mp_exptmod_d(const mp_int *a, mp_digit d, const mp_int *m, mp_int *c) |
-{ |
- mp_int s, x; |
- mp_err res; |
- |
- ARGCHK(a != NULL && c != NULL, MP_BADARG); |
- |
- if((res = mp_init(&s)) != MP_OKAY) |
- return res; |
- if((res = mp_init_copy(&x, a)) != MP_OKAY) |
- goto X; |
- |
- mp_set(&s, 1); |
- |
- while(d != 0) { |
- if(d & 1) { |
- if((res = s_mp_mul(&s, &x)) != MP_OKAY || |
- (res = mp_mod(&s, m, &s)) != MP_OKAY) |
- goto CLEANUP; |
- } |
- |
- d /= 2; |
- |
- if((res = s_mp_sqr(&x)) != MP_OKAY || |
- (res = mp_mod(&x, m, &x)) != MP_OKAY) |
- goto CLEANUP; |
- } |
- |
- s_mp_exch(&s, c); |
- |
-CLEANUP: |
- mp_clear(&x); |
-X: |
- mp_clear(&s); |
- |
- return res; |
- |
-} /* end mp_exptmod_d() */ |
- |
-/* }}} */ |
-#endif /* if MP_MODARITH */ |
- |
-/* }}} */ |
- |
-/*------------------------------------------------------------------------*/ |
-/* {{{ Comparison functions */ |
- |
-/* {{{ mp_cmp_z(a) */ |
- |
-/* |
- mp_cmp_z(a) |
- |
- Compare a <=> 0. Returns <0 if a<0, 0 if a=0, >0 if a>0. |
- */ |
- |
-int mp_cmp_z(const mp_int *a) |
-{ |
- if(SIGN(a) == NEG) |
- return MP_LT; |
- else if(USED(a) == 1 && DIGIT(a, 0) == 0) |
- return MP_EQ; |
- else |
- return MP_GT; |
- |
-} /* end mp_cmp_z() */ |
- |
-/* }}} */ |
- |
-/* {{{ mp_cmp_d(a, d) */ |
- |
-/* |
- mp_cmp_d(a, d) |
- |
- Compare a <=> d. Returns <0 if a<d, 0 if a=d, >0 if a>d |
- */ |
- |
-int mp_cmp_d(const mp_int *a, mp_digit d) |
-{ |
- ARGCHK(a != NULL, MP_EQ); |
- |
- if(SIGN(a) == NEG) |
- return MP_LT; |
- |
- return s_mp_cmp_d(a, d); |
- |
-} /* end mp_cmp_d() */ |
- |
-/* }}} */ |
- |
-/* {{{ mp_cmp(a, b) */ |
- |
-int mp_cmp(const mp_int *a, const mp_int *b) |
-{ |
- ARGCHK(a != NULL && b != NULL, MP_EQ); |
- |
- if(SIGN(a) == SIGN(b)) { |
- int mag; |
- |
- if((mag = s_mp_cmp(a, b)) == MP_EQ) |
- return MP_EQ; |
- |
- if(SIGN(a) == ZPOS) |
- return mag; |
- else |
- return -mag; |
- |
- } else if(SIGN(a) == ZPOS) { |
- return MP_GT; |
- } else { |
- return MP_LT; |
- } |
- |
-} /* end mp_cmp() */ |
- |
-/* }}} */ |
- |
-/* {{{ mp_cmp_mag(a, b) */ |
- |
-/* |
- mp_cmp_mag(a, b) |
- |
- Compares |a| <=> |b|, and returns an appropriate comparison result |
- */ |
- |
-int mp_cmp_mag(mp_int *a, mp_int *b) |
-{ |
- ARGCHK(a != NULL && b != NULL, MP_EQ); |
- |
- return s_mp_cmp(a, b); |
- |
-} /* end mp_cmp_mag() */ |
- |
-/* }}} */ |
- |
-/* {{{ mp_cmp_int(a, z) */ |
- |
-/* |
- This just converts z to an mp_int, and uses the existing comparison |
- routines. This is sort of inefficient, but it's not clear to me how |
- frequently this wil get used anyway. For small positive constants, |
- you can always use mp_cmp_d(), and for zero, there is mp_cmp_z(). |
- */ |
-int mp_cmp_int(const mp_int *a, long z) |
-{ |
- mp_int tmp; |
- int out; |
- |
- ARGCHK(a != NULL, MP_EQ); |
- |
- mp_init(&tmp); mp_set_int(&tmp, z); |
- out = mp_cmp(a, &tmp); |
- mp_clear(&tmp); |
- |
- return out; |
- |
-} /* end mp_cmp_int() */ |
- |
-/* }}} */ |
- |
-/* {{{ mp_isodd(a) */ |
- |
-/* |
- mp_isodd(a) |
- |
- Returns a true (non-zero) value if a is odd, false (zero) otherwise. |
- */ |
-int mp_isodd(const mp_int *a) |
-{ |
- ARGCHK(a != NULL, 0); |
- |
- return (int)(DIGIT(a, 0) & 1); |
- |
-} /* end mp_isodd() */ |
- |
-/* }}} */ |
- |
-/* {{{ mp_iseven(a) */ |
- |
-int mp_iseven(const mp_int *a) |
-{ |
- return !mp_isodd(a); |
- |
-} /* end mp_iseven() */ |
- |
-/* }}} */ |
- |
-/* }}} */ |
- |
-/*------------------------------------------------------------------------*/ |
-/* {{{ Number theoretic functions */ |
- |
-#if MP_NUMTH |
-/* {{{ mp_gcd(a, b, c) */ |
- |
-/* |
- Like the old mp_gcd() function, except computes the GCD using the |
- binary algorithm due to Josef Stein in 1961 (via Knuth). |
- */ |
-mp_err mp_gcd(mp_int *a, mp_int *b, mp_int *c) |
-{ |
- mp_err res; |
- mp_int u, v, t; |
- mp_size k = 0; |
- |
- ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
- |
- if(mp_cmp_z(a) == MP_EQ && mp_cmp_z(b) == MP_EQ) |
- return MP_RANGE; |
- if(mp_cmp_z(a) == MP_EQ) { |
- return mp_copy(b, c); |
- } else if(mp_cmp_z(b) == MP_EQ) { |
- return mp_copy(a, c); |
- } |
- |
- if((res = mp_init(&t)) != MP_OKAY) |
- return res; |
- if((res = mp_init_copy(&u, a)) != MP_OKAY) |
- goto U; |
- if((res = mp_init_copy(&v, b)) != MP_OKAY) |
- goto V; |
- |
- SIGN(&u) = ZPOS; |
- SIGN(&v) = ZPOS; |
- |
- /* Divide out common factors of 2 until at least 1 of a, b is even */ |
- while(mp_iseven(&u) && mp_iseven(&v)) { |
- s_mp_div_2(&u); |
- s_mp_div_2(&v); |
- ++k; |
- } |
- |
- /* Initialize t */ |
- if(mp_isodd(&u)) { |
- if((res = mp_copy(&v, &t)) != MP_OKAY) |
- goto CLEANUP; |
- |
- /* t = -v */ |
- if(SIGN(&v) == ZPOS) |
- SIGN(&t) = NEG; |
- else |
- SIGN(&t) = ZPOS; |
- |
- } else { |
- if((res = mp_copy(&u, &t)) != MP_OKAY) |
- goto CLEANUP; |
- |
- } |
- |
- for(;;) { |
- while(mp_iseven(&t)) { |
- s_mp_div_2(&t); |
- } |
- |
- if(mp_cmp_z(&t) == MP_GT) { |
- if((res = mp_copy(&t, &u)) != MP_OKAY) |
- goto CLEANUP; |
- |
- } else { |
- if((res = mp_copy(&t, &v)) != MP_OKAY) |
- goto CLEANUP; |
- |
- /* v = -t */ |
- if(SIGN(&t) == ZPOS) |
- SIGN(&v) = NEG; |
- else |
- SIGN(&v) = ZPOS; |
- } |
- |
- if((res = mp_sub(&u, &v, &t)) != MP_OKAY) |
- goto CLEANUP; |
- |
- if(s_mp_cmp_d(&t, 0) == MP_EQ) |
- break; |
- } |
- |
- s_mp_2expt(&v, k); /* v = 2^k */ |
- res = mp_mul(&u, &v, c); /* c = u * v */ |
- |
- CLEANUP: |
- mp_clear(&v); |
- V: |
- mp_clear(&u); |
- U: |
- mp_clear(&t); |
- |
- return res; |
- |
-} /* end mp_gcd() */ |
- |
-/* }}} */ |
- |
-/* {{{ mp_lcm(a, b, c) */ |
- |
-/* We compute the least common multiple using the rule: |
- |
- ab = [a, b](a, b) |
- |
- ... by computing the product, and dividing out the gcd. |
- */ |
- |
-mp_err mp_lcm(mp_int *a, mp_int *b, mp_int *c) |
-{ |
- mp_int gcd, prod; |
- mp_err res; |
- |
- ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
- |
- /* Set up temporaries */ |
- if((res = mp_init(&gcd)) != MP_OKAY) |
- return res; |
- if((res = mp_init(&prod)) != MP_OKAY) |
- goto GCD; |
- |
- if((res = mp_mul(a, b, &prod)) != MP_OKAY) |
- goto CLEANUP; |
- if((res = mp_gcd(a, b, &gcd)) != MP_OKAY) |
- goto CLEANUP; |
- |
- res = mp_div(&prod, &gcd, c, NULL); |
- |
- CLEANUP: |
- mp_clear(&prod); |
- GCD: |
- mp_clear(&gcd); |
- |
- return res; |
- |
-} /* end mp_lcm() */ |
- |
-/* }}} */ |
- |
-/* {{{ mp_xgcd(a, b, g, x, y) */ |
- |
-/* |
- mp_xgcd(a, b, g, x, y) |
- |
- Compute g = (a, b) and values x and y satisfying Bezout's identity |
- (that is, ax + by = g). This uses the binary extended GCD algorithm |
- based on the Stein algorithm used for mp_gcd() |
- See algorithm 14.61 in Handbook of Applied Cryptogrpahy. |
- */ |
- |
-mp_err mp_xgcd(const mp_int *a, const mp_int *b, mp_int *g, mp_int *x, mp_int *y) |
-{ |
- mp_int gx, xc, yc, u, v, A, B, C, D; |
- mp_int *clean[9]; |
- mp_err res; |
- int last = -1; |
- |
- if(mp_cmp_z(b) == 0) |
- return MP_RANGE; |
- |
- /* Initialize all these variables we need */ |
- MP_CHECKOK( mp_init(&u) ); |
- clean[++last] = &u; |
- MP_CHECKOK( mp_init(&v) ); |
- clean[++last] = &v; |
- MP_CHECKOK( mp_init(&gx) ); |
- clean[++last] = &gx; |
- MP_CHECKOK( mp_init(&A) ); |
- clean[++last] = &A; |
- MP_CHECKOK( mp_init(&B) ); |
- clean[++last] = &B; |
- MP_CHECKOK( mp_init(&C) ); |
- clean[++last] = &C; |
- MP_CHECKOK( mp_init(&D) ); |
- clean[++last] = &D; |
- MP_CHECKOK( mp_init_copy(&xc, a) ); |
- clean[++last] = &xc; |
- mp_abs(&xc, &xc); |
- MP_CHECKOK( mp_init_copy(&yc, b) ); |
- clean[++last] = &yc; |
- mp_abs(&yc, &yc); |
- |
- mp_set(&gx, 1); |
- |
- /* Divide by two until at least one of them is odd */ |
- while(mp_iseven(&xc) && mp_iseven(&yc)) { |
- mp_size nx = mp_trailing_zeros(&xc); |
- mp_size ny = mp_trailing_zeros(&yc); |
- mp_size n = MP_MIN(nx, ny); |
- s_mp_div_2d(&xc,n); |
- s_mp_div_2d(&yc,n); |
- MP_CHECKOK( s_mp_mul_2d(&gx,n) ); |
- } |
- |
- mp_copy(&xc, &u); |
- mp_copy(&yc, &v); |
- mp_set(&A, 1); mp_set(&D, 1); |
- |
- /* Loop through binary GCD algorithm */ |
- do { |
- while(mp_iseven(&u)) { |
- s_mp_div_2(&u); |
- |
- if(mp_iseven(&A) && mp_iseven(&B)) { |
- s_mp_div_2(&A); s_mp_div_2(&B); |
- } else { |
- MP_CHECKOK( mp_add(&A, &yc, &A) ); |
- s_mp_div_2(&A); |
- MP_CHECKOK( mp_sub(&B, &xc, &B) ); |
- s_mp_div_2(&B); |
- } |
- } |
- |
- while(mp_iseven(&v)) { |
- s_mp_div_2(&v); |
- |
- if(mp_iseven(&C) && mp_iseven(&D)) { |
- s_mp_div_2(&C); s_mp_div_2(&D); |
- } else { |
- MP_CHECKOK( mp_add(&C, &yc, &C) ); |
- s_mp_div_2(&C); |
- MP_CHECKOK( mp_sub(&D, &xc, &D) ); |
- s_mp_div_2(&D); |
- } |
- } |
- |
- if(mp_cmp(&u, &v) >= 0) { |
- MP_CHECKOK( mp_sub(&u, &v, &u) ); |
- MP_CHECKOK( mp_sub(&A, &C, &A) ); |
- MP_CHECKOK( mp_sub(&B, &D, &B) ); |
- } else { |
- MP_CHECKOK( mp_sub(&v, &u, &v) ); |
- MP_CHECKOK( mp_sub(&C, &A, &C) ); |
- MP_CHECKOK( mp_sub(&D, &B, &D) ); |
- } |
- } while (mp_cmp_z(&u) != 0); |
- |
- /* copy results to output */ |
- if(x) |
- MP_CHECKOK( mp_copy(&C, x) ); |
- |
- if(y) |
- MP_CHECKOK( mp_copy(&D, y) ); |
- |
- if(g) |
- MP_CHECKOK( mp_mul(&gx, &v, g) ); |
- |
- CLEANUP: |
- while(last >= 0) |
- mp_clear(clean[last--]); |
- |
- return res; |
- |
-} /* end mp_xgcd() */ |
- |
-/* }}} */ |
- |
-mp_size mp_trailing_zeros(const mp_int *mp) |
-{ |
- mp_digit d; |
- mp_size n = 0; |
- int ix; |
- |
- if (!mp || !MP_DIGITS(mp) || !mp_cmp_z(mp)) |
- return n; |
- |
- for (ix = 0; !(d = MP_DIGIT(mp,ix)) && (ix < MP_USED(mp)); ++ix) |
