| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 * mpi.c | |
| 3 * | |
| 4 * Arbitrary precision integer arithmetic library | |
| 5 * | |
| 6 * This Source Code Form is subject to the terms of the Mozilla Public | |
| 7 * License, v. 2.0. If a copy of the MPL was not distributed with this | |
| 8 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ | |
| 9 /* $Id: mpi.c,v 1.51 2012/04/25 14:49:50 gerv%gerv.net Exp $ */ | |
| 10 | |
| 11 #include "mpi-priv.h" | |
| 12 #if defined(OSF1) | |
| 13 #include <c_asm.h> | |
| 14 #endif | |
| 15 | |
| 16 #if defined(__arm__) && \ | |
| 17 ((defined(__thumb__) && !defined(__thumb2__)) || defined(__ARM_ARCH_3__)) | |
| 18 /* 16-bit thumb or ARM v3 doesn't work inlined assember version */ | |
| 19 #undef MP_ASSEMBLY_MULTIPLY | |
| 20 #undef MP_ASSEMBLY_SQUARE | |
| 21 #endif | |
| 22 | |
| 23 #if MP_LOGTAB | |
| 24 /* | |
| 25 A table of the logs of 2 for various bases (the 0 and 1 entries of | |
| 26 this table are meaningless and should not be referenced). | |
| 27 | |
| 28 This table is used to compute output lengths for the mp_toradix() | |
| 29 function. Since a number n in radix r takes up about log_r(n) | |
| 30 digits, we estimate the output size by taking the least integer | |
| 31 greater than log_r(n), where: | |
| 32 | |
| 33 log_r(n) = log_2(n) * log_r(2) | |
| 34 | |
| 35 This table, therefore, is a table of log_r(2) for 2 <= r <= 36, | |
| 36 which are the output bases supported. | |
| 37 */ | |
| 38 #include "logtab.h" | |
| 39 #endif | |
| 40 | |
| 41 /* {{{ Constant strings */ | |
| 42 | |
| 43 /* Constant strings returned by mp_strerror() */ | |
| 44 static const char *mp_err_string[] = { | |
| 45 "unknown result code", /* say what? */ | |
| 46 "boolean true", /* MP_OKAY, MP_YES */ | |
| 47 "boolean false", /* MP_NO */ | |
| 48 "out of memory", /* MP_MEM */ | |
| 49 "argument out of range", /* MP_RANGE */ | |
| 50 "invalid input parameter", /* MP_BADARG */ | |
| 51 "result is undefined" /* MP_UNDEF */ | |
| 52 }; | |
| 53 | |
| 54 /* Value to digit maps for radix conversion */ | |
| 55 | |
| 56 /* s_dmap_1 - standard digits and letters */ | |
| 57 static const char *s_dmap_1 = | |
| 58 "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/"; | |
| 59 | |
| 60 /* }}} */ | |
| 61 | |
| 62 unsigned long mp_allocs; | |
| 63 unsigned long mp_frees; | |
| 64 unsigned long mp_copies; | |
| 65 | |
| 66 /* {{{ Default precision manipulation */ | |
| 67 | |
| 68 /* Default precision for newly created mp_int's */ | |
| 69 static mp_size s_mp_defprec = MP_DEFPREC; | |
| 70 | |
| 71 mp_size mp_get_prec(void) | |
| 72 { | |
| 73 return s_mp_defprec; | |
| 74 | |
| 75 } /* end mp_get_prec() */ | |
| 76 | |
| 77 void mp_set_prec(mp_size prec) | |
| 78 { | |
| 79 if(prec == 0) | |
| 80 s_mp_defprec = MP_DEFPREC; | |
| 81 else | |
| 82 s_mp_defprec = prec; | |
| 83 | |
| 84 } /* end mp_set_prec() */ | |
| 85 | |
| 86 /* }}} */ | |
| 87 | |
| 88 /*------------------------------------------------------------------------*/ | |
| 89 /* {{{ mp_init(mp) */ | |
| 90 | |
| 91 /* | |
| 92 mp_init(mp) | |
| 93 | |
| 94 Initialize a new zero-valued mp_int. Returns MP_OKAY if successful, | |
| 95 MP_MEM if memory could not be allocated for the structure. | |
| 96 */ | |
| 97 | |
| 98 mp_err mp_init(mp_int *mp) | |
| 99 { | |
| 100 return mp_init_size(mp, s_mp_defprec); | |
| 101 | |
| 102 } /* end mp_init() */ | |
| 103 | |
| 104 /* }}} */ | |
| 105 | |
| 106 /* {{{ mp_init_size(mp, prec) */ | |
| 107 | |
| 108 /* | |
| 109 mp_init_size(mp, prec) | |
| 110 | |
| 111 Initialize a new zero-valued mp_int with at least the given | |
| 112 precision; returns MP_OKAY if successful, or MP_MEM if memory could | |
| 113 not be allocated for the structure. | |
| 114 */ | |
| 115 | |
| 116 mp_err mp_init_size(mp_int *mp, mp_size prec) | |
| 117 { | |
| 118 ARGCHK(mp != NULL && prec > 0, MP_BADARG); | |
| 119 | |
| 120 prec = MP_ROUNDUP(prec, s_mp_defprec); | |
| 121 if((DIGITS(mp) = s_mp_alloc(prec, sizeof(mp_digit))) == NULL) | |
| 122 return MP_MEM; | |
| 123 | |
| 124 SIGN(mp) = ZPOS; | |
| 125 USED(mp) = 1; | |
| 126 ALLOC(mp) = prec; | |
| 127 | |
| 128 return MP_OKAY; | |
| 129 | |
| 130 } /* end mp_init_size() */ | |
| 131 | |
| 132 /* }}} */ | |
| 133 | |
| 134 /* {{{ mp_init_copy(mp, from) */ | |
| 135 | |
| 136 /* | |
| 137 mp_init_copy(mp, from) | |
| 138 | |
| 139 Initialize mp as an exact copy of from. Returns MP_OKAY if | |
| 140 successful, MP_MEM if memory could not be allocated for the new | |
| 141 structure. | |
| 142 */ | |
| 143 | |
| 144 mp_err mp_init_copy(mp_int *mp, const mp_int *from) | |
| 145 { | |
| 146 ARGCHK(mp != NULL && from != NULL, MP_BADARG); | |
| 147 | |
| 148 if(mp == from) | |
| 149 return MP_OKAY; | |
| 150 | |
| 151 if((DIGITS(mp) = s_mp_alloc(ALLOC(from), sizeof(mp_digit))) == NULL) | |
| 152 return MP_MEM; | |
| 153 | |
| 154 s_mp_copy(DIGITS(from), DIGITS(mp), USED(from)); | |
| 155 USED(mp) = USED(from); | |
| 156 ALLOC(mp) = ALLOC(from); | |
| 157 SIGN(mp) = SIGN(from); | |
| 158 | |
| 159 return MP_OKAY; | |
| 160 | |
| 161 } /* end mp_init_copy() */ | |
| 162 | |
| 163 /* }}} */ | |
| 164 | |
| 165 /* {{{ mp_copy(from, to) */ | |
| 166 | |
| 167 /* | |
| 168 mp_copy(from, to) | |
| 169 | |
| 170 Copies the mp_int 'from' to the mp_int 'to'. It is presumed that | |
| 171 'to' has already been initialized (if not, use mp_init_copy() | |
| 172 instead). If 'from' and 'to' are identical, nothing happens. | |
| 173 */ | |
| 174 | |
| 175 mp_err mp_copy(const mp_int *from, mp_int *to) | |
| 176 { | |
| 177 ARGCHK(from != NULL && to != NULL, MP_BADARG); | |
| 178 | |
| 179 if(from == to) | |
| 180 return MP_OKAY; | |
| 181 | |
| 182 { /* copy */ | |
| 183 mp_digit *tmp; | |
| 184 | |
| 185 /* | |
| 186 If the allocated buffer in 'to' already has enough space to hold | |
| 187 all the used digits of 'from', we'll re-use it to avoid hitting | |
| 188 the memory allocater more than necessary; otherwise, we'd have | |
| 189 to grow anyway, so we just allocate a hunk and make the copy as | |
| 190 usual | |
| 191 */ | |
| 192 if(ALLOC(to) >= USED(from)) { | |
| 193 s_mp_setz(DIGITS(to) + USED(from), ALLOC(to) - USED(from)); | |
| 194 s_mp_copy(DIGITS(from), DIGITS(to), USED(from)); | |
| 195 | |
| 196 } else { | |
| 197 if((tmp = s_mp_alloc(ALLOC(from), sizeof(mp_digit))) == NULL) | |
| 198 return MP_MEM; | |
| 199 | |
| 200 s_mp_copy(DIGITS(from), tmp, USED(from)); | |
| 201 | |
| 202 if(DIGITS(to) != NULL) { | |
| 203 #if MP_CRYPTO | |
| 204 s_mp_setz(DIGITS(to), ALLOC(to)); | |
| 205 #endif | |
| 206 s_mp_free(DIGITS(to)); | |
| 207 } | |
| 208 | |
| 209 DIGITS(to) = tmp; | |
| 210 ALLOC(to) = ALLOC(from); | |
| 211 } | |
| 212 | |
| 213 /* Copy the precision and sign from the original */ | |
| 214 USED(to) = USED(from); | |
| 215 SIGN(to) = SIGN(from); | |
| 216 } /* end copy */ | |
| 217 | |
| 218 return MP_OKAY; | |
| 219 | |
| 220 } /* end mp_copy() */ | |
| 221 | |
| 222 /* }}} */ | |
| 223 | |
| 224 /* {{{ mp_exch(mp1, mp2) */ | |
| 225 | |
| 226 /* | |
| 227 mp_exch(mp1, mp2) | |
| 228 | |
| 229 Exchange mp1 and mp2 without allocating any intermediate memory | |
| 230 (well, unless you count the stack space needed for this call and the | |
| 231 locals it creates...). This cannot fail. | |
| 232 */ | |
| 233 | |
| 234 void mp_exch(mp_int *mp1, mp_int *mp2) | |
| 235 { | |
| 236 #if MP_ARGCHK == 2 | |
| 237 assert(mp1 != NULL && mp2 != NULL); | |
| 238 #else | |
| 239 if(mp1 == NULL || mp2 == NULL) | |
| 240 return; | |
| 241 #endif | |
| 242 | |
| 243 s_mp_exch(mp1, mp2); | |
| 244 | |
| 245 } /* end mp_exch() */ | |
| 246 | |
| 247 /* }}} */ | |
| 248 | |
| 249 /* {{{ mp_clear(mp) */ | |
| 250 | |
| 251 /* | |
| 252 mp_clear(mp) | |
| 253 | |
| 254 Release the storage used by an mp_int, and void its fields so that | |
| 255 if someone calls mp_clear() again for the same int later, we won't | |
| 256 get tollchocked. | |
| 257 */ | |
| 258 | |
| 259 void mp_clear(mp_int *mp) | |
| 260 { | |
| 261 if(mp == NULL) | |
| 262 return; | |
| 263 | |
| 264 if(DIGITS(mp) != NULL) { | |
| 265 #if MP_CRYPTO | |
| 266 s_mp_setz(DIGITS(mp), ALLOC(mp)); | |
| 267 #endif | |
| 268 s_mp_free(DIGITS(mp)); | |
| 269 DIGITS(mp) = NULL; | |
| 270 } | |
| 271 | |
| 272 USED(mp) = 0; | |
| 273 ALLOC(mp) = 0; | |
| 274 | |
| 275 } /* end mp_clear() */ | |
| 276 | |
| 277 /* }}} */ | |
| 278 | |
| 279 /* {{{ mp_zero(mp) */ | |
| 280 | |
| 281 /* | |
| 282 mp_zero(mp) | |
| 283 | |
| 284 Set mp to zero. Does not change the allocated size of the structure, | |
| 285 and therefore cannot fail (except on a bad argument, which we ignore) | |
| 286 */ | |
| 287 void mp_zero(mp_int *mp) | |
| 288 { | |
| 289 if(mp == NULL) | |
| 290 return; | |
| 291 | |
| 292 s_mp_setz(DIGITS(mp), ALLOC(mp)); | |
| 293 USED(mp) = 1; | |
| 294 SIGN(mp) = ZPOS; | |
| 295 | |
| 296 } /* end mp_zero() */ | |
| 297 | |
| 298 /* }}} */ | |
| 299 | |
| 300 /* {{{ mp_set(mp, d) */ | |
| 301 | |
| 302 void mp_set(mp_int *mp, mp_digit d) | |
| 303 { | |
| 304 if(mp == NULL) | |
| 305 return; | |
| 306 | |
| 307 mp_zero(mp); | |
| 308 DIGIT(mp, 0) = d; | |
| 309 | |
| 310 } /* end mp_set() */ | |
| 311 | |
| 312 /* }}} */ | |
| 313 | |
| 314 /* {{{ mp_set_int(mp, z) */ | |
| 315 | |
| 316 mp_err mp_set_int(mp_int *mp, long z) | |
| 317 { | |
| 318 int ix; | |
| 319 unsigned long v = labs(z); | |
| 320 mp_err res; | |
| 321 | |
| 322 ARGCHK(mp != NULL, MP_BADARG); | |
| 323 | |
| 324 mp_zero(mp); | |
| 325 if(z == 0) | |
| 326 return MP_OKAY; /* shortcut for zero */ | |
| 327 | |
| 328 if (sizeof v <= sizeof(mp_digit)) { | |
| 329 DIGIT(mp,0) = v; | |
| 330 } else { | |
| 331 for (ix = sizeof(long) - 1; ix >= 0; ix--) { | |
| 332 if ((res = s_mp_mul_d(mp, (UCHAR_MAX + 1))) != MP_OKAY) | |
| 333 return res; | |
| 334 | |
| 335 res = s_mp_add_d(mp, (mp_digit)((v >> (ix * CHAR_BIT)) & UCHAR_MAX)); | |
| 336 if (res != MP_OKAY) | |
| 337 return res; | |
| 338 } | |
| 339 } | |
| 340 if(z < 0) | |
| 341 SIGN(mp) = NEG; | |
| 342 | |
| 343 return MP_OKAY; | |
| 344 | |
| 345 } /* end mp_set_int() */ | |
| 346 | |
| 347 /* }}} */ | |
| 348 | |
| 349 /* {{{ mp_set_ulong(mp, z) */ | |
| 350 | |
| 351 mp_err mp_set_ulong(mp_int *mp, unsigned long z) | |
| 352 { | |
| 353 int ix; | |
| 354 mp_err res; | |
| 355 | |
| 356 ARGCHK(mp != NULL, MP_BADARG); | |
| 357 | |
| 358 mp_zero(mp); | |
| 359 if(z == 0) | |
| 360 return MP_OKAY; /* shortcut for zero */ | |
| 361 | |
| 362 if (sizeof z <= sizeof(mp_digit)) { | |
| 363 DIGIT(mp,0) = z; | |
| 364 } else { | |
| 365 for (ix = sizeof(long) - 1; ix >= 0; ix--) { | |
| 366 if ((res = s_mp_mul_d(mp, (UCHAR_MAX + 1))) != MP_OKAY) | |
| 367 return res; | |
| 368 | |
| 369 res = s_mp_add_d(mp, (mp_digit)((z >> (ix * CHAR_BIT)) & UCHAR_MAX)); | |
| 370 if (res != MP_OKAY) | |
| 371 return res; | |
| 372 } | |
| 373 } | |
| 374 return MP_OKAY; | |
| 375 } /* end mp_set_ulong() */ | |
| 376 | |
| 377 /* }}} */ | |
| 378 | |
| 379 /*------------------------------------------------------------------------*/ | |
| 380 /* {{{ Digit arithmetic */ | |
| 381 | |
| 382 /* {{{ mp_add_d(a, d, b) */ | |
| 383 | |
| 384 /* | |
| 385 mp_add_d(a, d, b) | |
| 386 | |
| 387 Compute the sum b = a + d, for a single digit d. Respects the sign of | |
| 388 its primary addend (single digits are unsigned anyway). | |
| 389 */ | |
| 390 | |
| 391 mp_err mp_add_d(const mp_int *a, mp_digit d, mp_int *b) | |
| 392 { | |
| 393 mp_int tmp; | |
| 394 mp_err res; | |
| 395 | |
| 396 ARGCHK(a != NULL && b != NULL, MP_BADARG); | |
| 397 | |
| 398 if((res = mp_init_copy(&tmp, a)) != MP_OKAY) | |
| 399 return res; | |
| 400 | |
| 401 if(SIGN(&tmp) == ZPOS) { | |
| 402 if((res = s_mp_add_d(&tmp, d)) != MP_OKAY) | |
| 403 goto CLEANUP; | |
| 404 } else if(s_mp_cmp_d(&tmp, d) >= 0) { | |
| 405 if((res = s_mp_sub_d(&tmp, d)) != MP_OKAY) | |
| 406 goto CLEANUP; | |
| 407 } else { | |
| 408 mp_neg(&tmp, &tmp); | |
| 409 | |
| 410 DIGIT(&tmp, 0) = d - DIGIT(&tmp, 0); | |
| 411 } | |
| 412 | |
| 413 if(s_mp_cmp_d(&tmp, 0) == 0) | |
| 414 SIGN(&tmp) = ZPOS; | |
| 415 | |
| 416 s_mp_exch(&tmp, b); | |
| 417 | |
| 418 CLEANUP: | |
| 419 mp_clear(&tmp); | |
| 420 return res; | |
| 421 | |
| 422 } /* end mp_add_d() */ | |
| 423 | |
| 424 /* }}} */ | |
| 425 | |
| 426 /* {{{ mp_sub_d(a, d, b) */ | |
| 427 | |
| 428 /* | |
| 429 mp_sub_d(a, d, b) | |
| 430 | |
| 431 Compute the difference b = a - d, for a single digit d. Respects the | |
| 432 sign of its subtrahend (single digits are unsigned anyway). | |