- n += MP_DIGIT_BIT; |
- if (!d) |
- return 0; /* shouldn't happen, but ... */ |
-#if !defined(MP_USE_UINT_DIGIT) |
- if (!(d & 0xffffffffU)) { |
- d >>= 32; |
- n += 32; |
- } |
-#endif |
- if (!(d & 0xffffU)) { |
- d >>= 16; |
- n += 16; |
- } |
- if (!(d & 0xffU)) { |
- d >>= 8; |
- n += 8; |
- } |
- if (!(d & 0xfU)) { |
- d >>= 4; |
- n += 4; |
- } |
- if (!(d & 0x3U)) { |
- d >>= 2; |
- n += 2; |
- } |
- if (!(d & 0x1U)) { |
- d >>= 1; |
- n += 1; |
- } |
-#if MP_ARGCHK == 2 |
- assert(0 != (d & 1)); |
-#endif |
- return n; |
-} |
- |
-/* Given a and prime p, computes c and k such that a*c == 2**k (mod p). |
-** Returns k (positive) or error (negative). |
-** This technique from the paper "Fast Modular Reciprocals" (unpublished) |
-** by Richard Schroeppel (a.k.a. Captain Nemo). |
-*/ |
-mp_err s_mp_almost_inverse(const mp_int *a, const mp_int *p, mp_int *c) |
-{ |
- mp_err res; |
- mp_err k = 0; |
- mp_int d, f, g; |
- |
- ARGCHK(a && p && c, MP_BADARG); |
- |
- MP_DIGITS(&d) = 0; |
- MP_DIGITS(&f) = 0; |
- MP_DIGITS(&g) = 0; |
- MP_CHECKOK( mp_init(&d) ); |
- MP_CHECKOK( mp_init_copy(&f, a) ); /* f = a */ |
- MP_CHECKOK( mp_init_copy(&g, p) ); /* g = p */ |
- |
- mp_set(c, 1); |
- mp_zero(&d); |
- |
- if (mp_cmp_z(&f) == 0) { |
- res = MP_UNDEF; |
- } else |
- for (;;) { |
- int diff_sign; |
- while (mp_iseven(&f)) { |
- mp_size n = mp_trailing_zeros(&f); |
- if (!n) { |
- res = MP_UNDEF; |
- goto CLEANUP; |
- } |
- s_mp_div_2d(&f, n); |
- MP_CHECKOK( s_mp_mul_2d(&d, n) ); |
- k += n; |
- } |
- if (mp_cmp_d(&f, 1) == MP_EQ) { /* f == 1 */ |
- res = k; |
- break; |
- } |
- diff_sign = mp_cmp(&f, &g); |
- if (diff_sign < 0) { /* f < g */ |
- s_mp_exch(&f, &g); |
- s_mp_exch(c, &d); |
- } else if (diff_sign == 0) { /* f == g */ |
- res = MP_UNDEF; /* a and p are not relatively prime */ |
- break; |
- } |
- if ((MP_DIGIT(&f,0) % 4) == (MP_DIGIT(&g,0) % 4)) { |
- MP_CHECKOK( mp_sub(&f, &g, &f) ); /* f = f - g */ |
- MP_CHECKOK( mp_sub(c, &d, c) ); /* c = c - d */ |
- } else { |
- MP_CHECKOK( mp_add(&f, &g, &f) ); /* f = f + g */ |
- MP_CHECKOK( mp_add(c, &d, c) ); /* c = c + d */ |
- } |
- } |
- if (res >= 0) { |
- while (MP_SIGN(c) != MP_ZPOS) { |
- MP_CHECKOK( mp_add(c, p, c) ); |
- } |
- res = k; |
- } |
- |
-CLEANUP: |
- mp_clear(&d); |
- mp_clear(&f); |
- mp_clear(&g); |
- return res; |
-} |
- |
-/* Compute T = (P ** -1) mod MP_RADIX. Also works for 16-bit mp_digits. |
-** This technique from the paper "Fast Modular Reciprocals" (unpublished) |
-** by Richard Schroeppel (a.k.a. Captain Nemo). |
-*/ |
-mp_digit s_mp_invmod_radix(mp_digit P) |
-{ |
- mp_digit T = P; |
- T *= 2 - (P * T); |
- T *= 2 - (P * T); |
- T *= 2 - (P * T); |
- T *= 2 - (P * T); |
-#if !defined(MP_USE_UINT_DIGIT) |
- T *= 2 - (P * T); |
- T *= 2 - (P * T); |
-#endif |
- return T; |
-} |
- |
-/* Given c, k, and prime p, where a*c == 2**k (mod p), |
-** Compute x = (a ** -1) mod p. This is similar to Montgomery reduction. |
-** This technique from the paper "Fast Modular Reciprocals" (unpublished) |
-** by Richard Schroeppel (a.k.a. Captain Nemo). |
-*/ |
-mp_err s_mp_fixup_reciprocal(const mp_int *c, const mp_int *p, int k, mp_int *x) |
-{ |
- int k_orig = k; |
- mp_digit r; |
- mp_size ix; |
- mp_err res; |
- |
- if (mp_cmp_z(c) < 0) { /* c < 0 */ |
- MP_CHECKOK( mp_add(c, p, x) ); /* x = c + p */ |
- } else { |
- MP_CHECKOK( mp_copy(c, x) ); /* x = c */ |
- } |
- |
- /* make sure x is large enough */ |
- ix = MP_HOWMANY(k, MP_DIGIT_BIT) + MP_USED(p) + 1; |
- ix = MP_MAX(ix, MP_USED(x)); |
- MP_CHECKOK( s_mp_pad(x, ix) ); |
- |
- r = 0 - s_mp_invmod_radix(MP_DIGIT(p,0)); |
- |
- for (ix = 0; k > 0; ix++) { |
- int j = MP_MIN(k, MP_DIGIT_BIT); |
- mp_digit v = r * MP_DIGIT(x, ix); |
- if (j < MP_DIGIT_BIT) { |
- v &= ((mp_digit)1 << j) - 1; /* v = v mod (2 ** j) */ |
- } |
- s_mp_mul_d_add_offset(p, v, x, ix); /* x += p * v * (RADIX ** ix) */ |
- k -= j; |
- } |
- s_mp_clamp(x); |
- s_mp_div_2d(x, k_orig); |
- res = MP_OKAY; |
- |
-CLEANUP: |
- return res; |
-} |
- |
-/* compute mod inverse using Schroeppel's method, only if m is odd */ |
-mp_err s_mp_invmod_odd_m(const mp_int *a, const mp_int *m, mp_int *c) |
-{ |
- int k; |
- mp_err res; |
- mp_int x; |
- |
- ARGCHK(a && m && c, MP_BADARG); |
- |
- if(mp_cmp_z(a) == 0 || mp_cmp_z(m) == 0) |
- return MP_RANGE; |
- if (mp_iseven(m)) |
- return MP_UNDEF; |
- |
- MP_DIGITS(&x) = 0; |
- |
- if (a == c) { |
- if ((res = mp_init_copy(&x, a)) != MP_OKAY) |
- return res; |
- if (a == m) |
- m = &x; |
- a = &x; |
- } else if (m == c) { |
- if ((res = mp_init_copy(&x, m)) != MP_OKAY) |
- return res; |
- m = &x; |
- } else { |
- MP_DIGITS(&x) = 0; |
- } |
- |
- MP_CHECKOK( s_mp_almost_inverse(a, m, c) ); |
- k = res; |
- MP_CHECKOK( s_mp_fixup_reciprocal(c, m, k, c) ); |
-CLEANUP: |
- mp_clear(&x); |
- return res; |
-} |
- |
-/* Known good algorithm for computing modular inverse. But slow. */ |
-mp_err mp_invmod_xgcd(const mp_int *a, const mp_int *m, mp_int *c) |
-{ |
- mp_int g, x; |
- mp_err res; |
- |
- ARGCHK(a && m && c, MP_BADARG); |
- |
- if(mp_cmp_z(a) == 0 || mp_cmp_z(m) == 0) |
- return MP_RANGE; |
- |
- MP_DIGITS(&g) = 0; |
- MP_DIGITS(&x) = 0; |
- MP_CHECKOK( mp_init(&x) ); |
- MP_CHECKOK( mp_init(&g) ); |
- |
- MP_CHECKOK( mp_xgcd(a, m, &g, &x, NULL) ); |
- |
- if (mp_cmp_d(&g, 1) != MP_EQ) { |
- res = MP_UNDEF; |
- goto CLEANUP; |
- } |
- |
- res = mp_mod(&x, m, c); |
- SIGN(c) = SIGN(a); |
- |
-CLEANUP: |
- mp_clear(&x); |
- mp_clear(&g); |
- |
- return res; |
-} |
- |
-/* modular inverse where modulus is 2**k. */ |
-/* c = a**-1 mod 2**k */ |
-mp_err s_mp_invmod_2d(const mp_int *a, mp_size k, mp_int *c) |
-{ |
- mp_err res; |
- mp_size ix = k + 4; |
- mp_int t0, t1, val, tmp, two2k; |
- |
- static const mp_digit d2 = 2; |
- static const mp_int two = { MP_ZPOS, 1, 1, (mp_digit *)&d2 }; |
- |
- if (mp_iseven(a)) |
- return MP_UNDEF; |
- if (k <= MP_DIGIT_BIT) { |
- mp_digit i = s_mp_invmod_radix(MP_DIGIT(a,0)); |
- if (k < MP_DIGIT_BIT) |
- i &= ((mp_digit)1 << k) - (mp_digit)1; |
- mp_set(c, i); |
- return MP_OKAY; |
- } |
- MP_DIGITS(&t0) = 0; |
- MP_DIGITS(&t1) = 0; |
- MP_DIGITS(&val) = 0; |
- MP_DIGITS(&tmp) = 0; |
- MP_DIGITS(&two2k) = 0; |
- MP_CHECKOK( mp_init_copy(&val, a) ); |
- s_mp_mod_2d(&val, k); |
- MP_CHECKOK( mp_init_copy(&t0, &val) ); |
- MP_CHECKOK( mp_init_copy(&t1, &t0) ); |
- MP_CHECKOK( mp_init(&tmp) ); |
- MP_CHECKOK( mp_init(&two2k) ); |
- MP_CHECKOK( s_mp_2expt(&two2k, k) ); |
- do { |
- MP_CHECKOK( mp_mul(&val, &t1, &tmp) ); |
- MP_CHECKOK( mp_sub(&two, &tmp, &tmp) ); |
- MP_CHECKOK( mp_mul(&t1, &tmp, &t1) ); |
- s_mp_mod_2d(&t1, k); |
- while (MP_SIGN(&t1) != MP_ZPOS) { |
- MP_CHECKOK( mp_add(&t1, &two2k, &t1) ); |
- } |
- if (mp_cmp(&t1, &t0) == MP_EQ) |
- break; |
- MP_CHECKOK( mp_copy(&t1, &t0) ); |
- } while (--ix > 0); |
- if (!ix) { |
- res = MP_UNDEF; |
- } else { |
- mp_exch(c, &t1); |
- } |
- |
-CLEANUP: |
- mp_clear(&t0); |
- mp_clear(&t1); |
- mp_clear(&val); |
- mp_clear(&tmp); |
- mp_clear(&two2k); |
- return res; |
-} |
- |
-mp_err s_mp_invmod_even_m(const mp_int *a, const mp_int *m, mp_int *c) |
-{ |
- mp_err res; |
- mp_size k; |
- mp_int oddFactor, evenFactor; /* factors of the modulus */ |
- mp_int oddPart, evenPart; /* parts to combine via CRT. */ |
- mp_int C2, tmp1, tmp2; |
- |
- /*static const mp_digit d1 = 1; */ |
- /*static const mp_int one = { MP_ZPOS, 1, 1, (mp_digit *)&d1 }; */ |
- |
- if ((res = s_mp_ispow2(m)) >= 0) { |
- k = res; |
- return s_mp_invmod_2d(a, k, c); |
- } |
- MP_DIGITS(&oddFactor) = 0; |
- MP_DIGITS(&evenFactor) = 0; |
- MP_DIGITS(&oddPart) = 0; |
- MP_DIGITS(&evenPart) = 0; |
- MP_DIGITS(&C2) = 0; |
- MP_DIGITS(&tmp1) = 0; |
- MP_DIGITS(&tmp2) = 0; |
- |
- MP_CHECKOK( mp_init_copy(&oddFactor, m) ); /* oddFactor = m */ |
- MP_CHECKOK( mp_init(&evenFactor) ); |
- MP_CHECKOK( mp_init(&oddPart) ); |
- MP_CHECKOK( mp_init(&evenPart) ); |
- MP_CHECKOK( mp_init(&C2) ); |
- MP_CHECKOK( mp_init(&tmp1) ); |
- MP_CHECKOK( mp_init(&tmp2) ); |
- |
- k = mp_trailing_zeros(m); |
- s_mp_div_2d(&oddFactor, k); |
- MP_CHECKOK( s_mp_2expt(&evenFactor, k) ); |
- |
- /* compute a**-1 mod oddFactor. */ |
- MP_CHECKOK( s_mp_invmod_odd_m(a, &oddFactor, &oddPart) ); |
- /* compute a**-1 mod evenFactor, where evenFactor == 2**k. */ |
- MP_CHECKOK( s_mp_invmod_2d( a, k, &evenPart) ); |
- |
- /* Use Chinese Remainer theorem to compute a**-1 mod m. */ |
- /* let m1 = oddFactor, v1 = oddPart, |
- * let m2 = evenFactor, v2 = evenPart. |
- */ |
- |
- /* Compute C2 = m1**-1 mod m2. */ |
- MP_CHECKOK( s_mp_invmod_2d(&oddFactor, k, &C2) ); |
- |
- /* compute u = (v2 - v1)*C2 mod m2 */ |
- MP_CHECKOK( mp_sub(&evenPart, &oddPart, &tmp1) ); |
- MP_CHECKOK( mp_mul(&tmp1, &C2, &tmp2) ); |
- s_mp_mod_2d(&tmp2, k); |
- while (MP_SIGN(&tmp2) != MP_ZPOS) { |
- MP_CHECKOK( mp_add(&tmp2, &evenFactor, &tmp2) ); |
- } |
- |
- /* compute answer = v1 + u*m1 */ |
- MP_CHECKOK( mp_mul(&tmp2, &oddFactor, c) ); |
- MP_CHECKOK( mp_add(&oddPart, c, c) ); |
- /* not sure this is necessary, but it's low cost if not. */ |
- MP_CHECKOK( mp_mod(c, m, c) ); |
- |
-CLEANUP: |
- mp_clear(&oddFactor); |
- mp_clear(&evenFactor); |
- mp_clear(&oddPart); |
- mp_clear(&evenPart); |
- mp_clear(&C2); |
- mp_clear(&tmp1); |
- mp_clear(&tmp2); |
- return res; |
-} |
- |
- |
-/* {{{ mp_invmod(a, m, c) */ |
- |
-/* |
- mp_invmod(a, m, c) |
- |
- Compute c = a^-1 (mod m), if there is an inverse for a (mod m). |
- This is equivalent to the question of whether (a, m) = 1. If not, |
- MP_UNDEF is returned, and there is no inverse. |
- */ |
- |
-mp_err mp_invmod(const mp_int *a, const mp_int *m, mp_int *c) |
-{ |
- |
- ARGCHK(a && m && c, MP_BADARG); |
- |
- if(mp_cmp_z(a) == 0 || mp_cmp_z(m) == 0) |
- return MP_RANGE; |
- |
- if (mp_isodd(m)) { |
- return s_mp_invmod_odd_m(a, m, c); |
- } |
- if (mp_iseven(a)) |
- return MP_UNDEF; /* not invertable */ |
- |
- return s_mp_invmod_even_m(a, m, c); |
- |
-} /* end mp_invmod() */ |
- |
-/* }}} */ |
-#endif /* if MP_NUMTH */ |
- |
-/* }}} */ |
- |
-/*------------------------------------------------------------------------*/ |
-/* {{{ mp_print(mp, ofp) */ |
- |
-#if MP_IOFUNC |
-/* |
- mp_print(mp, ofp) |
- |
- Print a textual representation of the given mp_int on the output |
- stream 'ofp'. Output is generated using the internal radix. |
- */ |
- |
-void mp_print(mp_int *mp, FILE *ofp) |
-{ |
- int ix; |
- |
- if(mp == NULL || ofp == NULL) |
- return; |
- |
- fputc((SIGN(mp) == NEG) ? '-' : '+', ofp); |
- |
- for(ix = USED(mp) - 1; ix >= 0; ix--) { |
- fprintf(ofp, DIGIT_FMT, DIGIT(mp, ix)); |
- } |
- |
-} /* end mp_print() */ |
- |
-#endif /* if MP_IOFUNC */ |
- |
-/* }}} */ |
- |
-/*------------------------------------------------------------------------*/ |
-/* {{{ More I/O Functions */ |
- |
-/* {{{ mp_read_raw(mp, str, len) */ |
- |
-/* |
- mp_read_raw(mp, str, len) |
- |
- Read in a raw value (base 256) into the given mp_int |
- */ |
- |
-mp_err mp_read_raw(mp_int *mp, char *str, int len) |
-{ |
- int ix; |
- mp_err res; |
- unsigned char *ustr = (unsigned char *)str; |
- |
- ARGCHK(mp != NULL && str != NULL && len > 0, MP_BADARG); |
- |
- mp_zero(mp); |
- |
- /* Get sign from first byte */ |
- if(ustr[0]) |
- SIGN(mp) = NEG; |
- else |
- SIGN(mp) = ZPOS; |
- |
- /* Read the rest of the digits */ |
- for(ix = 1; ix < len; ix++) { |
- if((res = mp_mul_d(mp, 256, mp)) != MP_OKAY) |
- return res; |
- if((res = mp_add_d(mp, ustr[ix], mp)) != MP_OKAY) |
- return res; |
- } |
- |
- return MP_OKAY; |
- |
-} /* end mp_read_raw() */ |
- |
-/* }}} */ |
- |
-/* {{{ mp_raw_size(mp) */ |
- |
-int mp_raw_size(mp_int *mp) |
-{ |
- ARGCHK(mp != NULL, 0); |
- |
- return (USED(mp) * sizeof(mp_digit)) + 1; |
- |
-} /* end mp_raw_size() */ |
- |
-/* }}} */ |
- |
-/* {{{ mp_toraw(mp, str) */ |
- |
-mp_err mp_toraw(mp_int *mp, char *str) |
-{ |
- int ix, jx, pos = 1; |
- |
- ARGCHK(mp != NULL && str != NULL, MP_BADARG); |
- |
- str[0] = (char)SIGN(mp); |
- |
- /* Iterate over each digit... */ |
- for(ix = USED(mp) - 1; ix >= 0; ix--) { |
- mp_digit d = DIGIT(mp, ix); |
- |
- /* Unpack digit bytes, high order first */ |
- for(jx = sizeof(mp_digit) - 1; jx >= 0; jx--) { |
- str[pos++] = (char)(d >> (jx * CHAR_BIT)); |
- } |
- } |
- |
- return MP_OKAY; |
- |
-} /* end mp_toraw() */ |
- |
-/* }}} */ |
- |
-/* {{{ mp_read_radix(mp, str, radix) */ |
- |
-/* |
- mp_read_radix(mp, str, radix) |
- |
- Read an integer from the given string, and set mp to the resulting |
- value. The input is presumed to be in base 10. Leading non-digit |
- characters are ignored, and the function reads until a non-digit |
- character or the end of the string. |
- */ |
- |
-mp_err mp_read_radix(mp_int *mp, const char *str, int radix) |
-{ |
- int ix = 0, val = 0; |
- mp_err res; |
- mp_sign sig = ZPOS; |
- |
- ARGCHK(mp != NULL && str != NULL && radix >= 2 && radix <= MAX_RADIX, |
- MP_BADARG); |
- |
- mp_zero(mp); |
- |
- /* Skip leading non-digit characters until a digit or '-' or '+' */ |
- while(str[ix] && |
- (s_mp_tovalue(str[ix], radix) < 0) && |
- str[ix] != '-' && |
- str[ix] != '+') { |
- ++ix; |
- } |
- |
- if(str[ix] == '-') { |
- sig = NEG; |
- ++ix; |
- } else if(str[ix] == '+') { |
- sig = ZPOS; /* this is the default anyway... */ |
- ++ix; |
- } |
- |
- while((val = s_mp_tovalue(str[ix], radix)) >= 0) { |
- if((res = s_mp_mul_d(mp, radix)) != MP_OKAY) |
- return res; |
- if((res = s_mp_add_d(mp, val)) != MP_OKAY) |
- return res; |
- ++ix; |
- } |
- |
- if(s_mp_cmp_d(mp, 0) == MP_EQ) |
- SIGN(mp) = ZPOS; |
- else |
- SIGN(mp) = sig; |
- |
- return MP_OKAY; |
- |
-} /* end mp_read_radix() */ |
- |
-mp_err mp_read_variable_radix(mp_int *a, const char * str, int default_radix) |
-{ |
- int radix = default_radix; |
- int cx; |
- mp_sign sig = ZPOS; |
- mp_err res; |
- |
- /* Skip leading non-digit characters until a digit or '-' or '+' */ |
- while ((cx = *str) != 0 && |
- (s_mp_tovalue(cx, radix) < 0) && |
- cx != '-' && |
- cx != '+') { |
- ++str; |
- } |
- |
- if (cx == '-') { |
- sig = NEG; |
- ++str; |
- } else if (cx == '+') { |
- sig = ZPOS; /* this is the default anyway... */ |
- ++str; |
- } |
- |
- if (str[0] == '0') { |
- if ((str[1] | 0x20) == 'x') { |
- radix = 16; |
- str += 2; |
- } else { |
- radix = 8; |
- str++; |
- } |
- } |
- res = mp_read_radix(a, str, radix); |
- if (res == MP_OKAY) { |
- MP_SIGN(a) = (s_mp_cmp_d(a, 0) == MP_EQ) ? ZPOS : sig; |
- } |
- return res; |
-} |
- |
-/* }}} */ |
- |
-/* {{{ mp_radix_size(mp, radix) */ |
- |
-int mp_radix_size(mp_int *mp, int radix) |
-{ |
- int bits; |
- |
- if(!mp || radix < 2 || radix > MAX_RADIX) |
- return 0; |
- |
- bits = USED(mp) * DIGIT_BIT - 1; |
- |
- return s_mp_outlen(bits, radix); |
- |
-} /* end mp_radix_size() */ |
- |
-/* }}} */ |
- |
-/* {{{ mp_toradix(mp, str, radix) */ |
- |
-mp_err mp_toradix(mp_int *mp, char *str, int radix) |
-{ |
- int ix, pos = 0; |
- |
- ARGCHK(mp != NULL && str != NULL, MP_BADARG); |
- ARGCHK(radix > 1 && radix <= MAX_RADIX, MP_RANGE); |
- |
- if(mp_cmp_z(mp) == MP_EQ) { |
- str[0] = '0'; |
- str[1] = '\0'; |
- } else { |
- mp_err res; |
- mp_int tmp; |
- mp_sign sgn; |
- mp_digit rem, rdx = (mp_digit)radix; |
- char ch; |
- |
- if((res = mp_init_copy(&tmp, mp)) != MP_OKAY) |
- return res; |
- |
- /* Save sign for later, and take absolute value */ |
- sgn = SIGN(&tmp); SIGN(&tmp) = ZPOS; |
- |
- /* Generate output digits in reverse order */ |
- while(mp_cmp_z(&tmp) != 0) { |
- if((res = mp_div_d(&tmp, rdx, &tmp, &rem)) != MP_OKAY) { |
- mp_clear(&tmp); |
- return res; |
- } |
- |
- /* Generate digits, use capital letters */ |
- ch = s_mp_todigit(rem, radix, 0); |
- |
- str[pos++] = ch; |
- } |
- |
- /* Add - sign if original value was negative */ |
- if(sgn == NEG) |
- str[pos++] = '-'; |
- |
- /* Add trailing NUL to end the string */ |
- str[pos--] = '\0'; |
- |
- /* Reverse the digits and sign indicator */ |
- ix = 0; |
- while(ix < pos) { |
- char tmp = str[ix]; |
- |
- str[ix] = str[pos]; |
- str[pos] = tmp; |
- ++ix; |
- --pos; |
- } |
- |
- mp_clear(&tmp); |
- } |
- |
- return MP_OKAY; |
- |
-} /* end mp_toradix() */ |
- |
-/* }}} */ |
- |
-/* {{{ mp_tovalue(ch, r) */ |
- |
-int mp_tovalue(char ch, int r) |
-{ |
- return s_mp_tovalue(ch, r); |
- |
-} /* end mp_tovalue() */ |
- |
-/* }}} */ |
- |
-/* }}} */ |
- |
-/* {{{ mp_strerror(ec) */ |
- |
-/* |
- mp_strerror(ec) |
- |
- Return a string describing the meaning of error code 'ec'. The |
- string returned is allocated in static memory, so the caller should |
- not attempt to modify or free the memory associated with this |
- string. |
- */ |
-const char *mp_strerror(mp_err ec) |
-{ |
- int aec = (ec < 0) ? -ec : ec; |
- |
- /* Code values are negative, so the senses of these comparisons |
- are accurate */ |
- if(ec < MP_LAST_CODE || ec > MP_OKAY) { |
- return mp_err_string[0]; /* unknown error code */ |
- } else { |
- return mp_err_string[aec + 1]; |
- } |
- |
-} /* end mp_strerror() */ |
- |
-/* }}} */ |
- |
-/*========================================================================*/ |
-/*------------------------------------------------------------------------*/ |
-/* Static function definitions (internal use only) */ |
- |
-/* {{{ Memory management */ |
- |
-/* {{{ s_mp_grow(mp, min) */ |
- |
-/* Make sure there are at least 'min' digits allocated to mp */ |
-mp_err s_mp_grow(mp_int *mp, mp_size min) |
-{ |
- if(min > ALLOC(mp)) { |
- mp_digit *tmp; |
- |
- /* Set min to next nearest default precision block size */ |
- min = MP_ROUNDUP(min, s_mp_defprec); |
- |
- if((tmp = s_mp_alloc(min, sizeof(mp_digit))) == NULL) |
- return MP_MEM; |
- |
- s_mp_copy(DIGITS(mp), tmp, USED(mp)); |
- |
-#if MP_CRYPTO |
- s_mp_setz(DIGITS(mp), ALLOC(mp)); |
-#endif |
- s_mp_free(DIGITS(mp)); |
- DIGITS(mp) = tmp; |
- ALLOC(mp) = min; |
- } |
- |
- return MP_OKAY; |
- |
-} /* end s_mp_grow() */ |
- |
-/* }}} */ |
- |
-/* {{{ s_mp_pad(mp, min) */ |
- |
-/* Make sure the used size of mp is at least 'min', growing if needed */ |
-mp_err s_mp_pad(mp_int *mp, mp_size min) |
-{ |
- if(min > USED(mp)) { |
- mp_err res; |
- |
- /* Make sure there is room to increase precision */ |
- if (min > ALLOC(mp)) { |
- if ((res = s_mp_grow(mp, min)) != MP_OKAY) |
- return res; |
- } else { |
- s_mp_setz(DIGITS(mp) + USED(mp), min - USED(mp)); |
- } |
- |
- /* Increase precision; should already be 0-filled */ |
- USED(mp) = min; |
- } |
- |
- return MP_OKAY; |
- |
-} /* end s_mp_pad() */ |
- |
-/* }}} */ |
- |
-/* {{{ s_mp_setz(dp, count) */ |
- |
-#if MP_MACRO == 0 |
-/* Set 'count' digits pointed to by dp to be zeroes */ |
-void s_mp_setz(mp_digit *dp, mp_size count) |
-{ |
-#if MP_MEMSET == 0 |
- int ix; |
- |
- for(ix = 0; ix < count; ix++) |
- dp[ix] = 0; |
-#else |
- memset(dp, 0, count * sizeof(mp_digit)); |
-#endif |
- |
-} /* end s_mp_setz() */ |
-#endif |
- |
-/* }}} */ |
- |