| 433 */ | |
| 434 | |
| 435 mp_err mp_sub_d(const mp_int *a, mp_digit d, mp_int *b) | |
| 436 { | |
| 437 mp_int tmp; | |
| 438 mp_err res; | |
| 439 | |
| 440 ARGCHK(a != NULL && b != NULL, MP_BADARG); | |
| 441 | |
| 442 if((res = mp_init_copy(&tmp, a)) != MP_OKAY) | |
| 443 return res; | |
| 444 | |
| 445 if(SIGN(&tmp) == NEG) { | |
| 446 if((res = s_mp_add_d(&tmp, d)) != MP_OKAY) | |
| 447 goto CLEANUP; | |
| 448 } else if(s_mp_cmp_d(&tmp, d) >= 0) { | |
| 449 if((res = s_mp_sub_d(&tmp, d)) != MP_OKAY) | |
| 450 goto CLEANUP; | |
| 451 } else { | |
| 452 mp_neg(&tmp, &tmp); | |
| 453 | |
| 454 DIGIT(&tmp, 0) = d - DIGIT(&tmp, 0); | |
| 455 SIGN(&tmp) = NEG; | |
| 456 } | |
| 457 | |
| 458 if(s_mp_cmp_d(&tmp, 0) == 0) | |
| 459 SIGN(&tmp) = ZPOS; | |
| 460 | |
| 461 s_mp_exch(&tmp, b); | |
| 462 | |
| 463 CLEANUP: | |
| 464 mp_clear(&tmp); | |
| 465 return res; | |
| 466 | |
| 467 } /* end mp_sub_d() */ | |
| 468 | |
| 469 /* }}} */ | |
| 470 | |
| 471 /* {{{ mp_mul_d(a, d, b) */ | |
| 472 | |
| 473 /* | |
| 474 mp_mul_d(a, d, b) | |
| 475 | |
| 476 Compute the product b = a * d, for a single digit d. Respects the sign | |
| 477 of its multiplicand (single digits are unsigned anyway) | |
| 478 */ | |
| 479 | |
| 480 mp_err mp_mul_d(const mp_int *a, mp_digit d, mp_int *b) | |
| 481 { | |
| 482 mp_err res; | |
| 483 | |
| 484 ARGCHK(a != NULL && b != NULL, MP_BADARG); | |
| 485 | |
| 486 if(d == 0) { | |
| 487 mp_zero(b); | |
| 488 return MP_OKAY; | |
| 489 } | |
| 490 | |
| 491 if((res = mp_copy(a, b)) != MP_OKAY) | |
| 492 return res; | |
| 493 | |
| 494 res = s_mp_mul_d(b, d); | |
| 495 | |
| 496 return res; | |
| 497 | |
| 498 } /* end mp_mul_d() */ | |
| 499 | |
| 500 /* }}} */ | |
| 501 | |
| 502 /* {{{ mp_mul_2(a, c) */ | |
| 503 | |
| 504 mp_err mp_mul_2(const mp_int *a, mp_int *c) | |
| 505 { | |
| 506 mp_err res; | |
| 507 | |
| 508 ARGCHK(a != NULL && c != NULL, MP_BADARG); | |
| 509 | |
| 510 if((res = mp_copy(a, c)) != MP_OKAY) | |
| 511 return res; | |
| 512 | |
| 513 return s_mp_mul_2(c); | |
| 514 | |
| 515 } /* end mp_mul_2() */ | |
| 516 | |
| 517 /* }}} */ | |
| 518 | |
| 519 /* {{{ mp_div_d(a, d, q, r) */ | |
| 520 | |
| 521 /* | |
| 522 mp_div_d(a, d, q, r) | |
| 523 | |
| 524 Compute the quotient q = a / d and remainder r = a mod d, for a | |
| 525 single digit d. Respects the sign of its divisor (single digits are | |
| 526 unsigned anyway). | |
| 527 */ | |
| 528 | |
| 529 mp_err mp_div_d(const mp_int *a, mp_digit d, mp_int *q, mp_digit *r) | |
| 530 { | |
| 531 mp_err res; | |
| 532 mp_int qp; | |
| 533 mp_digit rem; | |
| 534 int pow; | |
| 535 | |
| 536 ARGCHK(a != NULL, MP_BADARG); | |
| 537 | |
| 538 if(d == 0) | |
| 539 return MP_RANGE; | |
| 540 | |
| 541 /* Shortcut for powers of two ... */ | |
| 542 if((pow = s_mp_ispow2d(d)) >= 0) { | |
| 543 mp_digit mask; | |
| 544 | |
| 545 mask = ((mp_digit)1 << pow) - 1; | |
| 546 rem = DIGIT(a, 0) & mask; | |
| 547 | |
| 548 if(q) { | |
| 549 mp_copy(a, q); | |
| 550 s_mp_div_2d(q, pow); | |
| 551 } | |
| 552 | |
| 553 if(r) | |
| 554 *r = rem; | |
| 555 | |
| 556 return MP_OKAY; | |
| 557 } | |
| 558 | |
| 559 if((res = mp_init_copy(&qp, a)) != MP_OKAY) | |
| 560 return res; | |
| 561 | |
| 562 res = s_mp_div_d(&qp, d, &rem); | |
| 563 | |
| 564 if(s_mp_cmp_d(&qp, 0) == 0) | |
| 565 SIGN(q) = ZPOS; | |
| 566 | |
| 567 if(r) | |
| 568 *r = rem; | |
| 569 | |
| 570 if(q) | |
| 571 s_mp_exch(&qp, q); | |
| 572 | |
| 573 mp_clear(&qp); | |
| 574 return res; | |
| 575 | |
| 576 } /* end mp_div_d() */ | |
| 577 | |
| 578 /* }}} */ | |
| 579 | |
| 580 /* {{{ mp_div_2(a, c) */ | |
| 581 | |
| 582 /* | |
| 583 mp_div_2(a, c) | |
| 584 | |
| 585 Compute c = a / 2, disregarding the remainder. | |
| 586 */ | |
| 587 | |
| 588 mp_err mp_div_2(const mp_int *a, mp_int *c) | |
| 589 { | |
| 590 mp_err res; | |
| 591 | |
| 592 ARGCHK(a != NULL && c != NULL, MP_BADARG); | |
| 593 | |
| 594 if((res = mp_copy(a, c)) != MP_OKAY) | |
| 595 return res; | |
| 596 | |
| 597 s_mp_div_2(c); | |
| 598 | |
| 599 return MP_OKAY; | |
| 600 | |
| 601 } /* end mp_div_2() */ | |
| 602 | |
| 603 /* }}} */ | |
| 604 | |
| 605 /* {{{ mp_expt_d(a, d, b) */ | |
| 606 | |
| 607 mp_err mp_expt_d(const mp_int *a, mp_digit d, mp_int *c) | |
| 608 { | |
| 609 mp_int s, x; | |
| 610 mp_err res; | |
| 611 | |
| 612 ARGCHK(a != NULL && c != NULL, MP_BADARG); | |
| 613 | |
| 614 if((res = mp_init(&s)) != MP_OKAY) | |
| 615 return res; | |
| 616 if((res = mp_init_copy(&x, a)) != MP_OKAY) | |
| 617 goto X; | |
| 618 | |
| 619 DIGIT(&s, 0) = 1; | |
| 620 | |
| 621 while(d != 0) { | |
| 622 if(d & 1) { | |
| 623 if((res = s_mp_mul(&s, &x)) != MP_OKAY) | |
| 624 goto CLEANUP; | |
| 625 } | |
| 626 | |
| 627 d /= 2; | |
| 628 | |
| 629 if((res = s_mp_sqr(&x)) != MP_OKAY) | |
| 630 goto CLEANUP; | |
| 631 } | |
| 632 | |
| 633 s_mp_exch(&s, c); | |
| 634 | |
| 635 CLEANUP: | |
| 636 mp_clear(&x); | |
| 637 X: | |
| 638 mp_clear(&s); | |
| 639 | |
| 640 return res; | |
| 641 | |
| 642 } /* end mp_expt_d() */ | |
| 643 | |
| 644 /* }}} */ | |
| 645 | |
| 646 /* }}} */ | |
| 647 | |
| 648 /*------------------------------------------------------------------------*/ | |
| 649 /* {{{ Full arithmetic */ | |
| 650 | |
| 651 /* {{{ mp_abs(a, b) */ | |
| 652 | |
| 653 /* | |
| 654 mp_abs(a, b) | |
| 655 | |
| 656 Compute b = |a|. 'a' and 'b' may be identical. | |
| 657 */ | |
| 658 | |
| 659 mp_err mp_abs(const mp_int *a, mp_int *b) | |
| 660 { | |
| 661 mp_err res; | |
| 662 | |
| 663 ARGCHK(a != NULL && b != NULL, MP_BADARG); | |
| 664 | |
| 665 if((res = mp_copy(a, b)) != MP_OKAY) | |
| 666 return res; | |
| 667 | |
| 668 SIGN(b) = ZPOS; | |
| 669 | |
| 670 return MP_OKAY; | |
| 671 | |
| 672 } /* end mp_abs() */ | |
| 673 | |
| 674 /* }}} */ | |
| 675 | |
| 676 /* {{{ mp_neg(a, b) */ | |
| 677 | |
| 678 /* | |
| 679 mp_neg(a, b) | |
| 680 | |
| 681 Compute b = -a. 'a' and 'b' may be identical. | |
| 682 */ | |
| 683 | |
| 684 mp_err mp_neg(const mp_int *a, mp_int *b) | |
| 685 { | |
| 686 mp_err res; | |
| 687 | |
| 688 ARGCHK(a != NULL && b != NULL, MP_BADARG); | |
| 689 | |
| 690 if((res = mp_copy(a, b)) != MP_OKAY) | |
| 691 return res; | |
| 692 | |
| 693 if(s_mp_cmp_d(b, 0) == MP_EQ) | |
| 694 SIGN(b) = ZPOS; | |
| 695 else | |
| 696 SIGN(b) = (SIGN(b) == NEG) ? ZPOS : NEG; | |
| 697 | |
| 698 return MP_OKAY; | |
| 699 | |
| 700 } /* end mp_neg() */ | |
| 701 | |
| 702 /* }}} */ | |
| 703 | |
| 704 /* {{{ mp_add(a, b, c) */ | |
| 705 | |
| 706 /* | |
| 707 mp_add(a, b, c) | |
| 708 | |
| 709 Compute c = a + b. All parameters may be identical. | |
| 710 */ | |
| 711 | |
| 712 mp_err mp_add(const mp_int *a, const mp_int *b, mp_int *c) | |
| 713 { | |
| 714 mp_err res; | |
| 715 | |
| 716 ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); | |
| 717 | |
| 718 if(SIGN(a) == SIGN(b)) { /* same sign: add values, keep sign */ | |
| 719 MP_CHECKOK( s_mp_add_3arg(a, b, c) ); | |
| 720 } else if(s_mp_cmp(a, b) >= 0) { /* different sign: |a| >= |b| */ | |
| 721 MP_CHECKOK( s_mp_sub_3arg(a, b, c) ); | |
| 722 } else { /* different sign: |a| < |b| */ | |
| 723 MP_CHECKOK( s_mp_sub_3arg(b, a, c) ); | |
| 724 } | |
| 725 | |
| 726 if (s_mp_cmp_d(c, 0) == MP_EQ) | |
| 727 SIGN(c) = ZPOS; | |
| 728 | |
| 729 CLEANUP: | |
| 730 return res; | |
| 731 | |
| 732 } /* end mp_add() */ | |
| 733 | |
| 734 /* }}} */ | |
| 735 | |
| 736 /* {{{ mp_sub(a, b, c) */ | |
| 737 | |
| 738 /* | |
| 739 mp_sub(a, b, c) | |
| 740 | |
| 741 Compute c = a - b. All parameters may be identical. | |
| 742 */ | |
| 743 | |
| 744 mp_err mp_sub(const mp_int *a, const mp_int *b, mp_int *c) | |
| 745 { | |
| 746 mp_err res; | |
| 747 int magDiff; | |
| 748 | |
| 749 ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); | |
| 750 | |
| 751 if (a == b) { | |
| 752 mp_zero(c); | |
| 753 return MP_OKAY; | |
| 754 } | |
| 755 | |
| 756 if (MP_SIGN(a) != MP_SIGN(b)) { | |
| 757 MP_CHECKOK( s_mp_add_3arg(a, b, c) ); | |
| 758 } else if (!(magDiff = s_mp_cmp(a, b))) { | |
| 759 mp_zero(c); | |
| 760 res = MP_OKAY; | |
| 761 } else if (magDiff > 0) { | |
| 762 MP_CHECKOK( s_mp_sub_3arg(a, b, c) ); | |
| 763 } else { | |
| 764 MP_CHECKOK( s_mp_sub_3arg(b, a, c) ); | |
| 765 MP_SIGN(c) = !MP_SIGN(a); | |
| 766 } | |
| 767 | |
| 768 if (s_mp_cmp_d(c, 0) == MP_EQ) | |
| 769 MP_SIGN(c) = MP_ZPOS; | |
| 770 | |
| 771 CLEANUP: | |
| 772 return res; | |
| 773 | |
| 774 } /* end mp_sub() */ | |
| 775 | |
| 776 /* }}} */ | |
| 777 | |
| 778 /* {{{ mp_mul(a, b, c) */ | |
| 779 | |
| 780 /* | |
| 781 mp_mul(a, b, c) | |
| 782 | |
| 783 Compute c = a * b. All parameters may be identical. | |
| 784 */ | |
| 785 mp_err mp_mul(const mp_int *a, const mp_int *b, mp_int * c) | |
| 786 { | |
| 787 mp_digit *pb; | |
| 788 mp_int tmp; | |
| 789 mp_err res; | |
| 790 mp_size ib; | |
| 791 mp_size useda, usedb; | |
| 792 | |
| 793 ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); | |
| 794 | |
| 795 if (a == c) { | |
| 796 if ((res = mp_init_copy(&tmp, a)) != MP_OKAY) | |
| 797 return res; | |
| 798 if (a == b) | |
| 799 b = &tmp; | |
| 800 a = &tmp; | |
| 801 } else if (b == c) { | |
| 802 if ((res = mp_init_copy(&tmp, b)) != MP_OKAY) | |
| 803 return res; | |
| 804 b = &tmp; | |
| 805 } else { | |
| 806 MP_DIGITS(&tmp) = 0; | |
| 807 } | |
| 808 | |
| 809 if (MP_USED(a) < MP_USED(b)) { | |
| 810 const mp_int *xch = b; /* switch a and b, to do fewer outer loops */ | |
| 811 b = a; | |
| 812 a = xch; | |
| 813 } | |
| 814 | |
| 815 MP_USED(c) = 1; MP_DIGIT(c, 0) = 0; | |
| 816 if((res = s_mp_pad(c, USED(a) + USED(b))) != MP_OKAY) | |
| 817 goto CLEANUP; | |
| 818 | |
| 819 #ifdef NSS_USE_COMBA | |
| 820 if ((MP_USED(a) == MP_USED(b)) && IS_POWER_OF_2(MP_USED(b))) { | |
| 821 if (MP_USED(a) == 4) { | |
| 822 s_mp_mul_comba_4(a, b, c); | |
| 823 goto CLEANUP; | |
| 824 } | |
| 825 if (MP_USED(a) == 8) { | |
| 826 s_mp_mul_comba_8(a, b, c); | |
| 827 goto CLEANUP; | |
| 828 } | |
| 829 if (MP_USED(a) == 16) { | |
| 830 s_mp_mul_comba_16(a, b, c); | |
| 831 goto CLEANUP; | |
| 832 } | |
| 833 if (MP_USED(a) == 32) { | |
| 834 s_mp_mul_comba_32(a, b, c); | |
| 835 goto CLEANUP; | |
| 836 } | |
| 837 } | |
| 838 #endif | |
| 839 | |
| 840 pb = MP_DIGITS(b); | |
| 841 s_mpv_mul_d(MP_DIGITS(a), MP_USED(a), *pb++, MP_DIGITS(c)); | |
| 842 | |
| 843 /* Outer loop: Digits of b */ | |
| 844 useda = MP_USED(a); | |
| 845 usedb = MP_USED(b); | |
| 846 for (ib = 1; ib < usedb; ib++) { | |
| 847 mp_digit b_i = *pb++; | |
| 848 | |
| 849 /* Inner product: Digits of a */ | |
| 850 if (b_i) | |
| 851 s_mpv_mul_d_add(MP_DIGITS(a), useda, b_i, MP_DIGITS(c) + ib); | |
| 852 else | |
| 853 MP_DIGIT(c, ib + useda) = b_i; | |
| 854 } | |
| 855 | |
| 856 s_mp_clamp(c); | |
| 857 | |
| 858 if(SIGN(a) == SIGN(b) || s_mp_cmp_d(c, 0) == MP_EQ) | |
| 859 SIGN(c) = ZPOS; | |
| 860 else | |
| 861 SIGN(c) = NEG; | |
| 862 | |
| 863 CLEANUP: | |
| 864 mp_clear(&tmp); | |
| 865 return res; | |
| 866 } /* end mp_mul() */ | |
| 867 | |
| 868 /* }}} */ | |
| 869 | |
| 870 /* {{{ mp_sqr(a, sqr) */ | |
| 871 | |
| 872 #if MP_SQUARE | |
| 873 /* | |
| 874 Computes the square of a. This can be done more | |
| 875 efficiently than a general multiplication, because many of the | |
| 876 computation steps are redundant when squaring. The inner product | |
| 877 step is a bit more complicated, but we save a fair number of | |
| 878 iterations of the multiplication loop. | |
| 879 */ | |
| 880 | |
| 881 /* sqr = a^2; Caller provides both a and tmp; */ | |
| 882 mp_err mp_sqr(const mp_int *a, mp_int *sqr) | |
| 883 { | |
| 884 mp_digit *pa; | |
| 885 mp_digit d; | |
| 886 mp_err res; | |
| 887 mp_size ix; | |
| 888 mp_int tmp; | |
| 889 int count; | |
| 890 | |
| 891 ARGCHK(a != NULL && sqr != NULL, MP_BADARG); | |
| 892 | |
| 893 if (a == sqr) { | |
| 894 if((res = mp_init_copy(&tmp, a)) != MP_OKAY) | |
| 895 return res; | |
| 896 a = &tmp; | |
| 897 } else { | |
| 898 DIGITS(&tmp) = 0; | |
| 899 res = MP_OKAY; | |
| 900 } | |
| 901 | |
| 902 ix = 2 * MP_USED(a); | |
| 903 if (ix > MP_ALLOC(sqr)) { | |
| 904 MP_USED(sqr) = 1; | |
| 905 MP_CHECKOK( s_mp_grow(sqr, ix) ); | |
| 906 } | |
| 907 MP_USED(sqr) = ix; | |
| 908 MP_DIGIT(sqr, 0) = 0; | |
| 909 | |
| 910 #ifdef NSS_USE_COMBA | |
| 911 if (IS_POWER_OF_2(MP_USED(a))) { | |
| 912 if (MP_USED(a) == 4) { | |
| 913 s_mp_sqr_comba_4(a, sqr); | |
| 914 goto CLEANUP; | |
| 915 } | |
| 916 if (MP_USED(a) == 8) { | |
| 917 s_mp_sqr_comba_8(a, sqr); | |
| 918 goto CLEANUP; | |
| 919 } | |
| 920 if (MP_USED(a) == 16) { | |