-/* {{{ s_mp_copy(sp, dp, count) */ |
- |
-#if MP_MACRO == 0 |
-/* Copy 'count' digits from sp to dp */ |
-void s_mp_copy(const mp_digit *sp, mp_digit *dp, mp_size count) |
-{ |
-#if MP_MEMCPY == 0 |
- int ix; |
- |
- for(ix = 0; ix < count; ix++) |
- dp[ix] = sp[ix]; |
-#else |
- memcpy(dp, sp, count * sizeof(mp_digit)); |
-#endif |
- ++mp_copies; |
- |
-} /* end s_mp_copy() */ |
-#endif |
- |
-/* }}} */ |
- |
-/* {{{ s_mp_alloc(nb, ni) */ |
- |
-#if MP_MACRO == 0 |
-/* Allocate ni records of nb bytes each, and return a pointer to that */ |
-void *s_mp_alloc(size_t nb, size_t ni) |
-{ |
- ++mp_allocs; |
- return calloc(nb, ni); |
- |
-} /* end s_mp_alloc() */ |
-#endif |
- |
-/* }}} */ |
- |
-/* {{{ s_mp_free(ptr) */ |
- |
-#if MP_MACRO == 0 |
-/* Free the memory pointed to by ptr */ |
-void s_mp_free(void *ptr) |
-{ |
- if(ptr) { |
- ++mp_frees; |
- free(ptr); |
- } |
-} /* end s_mp_free() */ |
-#endif |
- |
-/* }}} */ |
- |
-/* {{{ s_mp_clamp(mp) */ |
- |
-#if MP_MACRO == 0 |
-/* Remove leading zeroes from the given value */ |
-void s_mp_clamp(mp_int *mp) |
-{ |
- mp_size used = MP_USED(mp); |
- while (used > 1 && DIGIT(mp, used - 1) == 0) |
- --used; |
- MP_USED(mp) = used; |
-} /* end s_mp_clamp() */ |
-#endif |
- |
-/* }}} */ |
- |
-/* {{{ s_mp_exch(a, b) */ |
- |
-/* Exchange the data for a and b; (b, a) = (a, b) */ |
-void s_mp_exch(mp_int *a, mp_int *b) |
-{ |
- mp_int tmp; |
- |
- tmp = *a; |
- *a = *b; |
- *b = tmp; |
- |
-} /* end s_mp_exch() */ |
- |
-/* }}} */ |
- |
-/* }}} */ |
- |
-/* {{{ Arithmetic helpers */ |
- |
-/* {{{ s_mp_lshd(mp, p) */ |
- |
-/* |
- Shift mp leftward by p digits, growing if needed, and zero-filling |
- the in-shifted digits at the right end. This is a convenient |
- alternative to multiplication by powers of the radix |
- */ |
- |
-mp_err s_mp_lshd(mp_int *mp, mp_size p) |
-{ |
- mp_err res; |
- mp_size pos; |
- int ix; |
- |
- if(p == 0) |
- return MP_OKAY; |
- |
- if (MP_USED(mp) == 1 && MP_DIGIT(mp, 0) == 0) |
- return MP_OKAY; |
- |
- if((res = s_mp_pad(mp, USED(mp) + p)) != MP_OKAY) |
- return res; |
- |
- pos = USED(mp) - 1; |
- |
- /* Shift all the significant figures over as needed */ |
- for(ix = pos - p; ix >= 0; ix--) |
- DIGIT(mp, ix + p) = DIGIT(mp, ix); |
- |
- /* Fill the bottom digits with zeroes */ |
- for(ix = 0; ix < p; ix++) |
- DIGIT(mp, ix) = 0; |
- |
- return MP_OKAY; |
- |
-} /* end s_mp_lshd() */ |
- |
-/* }}} */ |
- |
-/* {{{ s_mp_mul_2d(mp, d) */ |
- |
-/* |
- Multiply the integer by 2^d, where d is a number of bits. This |
- amounts to a bitwise shift of the value. |
- */ |
-mp_err s_mp_mul_2d(mp_int *mp, mp_digit d) |
-{ |
- mp_err res; |
- mp_digit dshift, bshift; |
- mp_digit mask; |
- |
- ARGCHK(mp != NULL, MP_BADARG); |
- |
- dshift = d / MP_DIGIT_BIT; |
- bshift = d % MP_DIGIT_BIT; |
- /* bits to be shifted out of the top word */ |
- mask = ((mp_digit)~0 << (MP_DIGIT_BIT - bshift)); |
- mask &= MP_DIGIT(mp, MP_USED(mp) - 1); |
- |
- if (MP_OKAY != (res = s_mp_pad(mp, MP_USED(mp) + dshift + (mask != 0) ))) |
- return res; |
- |
- if (dshift && MP_OKAY != (res = s_mp_lshd(mp, dshift))) |
- return res; |
- |
- if (bshift) { |
- mp_digit *pa = MP_DIGITS(mp); |
- mp_digit *alim = pa + MP_USED(mp); |
- mp_digit prev = 0; |
- |
- for (pa += dshift; pa < alim; ) { |
- mp_digit x = *pa; |
- *pa++ = (x << bshift) | prev; |
- prev = x >> (DIGIT_BIT - bshift); |
- } |
- } |
- |
- s_mp_clamp(mp); |
- return MP_OKAY; |
-} /* end s_mp_mul_2d() */ |
- |
-/* {{{ s_mp_rshd(mp, p) */ |
- |
-/* |
- Shift mp rightward by p digits. Maintains the invariant that |
- digits above the precision are all zero. Digits shifted off the |
- end are lost. Cannot fail. |
- */ |
- |
-void s_mp_rshd(mp_int *mp, mp_size p) |
-{ |
- mp_size ix; |
- mp_digit *src, *dst; |
- |
- if(p == 0) |
- return; |
- |
- /* Shortcut when all digits are to be shifted off */ |
- if(p >= USED(mp)) { |
- s_mp_setz(DIGITS(mp), ALLOC(mp)); |
- USED(mp) = 1; |
- SIGN(mp) = ZPOS; |
- return; |
- } |
- |
- /* Shift all the significant figures over as needed */ |
- dst = MP_DIGITS(mp); |
- src = dst + p; |
- for (ix = USED(mp) - p; ix > 0; ix--) |
- *dst++ = *src++; |
- |
- MP_USED(mp) -= p; |
- /* Fill the top digits with zeroes */ |
- while (p-- > 0) |
- *dst++ = 0; |
- |
-#if 0 |
- /* Strip off any leading zeroes */ |
- s_mp_clamp(mp); |
-#endif |
- |
-} /* end s_mp_rshd() */ |
- |
-/* }}} */ |
- |
-/* {{{ s_mp_div_2(mp) */ |
- |
-/* Divide by two -- take advantage of radix properties to do it fast */ |
-void s_mp_div_2(mp_int *mp) |
-{ |
- s_mp_div_2d(mp, 1); |
- |
-} /* end s_mp_div_2() */ |
- |
-/* }}} */ |
- |
-/* {{{ s_mp_mul_2(mp) */ |
- |
-mp_err s_mp_mul_2(mp_int *mp) |
-{ |
- mp_digit *pd; |
- int ix, used; |
- mp_digit kin = 0; |
- |
- /* Shift digits leftward by 1 bit */ |
- used = MP_USED(mp); |
- pd = MP_DIGITS(mp); |
- for (ix = 0; ix < used; ix++) { |
- mp_digit d = *pd; |
- *pd++ = (d << 1) | kin; |
- kin = (d >> (DIGIT_BIT - 1)); |
- } |
- |
- /* Deal with rollover from last digit */ |
- if (kin) { |
- if (ix >= ALLOC(mp)) { |
- mp_err res; |
- if((res = s_mp_grow(mp, ALLOC(mp) + 1)) != MP_OKAY) |
- return res; |
- } |
- |
- DIGIT(mp, ix) = kin; |
- USED(mp) += 1; |
- } |
- |
- return MP_OKAY; |
- |
-} /* end s_mp_mul_2() */ |
- |
-/* }}} */ |
- |
-/* {{{ s_mp_mod_2d(mp, d) */ |
- |
-/* |
- Remainder the integer by 2^d, where d is a number of bits. This |
- amounts to a bitwise AND of the value, and does not require the full |
- division code |
- */ |
-void s_mp_mod_2d(mp_int *mp, mp_digit d) |
-{ |
- mp_size ndig = (d / DIGIT_BIT), nbit = (d % DIGIT_BIT); |
- mp_size ix; |
- mp_digit dmask; |
- |
- if(ndig >= USED(mp)) |
- return; |
- |
- /* Flush all the bits above 2^d in its digit */ |
- dmask = ((mp_digit)1 << nbit) - 1; |
- DIGIT(mp, ndig) &= dmask; |
- |
- /* Flush all digits above the one with 2^d in it */ |
- for(ix = ndig + 1; ix < USED(mp); ix++) |
- DIGIT(mp, ix) = 0; |
- |
- s_mp_clamp(mp); |
- |
-} /* end s_mp_mod_2d() */ |
- |
-/* }}} */ |
- |
-/* {{{ s_mp_div_2d(mp, d) */ |
- |
-/* |
- Divide the integer by 2^d, where d is a number of bits. This |
- amounts to a bitwise shift of the value, and does not require the |
- full division code (used in Barrett reduction, see below) |
- */ |
-void s_mp_div_2d(mp_int *mp, mp_digit d) |
-{ |
- int ix; |
- mp_digit save, next, mask; |
- |
- s_mp_rshd(mp, d / DIGIT_BIT); |
- d %= DIGIT_BIT; |
- if (d) { |
- mask = ((mp_digit)1 << d) - 1; |
- save = 0; |
- for(ix = USED(mp) - 1; ix >= 0; ix--) { |
- next = DIGIT(mp, ix) & mask; |
- DIGIT(mp, ix) = (DIGIT(mp, ix) >> d) | (save << (DIGIT_BIT - d)); |
- save = next; |
- } |
- } |
- s_mp_clamp(mp); |
- |
-} /* end s_mp_div_2d() */ |
- |
-/* }}} */ |
- |
-/* {{{ s_mp_norm(a, b, *d) */ |
- |
-/* |
- s_mp_norm(a, b, *d) |
- |
- Normalize a and b for division, where b is the divisor. In order |
- that we might make good guesses for quotient digits, we want the |
- leading digit of b to be at least half the radix, which we |
- accomplish by multiplying a and b by a power of 2. The exponent |
- (shift count) is placed in *pd, so that the remainder can be shifted |
- back at the end of the division process. |
- */ |
- |
-mp_err s_mp_norm(mp_int *a, mp_int *b, mp_digit *pd) |
-{ |
- mp_digit d; |
- mp_digit mask; |
- mp_digit b_msd; |
- mp_err res = MP_OKAY; |
- |
- d = 0; |
- mask = DIGIT_MAX & ~(DIGIT_MAX >> 1); /* mask is msb of digit */ |
- b_msd = DIGIT(b, USED(b) - 1); |
- while (!(b_msd & mask)) { |
- b_msd <<= 1; |
- ++d; |
- } |
- |
- if (d) { |
- MP_CHECKOK( s_mp_mul_2d(a, d) ); |
- MP_CHECKOK( s_mp_mul_2d(b, d) ); |
- } |
- |
- *pd = d; |
-CLEANUP: |
- return res; |
- |
-} /* end s_mp_norm() */ |
- |
-/* }}} */ |
- |
-/* }}} */ |
- |
-/* {{{ Primitive digit arithmetic */ |
- |
-/* {{{ s_mp_add_d(mp, d) */ |
- |
-/* Add d to |mp| in place */ |
-mp_err s_mp_add_d(mp_int *mp, mp_digit d) /* unsigned digit addition */ |
-{ |
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
- mp_word w, k = 0; |
- mp_size ix = 1; |
- |
- w = (mp_word)DIGIT(mp, 0) + d; |
- DIGIT(mp, 0) = ACCUM(w); |
- k = CARRYOUT(w); |
- |
- while(ix < USED(mp) && k) { |
- w = (mp_word)DIGIT(mp, ix) + k; |
- DIGIT(mp, ix) = ACCUM(w); |
- k = CARRYOUT(w); |
- ++ix; |
- } |
- |
- if(k != 0) { |
- mp_err res; |
- |
- if((res = s_mp_pad(mp, USED(mp) + 1)) != MP_OKAY) |
- return res; |
- |
- DIGIT(mp, ix) = (mp_digit)k; |
- } |
- |
- return MP_OKAY; |
-#else |
- mp_digit * pmp = MP_DIGITS(mp); |
- mp_digit sum, mp_i, carry = 0; |
- mp_err res = MP_OKAY; |
- int used = (int)MP_USED(mp); |
- |
- mp_i = *pmp; |
- *pmp++ = sum = d + mp_i; |
- carry = (sum < d); |
- while (carry && --used > 0) { |
- mp_i = *pmp; |
- *pmp++ = sum = carry + mp_i; |
- carry = !sum; |
- } |
- if (carry && !used) { |
- /* mp is growing */ |
- used = MP_USED(mp); |
- MP_CHECKOK( s_mp_pad(mp, used + 1) ); |
- MP_DIGIT(mp, used) = carry; |
- } |
-CLEANUP: |
- return res; |
-#endif |
-} /* end s_mp_add_d() */ |
- |
-/* }}} */ |
- |
-/* {{{ s_mp_sub_d(mp, d) */ |
- |
-/* Subtract d from |mp| in place, assumes |mp| > d */ |
-mp_err s_mp_sub_d(mp_int *mp, mp_digit d) /* unsigned digit subtract */ |
-{ |
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) |
- mp_word w, b = 0; |
- mp_size ix = 1; |
- |
- /* Compute initial subtraction */ |
- w = (RADIX + (mp_word)DIGIT(mp, 0)) - d; |
- b = CARRYOUT(w) ? 0 : 1; |
- DIGIT(mp, 0) = ACCUM(w); |
- |
- /* Propagate borrows leftward */ |
- while(b && ix < USED(mp)) { |
- w = (RADIX + (mp_word)DIGIT(mp, ix)) - b; |
- b = CARRYOUT(w) ? 0 : 1; |
- DIGIT(mp, ix) = ACCUM(w); |
- ++ix; |
- } |
- |
- /* Remove leading zeroes */ |
- s_mp_clamp(mp); |
- |
- /* If we have a borrow out, it's a violation of the input invariant */ |
- if(b) |
- return MP_RANGE; |
- else |
- return MP_OKAY; |
-#else |
- mp_digit *pmp = MP_DIGITS(mp); |
- mp_digit mp_i, diff, borrow; |
- mp_size used = MP_USED(mp); |
- |
- mp_i = *pmp; |
- *pmp++ = diff = mp_i - d; |
- borrow = (diff > mp_i); |
- while (borrow && --used) { |
- mp_i = *pmp; |
- *pmp++ = diff = mp_i - borrow; |
- borrow = (diff > mp_i); |
- } |
- s_mp_clamp(mp); |
- return (borrow && !used) ? MP_RANGE : MP_OKAY; |
-#endif |
-} /* end s_mp_sub_d() */ |
- |
-/* }}} */ |
- |
-/* {{{ s_mp_mul_d(a, d) */ |
- |
-/* Compute a = a * d, single digit multiplication */ |
-mp_err s_mp_mul_d(mp_int *a, mp_digit d) |
-{ |
- mp_err res; |
- mp_size used; |
- int pow; |
- |
- if (!d) { |
- mp_zero(a); |
- return MP_OKAY; |
- } |
- if (d == 1) |
- return MP_OKAY; |
- if (0 <= (pow = s_mp_ispow2d(d))) { |
- return s_mp_mul_2d(a, (mp_digit)pow); |
- } |
- |
- used = MP_USED(a); |
- MP_CHECKOK( s_mp_pad(a, used + 1) ); |
- |
- s_mpv_mul_d(MP_DIGITS(a), used, d, MP_DIGITS(a)); |
- |
- s_mp_clamp(a); |
- |
-CLEANUP: |
- return res; |
- |
-} /* end s_mp_mul_d() */ |
- |
-/* }}} */ |
- |
-/* {{{ s_mp_div_d(mp, d, r) */ |
- |
-/* |
- s_mp_div_d(mp, d, r) |
- |
- Compute the quotient mp = mp / d and remainder r = mp mod d, for a |
- single digit d. If r is null, the remainder will be discarded. |
- */ |
- |
-mp_err s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r) |
-{ |
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_DIV_WORD) |
- mp_word w = 0, q; |
-#else |
- mp_digit w, q; |
-#endif |
- int ix; |
- mp_err res; |
- mp_int quot; |
- mp_int rem; |
- |
- if(d == 0) |
- return MP_RANGE; |
- if (d == 1) { |
- if (r) |
- *r = 0; |
- return MP_OKAY; |
- } |
- /* could check for power of 2 here, but mp_div_d does that. */ |
- if (MP_USED(mp) == 1) { |
- mp_digit n = MP_DIGIT(mp,0); |
- mp_digit rem; |
- |
- q = n / d; |
- rem = n % d; |
- MP_DIGIT(mp,0) = q; |
- if (r) |
- *r = rem; |
- return MP_OKAY; |
- } |
- |
- MP_DIGITS(&rem) = 0; |
- MP_DIGITS(") = 0; |
- /* Make room for the quotient */ |
- MP_CHECKOK( mp_init_size(", USED(mp)) ); |
- |
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_DIV_WORD) |
- for(ix = USED(mp) - 1; ix >= 0; ix--) { |
- w = (w << DIGIT_BIT) | DIGIT(mp, ix); |
- |
- if(w >= d) { |
- q = w / d; |
- w = w % d; |
- } else { |
- q = 0; |
- } |
- |
- s_mp_lshd(", 1); |
- DIGIT(", 0) = (mp_digit)q; |
- } |
-#else |
- { |
- mp_digit p; |
-#if !defined(MP_ASSEMBLY_DIV_2DX1D) |
- mp_digit norm; |
-#endif |
- |
- MP_CHECKOK( mp_init_copy(&rem, mp) ); |
- |
-#if !defined(MP_ASSEMBLY_DIV_2DX1D) |
- MP_DIGIT(", 0) = d; |
- MP_CHECKOK( s_mp_norm(&rem, ", &norm) ); |
- if (norm) |
- d <<= norm; |
- MP_DIGIT(", 0) = 0; |
-#endif |
- |
- p = 0; |
- for (ix = USED(&rem) - 1; ix >= 0; ix--) { |
- w = DIGIT(&rem, ix); |
- |
- if (p) { |
- MP_CHECKOK( s_mpv_div_2dx1d(p, w, d, &q, &w) ); |
- } else if (w >= d) { |
- q = w / d; |
- w = w % d; |
- } else { |
- q = 0; |
- } |
- |
- MP_CHECKOK( s_mp_lshd(", 1) ); |
- DIGIT(", 0) = q; |
- p = w; |
- } |
-#if !defined(MP_ASSEMBLY_DIV_2DX1D) |
- if (norm) |
- w >>= norm; |
-#endif |
- } |
-#endif |
- |
- /* Deliver the remainder, if desired */ |
- if(r) |
- *r = (mp_digit)w; |
- |
- s_mp_clamp("); |
- mp_exch(", mp); |
-CLEANUP: |
- mp_clear("); |
- mp_clear(&rem); |
- |
- return res; |
-} /* end s_mp_div_d() */ |
- |
-/* }}} */ |
- |
- |
-/* }}} */ |
- |
-/* {{{ Primitive full arithmetic */ |
- |
-/* {{{ s_mp_add(a, b) */ |
- |
-/* Compute a = |a| + |b| */ |
-mp_err s_mp_add(mp_int *a, const mp_int *b) /* magnitude addition */ |
-{ |
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
- mp_word w = 0; |
-#else |
- mp_digit d, sum, carry = 0; |
-#endif |
- mp_digit *pa, *pb; |
- mp_size ix; |
- mp_size used; |
- mp_err res; |
- |
- /* Make sure a has enough precision for the output value */ |
- if((USED(b) > USED(a)) && (res = s_mp_pad(a, USED(b))) != MP_OKAY) |
- return res; |
- |
- /* |
- Add up all digits up to the precision of b. If b had initially |
- the same precision as a, or greater, we took care of it by the |
- padding step above, so there is no problem. If b had initially |
- less precision, we'll have to make sure the carry out is duly |
- propagated upward among the higher-order digits of the sum. |
- */ |
- pa = MP_DIGITS(a); |
- pb = MP_DIGITS(b); |
- used = MP_USED(b); |
- for(ix = 0; ix < used; ix++) { |
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
- w = w + *pa + *pb++; |
- *pa++ = ACCUM(w); |
- w = CARRYOUT(w); |
-#else |
- d = *pa; |
- sum = d + *pb++; |
- d = (sum < d); /* detect overflow */ |
- *pa++ = sum += carry; |
- carry = d + (sum < carry); /* detect overflow */ |
-#endif |
- } |
- |
- /* If we run out of 'b' digits before we're actually done, make |
- sure the carries get propagated upward... |
- */ |
- used = MP_USED(a); |
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
- while (w && ix < used) { |
- w = w + *pa; |
- *pa++ = ACCUM(w); |
- w = CARRYOUT(w); |
- ++ix; |
- } |
-#else |
- while (carry && ix < used) { |
- sum = carry + *pa; |
- *pa++ = sum; |
- carry = !sum; |
- ++ix; |
- } |
-#endif |
- |
- /* If there's an overall carry out, increase precision and include |
- it. We could have done this initially, but why touch the memory |
- allocator unless we're sure we have to? |
- */ |
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
- if (w) { |
- if((res = s_mp_pad(a, used + 1)) != MP_OKAY) |
- return res; |
- |
- DIGIT(a, ix) = (mp_digit)w; |
- } |
-#else |
- if (carry) { |
- if((res = s_mp_pad(a, used + 1)) != MP_OKAY) |
- return res; |
- |
- DIGIT(a, used) = carry; |
- } |
-#endif |
- |
- return MP_OKAY; |
-} /* end s_mp_add() */ |
- |
-/* }}} */ |
- |
-/* Compute c = |a| + |b| */ /* magnitude addition */ |
-mp_err s_mp_add_3arg(const mp_int *a, const mp_int *b, mp_int *c) |
-{ |
- mp_digit *pa, *pb, *pc; |
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
- mp_word w = 0; |
-#else |
- mp_digit sum, carry = 0, d; |
-#endif |
- mp_size ix; |
- mp_size used; |
- mp_err res; |
- |
- MP_SIGN(c) = MP_SIGN(a); |
- if (MP_USED(a) < MP_USED(b)) { |
- const mp_int *xch = a; |
- a = b; |
- b = xch; |
- } |
- |
- /* Make sure a has enough precision for the output value */ |
- if (MP_OKAY != (res = s_mp_pad(c, MP_USED(a)))) |
- return res; |
- |
- /* |
- Add up all digits up to the precision of b. If b had initially |
- the same precision as a, or greater, we took care of it by the |
- exchange step above, so there is no problem. If b had initially |
- less precision, we'll have to make sure the carry out is duly |
- propagated upward among the higher-order digits of the sum. |
- */ |
- pa = MP_DIGITS(a); |
- pb = MP_DIGITS(b); |
- pc = MP_DIGITS(c); |
- used = MP_USED(b); |
- for (ix = 0; ix < used; ix++) { |
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
- w = w + *pa++ + *pb++; |
- *pc++ = ACCUM(w); |
- w = CARRYOUT(w); |
-#else |
- d = *pa++; |
- sum = d + *pb++; |
- d = (sum < d); /* detect overflow */ |
- *pc++ = sum += carry; |
- carry = d + (sum < carry); /* detect overflow */ |
-#endif |
- } |
- |
- /* If we run out of 'b' digits before we're actually done, make |
- sure the carries get propagated upward... |
- */ |
- for (used = MP_USED(a); ix < used; ++ix) { |
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
- w = w + *pa++; |
- *pc++ = ACCUM(w); |
- w = CARRYOUT(w); |
-#else |
- *pc++ = sum = carry + *pa++; |
- carry = (sum < carry); |
-#endif |
- } |
- |
- /* If there's an overall carry out, increase precision and include |
- it. We could have done this initially, but why touch the memory |
- allocator unless we're sure we have to? |
- */ |
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
- if (w) { |
- if((res = s_mp_pad(c, used + 1)) != MP_OKAY) |
- return res; |
- |
- DIGIT(c, used) = (mp_digit)w; |
- ++used; |
- } |
-#else |
- if (carry) { |
- if((res = s_mp_pad(c, used + 1)) != MP_OKAY) |
- return res; |
- |
- DIGIT(c, used) = carry; |
- ++used; |
- } |
-#endif |
- MP_USED(c) = used; |
- return MP_OKAY; |
-} |
-/* {{{ s_mp_add_offset(a, b, offset) */ |
- |
-/* Compute a = |a| + ( |b| * (RADIX ** offset) ) */ |
-mp_err s_mp_add_offset(mp_int *a, mp_int *b, mp_size offset) |
-{ |
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
- mp_word w, k = 0; |
-#else |
- mp_digit d, sum, carry = 0; |
-#endif |
- mp_size ib; |
- mp_size ia; |
- mp_size lim; |
- mp_err res; |
- |
- /* Make sure a has enough precision for the output value */ |
- lim = MP_USED(b) + offset; |
- if((lim > USED(a)) && (res = s_mp_pad(a, lim)) != MP_OKAY) |
- return res; |
- |
- /* |
- Add up all digits up to the precision of b. If b had initially |
- the same precision as a, or greater, we took care of it by the |
- padding step above, so there is no problem. If b had initially |
- less precision, we'll have to make sure the carry out is duly |
- propagated upward among the higher-order digits of the sum. |
- */ |
- lim = USED(b); |
- for(ib = 0, ia = offset; ib < lim; ib++, ia++) { |
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
- w = (mp_word)DIGIT(a, ia) + DIGIT(b, ib) + k; |
- DIGIT(a, ia) = ACCUM(w); |