| 921 s_mp_sqr_comba_16(a, sqr); | |
| 922 goto CLEANUP; | |
| 923 } | |
| 924 if (MP_USED(a) == 32) { | |
| 925 s_mp_sqr_comba_32(a, sqr); | |
| 926 goto CLEANUP; | |
| 927 } | |
| 928 } | |
| 929 #endif | |
| 930 | |
| 931 pa = MP_DIGITS(a); | |
| 932 count = MP_USED(a) - 1; | |
| 933 if (count > 0) { | |
| 934 d = *pa++; | |
| 935 s_mpv_mul_d(pa, count, d, MP_DIGITS(sqr) + 1); | |
| 936 for (ix = 3; --count > 0; ix += 2) { | |
| 937 d = *pa++; | |
| 938 s_mpv_mul_d_add(pa, count, d, MP_DIGITS(sqr) + ix); | |
| 939 } /* for(ix ...) */ | |
| 940 MP_DIGIT(sqr, MP_USED(sqr)-1) = 0; /* above loop stopped short of this. */ | |
| 941 | |
| 942 /* now sqr *= 2 */ | |
| 943 s_mp_mul_2(sqr); | |
| 944 } else { | |
| 945 MP_DIGIT(sqr, 1) = 0; | |
| 946 } | |
| 947 | |
| 948 /* now add the squares of the digits of a to sqr. */ | |
| 949 s_mpv_sqr_add_prop(MP_DIGITS(a), MP_USED(a), MP_DIGITS(sqr)); | |
| 950 | |
| 951 SIGN(sqr) = ZPOS; | |
| 952 s_mp_clamp(sqr); | |
| 953 | |
| 954 CLEANUP: | |
| 955 mp_clear(&tmp); | |
| 956 return res; | |
| 957 | |
| 958 } /* end mp_sqr() */ | |
| 959 #endif | |
| 960 | |
| 961 /* }}} */ | |
| 962 | |
| 963 /* {{{ mp_div(a, b, q, r) */ | |
| 964 | |
| 965 /* | |
| 966 mp_div(a, b, q, r) | |
| 967 | |
| 968 Compute q = a / b and r = a mod b. Input parameters may be re-used | |
| 969 as output parameters. If q or r is NULL, that portion of the | |
| 970 computation will be discarded (although it will still be computed) | |
| 971 */ | |
| 972 mp_err mp_div(const mp_int *a, const mp_int *b, mp_int *q, mp_int *r) | |
| 973 { | |
| 974 mp_err res; | |
| 975 mp_int *pQ, *pR; | |
| 976 mp_int qtmp, rtmp, btmp; | |
| 977 int cmp; | |
| 978 mp_sign signA; | |
| 979 mp_sign signB; | |
| 980 | |
| 981 ARGCHK(a != NULL && b != NULL, MP_BADARG); | |
| 982 | |
| 983 signA = MP_SIGN(a); | |
| 984 signB = MP_SIGN(b); | |
| 985 | |
| 986 if(mp_cmp_z(b) == MP_EQ) | |
| 987 return MP_RANGE; | |
| 988 | |
| 989 DIGITS(&qtmp) = 0; | |
| 990 DIGITS(&rtmp) = 0; | |
| 991 DIGITS(&btmp) = 0; | |
| 992 | |
| 993 /* Set up some temporaries... */ | |
| 994 if (!r || r == a || r == b) { | |
| 995 MP_CHECKOK( mp_init_copy(&rtmp, a) ); | |
| 996 pR = &rtmp; | |
| 997 } else { | |
| 998 MP_CHECKOK( mp_copy(a, r) ); | |
| 999 pR = r; | |
| 1000 } | |
| 1001 | |
| 1002 if (!q || q == a || q == b) { | |
| 1003 MP_CHECKOK( mp_init_size(&qtmp, MP_USED(a)) ); | |
| 1004 pQ = &qtmp; | |
| 1005 } else { | |
| 1006 MP_CHECKOK( s_mp_pad(q, MP_USED(a)) ); | |
| 1007 pQ = q; | |
| 1008 mp_zero(pQ); | |
| 1009 } | |
| 1010 | |
| 1011 /* | |
| 1012 If |a| <= |b|, we can compute the solution without division; | |
| 1013 otherwise, we actually do the work required. | |
| 1014 */ | |
| 1015 if ((cmp = s_mp_cmp(a, b)) <= 0) { | |
| 1016 if (cmp) { | |
| 1017 /* r was set to a above. */ | |
| 1018 mp_zero(pQ); | |
| 1019 } else { | |
| 1020 mp_set(pQ, 1); | |
| 1021 mp_zero(pR); | |
| 1022 } | |
| 1023 } else { | |
| 1024 MP_CHECKOK( mp_init_copy(&btmp, b) ); | |
| 1025 MP_CHECKOK( s_mp_div(pR, &btmp, pQ) ); | |
| 1026 } | |
| 1027 | |
| 1028 /* Compute the signs for the output */ | |
| 1029 MP_SIGN(pR) = signA; /* Sr = Sa */ | |
| 1030 /* Sq = ZPOS if Sa == Sb */ /* Sq = NEG if Sa != Sb */ | |
| 1031 MP_SIGN(pQ) = (signA == signB) ? ZPOS : NEG; | |
| 1032 | |
| 1033 if(s_mp_cmp_d(pQ, 0) == MP_EQ) | |
| 1034 SIGN(pQ) = ZPOS; | |
| 1035 if(s_mp_cmp_d(pR, 0) == MP_EQ) | |
| 1036 SIGN(pR) = ZPOS; | |
| 1037 | |
| 1038 /* Copy output, if it is needed */ | |
| 1039 if(q && q != pQ) | |
| 1040 s_mp_exch(pQ, q); | |
| 1041 | |
| 1042 if(r && r != pR) | |
| 1043 s_mp_exch(pR, r); | |
| 1044 | |
| 1045 CLEANUP: | |
| 1046 mp_clear(&btmp); | |
| 1047 mp_clear(&rtmp); | |
| 1048 mp_clear(&qtmp); | |
| 1049 | |
| 1050 return res; | |
| 1051 | |
| 1052 } /* end mp_div() */ | |
| 1053 | |
| 1054 /* }}} */ | |
| 1055 | |
| 1056 /* {{{ mp_div_2d(a, d, q, r) */ | |
| 1057 | |
| 1058 mp_err mp_div_2d(const mp_int *a, mp_digit d, mp_int *q, mp_int *r) | |
| 1059 { | |
| 1060 mp_err res; | |
| 1061 | |
| 1062 ARGCHK(a != NULL, MP_BADARG); | |
| 1063 | |
| 1064 if(q) { | |
| 1065 if((res = mp_copy(a, q)) != MP_OKAY) | |
| 1066 return res; | |
| 1067 } | |
| 1068 if(r) { | |
| 1069 if((res = mp_copy(a, r)) != MP_OKAY) | |
| 1070 return res; | |
| 1071 } | |
| 1072 if(q) { | |
| 1073 s_mp_div_2d(q, d); | |
| 1074 } | |
| 1075 if(r) { | |
| 1076 s_mp_mod_2d(r, d); | |
| 1077 } | |
| 1078 | |
| 1079 return MP_OKAY; | |
| 1080 | |
| 1081 } /* end mp_div_2d() */ | |
| 1082 | |
| 1083 /* }}} */ | |
| 1084 | |
| 1085 /* {{{ mp_expt(a, b, c) */ | |
| 1086 | |
| 1087 /* | |
| 1088 mp_expt(a, b, c) | |
| 1089 | |
| 1090 Compute c = a ** b, that is, raise a to the b power. Uses a | |
| 1091 standard iterative square-and-multiply technique. | |
| 1092 */ | |
| 1093 | |
| 1094 mp_err mp_expt(mp_int *a, mp_int *b, mp_int *c) | |
| 1095 { | |
| 1096 mp_int s, x; | |
| 1097 mp_err res; | |
| 1098 mp_digit d; | |
| 1099 int dig, bit; | |
| 1100 | |
| 1101 ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); | |
| 1102 | |
| 1103 if(mp_cmp_z(b) < 0) | |
| 1104 return MP_RANGE; | |
| 1105 | |
| 1106 if((res = mp_init(&s)) != MP_OKAY) | |
| 1107 return res; | |
| 1108 | |
| 1109 mp_set(&s, 1); | |
| 1110 | |
| 1111 if((res = mp_init_copy(&x, a)) != MP_OKAY) | |
| 1112 goto X; | |
| 1113 | |
| 1114 /* Loop over low-order digits in ascending order */ | |
| 1115 for(dig = 0; dig < (USED(b) - 1); dig++) { | |
| 1116 d = DIGIT(b, dig); | |
| 1117 | |
| 1118 /* Loop over bits of each non-maximal digit */ | |
| 1119 for(bit = 0; bit < DIGIT_BIT; bit++) { | |
| 1120 if(d & 1) { | |
| 1121 if((res = s_mp_mul(&s, &x)) != MP_OKAY) | |
| 1122 goto CLEANUP; | |
| 1123 } | |
| 1124 | |
| 1125 d >>= 1; | |
| 1126 | |
| 1127 if((res = s_mp_sqr(&x)) != MP_OKAY) | |
| 1128 goto CLEANUP; | |
| 1129 } | |
| 1130 } | |
| 1131 | |
| 1132 /* Consider now the last digit... */ | |
| 1133 d = DIGIT(b, dig); | |
| 1134 | |
| 1135 while(d) { | |
| 1136 if(d & 1) { | |
| 1137 if((res = s_mp_mul(&s, &x)) != MP_OKAY) | |
| 1138 goto CLEANUP; | |
| 1139 } | |
| 1140 | |
| 1141 d >>= 1; | |
| 1142 | |
| 1143 if((res = s_mp_sqr(&x)) != MP_OKAY) | |
| 1144 goto CLEANUP; | |
| 1145 } | |
| 1146 | |
| 1147 if(mp_iseven(b)) | |
| 1148 SIGN(&s) = SIGN(a); | |
| 1149 | |
| 1150 res = mp_copy(&s, c); | |
| 1151 | |
| 1152 CLEANUP: | |
| 1153 mp_clear(&x); | |
| 1154 X: | |
| 1155 mp_clear(&s); | |
| 1156 | |
| 1157 return res; | |
| 1158 | |
| 1159 } /* end mp_expt() */ | |
| 1160 | |
| 1161 /* }}} */ | |
| 1162 | |
| 1163 /* {{{ mp_2expt(a, k) */ | |
| 1164 | |
| 1165 /* Compute a = 2^k */ | |
| 1166 | |
| 1167 mp_err mp_2expt(mp_int *a, mp_digit k) | |
| 1168 { | |
| 1169 ARGCHK(a != NULL, MP_BADARG); | |
| 1170 | |
| 1171 return s_mp_2expt(a, k); | |
| 1172 | |
| 1173 } /* end mp_2expt() */ | |
| 1174 | |
| 1175 /* }}} */ | |
| 1176 | |
| 1177 /* {{{ mp_mod(a, m, c) */ | |
| 1178 | |
| 1179 /* | |
| 1180 mp_mod(a, m, c) | |
| 1181 | |
| 1182 Compute c = a (mod m). Result will always be 0 <= c < m. | |
| 1183 */ | |
| 1184 | |
| 1185 mp_err mp_mod(const mp_int *a, const mp_int *m, mp_int *c) | |
| 1186 { | |
| 1187 mp_err res; | |
| 1188 int mag; | |
| 1189 | |
| 1190 ARGCHK(a != NULL && m != NULL && c != NULL, MP_BADARG); | |
| 1191 | |
| 1192 if(SIGN(m) == NEG) | |
| 1193 return MP_RANGE; | |
| 1194 | |
| 1195 /* | |
| 1196 If |a| > m, we need to divide to get the remainder and take the | |
| 1197 absolute value. | |
| 1198 | |
| 1199 If |a| < m, we don't need to do any division, just copy and adjust | |
| 1200 the sign (if a is negative). | |
| 1201 | |
| 1202 If |a| == m, we can simply set the result to zero. | |
| 1203 | |
| 1204 This order is intended to minimize the average path length of the | |
| 1205 comparison chain on common workloads -- the most frequent cases are | |
| 1206 that |a| != m, so we do those first. | |
| 1207 */ | |
| 1208 if((mag = s_mp_cmp(a, m)) > 0) { | |
| 1209 if((res = mp_div(a, m, NULL, c)) != MP_OKAY) | |
| 1210 return res; | |
| 1211 | |
| 1212 if(SIGN(c) == NEG) { | |
| 1213 if((res = mp_add(c, m, c)) != MP_OKAY) | |
| 1214 return res; | |
| 1215 } | |
| 1216 | |
| 1217 } else if(mag < 0) { | |
| 1218 if((res = mp_copy(a, c)) != MP_OKAY) | |
| 1219 return res; | |
| 1220 | |
| 1221 if(mp_cmp_z(a) < 0) { | |
| 1222 if((res = mp_add(c, m, c)) != MP_OKAY) | |
| 1223 return res; | |
| 1224 | |
| 1225 } | |
| 1226 | |
| 1227 } else { | |
| 1228 mp_zero(c); | |
| 1229 | |
| 1230 } | |
| 1231 | |
| 1232 return MP_OKAY; | |
| 1233 | |
| 1234 } /* end mp_mod() */ | |
| 1235 | |
| 1236 /* }}} */ | |
| 1237 | |
| 1238 /* {{{ mp_mod_d(a, d, c) */ | |
| 1239 | |
| 1240 /* | |
| 1241 mp_mod_d(a, d, c) | |
| 1242 | |
| 1243 Compute c = a (mod d). Result will always be 0 <= c < d | |
| 1244 */ | |
| 1245 mp_err mp_mod_d(const mp_int *a, mp_digit d, mp_digit *c) | |
| 1246 { | |
| 1247 mp_err res; | |
| 1248 mp_digit rem; | |
| 1249 | |
| 1250 ARGCHK(a != NULL && c != NULL, MP_BADARG); | |
| 1251 | |
| 1252 if(s_mp_cmp_d(a, d) > 0) { | |
| 1253 if((res = mp_div_d(a, d, NULL, &rem)) != MP_OKAY) | |
| 1254 return res; | |
| 1255 | |
| 1256 } else { | |
| 1257 if(SIGN(a) == NEG) | |
| 1258 rem = d - DIGIT(a, 0); | |
| 1259 else | |
| 1260 rem = DIGIT(a, 0); | |
| 1261 } | |
| 1262 | |
| 1263 if(c) | |
| 1264 *c = rem; | |
| 1265 | |
| 1266 return MP_OKAY; | |
| 1267 | |
| 1268 } /* end mp_mod_d() */ | |
| 1269 | |
| 1270 /* }}} */ | |
| 1271 | |
| 1272 /* {{{ mp_sqrt(a, b) */ | |
| 1273 | |
| 1274 /* | |
| 1275 mp_sqrt(a, b) | |
| 1276 | |
| 1277 Compute the integer square root of a, and store the result in b. | |
| 1278 Uses an integer-arithmetic version of Newton's iterative linear | |
| 1279 approximation technique to determine this value; the result has the | |
| 1280 following two properties: | |
| 1281 | |
| 1282 b^2 <= a | |
| 1283 (b+1)^2 >= a | |
| 1284 | |
| 1285 It is a range error to pass a negative value. | |
| 1286 */ | |
| 1287 mp_err mp_sqrt(const mp_int *a, mp_int *b) | |
| 1288 { | |
| 1289 mp_int x, t; | |
| 1290 mp_err res; | |
| 1291 mp_size used; | |
| 1292 | |
| 1293 ARGCHK(a != NULL && b != NULL, MP_BADARG); | |
| 1294 | |
| 1295 /* Cannot take square root of a negative value */ | |
| 1296 if(SIGN(a) == NEG) | |
| 1297 return MP_RANGE; | |
| 1298 | |
| 1299 /* Special cases for zero and one, trivial */ | |
| 1300 if(mp_cmp_d(a, 1) <= 0) | |
| 1301 return mp_copy(a, b); | |
| 1302 | |
| 1303 /* Initialize the temporaries we'll use below */ | |
| 1304 if((res = mp_init_size(&t, USED(a))) != MP_OKAY) | |
| 1305 return res; | |
| 1306 | |
| 1307 /* Compute an initial guess for the iteration as a itself */ | |
| 1308 if((res = mp_init_copy(&x, a)) != MP_OKAY) | |
| 1309 goto X; | |
| 1310 | |
| 1311 used = MP_USED(&x); | |
| 1312 if (used > 1) { | |
| 1313 s_mp_rshd(&x, used / 2); | |
| 1314 } | |
| 1315 | |
| 1316 for(;;) { | |
| 1317 /* t = (x * x) - a */ | |
| 1318 mp_copy(&x, &t); /* can't fail, t is big enough for original x */ | |
| 1319 if((res = mp_sqr(&t, &t)) != MP_OKAY || | |
| 1320 (res = mp_sub(&t, a, &t)) != MP_OKAY) | |
| 1321 goto CLEANUP; | |
| 1322 | |
| 1323 /* t = t / 2x */ | |
| 1324 s_mp_mul_2(&x); | |
| 1325 if((res = mp_div(&t, &x, &t, NULL)) != MP_OKAY) | |
| 1326 goto CLEANUP; | |
| 1327 s_mp_div_2(&x); | |
| 1328 | |
| 1329 /* Terminate the loop, if the quotient is zero */ | |
| 1330 if(mp_cmp_z(&t) == MP_EQ) | |
| 1331 break; | |
| 1332 | |
| 1333 /* x = x - t */ | |
| 1334 if((res = mp_sub(&x, &t, &x)) != MP_OKAY) | |
| 1335 goto CLEANUP; | |
| 1336 | |
| 1337 } | |
| 1338 | |
| 1339 /* Copy result to output parameter */ | |
| 1340 mp_sub_d(&x, 1, &x); | |
| 1341 s_mp_exch(&x, b); | |
| 1342 | |
| 1343 CLEANUP: | |
| 1344 mp_clear(&x); | |
| 1345 X: | |
| 1346 mp_clear(&t); | |
| 1347 | |
| 1348 return res; | |
| 1349 | |
| 1350 } /* end mp_sqrt() */ | |
| 1351 | |
| 1352 /* }}} */ | |
| 1353 | |
| 1354 /* }}} */ | |
| 1355 | |
| 1356 /*------------------------------------------------------------------------*/ | |
| 1357 /* {{{ Modular arithmetic */ | |
| 1358 | |
| 1359 #if MP_MODARITH | |
| 1360 /* {{{ mp_addmod(a, b, m, c) */ | |
| 1361 | |
| 1362 /* | |
| 1363 mp_addmod(a, b, m, c) | |
| 1364 | |
| 1365 Compute c = (a + b) mod m | |
| 1366 */ | |
| 1367 | |
| 1368 mp_err mp_addmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c) | |
| 1369 { | |
| 1370 mp_err res; | |
| 1371 | |
| 1372 ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG); | |
| 1373 | |
| 1374 if((res = mp_add(a, b, c)) != MP_OKAY) | |
| 1375 return res; | |