- k = CARRYOUT(w); |
-#else |
- d = MP_DIGIT(a, ia); |
- sum = d + MP_DIGIT(b, ib); |
- d = (sum < d); |
- MP_DIGIT(a,ia) = sum += carry; |
- carry = d + (sum < carry); |
-#endif |
- } |
- |
- /* If we run out of 'b' digits before we're actually done, make |
- sure the carries get propagated upward... |
- */ |
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
- for (lim = MP_USED(a); k && (ia < lim); ++ia) { |
- w = (mp_word)DIGIT(a, ia) + k; |
- DIGIT(a, ia) = ACCUM(w); |
- k = CARRYOUT(w); |
- } |
-#else |
- for (lim = MP_USED(a); carry && (ia < lim); ++ia) { |
- d = MP_DIGIT(a, ia); |
- MP_DIGIT(a,ia) = sum = d + carry; |
- carry = (sum < d); |
- } |
-#endif |
- |
- /* If there's an overall carry out, increase precision and include |
- it. We could have done this initially, but why touch the memory |
- allocator unless we're sure we have to? |
- */ |
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
- if(k) { |
- if((res = s_mp_pad(a, USED(a) + 1)) != MP_OKAY) |
- return res; |
- |
- DIGIT(a, ia) = (mp_digit)k; |
- } |
-#else |
- if (carry) { |
- if((res = s_mp_pad(a, lim + 1)) != MP_OKAY) |
- return res; |
- |
- DIGIT(a, lim) = carry; |
- } |
-#endif |
- s_mp_clamp(a); |
- |
- return MP_OKAY; |
- |
-} /* end s_mp_add_offset() */ |
- |
-/* }}} */ |
- |
-/* {{{ s_mp_sub(a, b) */ |
- |
-/* Compute a = |a| - |b|, assumes |a| >= |b| */ |
-mp_err s_mp_sub(mp_int *a, const mp_int *b) /* magnitude subtract */ |
-{ |
- mp_digit *pa, *pb, *limit; |
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) |
- mp_sword w = 0; |
-#else |
- mp_digit d, diff, borrow = 0; |
-#endif |
- |
- /* |
- Subtract and propagate borrow. Up to the precision of b, this |
- accounts for the digits of b; after that, we just make sure the |
- carries get to the right place. This saves having to pad b out to |
- the precision of a just to make the loops work right... |
- */ |
- pa = MP_DIGITS(a); |
- pb = MP_DIGITS(b); |
- limit = pb + MP_USED(b); |
- while (pb < limit) { |
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) |
- w = w + *pa - *pb++; |
- *pa++ = ACCUM(w); |
- w >>= MP_DIGIT_BIT; |
-#else |
- d = *pa; |
- diff = d - *pb++; |
- d = (diff > d); /* detect borrow */ |
- if (borrow && --diff == MP_DIGIT_MAX) |
- ++d; |
- *pa++ = diff; |
- borrow = d; |
-#endif |
- } |
- limit = MP_DIGITS(a) + MP_USED(a); |
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) |
- while (w && pa < limit) { |
- w = w + *pa; |
- *pa++ = ACCUM(w); |
- w >>= MP_DIGIT_BIT; |
- } |
-#else |
- while (borrow && pa < limit) { |
- d = *pa; |
- *pa++ = diff = d - borrow; |
- borrow = (diff > d); |
- } |
-#endif |
- |
- /* Clobber any leading zeroes we created */ |
- s_mp_clamp(a); |
- |
- /* |
- If there was a borrow out, then |b| > |a| in violation |
- of our input invariant. We've already done the work, |
- but we'll at least complain about it... |
- */ |
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) |
- return w ? MP_RANGE : MP_OKAY; |
-#else |
- return borrow ? MP_RANGE : MP_OKAY; |
-#endif |
-} /* end s_mp_sub() */ |
- |
-/* }}} */ |
- |
-/* Compute c = |a| - |b|, assumes |a| >= |b| */ /* magnitude subtract */ |
-mp_err s_mp_sub_3arg(const mp_int *a, const mp_int *b, mp_int *c) |
-{ |
- mp_digit *pa, *pb, *pc; |
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) |
- mp_sword w = 0; |
-#else |
- mp_digit d, diff, borrow = 0; |
-#endif |
- int ix, limit; |
- mp_err res; |
- |
- MP_SIGN(c) = MP_SIGN(a); |
- |
- /* Make sure a has enough precision for the output value */ |
- if (MP_OKAY != (res = s_mp_pad(c, MP_USED(a)))) |
- return res; |
- |
- /* |
- Subtract and propagate borrow. Up to the precision of b, this |
- accounts for the digits of b; after that, we just make sure the |
- carries get to the right place. This saves having to pad b out to |
- the precision of a just to make the loops work right... |
- */ |
- pa = MP_DIGITS(a); |
- pb = MP_DIGITS(b); |
- pc = MP_DIGITS(c); |
- limit = MP_USED(b); |
- for (ix = 0; ix < limit; ++ix) { |
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) |
- w = w + *pa++ - *pb++; |
- *pc++ = ACCUM(w); |
- w >>= MP_DIGIT_BIT; |
-#else |
- d = *pa++; |
- diff = d - *pb++; |
- d = (diff > d); |
- if (borrow && --diff == MP_DIGIT_MAX) |
- ++d; |
- *pc++ = diff; |
- borrow = d; |
-#endif |
- } |
- for (limit = MP_USED(a); ix < limit; ++ix) { |
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) |
- w = w + *pa++; |
- *pc++ = ACCUM(w); |
- w >>= MP_DIGIT_BIT; |
-#else |
- d = *pa++; |
- *pc++ = diff = d - borrow; |
- borrow = (diff > d); |
-#endif |
- } |
- |
- /* Clobber any leading zeroes we created */ |
- MP_USED(c) = ix; |
- s_mp_clamp(c); |
- |
- /* |
- If there was a borrow out, then |b| > |a| in violation |
- of our input invariant. We've already done the work, |
- but we'll at least complain about it... |
- */ |
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) |
- return w ? MP_RANGE : MP_OKAY; |
-#else |
- return borrow ? MP_RANGE : MP_OKAY; |
-#endif |
-} |
-/* {{{ s_mp_mul(a, b) */ |
- |
-/* Compute a = |a| * |b| */ |
-mp_err s_mp_mul(mp_int *a, const mp_int *b) |
-{ |
- return mp_mul(a, b, a); |
-} /* end s_mp_mul() */ |
- |
-/* }}} */ |
- |
-#if defined(MP_USE_UINT_DIGIT) && defined(MP_USE_LONG_LONG_MULTIPLY) |
-/* This trick works on Sparc V8 CPUs with the Workshop compilers. */ |
-#define MP_MUL_DxD(a, b, Phi, Plo) \ |
- { unsigned long long product = (unsigned long long)a * b; \ |
- Plo = (mp_digit)product; \ |
- Phi = (mp_digit)(product >> MP_DIGIT_BIT); } |
-#elif defined(OSF1) |
-#define MP_MUL_DxD(a, b, Phi, Plo) \ |
- { Plo = asm ("mulq %a0, %a1, %v0", a, b);\ |
- Phi = asm ("umulh %a0, %a1, %v0", a, b); } |
-#else |
-#define MP_MUL_DxD(a, b, Phi, Plo) \ |
- { mp_digit a0b1, a1b0; \ |
- Plo = (a & MP_HALF_DIGIT_MAX) * (b & MP_HALF_DIGIT_MAX); \ |
- Phi = (a >> MP_HALF_DIGIT_BIT) * (b >> MP_HALF_DIGIT_BIT); \ |
- a0b1 = (a & MP_HALF_DIGIT_MAX) * (b >> MP_HALF_DIGIT_BIT); \ |
- a1b0 = (a >> MP_HALF_DIGIT_BIT) * (b & MP_HALF_DIGIT_MAX); \ |
- a1b0 += a0b1; \ |
- Phi += a1b0 >> MP_HALF_DIGIT_BIT; \ |
- if (a1b0 < a0b1) \ |
- Phi += MP_HALF_RADIX; \ |
- a1b0 <<= MP_HALF_DIGIT_BIT; \ |
- Plo += a1b0; \ |
- if (Plo < a1b0) \ |
- ++Phi; \ |
- } |
-#endif |
- |
-#if !defined(MP_ASSEMBLY_MULTIPLY) |
-/* c = a * b */ |
-void s_mpv_mul_d(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *c) |
-{ |
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_MUL_WORD) |
- mp_digit d = 0; |
- |
- /* Inner product: Digits of a */ |
- while (a_len--) { |
- mp_word w = ((mp_word)b * *a++) + d; |
- *c++ = ACCUM(w); |
- d = CARRYOUT(w); |
- } |
- *c = d; |
-#else |
- mp_digit carry = 0; |
- while (a_len--) { |
- mp_digit a_i = *a++; |
- mp_digit a0b0, a1b1; |
- |
- MP_MUL_DxD(a_i, b, a1b1, a0b0); |
- |
- a0b0 += carry; |
- if (a0b0 < carry) |
- ++a1b1; |
- *c++ = a0b0; |
- carry = a1b1; |
- } |
- *c = carry; |
-#endif |
-} |
- |
-/* c += a * b */ |
-void s_mpv_mul_d_add(const mp_digit *a, mp_size a_len, mp_digit b, |
- mp_digit *c) |
-{ |
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_MUL_WORD) |
- mp_digit d = 0; |
- |
- /* Inner product: Digits of a */ |
- while (a_len--) { |
- mp_word w = ((mp_word)b * *a++) + *c + d; |
- *c++ = ACCUM(w); |
- d = CARRYOUT(w); |
- } |
- *c = d; |
-#else |
- mp_digit carry = 0; |
- while (a_len--) { |
- mp_digit a_i = *a++; |
- mp_digit a0b0, a1b1; |
- |
- MP_MUL_DxD(a_i, b, a1b1, a0b0); |
- |
- a0b0 += carry; |
- if (a0b0 < carry) |
- ++a1b1; |
- a0b0 += a_i = *c; |
- if (a0b0 < a_i) |
- ++a1b1; |
- *c++ = a0b0; |
- carry = a1b1; |
- } |
- *c = carry; |
-#endif |
-} |
- |
-/* Presently, this is only used by the Montgomery arithmetic code. */ |
-/* c += a * b */ |
-void s_mpv_mul_d_add_prop(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *c) |
-{ |
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_MUL_WORD) |
- mp_digit d = 0; |
- |
- /* Inner product: Digits of a */ |
- while (a_len--) { |
- mp_word w = ((mp_word)b * *a++) + *c + d; |
- *c++ = ACCUM(w); |
- d = CARRYOUT(w); |
- } |
- |
- while (d) { |
- mp_word w = (mp_word)*c + d; |
- *c++ = ACCUM(w); |
- d = CARRYOUT(w); |
- } |
-#else |
- mp_digit carry = 0; |
- while (a_len--) { |
- mp_digit a_i = *a++; |
- mp_digit a0b0, a1b1; |
- |
- MP_MUL_DxD(a_i, b, a1b1, a0b0); |
- |
- a0b0 += carry; |
- if (a0b0 < carry) |
- ++a1b1; |
- |
- a0b0 += a_i = *c; |
- if (a0b0 < a_i) |
- ++a1b1; |
- |
- *c++ = a0b0; |
- carry = a1b1; |
- } |
- while (carry) { |
- mp_digit c_i = *c; |
- carry += c_i; |
- *c++ = carry; |
- carry = carry < c_i; |
- } |
-#endif |
-} |
-#endif |
- |
-#if defined(MP_USE_UINT_DIGIT) && defined(MP_USE_LONG_LONG_MULTIPLY) |
-/* This trick works on Sparc V8 CPUs with the Workshop compilers. */ |
-#define MP_SQR_D(a, Phi, Plo) \ |
- { unsigned long long square = (unsigned long long)a * a; \ |
- Plo = (mp_digit)square; \ |
- Phi = (mp_digit)(square >> MP_DIGIT_BIT); } |
-#elif defined(OSF1) |
-#define MP_SQR_D(a, Phi, Plo) \ |
- { Plo = asm ("mulq %a0, %a0, %v0", a);\ |
- Phi = asm ("umulh %a0, %a0, %v0", a); } |
-#else |
-#define MP_SQR_D(a, Phi, Plo) \ |
- { mp_digit Pmid; \ |
- Plo = (a & MP_HALF_DIGIT_MAX) * (a & MP_HALF_DIGIT_MAX); \ |
- Phi = (a >> MP_HALF_DIGIT_BIT) * (a >> MP_HALF_DIGIT_BIT); \ |
- Pmid = (a & MP_HALF_DIGIT_MAX) * (a >> MP_HALF_DIGIT_BIT); \ |
- Phi += Pmid >> (MP_HALF_DIGIT_BIT - 1); \ |
- Pmid <<= (MP_HALF_DIGIT_BIT + 1); \ |
- Plo += Pmid; \ |
- if (Plo < Pmid) \ |
- ++Phi; \ |