| 1376 if((res = mp_mod(c, m, c)) != MP_OKAY) | |
| 1377 return res; | |
| 1378 | |
| 1379 return MP_OKAY; | |
| 1380 | |
| 1381 } | |
| 1382 | |
| 1383 /* }}} */ | |
| 1384 | |
| 1385 /* {{{ mp_submod(a, b, m, c) */ | |
| 1386 | |
| 1387 /* | |
| 1388 mp_submod(a, b, m, c) | |
| 1389 | |
| 1390 Compute c = (a - b) mod m | |
| 1391 */ | |
| 1392 | |
| 1393 mp_err mp_submod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c) | |
| 1394 { | |
| 1395 mp_err res; | |
| 1396 | |
| 1397 ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG); | |
| 1398 | |
| 1399 if((res = mp_sub(a, b, c)) != MP_OKAY) | |
| 1400 return res; | |
| 1401 if((res = mp_mod(c, m, c)) != MP_OKAY) | |
| 1402 return res; | |
| 1403 | |
| 1404 return MP_OKAY; | |
| 1405 | |
| 1406 } | |
| 1407 | |
| 1408 /* }}} */ | |
| 1409 | |
| 1410 /* {{{ mp_mulmod(a, b, m, c) */ | |
| 1411 | |
| 1412 /* | |
| 1413 mp_mulmod(a, b, m, c) | |
| 1414 | |
| 1415 Compute c = (a * b) mod m | |
| 1416 */ | |
| 1417 | |
| 1418 mp_err mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c) | |
| 1419 { | |
| 1420 mp_err res; | |
| 1421 | |
| 1422 ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG); | |
| 1423 | |
| 1424 if((res = mp_mul(a, b, c)) != MP_OKAY) | |
| 1425 return res; | |
| 1426 if((res = mp_mod(c, m, c)) != MP_OKAY) | |
| 1427 return res; | |
| 1428 | |
| 1429 return MP_OKAY; | |
| 1430 | |
| 1431 } | |
| 1432 | |
| 1433 /* }}} */ | |
| 1434 | |
| 1435 /* {{{ mp_sqrmod(a, m, c) */ | |
| 1436 | |
| 1437 #if MP_SQUARE | |
| 1438 mp_err mp_sqrmod(const mp_int *a, const mp_int *m, mp_int *c) | |
| 1439 { | |
| 1440 mp_err res; | |
| 1441 | |
| 1442 ARGCHK(a != NULL && m != NULL && c != NULL, MP_BADARG); | |
| 1443 | |
| 1444 if((res = mp_sqr(a, c)) != MP_OKAY) | |
| 1445 return res; | |
| 1446 if((res = mp_mod(c, m, c)) != MP_OKAY) | |
| 1447 return res; | |
| 1448 | |
| 1449 return MP_OKAY; | |
| 1450 | |
| 1451 } /* end mp_sqrmod() */ | |
| 1452 #endif | |
| 1453 | |
| 1454 /* }}} */ | |
| 1455 | |
| 1456 /* {{{ s_mp_exptmod(a, b, m, c) */ | |
| 1457 | |
| 1458 /* | |
| 1459 s_mp_exptmod(a, b, m, c) | |
| 1460 | |
| 1461 Compute c = (a ** b) mod m. Uses a standard square-and-multiply | |
| 1462 method with modular reductions at each step. (This is basically the | |
| 1463 same code as mp_expt(), except for the addition of the reductions) | |
| 1464 | |
| 1465 The modular reductions are done using Barrett's algorithm (see | |
| 1466 s_mp_reduce() below for details) | |
| 1467 */ | |
| 1468 | |
| 1469 mp_err s_mp_exptmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c
) | |
| 1470 { | |
| 1471 mp_int s, x, mu; | |
| 1472 mp_err res; | |
| 1473 mp_digit d; | |
| 1474 int dig, bit; | |
| 1475 | |
| 1476 ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); | |
| 1477 | |
| 1478 if(mp_cmp_z(b) < 0 || mp_cmp_z(m) <= 0) | |
| 1479 return MP_RANGE; | |
| 1480 | |
| 1481 if((res = mp_init(&s)) != MP_OKAY) | |
| 1482 return res; | |
| 1483 if((res = mp_init_copy(&x, a)) != MP_OKAY || | |
| 1484 (res = mp_mod(&x, m, &x)) != MP_OKAY) | |
| 1485 goto X; | |
| 1486 if((res = mp_init(&mu)) != MP_OKAY) | |
| 1487 goto MU; | |
| 1488 | |
| 1489 mp_set(&s, 1); | |
| 1490 | |
| 1491 /* mu = b^2k / m */ | |
| 1492 s_mp_add_d(&mu, 1); | |
| 1493 s_mp_lshd(&mu, 2 * USED(m)); | |
| 1494 if((res = mp_div(&mu, m, &mu, NULL)) != MP_OKAY) | |
| 1495 goto CLEANUP; | |
| 1496 | |
| 1497 /* Loop over digits of b in ascending order, except highest order */ | |
| 1498 for(dig = 0; dig < (USED(b) - 1); dig++) { | |
| 1499 d = DIGIT(b, dig); | |
| 1500 | |
| 1501 /* Loop over the bits of the lower-order digits */ | |
| 1502 for(bit = 0; bit < DIGIT_BIT; bit++) { | |
| 1503 if(d & 1) { | |
| 1504 if((res = s_mp_mul(&s, &x)) != MP_OKAY) | |
| 1505 goto CLEANUP; | |
| 1506 if((res = s_mp_reduce(&s, m, &mu)) != MP_OKAY) | |
| 1507 goto CLEANUP; | |
| 1508 } | |
| 1509 | |
| 1510 d >>= 1; | |
| 1511 | |
| 1512 if((res = s_mp_sqr(&x)) != MP_OKAY) | |
| 1513 goto CLEANUP; | |
| 1514 if((res = s_mp_reduce(&x, m, &mu)) != MP_OKAY) | |
| 1515 goto CLEANUP; | |
| 1516 } | |
| 1517 } | |
| 1518 | |
| 1519 /* Now do the last digit... */ | |
| 1520 d = DIGIT(b, dig); | |
| 1521 | |
| 1522 while(d) { | |
| 1523 if(d & 1) { | |
| 1524 if((res = s_mp_mul(&s, &x)) != MP_OKAY) | |
| 1525 goto CLEANUP; | |
| 1526 if((res = s_mp_reduce(&s, m, &mu)) != MP_OKAY) | |
| 1527 goto CLEANUP; | |
| 1528 } | |
| 1529 | |
| 1530 d >>= 1; | |
| 1531 | |
| 1532 if((res = s_mp_sqr(&x)) != MP_OKAY) | |
| 1533 goto CLEANUP; | |
| 1534 if((res = s_mp_reduce(&x, m, &mu)) != MP_OKAY) | |
| 1535 goto CLEANUP; | |
| 1536 } | |
| 1537 | |
| 1538 s_mp_exch(&s, c); | |
| 1539 | |
| 1540 CLEANUP: | |
| 1541 mp_clear(&mu); | |
| 1542 MU: | |
| 1543 mp_clear(&x); | |
| 1544 X: | |
| 1545 mp_clear(&s); | |
| 1546 | |
| 1547 return res; | |
| 1548 | |
| 1549 } /* end s_mp_exptmod() */ | |
| 1550 | |
| 1551 /* }}} */ | |
| 1552 | |
| 1553 /* {{{ mp_exptmod_d(a, d, m, c) */ | |
| 1554 | |
| 1555 mp_err mp_exptmod_d(const mp_int *a, mp_digit d, const mp_int *m, mp_int *c) | |
| 1556 { | |
| 1557 mp_int s, x; | |
| 1558 mp_err res; | |
| 1559 | |
| 1560 ARGCHK(a != NULL && c != NULL, MP_BADARG); | |
| 1561 | |
| 1562 if((res = mp_init(&s)) != MP_OKAY) | |
| 1563 return res; | |
| 1564 if((res = mp_init_copy(&x, a)) != MP_OKAY) | |
| 1565 goto X; | |
| 1566 | |
| 1567 mp_set(&s, 1); | |
| 1568 | |
| 1569 while(d != 0) { | |
| 1570 if(d & 1) { | |
| 1571 if((res = s_mp_mul(&s, &x)) != MP_OKAY || | |
| 1572 (res = mp_mod(&s, m, &s)) != MP_OKAY) | |
| 1573 goto CLEANUP; | |
| 1574 } | |
| 1575 | |
| 1576 d /= 2; | |
| 1577 | |
| 1578 if((res = s_mp_sqr(&x)) != MP_OKAY || | |
| 1579 (res = mp_mod(&x, m, &x)) != MP_OKAY) | |
| 1580 goto CLEANUP; | |
| 1581 } | |
| 1582 | |
| 1583 s_mp_exch(&s, c); | |
| 1584 | |
| 1585 CLEANUP: | |
| 1586 mp_clear(&x); | |
| 1587 X: | |
| 1588 mp_clear(&s); | |
| 1589 | |
| 1590 return res; | |
| 1591 | |
| 1592 } /* end mp_exptmod_d() */ | |
| 1593 | |
| 1594 /* }}} */ | |
| 1595 #endif /* if MP_MODARITH */ | |
| 1596 | |
| 1597 /* }}} */ | |
| 1598 | |
| 1599 /*------------------------------------------------------------------------*/ | |
| 1600 /* {{{ Comparison functions */ | |
| 1601 | |
| 1602 /* {{{ mp_cmp_z(a) */ | |
| 1603 | |
| 1604 /* | |
| 1605 mp_cmp_z(a) | |
| 1606 | |
| 1607 Compare a <=> 0. Returns <0 if a<0, 0 if a=0, >0 if a>0. | |
| 1608 */ | |
| 1609 | |
| 1610 int mp_cmp_z(const mp_int *a) | |
| 1611 { | |
| 1612 if(SIGN(a) == NEG) | |
| 1613 return MP_LT; | |
| 1614 else if(USED(a) == 1 && DIGIT(a, 0) == 0) | |
| 1615 return MP_EQ; | |
| 1616 else | |
| 1617 return MP_GT; | |
| 1618 | |
| 1619 } /* end mp_cmp_z() */ | |
| 1620 | |
| 1621 /* }}} */ | |
| 1622 | |
| 1623 /* {{{ mp_cmp_d(a, d) */ | |
| 1624 | |
| 1625 /* | |
| 1626 mp_cmp_d(a, d) | |
| 1627 | |
| 1628 Compare a <=> d. Returns <0 if a<d, 0 if a=d, >0 if a>d | |
| 1629 */ | |
| 1630 | |
| 1631 int mp_cmp_d(const mp_int *a, mp_digit d) | |
| 1632 { | |
| 1633 ARGCHK(a != NULL, MP_EQ); | |
| 1634 | |
| 1635 if(SIGN(a) == NEG) | |
| 1636 return MP_LT; | |
| 1637 | |
| 1638 return s_mp_cmp_d(a, d); | |
| 1639 | |
| 1640 } /* end mp_cmp_d() */ | |
| 1641 | |
| 1642 /* }}} */ | |
| 1643 | |
| 1644 /* {{{ mp_cmp(a, b) */ | |
| 1645 | |
| 1646 int mp_cmp(const mp_int *a, const mp_int *b) | |
| 1647 { | |
| 1648 ARGCHK(a != NULL && b != NULL, MP_EQ); | |
| 1649 | |
| 1650 if(SIGN(a) == SIGN(b)) { | |
| 1651 int mag; | |
| 1652 | |
| 1653 if((mag = s_mp_cmp(a, b)) == MP_EQ) | |
| 1654 return MP_EQ; | |
| 1655 | |
| 1656 if(SIGN(a) == ZPOS) | |
| 1657 return mag; | |
| 1658 else | |
| 1659 return -mag; | |
| 1660 | |
| 1661 } else if(SIGN(a) == ZPOS) { | |
| 1662 return MP_GT; | |
| 1663 } else { | |
| 1664 return MP_LT; | |
| 1665 } | |
| 1666 | |
| 1667 } /* end mp_cmp() */ | |
| 1668 | |
| 1669 /* }}} */ | |
| 1670 | |
| 1671 /* {{{ mp_cmp_mag(a, b) */ | |
| 1672 | |
| 1673 /* | |
| 1674 mp_cmp_mag(a, b) | |
| 1675 | |
| 1676 Compares |a| <=> |b|, and returns an appropriate comparison result | |
| 1677 */ | |
| 1678 | |
| 1679 int mp_cmp_mag(mp_int *a, mp_int *b) | |
| 1680 { | |
| 1681 ARGCHK(a != NULL && b != NULL, MP_EQ); | |
| 1682 | |
| 1683 return s_mp_cmp(a, b); | |
| 1684 | |
| 1685 } /* end mp_cmp_mag() */ | |
| 1686 | |
| 1687 /* }}} */ | |
| 1688 | |
| 1689 /* {{{ mp_cmp_int(a, z) */ | |
| 1690 | |
| 1691 /* | |
| 1692 This just converts z to an mp_int, and uses the existing comparison | |
| 1693 routines. This is sort of inefficient, but it's not clear to me how | |
| 1694 frequently this wil get used anyway. For small positive constants, | |
| 1695 you can always use mp_cmp_d(), and for zero, there is mp_cmp_z(). | |
| 1696 */ | |
| 1697 int mp_cmp_int(const mp_int *a, long z) | |
| 1698 { | |
| 1699 mp_int tmp; | |
| 1700 int out; | |
| 1701 | |
| 1702 ARGCHK(a != NULL, MP_EQ); | |
| 1703 | |
| 1704 mp_init(&tmp); mp_set_int(&tmp, z); | |
| 1705 out = mp_cmp(a, &tmp); | |
| 1706 mp_clear(&tmp); | |
| 1707 | |
| 1708 return out; | |
| 1709 | |
| 1710 } /* end mp_cmp_int() */ | |
| 1711 | |
| 1712 /* }}} */ | |
| 1713 | |
| 1714 /* {{{ mp_isodd(a) */ | |
| 1715 | |
| 1716 /* | |
| 1717 mp_isodd(a) | |
| 1718 | |
| 1719 Returns a true (non-zero) value if a is odd, false (zero) otherwise. | |
| 1720 */ | |
| 1721 int mp_isodd(const mp_int *a) | |
| 1722 { | |
| 1723 ARGCHK(a != NULL, 0); | |
| 1724 | |
| 1725 return (int)(DIGIT(a, 0) & 1); | |
| 1726 | |
| 1727 } /* end mp_isodd() */ | |
| 1728 | |
| 1729 /* }}} */ | |
| 1730 | |
| 1731 /* {{{ mp_iseven(a) */ | |
| 1732 | |
| 1733 int mp_iseven(const mp_int *a) | |
| 1734 { | |
| 1735 return !mp_isodd(a); | |
| 1736 | |
| 1737 } /* end mp_iseven() */ | |
| 1738 | |
| 1739 /* }}} */ | |
| 1740 | |
| 1741 /* }}} */ | |
| 1742 | |
| 1743 /*------------------------------------------------------------------------*/ | |
| 1744 /* {{{ Number theoretic functions */ | |
| 1745 | |
| 1746 #if MP_NUMTH | |
| 1747 /* {{{ mp_gcd(a, b, c) */ | |
| 1748 | |
| 1749 /* | |
| 1750 Like the old mp_gcd() function, except computes the GCD using the | |
| 1751 binary algorithm due to Josef Stein in 1961 (via Knuth). | |
| 1752 */ | |
| 1753 mp_err mp_gcd(mp_int *a, mp_int *b, mp_int *c) | |
| 1754 { | |
| 1755 mp_err res; | |
| 1756 mp_int u, v, t; | |
| 1757 mp_size k = 0; | |
| 1758 | |
| 1759 ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); | |
| 1760 | |
| 1761 if(mp_cmp_z(a) == MP_EQ && mp_cmp_z(b) == MP_EQ) | |
| 1762 return MP_RANGE; | |
| 1763 if(mp_cmp_z(a) == MP_EQ) { | |
| 1764 return mp_copy(b, c); | |
| 1765 } else if(mp_cmp_z(b) == MP_EQ) { | |
| 1766 return mp_copy(a, c); | |
| 1767 } | |
| 1768 | |
| 1769 if((res = mp_init(&t)) != MP_OKAY) | |
| 1770 return res; | |
| 1771 if((res = mp_init_copy(&u, a)) != MP_OKAY) | |
| 1772 goto U; | |
| 1773 if((res = mp_init_copy(&v, b)) != MP_OKAY) | |
| 1774 goto V; | |
| 1775 | |
| 1776 SIGN(&u) = ZPOS; | |
| 1777 SIGN(&v) = ZPOS; | |
| 1778 | |
| 1779 /* Divide out common factors of 2 until at least 1 of a, b is even */ | |
| 1780 while(mp_iseven(&u) && mp_iseven(&v)) { | |
| 1781 s_mp_div_2(&u); | |
| 1782 s_mp_div_2(&v); | |
| 1783 ++k; | |
| 1784 } | |
| 1785 | |
| 1786 /* Initialize t */ | |
| 1787 if(mp_isodd(&u)) { | |
| 1788 if((res = mp_copy(&v, &t)) != MP_OKAY) | |
| 1789 goto CLEANUP; | |
| 1790 | |
| 1791 /* t = -v */ | |
| 1792 if(SIGN(&v) == ZPOS) | |
| 1793 SIGN(&t) = NEG; | |
| 1794 else | |
| 1795 SIGN(&t) = ZPOS; | |
| 1796 | |
| 1797 } else { | |
| 1798 if((res = mp_copy(&u, &t)) != MP_OKAY) | |
| 1799 goto CLEANUP; | |
| 1800 | |
| 1801 } | |
| 1802 | |
| 1803 for(;;) { | |
| 1804 while(mp_iseven(&t)) { | |
| 1805 s_mp_div_2(&t); | |
| 1806 } | |
| 1807 | |
| 1808 if(mp_cmp_z(&t) == MP_GT) { | |
| 1809 if((res = mp_copy(&t, &u)) != MP_OKAY) | |
| 1810 goto CLEANUP; | |
| 1811 | |
| 1812 } else { | |
| 1813 if((res = mp_copy(&t, &v)) != MP_OKAY) | |
| 1814 goto CLEANUP; | |
| 1815 | |
| 1816 /* v = -t */ | |
| 1817 if(SIGN(&t) == ZPOS) | |
| 1818 SIGN(&v) = NEG; | |
| 1819 else | |
| 1820 SIGN(&v) = ZPOS; | |
| 1821 } | |
| 1822 | |
| 1823 if((res = mp_sub(&u, &v, &t)) != MP_OKAY) | |
| 1824 goto CLEANUP; | |
| 1825 | |
| 1826 if(s_mp_cmp_d(&t, 0) == MP_EQ) | |
| 1827 break; | |
| 1828 } | |
| 1829 | |
| 1830 s_mp_2expt(&v, k); /* v = 2^k */ | |
| 1831 res = mp_mul(&u, &v, c); /* c = u * v */ | |
| 1832 | |
| 1833 CLEANUP: | |
| 1834 mp_clear(&v); | |
| 1835 V: | |
| 1836 mp_clear(&u); | |
| 1837 U: | |
| 1838 mp_clear(&t); | |
| 1839 | |
| 1840 return res; | |
| 1841 | |
| 1842 } /* end mp_gcd() */ | |
| 1843 | |
| 1844 /* }}} */ | |
| 1845 | |
| 1846 /* {{{ mp_lcm(a, b, c) */ | |
| 1847 | |
| 1848 /* We compute the least common multiple using the rule: | |
| 1849 | |
| 1850 ab = [a, b](a, b) | |
| 1851 | |
| 1852 ... by computing the product, and dividing out the gcd. | |
| 1853 */ | |
| 1854 | |
| 1855 mp_err mp_lcm(mp_int *a, mp_int *b, mp_int *c) | |
| 1856 { | |
| 1857 mp_int gcd, prod; | |
| 1858 mp_err res; | |
| 1859 | |
| 1860 ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); | |
| 1861 | |
| 1862 /* Set up temporaries */ | |
| 1863 if((res = mp_init(&gcd)) != MP_OKAY) | |
| 1864 return res; | |
| 1865 if((res = mp_init(&prod)) != MP_OKAY) | |
| 1866 goto GCD; | |
| 1867 | |
| 1868 if((res = mp_mul(a, b, &prod)) != MP_OKAY) | |
| 1869 goto CLEANUP; | |
| 1870 if((res = mp_gcd(a, b, &gcd)) != MP_OKAY) | |
| 1871 goto CLEANUP; | |
| 1872 | |
| 1873 res = mp_div(&prod, &gcd, c, NULL); | |
| 1874 | |
| 1875 CLEANUP: | |
| 1876 mp_clear(&prod); | |
| 1877 GCD: | |
| 1878 mp_clear(&gcd); | |
| 1879 | |
| 1880 return res; | |
| 1881 | |
| 1882 } /* end mp_lcm() */ | |
| 1883 | |
| 1884 /* }}} */ | |
| 1885 | |
| 1886 /* {{{ mp_xgcd(a, b, g, x, y) */ | |
| 1887 | |
| 1888 /* | |
| 1889 mp_xgcd(a, b, g, x, y) | |
| 1890 | |
| 1891 Compute g = (a, b) and values x and y satisfying Bezout's identity | |
| 1892 (that is, ax + by = g). This uses the binary extended GCD algorithm | |
| 1893 based on the Stein algorithm used for mp_gcd() | |
| 1894 See algorithm 14.61 in Handbook of Applied Cryptogrpahy. | |
| 1895 */ | |
| 1896 | |
| 1897 mp_err mp_xgcd(const mp_int *a, const mp_int *b, mp_int *g, mp_int *x, mp_int *y
) | |
| 1898 { | |
| 1899 mp_int gx, xc, yc, u, v, A, B, C, D; | |
| 1900 mp_int *clean[9]; | |
| 1901 mp_err res; | |
| 1902 int last = -1; | |
| 1903 | |
| 1904 if(mp_cmp_z(b) == 0) | |
| 1905 return MP_RANGE; | |
| 1906 | |
| 1907 /* Initialize all these variables we need */ | |
| 1908 MP_CHECKOK( mp_init(&u) ); | |
| 1909 clean[++last] = &u; | |
| 1910 MP_CHECKOK( mp_init(&v) ); | |
| 1911 clean[++last] = &v; | |
| 1912 MP_CHECKOK( mp_init(&gx) ); | |
| 1913 clean[++last] = &gx; | |
| 1914 MP_CHECKOK( mp_init(&A) ); | |
| 1915 clean[++last] = &A; | |
| 1916 MP_CHECKOK( mp_init(&B) ); | |
| 1917 clean[++last] = &B; | |
| 1918 MP_CHECKOK( mp_init(&C) ); | |
| 1919 clean[++last] = &C; | |
| 1920 MP_CHECKOK( mp_init(&D) ); | |
| 1921 clean[++last] = &D; | |
| 1922 MP_CHECKOK( mp_init_copy(&xc, a) ); | |
| 1923 clean[++last] = &xc; | |
| 1924 mp_abs(&xc, &xc); | |
| 1925 MP_CHECKOK( mp_init_copy(&yc, b) ); | |
| 1926 clean[++last] = &yc; | |
| 1927 mp_abs(&yc, &yc); | |
| 1928 | |
| 1929 mp_set(&gx, 1); | |
| 1930 | |
| 1931 /* Divide by two until at least one of them is odd */ | |
| 1932 while(mp_iseven(&xc) && mp_iseven(&yc)) { | |
| 1933 mp_size nx = mp_trailing_zeros(&xc); | |
| 1934 mp_size ny = mp_trailing_zeros(&yc); | |
| 1935 mp_size n = MP_MIN(nx, ny); | |
| 1936 s_mp_div_2d(&xc,n); | |
| 1937 s_mp_div_2d(&yc,n); | |
| 1938 MP_CHECKOK( s_mp_mul_2d(&gx,n) ); | |
| 1939 } | |
| 1940 | |
| 1941 mp_copy(&xc, &u); | |
| 1942 mp_copy(&yc, &v); | |
| 1943 mp_set(&A, 1); mp_set(&D, 1); | |
| 1944 | |
| 1945 /* Loop through binary GCD algorithm */ | |
| 1946 do { | |
| 1947 while(mp_iseven(&u)) { | |
| 1948 s_mp_div_2(&u); | |
| 1949 | |
| 1950 if(mp_iseven(&A) && mp_iseven(&B)) { | |
| 1951 s_mp_div_2(&A); s_mp_div_2(&B); | |
| 1952 } else { | |
| 1953 MP_CHECKOK( mp_add(&A, &yc, &A) ); | |
| 1954 s_mp_div_2(&A); | |
| 1955 MP_CHECKOK( mp_sub(&B, &xc, &B) ); | |
| 1956 s_mp_div_2(&B); | |
| 1957 } | |
| 1958 } | |
| 1959 | |
| 1960 while(mp_iseven(&v)) { | |
| 1961 s_mp_div_2(&v); | |
| 1962 | |
| 1963 if(mp_iseven(&C) && mp_iseven(&D)) { | |
| 1964 s_mp_div_2(&C); s_mp_div_2(&D); | |
| 1965 } else { | |
| 1966 MP_CHECKOK( mp_add(&C, &yc, &C) ); | |
| 1967 s_mp_div_2(&C); | |
| 1968 MP_CHECKOK( mp_sub(&D, &xc, &D) ); | |
| 1969 s_mp_div_2(&D); | |
| 1970 } | |
| 1971 } | |
| 1972 | |
| 1973 if(mp_cmp(&u, &v) >= 0) { | |
| 1974 MP_CHECKOK( mp_sub(&u, &v, &u) ); | |
| 1975 MP_CHECKOK( mp_sub(&A, &C, &A) ); | |
| 1976 MP_CHECKOK( mp_sub(&B, &D, &B) ); | |
| 1977 } else { | |
| 1978 MP_CHECKOK( mp_sub(&v, &u, &v) ); | |
| 1979 MP_CHECKOK( mp_sub(&C, &A, &C) ); | |
| 1980 MP_CHECKOK( mp_sub(&D, &B, &D) ); | |
| 1981 } | |
| 1982 } while (mp_cmp_z(&u) != 0); | |
| 1983 | |
| 1984 /* copy results to output */ | |
| 1985 if(x) | |
| 1986 MP_CHECKOK( mp_copy(&C, x) ); | |
| 1987 | |
| 1988 if(y) | |
| 1989 MP_CHECKOK( mp_copy(&D, y) ); | |
| 1990 | |
| 1991 if(g) | |
| 1992 MP_CHECKOK( mp_mul(&gx, &v, g) ); | |
| 1993 | |
| 1994 CLEANUP: | |
| 1995 while(last >= 0) | |
| 1996 mp_clear(clean[last--]); | |
| 1997 | |
| 1998 return res; | |
| 1999 | |
| 2000 } /* end mp_xgcd() */ | |
| 2001 | |
| 2002 /* }}} */ | |
| 2003 | |
| 2004 mp_size mp_trailing_zeros(const mp_int *mp) | |
| 2005 { | |
| 2006 mp_digit d; | |
| 2007 mp_size n = 0; | |
| 2008 int ix; | |
| 2009 | |
| 2010 if (!mp || !MP_DIGITS(mp) || !mp_cmp_z(mp)) | |
| 2011 return n; | |
| 2012 | |
| 2013 for (ix = 0; !(d = MP_DIGIT(mp,ix)) && (ix < MP_USED(mp)); ++ix) | |
| 2014 n += MP_DIGIT_BIT; | |
| 2015 if (!d) | |
| 2016 return 0; /* shouldn't happen, but ... */ | |
| 2017 #if !defined(MP_USE_UINT_DIGIT) | |
| 2018 if (!(d & 0xffffffffU)) { | |
| 2019 d >>= 32; | |
| 2020 n += 32; | |
| 2021 } | |
| 2022 #endif | |
| 2023 if (!(d & 0xffffU)) { | |
| 2024 d >>= 16; | |
| 2025 n += 16; | |
| 2026 } | |
| 2027 if (!(d & 0xffU)) { | |
| 2028 d >>= 8; | |
| 2029 n += 8; | |
| 2030 } | |
| 2031 if (!(d & 0xfU)) { | |
| 2032 d >>= 4; | |
| 2033 n += 4; | |
| 2034 } | |
| 2035 if (!(d & 0x3U)) { | |
| 2036 d >>= 2; | |
| 2037 n += 2; | |
| 2038 } | |
| 2039 if (!(d & 0x1U)) { | |
| 2040 d >>= 1; | |
| 2041 n += 1; | |
| 2042 } | |
| 2043 #if MP_ARGCHK == 2 | |
| 2044 assert(0 != (d & 1)); | |
| 2045 #endif | |
| 2046 return n; | |
| 2047 } | |
| 2048 | |
| 2049 /* Given a and prime p, computes c and k such that a*c == 2**k (mod p). | |
| 2050 ** Returns k (positive) or error (negative). | |
| 2051 ** This technique from the paper "Fast Modular Reciprocals" (unpublished) | |
| 2052 ** by Richard Schroeppel (a.k.a. Captain Nemo). | |
| 2053 */ | |
| 2054 mp_err s_mp_almost_inverse(const mp_int *a, const mp_int *p, mp_int *c) | |
| 2055 { | |
| 2056 mp_err res; | |
| 2057 mp_err k = 0; | |
| 2058 mp_int d, f, g; | |
| 2059 | |
| 2060 ARGCHK(a && p && c, MP_BADARG); | |
| 2061 | |
| 2062 MP_DIGITS(&d) = 0; | |
| 2063 MP_DIGITS(&f) = 0; | |
| 2064 MP_DIGITS(&g) = 0; | |
| 2065 MP_CHECKOK( mp_init(&d) ); | |
| 2066 MP_CHECKOK( mp_init_copy(&f, a) ); /* f = a */ | |
| 2067 MP_CHECKOK( mp_init_copy(&g, p) ); /* g = p */ | |
| 2068 | |
| 2069 mp_set(c, 1); | |
| 2070 mp_zero(&d); | |
| 2071 | |
| 2072 if (mp_cmp_z(&f) == 0) { | |
| 2073 res = MP_UNDEF; | |
| 2074 } else | |
| 2075 for (;;) { | |
| 2076 int diff_sign; | |
| 2077 while (mp_iseven(&f)) { | |
| 2078 mp_size n = mp_trailing_zeros(&f); | |
| 2079 if (!n) { | |
| 2080 res = MP_UNDEF; | |
| 2081 goto CLEANUP; | |
| 2082 } | |
| 2083 s_mp_div_2d(&f, n); | |
| 2084 MP_CHECKOK( s_mp_mul_2d(&d, n) ); | |
| 2085 k += n; | |
| 2086 } | |
| 2087 if (mp_cmp_d(&f, 1) == MP_EQ) { /* f == 1 */ | |
| 2088 res = k; | |
| 2089 break; | |
| 2090 } | |
| 2091 diff_sign = mp_cmp(&f, &g); | |
| 2092 if (diff_sign < 0) { /* f < g */ | |
| 2093 s_mp_exch(&f, &g); | |
| 2094 s_mp_exch(c, &d); | |
| 2095 } else if (diff_sign == 0) { /* f == g */ | |
| 2096 res = MP_UNDEF; /* a and p are not relatively prime */ | |
| 2097 break; | |
| 2098 } | |
| 2099 if ((MP_DIGIT(&f,0) % 4) == (MP_DIGIT(&g,0) % 4)) { | |
| 2100 MP_CHECKOK( mp_sub(&f, &g, &f) ); /* f = f - g */ | |
| 2101 MP_CHECKOK( mp_sub(c, &d, c) ); /* c = c - d */ | |
| 2102 } else { | |
| 2103 MP_CHECKOK( mp_add(&f, &g, &f) ); /* f = f + g */ | |
| 2104 MP_CHECKOK( mp_add(c, &d, c) ); /* c = c + d */ | |
| 2105 } | |
| 2106 } | |
| 2107 if (res >= 0) { | |
| 2108 while (MP_SIGN(c) != MP_ZPOS) { | |
| 2109 MP_CHECKOK( mp_add(c, p, c) ); | |
| 2110 } | |
| 2111 res = k; | |
| 2112 } | |
| 2113 | |
| 2114 CLEANUP: | |
| 2115 mp_clear(&d); | |
| 2116 mp_clear(&f); | |
| 2117 mp_clear(&g); | |
| 2118 return res; | |
| 2119 } | |
| 2120 | |
| 2121 /* Compute T = (P ** -1) mod MP_RADIX. Also works for 16-bit mp_digits. | |
| 2122 ** This technique from the paper "Fast Modular Reciprocals" (unpublished) | |
| 2123 ** by Richard Schroeppel (a.k.a. Captain Nemo). | |
| 2124 */ | |
| 2125 mp_digit s_mp_invmod_radix(mp_digit P) | |
| 2126 { | |
| 2127 mp_digit T = P; | |
| 2128 T *= 2 - (P * T); | |
| 2129 T *= 2 - (P * T); | |
| 2130 T *= 2 - (P * T); | |
| 2131 T *= 2 - (P * T); | |
| 2132 #if !defined(MP_USE_UINT_DIGIT) | |
| 2133 T *= 2 - (P * T); | |
| 2134 T *= 2 - (P * T); | |
| 2135 #endif | |
| 2136 return T; | |
| 2137 } | |
| 2138 | |
| 2139 /* Given c, k, and prime p, where a*c == 2**k (mod p), | |
| 2140 ** Compute x = (a ** -1) mod p. This is similar to Montgomery reduction. | |
| 2141 ** This technique from the paper "Fast Modular Reciprocals" (unpublished) | |
| 2142 ** by Richard Schroeppel (a.k.a. Captain Nemo). | |
| 2143 */ | |
| 2144 mp_err s_mp_fixup_reciprocal(const mp_int *c, const mp_int *p, int k, mp_int *x
) | |
| 2145 { | |
| 2146 int k_orig = k; | |
| 2147 mp_digit r; | |
| 2148 mp_size ix; | |
| 2149 mp_err res; | |
| 2150 | |
| 2151 if (mp_cmp_z(c) < 0) { /* c < 0 */ | |
| 2152 MP_CHECKOK( mp_add(c, p, x) ); /* x = c + p */ | |
| 2153 } else { | |
| 2154 MP_CHECKOK( mp_copy(c, x) ); /* x = c */ | |
| 2155 } | |
| 2156 | |
| 2157 /* make sure x is large enough */ | |
| 2158 ix = MP_HOWMANY(k, MP_DIGIT_BIT) + MP_USED(p) + 1; | |
| 2159 ix = MP_MAX(ix, MP_USED(x)); | |
| 2160 MP_CHECKOK( s_mp_pad(x, ix) ); | |
| 2161 | |
| 2162 r = 0 - s_mp_invmod_radix(MP_DIGIT(p,0)); | |
| 2163 | |
| 2164 for (ix = 0; k > 0; ix++) { | |
| 2165 int j = MP_MIN(k, MP_DIGIT_BIT); | |
| 2166 mp_digit v = r * MP_DIGIT(x, ix); | |
| 2167 if (j < MP_DIGIT_BIT) { | |
| 2168 v &= ((mp_digit)1 << j) - 1; /* v = v mod (2 ** j) */ | |
| 2169 } | |
| 2170 s_mp_mul_d_add_offset(p, v, x, ix); /* x += p * v * (RADIX ** ix) */ | |
| 2171 k -= j; | |
| 2172 } | |
| 2173 s_mp_clamp(x); | |
| 2174 s_mp_div_2d(x, k_orig); | |
| 2175 res = MP_OKAY; | |
| 2176 | |
| 2177 CLEANUP: | |
| 2178 return res; | |
| 2179 } | |
| 2180 | |
| 2181 /* compute mod inverse using Schroeppel's method, only if m is odd */ | |
| 2182 mp_err s_mp_invmod_odd_m(const mp_int *a, const mp_int *m, mp_int *c) | |
| 2183 { | |
| 2184 int k; | |
| 2185 mp_err res; | |
| 2186 mp_int x; | |
| 2187 | |
| 2188 ARGCHK(a && m && c, MP_BADARG); | |
| 2189 | |
| 2190 if(mp_cmp_z(a) == 0 || mp_cmp_z(m) == 0) | |
| 2191 return MP_RANGE; | |
| 2192 if (mp_iseven(m)) | |
| 2193 return MP_UNDEF; | |
| 2194 | |
| 2195 MP_DIGITS(&x) = 0; | |
| 2196 | |
| 2197 if (a == c) { | |
| 2198 if ((res = mp_init_copy(&x, a)) != MP_OKAY) | |
| 2199 return res; | |
| 2200 if (a == m) | |
| 2201 m = &x; | |
| 2202 a = &x; | |
| 2203 } else if (m == c) { | |
| 2204 if ((res = mp_init_copy(&x, m)) != MP_OKAY) | |
| 2205 return res; | |
| 2206 m = &x; | |
| 2207 } else { | |
| 2208 MP_DIGITS(&x) = 0; | |
| 2209 } | |
| 2210 | |
| 2211 MP_CHECKOK( s_mp_almost_inverse(a, m, c) ); | |
| 2212 k = res; | |
| 2213 MP_CHECKOK( s_mp_fixup_reciprocal(c, m, k, c) ); | |
| 2214 CLEANUP: | |
| 2215 mp_clear(&x); | |
| 2216 return res; | |
| 2217 } | |
| 2218 | |
| 2219 /* Known good algorithm for computing modular inverse. But slow. */ | |
| 2220 mp_err mp_invmod_xgcd(const mp_int *a, const mp_int *m, mp_int *c) | |
| 2221 { | |
| 2222 mp_int g, x; | |
| 2223 mp_err res; | |
| 2224 | |
| 2225 ARGCHK(a && m && c, MP_BADARG); | |
| 2226 | |
| 2227 if(mp_cmp_z(a) == 0 || mp_cmp_z(m) == 0) | |
| 2228 return MP_RANGE; | |
| 2229 | |
| 2230 MP_DIGITS(&g) = 0; | |
| 2231 MP_DIGITS(&x) = 0; | |
| 2232 MP_CHECKOK( mp_init(&x) ); | |
| 2233 MP_CHECKOK( mp_init(&g) ); | |
| 2234 | |
| 2235 MP_CHECKOK( mp_xgcd(a, m, &g, &x, NULL) ); | |
| 2236 | |
| 2237 if (mp_cmp_d(&g, 1) != MP_EQ) { | |
| 2238 res = MP_UNDEF; | |
| 2239 goto CLEANUP; | |
| 2240 } | |
| 2241 | |
| 2242 res = mp_mod(&x, m, c); | |
| 2243 SIGN(c) = SIGN(a); | |
| 2244 | |
| 2245 CLEANUP: | |
| 2246 mp_clear(&x); | |
| 2247 mp_clear(&g); | |
| 2248 | |
| 2249 return res; | |
| 2250 } | |
| 2251 | |
| 2252 /* modular inverse where modulus is 2**k. */ | |
| 2253 /* c = a**-1 mod 2**k */ | |
| 2254 mp_err s_mp_invmod_2d(const mp_int *a, mp_size k, mp_int *c) | |