- } |
-#endif |
- |
-#if !defined(MP_ASSEMBLY_SQUARE) |
-/* Add the squares of the digits of a to the digits of b. */ |
-void s_mpv_sqr_add_prop(const mp_digit *pa, mp_size a_len, mp_digit *ps) |
-{ |
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_MUL_WORD) |
- mp_word w; |
- mp_digit d; |
- mp_size ix; |
- |
- w = 0; |
-#define ADD_SQUARE(n) \ |
- d = pa[n]; \ |
- w += (d * (mp_word)d) + ps[2*n]; \ |
- ps[2*n] = ACCUM(w); \ |
- w = (w >> DIGIT_BIT) + ps[2*n+1]; \ |
- ps[2*n+1] = ACCUM(w); \ |
- w = (w >> DIGIT_BIT) |
- |
- for (ix = a_len; ix >= 4; ix -= 4) { |
- ADD_SQUARE(0); |
- ADD_SQUARE(1); |
- ADD_SQUARE(2); |
- ADD_SQUARE(3); |
- pa += 4; |
- ps += 8; |
- } |
- if (ix) { |
- ps += 2*ix; |
- pa += ix; |
- switch (ix) { |
- case 3: ADD_SQUARE(-3); /* FALLTHRU */ |
- case 2: ADD_SQUARE(-2); /* FALLTHRU */ |
- case 1: ADD_SQUARE(-1); /* FALLTHRU */ |
- case 0: break; |
- } |
- } |
- while (w) { |
- w += *ps; |
- *ps++ = ACCUM(w); |
- w = (w >> DIGIT_BIT); |
- } |
-#else |
- mp_digit carry = 0; |
- while (a_len--) { |
- mp_digit a_i = *pa++; |
- mp_digit a0a0, a1a1; |
- |
- MP_SQR_D(a_i, a1a1, a0a0); |
- |
- /* here a1a1 and a0a0 constitute a_i ** 2 */ |
- a0a0 += carry; |
- if (a0a0 < carry) |
- ++a1a1; |
- |
- /* now add to ps */ |
- a0a0 += a_i = *ps; |
- if (a0a0 < a_i) |
- ++a1a1; |
- *ps++ = a0a0; |
- a1a1 += a_i = *ps; |
- carry = (a1a1 < a_i); |
- *ps++ = a1a1; |
- } |
- while (carry) { |
- mp_digit s_i = *ps; |
- carry += s_i; |
- *ps++ = carry; |
- carry = carry < s_i; |
- } |
-#endif |
-} |
-#endif |
- |
-#if (defined(MP_NO_MP_WORD) || defined(MP_NO_DIV_WORD)) \ |
-&& !defined(MP_ASSEMBLY_DIV_2DX1D) |
-/* |
-** Divide 64-bit (Nhi,Nlo) by 32-bit divisor, which must be normalized |
-** so its high bit is 1. This code is from NSPR. |
-*/ |
-mp_err s_mpv_div_2dx1d(mp_digit Nhi, mp_digit Nlo, mp_digit divisor, |
- mp_digit *qp, mp_digit *rp) |
-{ |
- mp_digit d1, d0, q1, q0; |
- mp_digit r1, r0, m; |
- |
- d1 = divisor >> MP_HALF_DIGIT_BIT; |
- d0 = divisor & MP_HALF_DIGIT_MAX; |
- r1 = Nhi % d1; |
- q1 = Nhi / d1; |
- m = q1 * d0; |
- r1 = (r1 << MP_HALF_DIGIT_BIT) | (Nlo >> MP_HALF_DIGIT_BIT); |
- if (r1 < m) { |
- q1--, r1 += divisor; |
- if (r1 >= divisor && r1 < m) { |
- q1--, r1 += divisor; |
- } |
- } |
- r1 -= m; |
- r0 = r1 % d1; |
- q0 = r1 / d1; |
- m = q0 * d0; |
- r0 = (r0 << MP_HALF_DIGIT_BIT) | (Nlo & MP_HALF_DIGIT_MAX); |
- if (r0 < m) { |
- q0--, r0 += divisor; |
- if (r0 >= divisor && r0 < m) { |
- q0--, r0 += divisor; |
- } |
- } |
- if (qp) |
- *qp = (q1 << MP_HALF_DIGIT_BIT) | q0; |
- if (rp) |
- *rp = r0 - m; |
- return MP_OKAY; |
-} |
-#endif |
- |
-#if MP_SQUARE |
-/* {{{ s_mp_sqr(a) */ |
- |
-mp_err s_mp_sqr(mp_int *a) |
-{ |
- mp_err res; |
- mp_int tmp; |
- |
- if((res = mp_init_size(&tmp, 2 * USED(a))) != MP_OKAY) |
- return res; |
- res = mp_sqr(a, &tmp); |
- if (res == MP_OKAY) { |
- s_mp_exch(&tmp, a); |
- } |
- mp_clear(&tmp); |
- return res; |
-} |
- |
-/* }}} */ |
-#endif |
- |
-/* {{{ s_mp_div(a, b) */ |
- |
-/* |
- s_mp_div(a, b) |
- |
- Compute a = a / b and b = a mod b. Assumes b > a. |
- */ |
- |
-mp_err s_mp_div(mp_int *rem, /* i: dividend, o: remainder */ |
- mp_int *div, /* i: divisor */ |
- mp_int *quot) /* i: 0; o: quotient */ |
-{ |
- mp_int part, t; |
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_DIV_WORD) |
- mp_word q_msd; |
-#else |
- mp_digit q_msd; |
-#endif |
- mp_err res; |
- mp_digit d; |
- mp_digit div_msd; |
- int ix; |
- |
- if(mp_cmp_z(div) == 0) |
- return MP_RANGE; |
- |
- DIGITS(&t) = 0; |
- /* Shortcut if divisor is power of two */ |
- if((ix = s_mp_ispow2(div)) >= 0) { |
- MP_CHECKOK( mp_copy(rem, quot) ); |
- s_mp_div_2d(quot, (mp_digit)ix); |
- s_mp_mod_2d(rem, (mp_digit)ix); |
- |
- return MP_OKAY; |
- } |
- |
- MP_SIGN(rem) = ZPOS; |
- MP_SIGN(div) = ZPOS; |
- |
- /* A working temporary for division */ |
- MP_CHECKOK( mp_init_size(&t, MP_ALLOC(rem))); |
- |
- /* Normalize to optimize guessing */ |
- MP_CHECKOK( s_mp_norm(rem, div, &d) ); |
- |
- part = *rem; |
- |
- /* Perform the division itself...woo! */ |
- MP_USED(quot) = MP_ALLOC(quot); |
- |
- /* Find a partial substring of rem which is at least div */ |
- /* If we didn't find one, we're finished dividing */ |
- while (MP_USED(rem) > MP_USED(div) || s_mp_cmp(rem, div) >= 0) { |
- int i; |
- int unusedRem; |
- |
- unusedRem = MP_USED(rem) - MP_USED(div); |
- MP_DIGITS(&part) = MP_DIGITS(rem) + unusedRem; |
- MP_ALLOC(&part) = MP_ALLOC(rem) - unusedRem; |
- MP_USED(&part) = MP_USED(div); |
- if (s_mp_cmp(&part, div) < 0) { |
- -- unusedRem; |
-#if MP_ARGCHK == 2 |
- assert(unusedRem >= 0); |
-#endif |
- -- MP_DIGITS(&part); |
- ++ MP_USED(&part); |
- ++ MP_ALLOC(&part); |
- } |
- |
- /* Compute a guess for the next quotient digit */ |
- q_msd = MP_DIGIT(&part, MP_USED(&part) - 1); |
- div_msd = MP_DIGIT(div, MP_USED(div) - 1); |
- if (q_msd >= div_msd) { |
- q_msd = 1; |
- } else if (MP_USED(&part) > 1) { |
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_DIV_WORD) |
- q_msd = (q_msd << MP_DIGIT_BIT) | MP_DIGIT(&part, MP_USED(&part) - 2); |
- q_msd /= div_msd; |
- if (q_msd == RADIX) |
- --q_msd; |
-#else |
- mp_digit r; |
- MP_CHECKOK( s_mpv_div_2dx1d(q_msd, MP_DIGIT(&part, MP_USED(&part) - 2), |
- div_msd, &q_msd, &r) ); |
-#endif |
- } else { |
- q_msd = 0; |
- } |
-#if MP_ARGCHK == 2 |
- assert(q_msd > 0); /* This case should never occur any more. */ |
-#endif |
- if (q_msd <= 0) |
- break; |
- |
- /* See what that multiplies out to */ |
- mp_copy(div, &t); |
- MP_CHECKOK( s_mp_mul_d(&t, (mp_digit)q_msd) ); |
- |
- /* |
- If it's too big, back it off. We should not have to do this |
- more than once, or, in rare cases, twice. Knuth describes a |
- method by which this could be reduced to a maximum of once, but |
- I didn't implement that here. |
- * When using s_mpv_div_2dx1d, we may have to do this 3 times. |
- */ |
- for (i = 4; s_mp_cmp(&t, &part) > 0 && i > 0; --i) { |
- --q_msd; |
- s_mp_sub(&t, div); /* t -= div */ |
- } |
- if (i < 0) { |
- res = MP_RANGE; |
- goto CLEANUP; |
- } |
- |
- /* At this point, q_msd should be the right next digit */ |
- MP_CHECKOK( s_mp_sub(&part, &t) ); /* part -= t */ |
- s_mp_clamp(rem); |
- |
- /* |
- Include the digit in the quotient. We allocated enough memory |
- for any quotient we could ever possibly get, so we should not |
- have to check for failures here |
- */ |
- MP_DIGIT(quot, unusedRem) = (mp_digit)q_msd; |
- } |
- |
- /* Denormalize remainder */ |
- if (d) { |
- s_mp_div_2d(rem, d); |
- } |
- |
- s_mp_clamp(quot); |
- |
-CLEANUP: |
- mp_clear(&t); |
- |
- return res; |
- |
-} /* end s_mp_div() */ |
- |
- |
-/* }}} */ |
- |
-/* {{{ s_mp_2expt(a, k) */ |
- |
-mp_err s_mp_2expt(mp_int *a, mp_digit k) |
-{ |
- mp_err res; |
- mp_size dig, bit; |
- |
- dig = k / DIGIT_BIT; |
- bit = k % DIGIT_BIT; |
- |
- mp_zero(a); |
- if((res = s_mp_pad(a, dig + 1)) != MP_OKAY) |
- return res; |
- |
- DIGIT(a, dig) |= ((mp_digit)1 << bit); |
- |
- return MP_OKAY; |
- |
-} /* end s_mp_2expt() */ |
- |
-/* }}} */ |
- |
-/* {{{ s_mp_reduce(x, m, mu) */ |
- |
-/* |
- Compute Barrett reduction, x (mod m), given a precomputed value for |
- mu = b^2k / m, where b = RADIX and k = #digits(m). This should be |
- faster than straight division, when many reductions by the same |
- value of m are required (such as in modular exponentiation). This |
- can nearly halve the time required to do modular exponentiation, |
- as compared to using the full integer divide to reduce. |
- |
- This algorithm was derived from the _Handbook of Applied |
- Cryptography_ by Menezes, Oorschot and VanStone, Ch. 14, |
- pp. 603-604. |
- */ |
- |
-mp_err s_mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu) |
-{ |
- mp_int q; |
- mp_err res; |
- |
- if((res = mp_init_copy(&q, x)) != MP_OKAY) |
- return res; |
- |
- s_mp_rshd(&q, USED(m) - 1); /* q1 = x / b^(k-1) */ |
- s_mp_mul(&q, mu); /* q2 = q1 * mu */ |
- s_mp_rshd(&q, USED(m) + 1); /* q3 = q2 / b^(k+1) */ |
- |
- /* x = x mod b^(k+1), quick (no division) */ |
- s_mp_mod_2d(x, DIGIT_BIT * (USED(m) + 1)); |
- |
- /* q = q * m mod b^(k+1), quick (no division) */ |
- s_mp_mul(&q, m); |
- s_mp_mod_2d(&q, DIGIT_BIT * (USED(m) + 1)); |
- |
- /* x = x - q */ |
- if((res = mp_sub(x, &q, x)) != MP_OKAY) |
- goto CLEANUP; |
- |
- /* If x < 0, add b^(k+1) to it */ |
- if(mp_cmp_z(x) < 0) { |
- mp_set(&q, 1); |
- if((res = s_mp_lshd(&q, USED(m) + 1)) != MP_OKAY) |
- goto CLEANUP; |
- if((res = mp_add(x, &q, x)) != MP_OKAY) |
- goto CLEANUP; |
- } |
- |
- /* Back off if it's too big */ |
- while(mp_cmp(x, m) >= 0) { |
- if((res = s_mp_sub(x, m)) != MP_OKAY) |
- break; |
- } |
- |
- CLEANUP: |
- mp_clear(&q); |
- |
- return res; |
- |
-} /* end s_mp_reduce() */ |
- |
-/* }}} */ |
- |
-/* }}} */ |
- |
-/* {{{ Primitive comparisons */ |
- |
-/* {{{ s_mp_cmp(a, b) */ |
- |
-/* Compare |a| <=> |b|, return 0 if equal, <0 if a<b, >0 if a>b */ |
-int s_mp_cmp(const mp_int *a, const mp_int *b) |
-{ |
- mp_size used_a = MP_USED(a); |
- { |
- mp_size used_b = MP_USED(b); |
- |
- if (used_a > used_b) |
- goto IS_GT; |
- if (used_a < used_b) |
- goto IS_LT; |
- } |
- { |
- mp_digit *pa, *pb; |
- mp_digit da = 0, db = 0; |
- |
-#define CMP_AB(n) if ((da = pa[n]) != (db = pb[n])) goto done |
- |
- pa = MP_DIGITS(a) + used_a; |
- pb = MP_DIGITS(b) + used_a; |
- while (used_a >= 4) { |
- pa -= 4; |
- pb -= 4; |
- used_a -= 4; |
- CMP_AB(3); |