| 2255 { | |
| 2256 mp_err res; | |
| 2257 mp_size ix = k + 4; | |
| 2258 mp_int t0, t1, val, tmp, two2k; | |
| 2259 | |
| 2260 static const mp_digit d2 = 2; | |
| 2261 static const mp_int two = { MP_ZPOS, 1, 1, (mp_digit *)&d2 }; | |
| 2262 | |
| 2263 if (mp_iseven(a)) | |
| 2264 return MP_UNDEF; | |
| 2265 if (k <= MP_DIGIT_BIT) { | |
| 2266 mp_digit i = s_mp_invmod_radix(MP_DIGIT(a,0)); | |
| 2267 if (k < MP_DIGIT_BIT) | |
| 2268 i &= ((mp_digit)1 << k) - (mp_digit)1; | |
| 2269 mp_set(c, i); | |
| 2270 return MP_OKAY; | |
| 2271 } | |
| 2272 MP_DIGITS(&t0) = 0; | |
| 2273 MP_DIGITS(&t1) = 0; | |
| 2274 MP_DIGITS(&val) = 0; | |
| 2275 MP_DIGITS(&tmp) = 0; | |
| 2276 MP_DIGITS(&two2k) = 0; | |
| 2277 MP_CHECKOK( mp_init_copy(&val, a) ); | |
| 2278 s_mp_mod_2d(&val, k); | |
| 2279 MP_CHECKOK( mp_init_copy(&t0, &val) ); | |
| 2280 MP_CHECKOK( mp_init_copy(&t1, &t0) ); | |
| 2281 MP_CHECKOK( mp_init(&tmp) ); | |
| 2282 MP_CHECKOK( mp_init(&two2k) ); | |
| 2283 MP_CHECKOK( s_mp_2expt(&two2k, k) ); | |
| 2284 do { | |
| 2285 MP_CHECKOK( mp_mul(&val, &t1, &tmp) ); | |
| 2286 MP_CHECKOK( mp_sub(&two, &tmp, &tmp) ); | |
| 2287 MP_CHECKOK( mp_mul(&t1, &tmp, &t1) ); | |
| 2288 s_mp_mod_2d(&t1, k); | |
| 2289 while (MP_SIGN(&t1) != MP_ZPOS) { | |
| 2290 MP_CHECKOK( mp_add(&t1, &two2k, &t1) ); | |
| 2291 } | |
| 2292 if (mp_cmp(&t1, &t0) == MP_EQ) | |
| 2293 break; | |
| 2294 MP_CHECKOK( mp_copy(&t1, &t0) ); | |
| 2295 } while (--ix > 0); | |
| 2296 if (!ix) { | |
| 2297 res = MP_UNDEF; | |
| 2298 } else { | |
| 2299 mp_exch(c, &t1); | |
| 2300 } | |
| 2301 | |
| 2302 CLEANUP: | |
| 2303 mp_clear(&t0); | |
| 2304 mp_clear(&t1); | |
| 2305 mp_clear(&val); | |
| 2306 mp_clear(&tmp); | |
| 2307 mp_clear(&two2k); | |
| 2308 return res; | |
| 2309 } | |
| 2310 | |
| 2311 mp_err s_mp_invmod_even_m(const mp_int *a, const mp_int *m, mp_int *c) | |
| 2312 { | |
| 2313 mp_err res; | |
| 2314 mp_size k; | |
| 2315 mp_int oddFactor, evenFactor; /* factors of the modulus */ | |
| 2316 mp_int oddPart, evenPart; /* parts to combine via CRT. */ | |
| 2317 mp_int C2, tmp1, tmp2; | |
| 2318 | |
| 2319 /*static const mp_digit d1 = 1; */ | |
| 2320 /*static const mp_int one = { MP_ZPOS, 1, 1, (mp_digit *)&d1 }; */ | |
| 2321 | |
| 2322 if ((res = s_mp_ispow2(m)) >= 0) { | |
| 2323 k = res; | |
| 2324 return s_mp_invmod_2d(a, k, c); | |
| 2325 } | |
| 2326 MP_DIGITS(&oddFactor) = 0; | |
| 2327 MP_DIGITS(&evenFactor) = 0; | |
| 2328 MP_DIGITS(&oddPart) = 0; | |
| 2329 MP_DIGITS(&evenPart) = 0; | |
| 2330 MP_DIGITS(&C2) = 0; | |
| 2331 MP_DIGITS(&tmp1) = 0; | |
| 2332 MP_DIGITS(&tmp2) = 0; | |
| 2333 | |
| 2334 MP_CHECKOK( mp_init_copy(&oddFactor, m) ); /* oddFactor = m */ | |
| 2335 MP_CHECKOK( mp_init(&evenFactor) ); | |
| 2336 MP_CHECKOK( mp_init(&oddPart) ); | |
| 2337 MP_CHECKOK( mp_init(&evenPart) ); | |
| 2338 MP_CHECKOK( mp_init(&C2) ); | |
| 2339 MP_CHECKOK( mp_init(&tmp1) ); | |
| 2340 MP_CHECKOK( mp_init(&tmp2) ); | |
| 2341 | |
| 2342 k = mp_trailing_zeros(m); | |
| 2343 s_mp_div_2d(&oddFactor, k); | |
| 2344 MP_CHECKOK( s_mp_2expt(&evenFactor, k) ); | |
| 2345 | |
| 2346 /* compute a**-1 mod oddFactor. */ | |
| 2347 MP_CHECKOK( s_mp_invmod_odd_m(a, &oddFactor, &oddPart) ); | |
| 2348 /* compute a**-1 mod evenFactor, where evenFactor == 2**k. */ | |
| 2349 MP_CHECKOK( s_mp_invmod_2d( a, k, &evenPart) ); | |
| 2350 | |
| 2351 /* Use Chinese Remainer theorem to compute a**-1 mod m. */ | |
| 2352 /* let m1 = oddFactor, v1 = oddPart, | |
| 2353 * let m2 = evenFactor, v2 = evenPart. | |
| 2354 */ | |
| 2355 | |
| 2356 /* Compute C2 = m1**-1 mod m2. */ | |
| 2357 MP_CHECKOK( s_mp_invmod_2d(&oddFactor, k, &C2) ); | |
| 2358 | |
| 2359 /* compute u = (v2 - v1)*C2 mod m2 */ | |
| 2360 MP_CHECKOK( mp_sub(&evenPart, &oddPart, &tmp1) ); | |
| 2361 MP_CHECKOK( mp_mul(&tmp1, &C2, &tmp2) ); | |
| 2362 s_mp_mod_2d(&tmp2, k); | |
| 2363 while (MP_SIGN(&tmp2) != MP_ZPOS) { | |
| 2364 MP_CHECKOK( mp_add(&tmp2, &evenFactor, &tmp2) ); | |
| 2365 } | |
| 2366 | |
| 2367 /* compute answer = v1 + u*m1 */ | |
| 2368 MP_CHECKOK( mp_mul(&tmp2, &oddFactor, c) ); | |
| 2369 MP_CHECKOK( mp_add(&oddPart, c, c) ); | |
| 2370 /* not sure this is necessary, but it's low cost if not. */ | |
| 2371 MP_CHECKOK( mp_mod(c, m, c) ); | |
| 2372 | |
| 2373 CLEANUP: | |
| 2374 mp_clear(&oddFactor); | |
| 2375 mp_clear(&evenFactor); | |
| 2376 mp_clear(&oddPart); | |
| 2377 mp_clear(&evenPart); | |
| 2378 mp_clear(&C2); | |
| 2379 mp_clear(&tmp1); | |
| 2380 mp_clear(&tmp2); | |
| 2381 return res; | |
| 2382 } | |
| 2383 | |
| 2384 | |
| 2385 /* {{{ mp_invmod(a, m, c) */ | |
| 2386 | |
| 2387 /* | |
| 2388 mp_invmod(a, m, c) | |
| 2389 | |
| 2390 Compute c = a^-1 (mod m), if there is an inverse for a (mod m). | |
| 2391 This is equivalent to the question of whether (a, m) = 1. If not, | |
| 2392 MP_UNDEF is returned, and there is no inverse. | |
| 2393 */ | |
| 2394 | |
| 2395 mp_err mp_invmod(const mp_int *a, const mp_int *m, mp_int *c) | |
| 2396 { | |
| 2397 | |
| 2398 ARGCHK(a && m && c, MP_BADARG); | |
| 2399 | |
| 2400 if(mp_cmp_z(a) == 0 || mp_cmp_z(m) == 0) | |
| 2401 return MP_RANGE; | |
| 2402 | |
| 2403 if (mp_isodd(m)) { | |
| 2404 return s_mp_invmod_odd_m(a, m, c); | |
| 2405 } | |
| 2406 if (mp_iseven(a)) | |
| 2407 return MP_UNDEF; /* not invertable */ | |
| 2408 | |
| 2409 return s_mp_invmod_even_m(a, m, c); | |
| 2410 | |
| 2411 } /* end mp_invmod() */ | |
| 2412 | |
| 2413 /* }}} */ | |
| 2414 #endif /* if MP_NUMTH */ | |
| 2415 | |
| 2416 /* }}} */ | |
| 2417 | |
| 2418 /*------------------------------------------------------------------------*/ | |
| 2419 /* {{{ mp_print(mp, ofp) */ | |
| 2420 | |
| 2421 #if MP_IOFUNC | |
| 2422 /* | |
| 2423 mp_print(mp, ofp) | |
| 2424 | |
| 2425 Print a textual representation of the given mp_int on the output | |
| 2426 stream 'ofp'. Output is generated using the internal radix. | |
| 2427 */ | |
| 2428 | |
| 2429 void mp_print(mp_int *mp, FILE *ofp) | |
| 2430 { | |
| 2431 int ix; | |
| 2432 | |
| 2433 if(mp == NULL || ofp == NULL) | |
| 2434 return; | |
| 2435 | |
| 2436 fputc((SIGN(mp) == NEG) ? '-' : '+', ofp); | |
| 2437 | |
| 2438 for(ix = USED(mp) - 1; ix >= 0; ix--) { | |
| 2439 fprintf(ofp, DIGIT_FMT, DIGIT(mp, ix)); | |
| 2440 } | |
| 2441 | |
| 2442 } /* end mp_print() */ | |
| 2443 | |
| 2444 #endif /* if MP_IOFUNC */ | |
| 2445 | |
| 2446 /* }}} */ | |
| 2447 | |
| 2448 /*------------------------------------------------------------------------*/ | |
| 2449 /* {{{ More I/O Functions */ | |
| 2450 | |
| 2451 /* {{{ mp_read_raw(mp, str, len) */ | |
| 2452 | |
| 2453 /* | |
| 2454 mp_read_raw(mp, str, len) | |
| 2455 | |
| 2456 Read in a raw value (base 256) into the given mp_int | |
| 2457 */ | |
| 2458 | |
| 2459 mp_err mp_read_raw(mp_int *mp, char *str, int len) | |
| 2460 { | |
| 2461 int ix; | |
| 2462 mp_err res; | |
| 2463 unsigned char *ustr = (unsigned char *)str; | |
| 2464 | |
| 2465 ARGCHK(mp != NULL && str != NULL && len > 0, MP_BADARG); | |
| 2466 | |
| 2467 mp_zero(mp); | |
| 2468 | |
| 2469 /* Get sign from first byte */ | |
| 2470 if(ustr[0]) | |
| 2471 SIGN(mp) = NEG; | |
| 2472 else | |
| 2473 SIGN(mp) = ZPOS; | |
| 2474 | |
| 2475 /* Read the rest of the digits */ | |
| 2476 for(ix = 1; ix < len; ix++) { | |
| 2477 if((res = mp_mul_d(mp, 256, mp)) != MP_OKAY) | |
| 2478 return res; | |
| 2479 if((res = mp_add_d(mp, ustr[ix], mp)) != MP_OKAY) | |
| 2480 return res; | |
| 2481 } | |
| 2482 | |
| 2483 return MP_OKAY; | |
| 2484 | |
| 2485 } /* end mp_read_raw() */ | |
| 2486 | |
| 2487 /* }}} */ | |
| 2488 | |
| 2489 /* {{{ mp_raw_size(mp) */ | |
| 2490 | |
| 2491 int mp_raw_size(mp_int *mp) | |
| 2492 { | |
| 2493 ARGCHK(mp != NULL, 0); | |
| 2494 | |
| 2495 return (USED(mp) * sizeof(mp_digit)) + 1; | |
| 2496 | |
| 2497 } /* end mp_raw_size() */ | |
| 2498 | |
| 2499 /* }}} */ | |
| 2500 | |
| 2501 /* {{{ mp_toraw(mp, str) */ | |
| 2502 | |
| 2503 mp_err mp_toraw(mp_int *mp, char *str) | |
| 2504 { | |
| 2505 int ix, jx, pos = 1; | |
| 2506 | |
| 2507 ARGCHK(mp != NULL && str != NULL, MP_BADARG); | |
| 2508 | |
| 2509 str[0] = (char)SIGN(mp); | |
| 2510 | |
| 2511 /* Iterate over each digit... */ | |
| 2512 for(ix = USED(mp) - 1; ix >= 0; ix--) { | |
| 2513 mp_digit d = DIGIT(mp, ix); | |
| 2514 | |
| 2515 /* Unpack digit bytes, high order first */ | |
| 2516 for(jx = sizeof(mp_digit) - 1; jx >= 0; jx--) { | |
| 2517 str[pos++] = (char)(d >> (jx * CHAR_BIT)); | |
| 2518 } | |
| 2519 } | |
| 2520 | |
| 2521 return MP_OKAY; | |
| 2522 | |
| 2523 } /* end mp_toraw() */ | |
| 2524 | |
| 2525 /* }}} */ | |
| 2526 | |
| 2527 /* {{{ mp_read_radix(mp, str, radix) */ | |
| 2528 | |
| 2529 /* | |
| 2530 mp_read_radix(mp, str, radix) | |
| 2531 | |
| 2532 Read an integer from the given string, and set mp to the resulting | |
| 2533 value. The input is presumed to be in base 10. Leading non-digit | |
| 2534 characters are ignored, and the function reads until a non-digit | |
| 2535 character or the end of the string. | |
| 2536 */ | |
| 2537 | |
| 2538 mp_err mp_read_radix(mp_int *mp, const char *str, int radix) | |
| 2539 { | |
| 2540 int ix = 0, val = 0; | |
| 2541 mp_err res; | |
| 2542 mp_sign sig = ZPOS; | |
| 2543 | |
| 2544 ARGCHK(mp != NULL && str != NULL && radix >= 2 && radix <= MAX_RADIX, | |
| 2545 MP_BADARG); | |
| 2546 | |
| 2547 mp_zero(mp); | |
| 2548 | |
| 2549 /* Skip leading non-digit characters until a digit or '-' or '+' */ | |
| 2550 while(str[ix] && | |
| 2551 (s_mp_tovalue(str[ix], radix) < 0) && | |
| 2552 str[ix] != '-' && | |
| 2553 str[ix] != '+') { | |
| 2554 ++ix; | |
| 2555 } | |
| 2556 | |
| 2557 if(str[ix] == '-') { | |
| 2558 sig = NEG; | |
| 2559 ++ix; | |
| 2560 } else if(str[ix] == '+') { | |
| 2561 sig = ZPOS; /* this is the default anyway... */ | |
| 2562 ++ix; | |
| 2563 } | |
| 2564 | |
| 2565 while((val = s_mp_tovalue(str[ix], radix)) >= 0) { | |
| 2566 if((res = s_mp_mul_d(mp, radix)) != MP_OKAY) | |
| 2567 return res; | |
| 2568 if((res = s_mp_add_d(mp, val)) != MP_OKAY) | |
| 2569 return res; | |
| 2570 ++ix; | |
| 2571 } | |
| 2572 | |
| 2573 if(s_mp_cmp_d(mp, 0) == MP_EQ) | |
| 2574 SIGN(mp) = ZPOS; | |
| 2575 else | |
| 2576 SIGN(mp) = sig; | |
| 2577 | |
| 2578 return MP_OKAY; | |
| 2579 | |
| 2580 } /* end mp_read_radix() */ | |
| 2581 | |
| 2582 mp_err mp_read_variable_radix(mp_int *a, const char * str, int default_radix) | |
| 2583 { | |
| 2584 int radix = default_radix; | |
| 2585 int cx; | |
| 2586 mp_sign sig = ZPOS; | |
| 2587 mp_err res; | |
| 2588 | |
| 2589 /* Skip leading non-digit characters until a digit or '-' or '+' */ | |
| 2590 while ((cx = *str) != 0 && | |
| 2591 (s_mp_tovalue(cx, radix) < 0) && | |
| 2592 cx != '-' && | |
| 2593 cx != '+') { | |
| 2594 ++str; | |
| 2595 } | |
| 2596 | |
| 2597 if (cx == '-') { | |
| 2598 sig = NEG; | |
| 2599 ++str; | |
| 2600 } else if (cx == '+') { | |
| 2601 sig = ZPOS; /* this is the default anyway... */ | |
| 2602 ++str; | |
| 2603 } | |
| 2604 | |
| 2605 if (str[0] == '0') { | |
| 2606 if ((str[1] | 0x20) == 'x') { | |
| 2607 radix = 16; | |
| 2608 str += 2; | |
| 2609 } else { | |
| 2610 radix = 8; | |
| 2611 str++; | |
| 2612 } | |
| 2613 } | |
| 2614 res = mp_read_radix(a, str, radix); | |
| 2615 if (res == MP_OKAY) { | |
| 2616 MP_SIGN(a) = (s_mp_cmp_d(a, 0) == MP_EQ) ? ZPOS : sig; | |
| 2617 } | |
| 2618 return res; | |
| 2619 } | |
| 2620 | |
| 2621 /* }}} */ | |
| 2622 | |
| 2623 /* {{{ mp_radix_size(mp, radix) */ | |
| 2624 | |
| 2625 int mp_radix_size(mp_int *mp, int radix) | |
| 2626 { | |
| 2627 int bits; | |
| 2628 | |
| 2629 if(!mp || radix < 2 || radix > MAX_RADIX) | |
| 2630 return 0; | |
| 2631 | |
| 2632 bits = USED(mp) * DIGIT_BIT - 1; | |
| 2633 | |
| 2634 return s_mp_outlen(bits, radix); | |
| 2635 | |
| 2636 } /* end mp_radix_size() */ | |
| 2637 | |
| 2638 /* }}} */ | |
| 2639 | |
| 2640 /* {{{ mp_toradix(mp, str, radix) */ | |
| 2641 | |
| 2642 mp_err mp_toradix(mp_int *mp, char *str, int radix) | |
| 2643 { | |
| 2644 int ix, pos = 0; | |
| 2645 | |
| 2646 ARGCHK(mp != NULL && str != NULL, MP_BADARG); | |
| 2647 ARGCHK(radix > 1 && radix <= MAX_RADIX, MP_RANGE); | |
| 2648 | |
| 2649 if(mp_cmp_z(mp) == MP_EQ) { | |
| 2650 str[0] = '0'; | |
| 2651 str[1] = '\0'; | |
| 2652 } else { | |
| 2653 mp_err res; | |
| 2654 mp_int tmp; | |
| 2655 mp_sign sgn; | |
| 2656 mp_digit rem, rdx = (mp_digit)radix; | |
| 2657 char ch; | |
| 2658 | |
| 2659 if((res = mp_init_copy(&tmp, mp)) != MP_OKAY) | |
| 2660 return res; | |
| 2661 | |
| 2662 /* Save sign for later, and take absolute value */ | |
| 2663 sgn = SIGN(&tmp); SIGN(&tmp) = ZPOS; | |
| 2664 | |
| 2665 /* Generate output digits in reverse order */ | |
| 2666 while(mp_cmp_z(&tmp) != 0) { | |
| 2667 if((res = mp_div_d(&tmp, rdx, &tmp, &rem)) != MP_OKAY) { | |
| 2668 mp_clear(&tmp); | |
| 2669 return res; | |
| 2670 } | |
| 2671 | |
| 2672 /* Generate digits, use capital letters */ | |
| 2673 ch = s_mp_todigit(rem, radix, 0); | |
| 2674 | |
| 2675 str[pos++] = ch; | |
| 2676 } | |
| 2677 | |
| 2678 /* Add - sign if original value was negative */ | |
| 2679 if(sgn == NEG) | |
| 2680 str[pos++] = '-'; | |
| 2681 | |
| 2682 /* Add trailing NUL to end the string */ | |
| 2683 str[pos--] = '\0'; | |
| 2684 | |
| 2685 /* Reverse the digits and sign indicator */ | |
| 2686 ix = 0; | |
| 2687 while(ix < pos) { | |
| 2688 char tmp = str[ix]; | |
| 2689 | |
| 2690 str[ix] = str[pos]; | |
| 2691 str[pos] = tmp; | |
| 2692 ++ix; | |
| 2693 --pos; | |
| 2694 } | |
| 2695 | |
| 2696 mp_clear(&tmp); | |
| 2697 } | |
| 2698 | |
| 2699 return MP_OKAY; | |
| 2700 | |
| 2701 } /* end mp_toradix() */ | |
| 2702 | |
| 2703 /* }}} */ | |
| 2704 | |
| 2705 /* {{{ mp_tovalue(ch, r) */ | |
| 2706 | |
| 2707 int mp_tovalue(char ch, int r) | |
| 2708 { | |
| 2709 return s_mp_tovalue(ch, r); | |
| 2710 | |
| 2711 } /* end mp_tovalue() */ | |
| 2712 | |
| 2713 /* }}} */ | |
| 2714 | |
| 2715 /* }}} */ | |
| 2716 | |
| 2717 /* {{{ mp_strerror(ec) */ | |
| 2718 | |
| 2719 /* | |
| 2720 mp_strerror(ec) | |
| 2721 | |
| 2722 Return a string describing the meaning of error code 'ec'. The | |
| 2723 string returned is allocated in static memory, so the caller should | |
| 2724 not attempt to modify or free the memory associated with this | |
| 2725 string. | |
| 2726 */ | |
| 2727 const char *mp_strerror(mp_err ec) | |
| 2728 { | |
| 2729 int aec = (ec < 0) ? -ec : ec; | |
| 2730 | |
| 2731 /* Code values are negative, so the senses of these comparisons | |
| 2732 are accurate */ | |
| 2733 if(ec < MP_LAST_CODE || ec > MP_OKAY) { | |
| 2734 return mp_err_string[0]; /* unknown error code */ | |
| 2735 } else { | |
| 2736 return mp_err_string[aec + 1]; | |
| 2737 } | |
| 2738 | |
| 2739 } /* end mp_strerror() */ | |
| 2740 | |
| 2741 /* }}} */ | |
| 2742 | |
| 2743 /*========================================================================*/ | |
| 2744 /*------------------------------------------------------------------------*/ | |
| 2745 /* Static function definitions (internal use only) */ | |
| 2746 | |
| 2747 /* {{{ Memory management */ | |
| 2748 | |
| 2749 /* {{{ s_mp_grow(mp, min) */ | |
| 2750 | |
| 2751 /* Make sure there are at least 'min' digits allocated to mp */ | |
| 2752 mp_err s_mp_grow(mp_int *mp, mp_size min) | |
| 2753 { | |
| 2754 if(min > ALLOC(mp)) { | |
| 2755 mp_digit *tmp; | |
| 2756 | |
| 2757 /* Set min to next nearest default precision block size */ | |
| 2758 min = MP_ROUNDUP(min, s_mp_defprec); | |
| 2759 | |
| 2760 if((tmp = s_mp_alloc(min, sizeof(mp_digit))) == NULL) | |
| 2761 return MP_MEM; | |
| 2762 | |
| 2763 s_mp_copy(DIGITS(mp), tmp, USED(mp)); | |
| 2764 | |
| 2765 #if MP_CRYPTO | |
| 2766 s_mp_setz(DIGITS(mp), ALLOC(mp)); | |
| 2767 #endif | |
| 2768 s_mp_free(DIGITS(mp)); | |
| 2769 DIGITS(mp) = tmp; | |
| 2770 ALLOC(mp) = min; | |
| 2771 } | |
| 2772 | |
| 2773 return MP_OKAY; | |
| 2774 | |
| 2775 } /* end s_mp_grow() */ | |
| 2776 | |
| 2777 /* }}} */ | |
| 2778 | |
| 2779 /* {{{ s_mp_pad(mp, min) */ | |
| 2780 | |
| 2781 /* Make sure the used size of mp is at least 'min', growing if needed */ | |
| 2782 mp_err s_mp_pad(mp_int *mp, mp_size min) | |
| 2783 { | |
| 2784 if(min > USED(mp)) { | |
| 2785 mp_err res; | |
| 2786 | |
| 2787 /* Make sure there is room to increase precision */ | |
| 2788 if (min > ALLOC(mp)) { | |
| 2789 if ((res = s_mp_grow(mp, min)) != MP_OKAY) | |
| 2790 return res; | |
| 2791 } else { | |
| 2792 s_mp_setz(DIGITS(mp) + USED(mp), min - USED(mp)); | |
| 2793 } | |
| 2794 | |
| 2795 /* Increase precision; should already be 0-filled */ | |
| 2796 USED(mp) = min; | |
| 2797 } | |
| 2798 | |
| 2799 return MP_OKAY; | |
| 2800 | |
| 2801 } /* end s_mp_pad() */ | |
| 2802 | |
| 2803 /* }}} */ | |
| 2804 | |
| 2805 /* {{{ s_mp_setz(dp, count) */ | |
| 2806 | |
| 2807 #if MP_MACRO == 0 | |
| 2808 /* Set 'count' digits pointed to by dp to be zeroes */ | |
| 2809 void s_mp_setz(mp_digit *dp, mp_size count) | |
| 2810 { | |
| 2811 #if MP_MEMSET == 0 | |
| 2812 int ix; | |
| 2813 | |
| 2814 for(ix = 0; ix < count; ix++) | |
| 2815 dp[ix] = 0; | |
| 2816 #else | |
| 2817 memset(dp, 0, count * sizeof(mp_digit)); | |
| 2818 #endif | |
| 2819 | |
| 2820 } /* end s_mp_setz() */ | |
| 2821 #endif | |
| 2822 | |
| 2823 /* }}} */ | |
| 2824 | |
| 2825 /* {{{ s_mp_copy(sp, dp, count) */ | |
| 2826 | |
| 2827 #if MP_MACRO == 0 | |
| 2828 /* Copy 'count' digits from sp to dp */ | |
| 2829 void s_mp_copy(const mp_digit *sp, mp_digit *dp, mp_size count) | |
| 2830 { | |
| 2831 #if MP_MEMCPY == 0 | |
| 2832 int ix; | |
| 2833 | |
| 2834 for(ix = 0; ix < count; ix++) | |
| 2835 dp[ix] = sp[ix]; | |
| 2836 #else | |
| 2837 memcpy(dp, sp, count * sizeof(mp_digit)); | |
| 2838 #endif | |
| 2839 ++mp_copies; | |
| 2840 | |
| 2841 } /* end s_mp_copy() */ | |
| 2842 #endif | |
| 2843 | |
| 2844 /* }}} */ | |
| 2845 | |
| 2846 /* {{{ s_mp_alloc(nb, ni) */ | |
| 2847 | |
| 2848 #if MP_MACRO == 0 | |
| 2849 /* Allocate ni records of nb bytes each, and return a pointer to that */ | |
| 2850 void *s_mp_alloc(size_t nb, size_t ni) | |
| 2851 { | |
| 2852 ++mp_allocs; | |
| 2853 return calloc(nb, ni); | |
| 2854 | |
| 2855 } /* end s_mp_alloc() */ | |
| 2856 #endif | |
| 2857 | |
| 2858 /* }}} */ | |
| 2859 | |
| 2860 /* {{{ s_mp_free(ptr) */ | |
| 2861 | |
| 2862 #if MP_MACRO == 0 | |
| 2863 /* Free the memory pointed to by ptr */ | |
| 2864 void s_mp_free(void *ptr) | |
| 2865 { | |
| 2866 if(ptr) { | |
| 2867 ++mp_frees; | |
| 2868 free(ptr); | |
| 2869 } | |
| 2870 } /* end s_mp_free() */ | |
| 2871 #endif | |
| 2872 | |
| 2873 /* }}} */ | |
| 2874 | |
| 2875 /* {{{ s_mp_clamp(mp) */ | |
| 2876 | |
| 2877 #if MP_MACRO == 0 | |
| 2878 /* Remove leading zeroes from the given value */ | |
| 2879 void s_mp_clamp(mp_int *mp) | |
| 2880 { | |
| 2881 mp_size used = MP_USED(mp); | |
| 2882 while (used > 1 && DIGIT(mp, used - 1) == 0) | |
| 2883 --used; | |
| 2884 MP_USED(mp) = used; | |
| 2885 } /* end s_mp_clamp() */ | |
| 2886 #endif | |
| 2887 | |
| 2888 /* }}} */ | |
| 2889 | |
| 2890 /* {{{ s_mp_exch(a, b) */ | |
| 2891 | |
| 2892 /* Exchange the data for a and b; (b, a) = (a, b) */ | |
| 2893 void s_mp_exch(mp_int *a, mp_int *b) | |
| 2894 { | |
| 2895 mp_int tmp; | |
| 2896 | |
| 2897 tmp = *a; | |
| 2898 *a = *b; | |
| 2899 *b = tmp; | |
| 2900 | |
| 2901 } /* end s_mp_exch() */ | |
| 2902 | |
| 2903 /* }}} */ | |
| 2904 | |
| 2905 /* }}} */ | |
| 2906 | |
| 2907 /* {{{ Arithmetic helpers */ | |
| 2908 | |
| 2909 /* {{{ s_mp_lshd(mp, p) */ | |
| 2910 | |
| 2911 /* | |
| 2912 Shift mp leftward by p digits, growing if needed, and zero-filling | |
| 2913 the in-shifted digits at the right end. This is a convenient | |
| 2914 alternative to multiplication by powers of the radix | |
| 2915 */ | |
| 2916 | |
| 2917 mp_err s_mp_lshd(mp_int *mp, mp_size p) | |
| 2918 { | |
| 2919 mp_err res; | |
| 2920 mp_size pos; | |
| 2921 int ix; | |
| 2922 | |
| 2923 if(p == 0) | |
| 2924 return MP_OKAY; | |
| 2925 | |
| 2926 if (MP_USED(mp) == 1 && MP_DIGIT(mp, 0) == 0) | |
| 2927 return MP_OKAY; | |
| 2928 | |
| 2929 if((res = s_mp_pad(mp, USED(mp) + p)) != MP_OKAY) | |
| 2930 return res; | |
| 2931 | |
| 2932 pos = USED(mp) - 1; | |
| 2933 | |
| 2934 /* Shift all the significant figures over as needed */ | |
| 2935 for(ix = pos - p; ix >= 0; ix--) | |
| 2936 DIGIT(mp, ix + p) = DIGIT(mp, ix); | |
| 2937 | |
| 2938 /* Fill the bottom digits with zeroes */ | |
| 2939 for(ix = 0; ix < p; ix++) | |
| 2940 DIGIT(mp, ix) = 0; | |
| 2941 | |
| 2942 return MP_OKAY; | |
| 2943 | |
| 2944 } /* end s_mp_lshd() */ | |
| 2945 | |
| 2946 /* }}} */ | |
| 2947 | |
| 2948 /* {{{ s_mp_mul_2d(mp, d) */ | |
| 2949 | |
| 2950 /* | |
| 2951 Multiply the integer by 2^d, where d is a number of bits. This | |
| 2952 amounts to a bitwise shift of the value. | |
| 2953 */ | |
| 2954 mp_err s_mp_mul_2d(mp_int *mp, mp_digit d) | |
| 2955 { | |
| 2956 mp_err res; | |
| 2957 mp_digit dshift, bshift; | |
| 2958 mp_digit mask; | |
| 2959 | |
| 2960 ARGCHK(mp != NULL, MP_BADARG); | |
| 2961 | |
| 2962 dshift = d / MP_DIGIT_BIT; | |
| 2963 bshift = d % MP_DIGIT_BIT; | |
| 2964 /* bits to be shifted out of the top word */ | |
| 2965 mask = ((mp_digit)~0 << (MP_DIGIT_BIT - bshift)); | |
| 2966 mask &= MP_DIGIT(mp, MP_USED(mp) - 1); | |
| 2967 | |
| 2968 if (MP_OKAY != (res = s_mp_pad(mp, MP_USED(mp) + dshift + (mask != 0) ))) | |
| 2969 return res; | |
| 2970 | |
| 2971 if (dshift && MP_OKAY != (res = s_mp_lshd(mp, dshift))) | |
| 2972 return res; | |
| 2973 | |
| 2974 if (bshift) { | |
| 2975 mp_digit *pa = MP_DIGITS(mp); | |
| 2976 mp_digit *alim = pa + MP_USED(mp); | |
| 2977 mp_digit prev = 0; | |
| 2978 | |
| 2979 for (pa += dshift; pa < alim; ) { | |
| 2980 mp_digit x = *pa; | |
| 2981 *pa++ = (x << bshift) | prev; | |
| 2982 prev = x >> (DIGIT_BIT - bshift); | |
| 2983 } | |
| 2984 } | |
| 2985 | |
| 2986 s_mp_clamp(mp); | |
| 2987 return MP_OKAY; | |
| 2988 } /* end s_mp_mul_2d() */ | |
| 2989 | |
| 2990 /* {{{ s_mp_rshd(mp, p) */ | |
| 2991 | |
| 2992 /* | |
| 2993 Shift mp rightward by p digits. Maintains the invariant that | |
| 2994 digits above the precision are all zero. Digits shifted off the | |
| 2995 end are lost. Cannot fail. | |
| 2996 */ | |
| 2997 | |
| 2998 void s_mp_rshd(mp_int *mp, mp_size p) | |
| 2999 { | |
| 3000 mp_size ix; | |
| 3001 mp_digit *src, *dst; | |
| 3002 | |
| 3003 if(p == 0) | |
| 3004 return; | |
| 3005 | |
| 3006 /* Shortcut when all digits are to be shifted off */ | |
| 3007 if(p >= USED(mp)) { | |
| 3008 s_mp_setz(DIGITS(mp), ALLOC(mp)); | |
| 3009 USED(mp) = 1; | |
| 3010 SIGN(mp) = ZPOS; | |
| 3011 return; | |
| 3012 } | |
| 3013 | |
| 3014 /* Shift all the significant figures over as needed */ | |
| 3015 dst = MP_DIGITS(mp); | |
| 3016 src = dst + p; | |
| 3017 for (ix = USED(mp) - p; ix > 0; ix--) | |
| 3018 *dst++ = *src++; | |
| 3019 | |
| 3020 MP_USED(mp) -= p; | |
| 3021 /* Fill the top digits with zeroes */ | |
| 3022 while (p-- > 0) | |
| 3023 *dst++ = 0; | |
| 3024 | |
| 3025 #if 0 | |
| 3026 /* Strip off any leading zeroes */ | |
| 3027 s_mp_clamp(mp); | |
| 3028 #endif | |
| 3029 | |
| 3030 } /* end s_mp_rshd() */ | |
| 3031 | |
| 3032 /* }}} */ | |
| 3033 | |
| 3034 /* {{{ s_mp_div_2(mp) */ | |
| 3035 | |
| 3036 /* Divide by two -- take advantage of radix properties to do it fast */ | |
| 3037 void s_mp_div_2(mp_int *mp) | |
| 3038 { | |
| 3039 s_mp_div_2d(mp, 1); | |
| 3040 | |
| 3041 } /* end s_mp_div_2() */ | |
| 3042 | |
| 3043 /* }}} */ | |
| 3044 | |
| 3045 /* {{{ s_mp_mul_2(mp) */ | |
| 3046 | |
| 3047 mp_err s_mp_mul_2(mp_int *mp) | |
| 3048 { | |
| 3049 mp_digit *pd; | |
| 3050 int ix, used; | |
| 3051 mp_digit kin = 0; | |
| 3052 | |
| 3053 /* Shift digits leftward by 1 bit */ | |
| 3054 used = MP_USED(mp); | |
| 3055 pd = MP_DIGITS(mp); | |
| 3056 for (ix = 0; ix < used; ix++) { | |
| 3057 mp_digit d = *pd; | |
| 3058 *pd++ = (d << 1) | kin; | |
| 3059 kin = (d >> (DIGIT_BIT - 1)); | |
| 3060 } | |
| 3061 | |
| 3062 /* Deal with rollover from last digit */ | |
| 3063 if (kin) { | |
| 3064 if (ix >= ALLOC(mp)) { | |
| 3065 mp_err res; | |
| 3066 if((res = s_mp_grow(mp, ALLOC(mp) + 1)) != MP_OKAY) | |
| 3067 return res; | |
| 3068 } | |
| 3069 | |
| 3070 DIGIT(mp, ix) = kin; | |
| 3071 USED(mp) += 1; | |
| 3072 } | |
| 3073 | |
| 3074 return MP_OKAY; | |
| 3075 | |
| 3076 } /* end s_mp_mul_2() */ | |
| 3077 | |
| 3078 /* }}} */ | |
| 3079 | |
| 3080 /* {{{ s_mp_mod_2d(mp, d) */ | |
| 3081 | |
| 3082 /* | |
| 3083 Remainder the integer by 2^d, where d is a number of bits. This | |
| 3084 amounts to a bitwise AND of the value, and does not require the full | |
| 3085 division code | |
| 3086 */ | |
| 3087 void s_mp_mod_2d(mp_int *mp, mp_digit d) | |
| 3088 { | |
| 3089 mp_size ndig = (d / DIGIT_BIT), nbit = (d % DIGIT_BIT); | |
| 3090 mp_size ix; | |
| 3091 mp_digit dmask; | |
| 3092 | |
| 3093 if(ndig >= USED(mp)) | |
| 3094 return; | |
| 3095 | |
| 3096 /* Flush all the bits above 2^d in its digit */ | |
| 3097 dmask = ((mp_digit)1 << nbit) - 1; | |