- CMP_AB(2); |
- CMP_AB(1); |
- CMP_AB(0); |
- } |
- while (used_a-- > 0 && ((da = *--pa) == (db = *--pb))) |
- /* do nothing */; |
-done: |
- if (da > db) |
- goto IS_GT; |
- if (da < db) |
- goto IS_LT; |
- } |
- return MP_EQ; |
-IS_LT: |
- return MP_LT; |
-IS_GT: |
- return MP_GT; |
-} /* end s_mp_cmp() */ |
- |
-/* }}} */ |
- |
-/* {{{ s_mp_cmp_d(a, d) */ |
- |
-/* Compare |a| <=> d, return 0 if equal, <0 if a<d, >0 if a>d */ |
-int s_mp_cmp_d(const mp_int *a, mp_digit d) |
-{ |
- if(USED(a) > 1) |
- return MP_GT; |
- |
- if(DIGIT(a, 0) < d) |
- return MP_LT; |
- else if(DIGIT(a, 0) > d) |
- return MP_GT; |
- else |
- return MP_EQ; |
- |
-} /* end s_mp_cmp_d() */ |
- |
-/* }}} */ |
- |
-/* {{{ s_mp_ispow2(v) */ |
- |
-/* |
- Returns -1 if the value is not a power of two; otherwise, it returns |
- k such that v = 2^k, i.e. lg(v). |
- */ |
-int s_mp_ispow2(const mp_int *v) |
-{ |
- mp_digit d; |
- int extra = 0, ix; |
- |
- ix = MP_USED(v) - 1; |
- d = MP_DIGIT(v, ix); /* most significant digit of v */ |
- |
- extra = s_mp_ispow2d(d); |
- if (extra < 0 || ix == 0) |
- return extra; |
- |
- while (--ix >= 0) { |
- if (DIGIT(v, ix) != 0) |
- return -1; /* not a power of two */ |
- extra += MP_DIGIT_BIT; |
- } |
- |
- return extra; |
- |
-} /* end s_mp_ispow2() */ |
- |
-/* }}} */ |
- |
-/* {{{ s_mp_ispow2d(d) */ |
- |
-int s_mp_ispow2d(mp_digit d) |
-{ |
- if ((d != 0) && ((d & (d-1)) == 0)) { /* d is a power of 2 */ |
- int pow = 0; |
-#if defined (MP_USE_UINT_DIGIT) |
- if (d & 0xffff0000U) |
- pow += 16; |
- if (d & 0xff00ff00U) |
- pow += 8; |
- if (d & 0xf0f0f0f0U) |
- pow += 4; |
- if (d & 0xccccccccU) |
- pow += 2; |
- if (d & 0xaaaaaaaaU) |
- pow += 1; |
-#elif defined(MP_USE_LONG_LONG_DIGIT) |
- if (d & 0xffffffff00000000ULL) |
- pow += 32; |
- if (d & 0xffff0000ffff0000ULL) |
- pow += 16; |
- if (d & 0xff00ff00ff00ff00ULL) |
- pow += 8; |
- if (d & 0xf0f0f0f0f0f0f0f0ULL) |
- pow += 4; |
- if (d & 0xccccccccccccccccULL) |
- pow += 2; |
- if (d & 0xaaaaaaaaaaaaaaaaULL) |
- pow += 1; |
-#elif defined(MP_USE_LONG_DIGIT) |
- if (d & 0xffffffff00000000UL) |
- pow += 32; |
- if (d & 0xffff0000ffff0000UL) |
- pow += 16; |
- if (d & 0xff00ff00ff00ff00UL) |
- pow += 8; |
- if (d & 0xf0f0f0f0f0f0f0f0UL) |
- pow += 4; |
- if (d & 0xccccccccccccccccUL) |
- pow += 2; |
- if (d & 0xaaaaaaaaaaaaaaaaUL) |
- pow += 1; |
-#else |
-#error "unknown type for mp_digit" |
-#endif |
- return pow; |
- } |
- return -1; |
- |
-} /* end s_mp_ispow2d() */ |
- |
-/* }}} */ |
- |
-/* }}} */ |
- |
-/* {{{ Primitive I/O helpers */ |
- |
-/* {{{ s_mp_tovalue(ch, r) */ |
- |
-/* |
- Convert the given character to its digit value, in the given radix. |
- If the given character is not understood in the given radix, -1 is |
- returned. Otherwise the digit's numeric value is returned. |
- |
- The results will be odd if you use a radix < 2 or > 62, you are |
- expected to know what you're up to. |
- */ |
-int s_mp_tovalue(char ch, int r) |
-{ |
- int val, xch; |
- |
- if(r > 36) |
- xch = ch; |
- else |
- xch = toupper(ch); |
- |
- if(isdigit(xch)) |
- val = xch - '0'; |
- else if(isupper(xch)) |
- val = xch - 'A' + 10; |
- else if(islower(xch)) |
- val = xch - 'a' + 36; |
- else if(xch == '+') |
- val = 62; |
- else if(xch == '/') |
- val = 63; |
- else |
- return -1; |
- |
- if(val < 0 || val >= r) |
- return -1; |
- |
- return val; |
- |
-} /* end s_mp_tovalue() */ |
- |
-/* }}} */ |
- |
-/* {{{ s_mp_todigit(val, r, low) */ |
- |
-/* |
- Convert val to a radix-r digit, if possible. If val is out of range |
- for r, returns zero. Otherwise, returns an ASCII character denoting |
- the value in the given radix. |
- |
- The results may be odd if you use a radix < 2 or > 64, you are |
- expected to know what you're doing. |
- */ |
- |
-char s_mp_todigit(mp_digit val, int r, int low) |
-{ |
- char ch; |
- |
- if(val >= r) |
- return 0; |
- |
- ch = s_dmap_1[val]; |
- |
- if(r <= 36 && low) |
- ch = tolower(ch); |
- |
- return ch; |
- |
-} /* end s_mp_todigit() */ |
- |
-/* }}} */ |
- |
-/* {{{ s_mp_outlen(bits, radix) */ |
- |
-/* |
- Return an estimate for how long a string is needed to hold a radix |
- r representation of a number with 'bits' significant bits, plus an |
- extra for a zero terminator (assuming C style strings here) |
- */ |
-int s_mp_outlen(int bits, int r) |
-{ |
- return (int)((double)bits * LOG_V_2(r) + 1.5) + 1; |
- |
-} /* end s_mp_outlen() */ |
- |
-/* }}} */ |
- |
-/* }}} */ |
- |
-/* {{{ mp_read_unsigned_octets(mp, str, len) */ |
-/* mp_read_unsigned_octets(mp, str, len) |
- Read in a raw value (base 256) into the given mp_int |
- No sign bit, number is positive. Leading zeros ignored. |
- */ |
- |
-mp_err |
-mp_read_unsigned_octets(mp_int *mp, const unsigned char *str, mp_size len) |
-{ |
- int count; |
- mp_err res; |
- mp_digit d; |
- |
- ARGCHK(mp != NULL && str != NULL && len > 0, MP_BADARG); |
- |
- mp_zero(mp); |
- |
- count = len % sizeof(mp_digit); |
- if (count) { |
- for (d = 0; count-- > 0; --len) { |
- d = (d << 8) | *str++; |
- } |
- MP_DIGIT(mp, 0) = d; |
- } |
- |
- /* Read the rest of the digits */ |
- for(; len > 0; len -= sizeof(mp_digit)) { |
- for (d = 0, count = sizeof(mp_digit); count > 0; --count) { |
- d = (d << 8) | *str++; |
- } |
- if (MP_EQ == mp_cmp_z(mp)) { |
- if (!d) |
- continue; |
- } else { |
- if((res = s_mp_lshd(mp, 1)) != MP_OKAY) |
- return res; |
- } |
- MP_DIGIT(mp, 0) = d; |
- } |
- return MP_OKAY; |
-} /* end mp_read_unsigned_octets() */ |
-/* }}} */ |
- |
-/* {{{ mp_unsigned_octet_size(mp) */ |
-int |
-mp_unsigned_octet_size(const mp_int *mp) |
-{ |
- int bytes; |
- int ix; |
- mp_digit d = 0; |
- |
- ARGCHK(mp != NULL, MP_BADARG); |
- ARGCHK(MP_ZPOS == SIGN(mp), MP_BADARG); |
- |
- bytes = (USED(mp) * sizeof(mp_digit)); |
- |
- /* subtract leading zeros. */ |
- /* Iterate over each digit... */ |
- for(ix = USED(mp) - 1; ix >= 0; ix--) { |
- d = DIGIT(mp, ix); |
- if (d) |
- break; |
- bytes -= sizeof(d); |
- } |
- if (!bytes) |
- return 1; |
- |
- /* Have MSD, check digit bytes, high order first */ |
- for(ix = sizeof(mp_digit) - 1; ix >= 0; ix--) { |
- unsigned char x = (unsigned char)(d >> (ix * CHAR_BIT)); |
- if (x) |
- break; |
- --bytes; |
- } |
- return bytes; |
-} /* end mp_unsigned_octet_size() */ |
-/* }}} */ |
- |
-/* {{{ mp_to_unsigned_octets(mp, str) */ |
-/* output a buffer of big endian octets no longer than specified. */ |
-mp_err |
-mp_to_unsigned_octets(const mp_int *mp, unsigned char *str, mp_size maxlen) |
-{ |
- int ix, pos = 0; |
- int bytes; |
- |
- ARGCHK(mp != NULL && str != NULL && !SIGN(mp), MP_BADARG); |
- |
- bytes = mp_unsigned_octet_size(mp); |
- ARGCHK(bytes >= 0 && bytes <= maxlen, MP_BADARG); |
- |
- /* Iterate over each digit... */ |
- for(ix = USED(mp) - 1; ix >= 0; ix--) { |
- mp_digit d = DIGIT(mp, ix); |
- int jx; |
- |
- /* Unpack digit bytes, high order first */ |
- for(jx = sizeof(mp_digit) - 1; jx >= 0; jx--) { |
- unsigned char x = (unsigned char)(d >> (jx * CHAR_BIT)); |
- if (!pos && !x) /* suppress leading zeros */ |
- continue; |
- str[pos++] = x; |
- } |
- } |
- if (!pos) |
- str[pos++] = 0; |
- return pos; |
-} /* end mp_to_unsigned_octets() */ |
-/* }}} */ |
- |
-/* {{{ mp_to_signed_octets(mp, str) */ |
-/* output a buffer of big endian octets no longer than specified. */ |
-mp_err |
-mp_to_signed_octets(const mp_int *mp, unsigned char *str, mp_size maxlen) |
-{ |
- int ix, pos = 0; |
- int bytes; |
- |
- ARGCHK(mp != NULL && str != NULL && !SIGN(mp), MP_BADARG); |
- |
- bytes = mp_unsigned_octet_size(mp); |
- ARGCHK(bytes >= 0 && bytes <= maxlen, MP_BADARG); |
- |
- /* Iterate over each digit... */ |
- for(ix = USED(mp) - 1; ix >= 0; ix--) { |
- mp_digit d = DIGIT(mp, ix); |
- int jx; |
- |
- /* Unpack digit bytes, high order first */ |
- for(jx = sizeof(mp_digit) - 1; jx >= 0; jx--) { |
- unsigned char x = (unsigned char)(d >> (jx * CHAR_BIT)); |
- if (!pos) { |
- if (!x) /* suppress leading zeros */ |
- continue; |
- if (x & 0x80) { /* add one leading zero to make output positive. */ |
- ARGCHK(bytes + 1 <= maxlen, MP_BADARG); |
- if (bytes + 1 > maxlen) |
- return MP_BADARG; |
- str[pos++] = 0; |
- } |
- } |
- str[pos++] = x; |
- } |
- } |
- if (!pos) |
- str[pos++] = 0; |
- return pos; |
-} /* end mp_to_signed_octets() */ |
-/* }}} */ |
- |
-/* {{{ mp_to_fixlen_octets(mp, str) */ |
-/* output a buffer of big endian octets exactly as long as requested. */ |
-mp_err |
-mp_to_fixlen_octets(const mp_int *mp, unsigned char *str, mp_size length) |
-{ |
- int ix, pos = 0; |
- int bytes; |
- |
- ARGCHK(mp != NULL && str != NULL && !SIGN(mp), MP_BADARG); |
- |
- bytes = mp_unsigned_octet_size(mp); |
- ARGCHK(bytes >= 0 && bytes <= length, MP_BADARG); |
- |
- /* place any needed leading zeros */ |
- for (;length > bytes; --length) { |
- *str++ = 0; |
- } |
- |
- /* Iterate over each digit... */ |
- for(ix = USED(mp) - 1; ix >= 0; ix--) { |
- mp_digit d = DIGIT(mp, ix); |
- int jx; |
- |
- /* Unpack digit bytes, high order first */ |
- for(jx = sizeof(mp_digit) - 1; jx >= 0; jx--) { |
- unsigned char x = (unsigned char)(d >> (jx * CHAR_BIT)); |
- if (!pos && !x) /* suppress leading zeros */ |
- continue; |
- str[pos++] = x; |
- } |
- } |
- if (!pos) |
- str[pos++] = 0; |
- return MP_OKAY; |
-} /* end mp_to_fixlen_octets() */ |
-/* }}} */ |
- |
- |
-/*------------------------------------------------------------------------*/ |
-/* HERE THERE BE DRAGONS */ |