| 3098 DIGIT(mp, ndig) &= dmask; | |
| 3099 | |
| 3100 /* Flush all digits above the one with 2^d in it */ | |
| 3101 for(ix = ndig + 1; ix < USED(mp); ix++) | |
| 3102 DIGIT(mp, ix) = 0; | |
| 3103 | |
| 3104 s_mp_clamp(mp); | |
| 3105 | |
| 3106 } /* end s_mp_mod_2d() */ | |
| 3107 | |
| 3108 /* }}} */ | |
| 3109 | |
| 3110 /* {{{ s_mp_div_2d(mp, d) */ | |
| 3111 | |
| 3112 /* | |
| 3113 Divide the integer by 2^d, where d is a number of bits. This | |
| 3114 amounts to a bitwise shift of the value, and does not require the | |
| 3115 full division code (used in Barrett reduction, see below) | |
| 3116 */ | |
| 3117 void s_mp_div_2d(mp_int *mp, mp_digit d) | |
| 3118 { | |
| 3119 int ix; | |
| 3120 mp_digit save, next, mask; | |
| 3121 | |
| 3122 s_mp_rshd(mp, d / DIGIT_BIT); | |
| 3123 d %= DIGIT_BIT; | |
| 3124 if (d) { | |
| 3125 mask = ((mp_digit)1 << d) - 1; | |
| 3126 save = 0; | |
| 3127 for(ix = USED(mp) - 1; ix >= 0; ix--) { | |
| 3128 next = DIGIT(mp, ix) & mask; | |
| 3129 DIGIT(mp, ix) = (DIGIT(mp, ix) >> d) | (save << (DIGIT_BIT - d)); | |
| 3130 save = next; | |
| 3131 } | |
| 3132 } | |
| 3133 s_mp_clamp(mp); | |
| 3134 | |
| 3135 } /* end s_mp_div_2d() */ | |
| 3136 | |
| 3137 /* }}} */ | |
| 3138 | |
| 3139 /* {{{ s_mp_norm(a, b, *d) */ | |
| 3140 | |
| 3141 /* | |
| 3142 s_mp_norm(a, b, *d) | |
| 3143 | |
| 3144 Normalize a and b for division, where b is the divisor. In order | |
| 3145 that we might make good guesses for quotient digits, we want the | |
| 3146 leading digit of b to be at least half the radix, which we | |
| 3147 accomplish by multiplying a and b by a power of 2. The exponent | |
| 3148 (shift count) is placed in *pd, so that the remainder can be shifted | |
| 3149 back at the end of the division process. | |
| 3150 */ | |
| 3151 | |
| 3152 mp_err s_mp_norm(mp_int *a, mp_int *b, mp_digit *pd) | |
| 3153 { | |
| 3154 mp_digit d; | |
| 3155 mp_digit mask; | |
| 3156 mp_digit b_msd; | |
| 3157 mp_err res = MP_OKAY; | |
| 3158 | |
| 3159 d = 0; | |
| 3160 mask = DIGIT_MAX & ~(DIGIT_MAX >> 1); /* mask is msb of digit */ | |
| 3161 b_msd = DIGIT(b, USED(b) - 1); | |
| 3162 while (!(b_msd & mask)) { | |
| 3163 b_msd <<= 1; | |
| 3164 ++d; | |
| 3165 } | |
| 3166 | |
| 3167 if (d) { | |
| 3168 MP_CHECKOK( s_mp_mul_2d(a, d) ); | |
| 3169 MP_CHECKOK( s_mp_mul_2d(b, d) ); | |
| 3170 } | |
| 3171 | |
| 3172 *pd = d; | |
| 3173 CLEANUP: | |
| 3174 return res; | |
| 3175 | |
| 3176 } /* end s_mp_norm() */ | |
| 3177 | |
| 3178 /* }}} */ | |
| 3179 | |
| 3180 /* }}} */ | |
| 3181 | |
| 3182 /* {{{ Primitive digit arithmetic */ | |
| 3183 | |
| 3184 /* {{{ s_mp_add_d(mp, d) */ | |
| 3185 | |
| 3186 /* Add d to |mp| in place */ | |
| 3187 mp_err s_mp_add_d(mp_int *mp, mp_digit d) /* unsigned digit addition */ | |
| 3188 { | |
| 3189 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) | |
| 3190 mp_word w, k = 0; | |
| 3191 mp_size ix = 1; | |
| 3192 | |
| 3193 w = (mp_word)DIGIT(mp, 0) + d; | |
| 3194 DIGIT(mp, 0) = ACCUM(w); | |
| 3195 k = CARRYOUT(w); | |
| 3196 | |
| 3197 while(ix < USED(mp) && k) { | |
| 3198 w = (mp_word)DIGIT(mp, ix) + k; | |
| 3199 DIGIT(mp, ix) = ACCUM(w); | |
| 3200 k = CARRYOUT(w); | |
| 3201 ++ix; | |
| 3202 } | |
| 3203 | |
| 3204 if(k != 0) { | |
| 3205 mp_err res; | |
| 3206 | |
| 3207 if((res = s_mp_pad(mp, USED(mp) + 1)) != MP_OKAY) | |
| 3208 return res; | |
| 3209 | |
| 3210 DIGIT(mp, ix) = (mp_digit)k; | |
| 3211 } | |
| 3212 | |
| 3213 return MP_OKAY; | |
| 3214 #else | |
| 3215 mp_digit * pmp = MP_DIGITS(mp); | |
| 3216 mp_digit sum, mp_i, carry = 0; | |
| 3217 mp_err res = MP_OKAY; | |
| 3218 int used = (int)MP_USED(mp); | |
| 3219 | |
| 3220 mp_i = *pmp; | |
| 3221 *pmp++ = sum = d + mp_i; | |
| 3222 carry = (sum < d); | |
| 3223 while (carry && --used > 0) { | |
| 3224 mp_i = *pmp; | |
| 3225 *pmp++ = sum = carry + mp_i; | |
| 3226 carry = !sum; | |
| 3227 } | |
| 3228 if (carry && !used) { | |
| 3229 /* mp is growing */ | |
| 3230 used = MP_USED(mp); | |
| 3231 MP_CHECKOK( s_mp_pad(mp, used + 1) ); | |
| 3232 MP_DIGIT(mp, used) = carry; | |
| 3233 } | |
| 3234 CLEANUP: | |
| 3235 return res; | |
| 3236 #endif | |
| 3237 } /* end s_mp_add_d() */ | |
| 3238 | |
| 3239 /* }}} */ | |
| 3240 | |
| 3241 /* {{{ s_mp_sub_d(mp, d) */ | |
| 3242 | |
| 3243 /* Subtract d from |mp| in place, assumes |mp| > d */ | |
| 3244 mp_err s_mp_sub_d(mp_int *mp, mp_digit d) /* unsigned digit subtract */ | |
| 3245 { | |
| 3246 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) | |
| 3247 mp_word w, b = 0; | |
| 3248 mp_size ix = 1; | |
| 3249 | |
| 3250 /* Compute initial subtraction */ | |
| 3251 w = (RADIX + (mp_word)DIGIT(mp, 0)) - d; | |
| 3252 b = CARRYOUT(w) ? 0 : 1; | |
| 3253 DIGIT(mp, 0) = ACCUM(w); | |
| 3254 | |
| 3255 /* Propagate borrows leftward */ | |
| 3256 while(b && ix < USED(mp)) { | |
| 3257 w = (RADIX + (mp_word)DIGIT(mp, ix)) - b; | |
| 3258 b = CARRYOUT(w) ? 0 : 1; | |
| 3259 DIGIT(mp, ix) = ACCUM(w); | |
| 3260 ++ix; | |
| 3261 } | |
| 3262 | |
| 3263 /* Remove leading zeroes */ | |
| 3264 s_mp_clamp(mp); | |
| 3265 | |
| 3266 /* If we have a borrow out, it's a violation of the input invariant */ | |
| 3267 if(b) | |
| 3268 return MP_RANGE; | |
| 3269 else | |
| 3270 return MP_OKAY; | |
| 3271 #else | |
| 3272 mp_digit *pmp = MP_DIGITS(mp); | |
| 3273 mp_digit mp_i, diff, borrow; | |
| 3274 mp_size used = MP_USED(mp); | |
| 3275 | |
| 3276 mp_i = *pmp; | |
| 3277 *pmp++ = diff = mp_i - d; | |
| 3278 borrow = (diff > mp_i); | |
| 3279 while (borrow && --used) { | |
| 3280 mp_i = *pmp; | |
| 3281 *pmp++ = diff = mp_i - borrow; | |
| 3282 borrow = (diff > mp_i); | |
| 3283 } | |
| 3284 s_mp_clamp(mp); | |
| 3285 return (borrow && !used) ? MP_RANGE : MP_OKAY; | |
| 3286 #endif | |
| 3287 } /* end s_mp_sub_d() */ | |
| 3288 | |
| 3289 /* }}} */ | |
| 3290 | |
| 3291 /* {{{ s_mp_mul_d(a, d) */ | |
| 3292 | |
| 3293 /* Compute a = a * d, single digit multiplication */ | |
| 3294 mp_err s_mp_mul_d(mp_int *a, mp_digit d) | |
| 3295 { | |
| 3296 mp_err res; | |
| 3297 mp_size used; | |
| 3298 int pow; | |
| 3299 | |
| 3300 if (!d) { | |
| 3301 mp_zero(a); | |
| 3302 return MP_OKAY; | |
| 3303 } | |
| 3304 if (d == 1) | |
| 3305 return MP_OKAY; | |
| 3306 if (0 <= (pow = s_mp_ispow2d(d))) { | |
| 3307 return s_mp_mul_2d(a, (mp_digit)pow); | |
| 3308 } | |
| 3309 | |
| 3310 used = MP_USED(a); | |
| 3311 MP_CHECKOK( s_mp_pad(a, used + 1) ); | |
| 3312 | |
| 3313 s_mpv_mul_d(MP_DIGITS(a), used, d, MP_DIGITS(a)); | |
| 3314 | |
| 3315 s_mp_clamp(a); | |
| 3316 | |
| 3317 CLEANUP: | |
| 3318 return res; | |
| 3319 | |
| 3320 } /* end s_mp_mul_d() */ | |
| 3321 | |
| 3322 /* }}} */ | |
| 3323 | |
| 3324 /* {{{ s_mp_div_d(mp, d, r) */ | |
| 3325 | |
| 3326 /* | |
| 3327 s_mp_div_d(mp, d, r) | |
| 3328 | |
| 3329 Compute the quotient mp = mp / d and remainder r = mp mod d, for a | |
| 3330 single digit d. If r is null, the remainder will be discarded. | |
| 3331 */ | |
| 3332 | |
| 3333 mp_err s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r) | |
| 3334 { | |
| 3335 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_DIV_WORD) | |
| 3336 mp_word w = 0, q; | |
| 3337 #else | |
| 3338 mp_digit w, q; | |
| 3339 #endif | |
| 3340 int ix; | |
| 3341 mp_err res; | |
| 3342 mp_int quot; | |
| 3343 mp_int rem; | |
| 3344 | |
| 3345 if(d == 0) | |
| 3346 return MP_RANGE; | |
| 3347 if (d == 1) { | |
| 3348 if (r) | |
| 3349 *r = 0; | |
| 3350 return MP_OKAY; | |
| 3351 } | |
| 3352 /* could check for power of 2 here, but mp_div_d does that. */ | |
| 3353 if (MP_USED(mp) == 1) { | |
| 3354 mp_digit n = MP_DIGIT(mp,0); | |
| 3355 mp_digit rem; | |
| 3356 | |
| 3357 q = n / d; | |
| 3358 rem = n % d; | |
| 3359 MP_DIGIT(mp,0) = q; | |
| 3360 if (r) | |
| 3361 *r = rem; | |
| 3362 return MP_OKAY; | |
| 3363 } | |
| 3364 | |
| 3365 MP_DIGITS(&rem) = 0; | |
| 3366 MP_DIGITS(") = 0; | |
| 3367 /* Make room for the quotient */ | |
| 3368 MP_CHECKOK( mp_init_size(", USED(mp)) ); | |
| 3369 | |
| 3370 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_DIV_WORD) | |
| 3371 for(ix = USED(mp) - 1; ix >= 0; ix--) { | |
| 3372 w = (w << DIGIT_BIT) | DIGIT(mp, ix); | |
| 3373 | |
| 3374 if(w >= d) { | |
| 3375 q = w / d; | |
| 3376 w = w % d; | |
| 3377 } else { | |
| 3378 q = 0; | |
| 3379 } | |
| 3380 | |
| 3381 s_mp_lshd(", 1); | |
| 3382 DIGIT(", 0) = (mp_digit)q; | |
| 3383 } | |
| 3384 #else | |
| 3385 { | |
| 3386 mp_digit p; | |
| 3387 #if !defined(MP_ASSEMBLY_DIV_2DX1D) | |
| 3388 mp_digit norm; | |
| 3389 #endif | |
| 3390 | |
| 3391 MP_CHECKOK( mp_init_copy(&rem, mp) ); | |
| 3392 | |
| 3393 #if !defined(MP_ASSEMBLY_DIV_2DX1D) | |
| 3394 MP_DIGIT(", 0) = d; | |
| 3395 MP_CHECKOK( s_mp_norm(&rem, ", &norm) ); | |
| 3396 if (norm) | |
| 3397 d <<= norm; | |
| 3398 MP_DIGIT(", 0) = 0; | |
| 3399 #endif | |
| 3400 | |
| 3401 p = 0; | |
| 3402 for (ix = USED(&rem) - 1; ix >= 0; ix--) { | |
| 3403 w = DIGIT(&rem, ix); | |
| 3404 | |
| 3405 if (p) { | |
| 3406 MP_CHECKOK( s_mpv_div_2dx1d(p, w, d, &q, &w) ); | |
| 3407 } else if (w >= d) { | |
| 3408 q = w / d; | |
| 3409 w = w % d; | |
| 3410 } else { | |
| 3411 q = 0; | |
| 3412 } | |
| 3413 | |
| 3414 MP_CHECKOK( s_mp_lshd(", 1) ); | |
| 3415 DIGIT(", 0) = q; | |
| 3416 p = w; | |
| 3417 } | |
| 3418 #if !defined(MP_ASSEMBLY_DIV_2DX1D) | |
| 3419 if (norm) | |
| 3420 w >>= norm; | |
| 3421 #endif | |
| 3422 } | |
| 3423 #endif | |
| 3424 | |
| 3425 /* Deliver the remainder, if desired */ | |
| 3426 if(r) | |
| 3427 *r = (mp_digit)w; | |
| 3428 | |
| 3429 s_mp_clamp("); | |
| 3430 mp_exch(", mp); | |
| 3431 CLEANUP: | |
| 3432 mp_clear("); | |
| 3433 mp_clear(&rem); | |
| 3434 | |
| 3435 return res; | |
| 3436 } /* end s_mp_div_d() */ | |
| 3437 | |
| 3438 /* }}} */ | |
| 3439 | |
| 3440 | |
| 3441 /* }}} */ | |
| 3442 | |
| 3443 /* {{{ Primitive full arithmetic */ | |
| 3444 | |
| 3445 /* {{{ s_mp_add(a, b) */ | |
| 3446 | |
| 3447 /* Compute a = |a| + |b| */ | |
| 3448 mp_err s_mp_add(mp_int *a, const mp_int *b) /* magnitude addition */ | |
| 3449 { | |
| 3450 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) | |
| 3451 mp_word w = 0; | |
| 3452 #else | |
| 3453 mp_digit d, sum, carry = 0; | |
| 3454 #endif | |
| 3455 mp_digit *pa, *pb; | |
| 3456 mp_size ix; | |
| 3457 mp_size used; | |
| 3458 mp_err res; | |
| 3459 | |
| 3460 /* Make sure a has enough precision for the output value */ | |
| 3461 if((USED(b) > USED(a)) && (res = s_mp_pad(a, USED(b))) != MP_OKAY) | |
| 3462 return res; | |
| 3463 | |
| 3464 /* | |
| 3465 Add up all digits up to the precision of b. If b had initially | |
| 3466 the same precision as a, or greater, we took care of it by the | |
| 3467 padding step above, so there is no problem. If b had initially | |
| 3468 less precision, we'll have to make sure the carry out is duly | |
| 3469 propagated upward among the higher-order digits of the sum. | |
| 3470 */ | |
| 3471 pa = MP_DIGITS(a); | |
| 3472 pb = MP_DIGITS(b); | |
| 3473 used = MP_USED(b); | |
| 3474 for(ix = 0; ix < used; ix++) { | |
| 3475 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) | |
| 3476 w = w + *pa + *pb++; | |
| 3477 *pa++ = ACCUM(w); | |
| 3478 w = CARRYOUT(w); | |
| 3479 #else | |
| 3480 d = *pa; | |
| 3481 sum = d + *pb++; | |
| 3482 d = (sum < d); /* detect overflow */ | |
| 3483 *pa++ = sum += carry; | |
| 3484 carry = d + (sum < carry); /* detect overflow */ | |
| 3485 #endif | |
| 3486 } | |
| 3487 | |
| 3488 /* If we run out of 'b' digits before we're actually done, make | |
| 3489 sure the carries get propagated upward... | |
| 3490 */ | |
| 3491 used = MP_USED(a); | |
| 3492 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) | |
| 3493 while (w && ix < used) { | |
| 3494 w = w + *pa; | |
| 3495 *pa++ = ACCUM(w); | |
| 3496 w = CARRYOUT(w); | |
| 3497 ++ix; | |
| 3498 } | |
| 3499 #else | |
| 3500 while (carry && ix < used) { | |
| 3501 sum = carry + *pa; | |
| 3502 *pa++ = sum; | |
| 3503 carry = !sum; | |
| 3504 ++ix; | |
| 3505 } | |
| 3506 #endif | |
| 3507 | |
| 3508 /* If there's an overall carry out, increase precision and include | |
| 3509 it. We could have done this initially, but why touch the memory | |
| 3510 allocator unless we're sure we have to? | |
| 3511 */ | |
| 3512 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) | |
| 3513 if (w) { | |
| 3514 if((res = s_mp_pad(a, used + 1)) != MP_OKAY) | |
| 3515 return res; | |
| 3516 | |
| 3517 DIGIT(a, ix) = (mp_digit)w; | |
| 3518 } | |
| 3519 #else | |
| 3520 if (carry) { | |
| 3521 if((res = s_mp_pad(a, used + 1)) != MP_OKAY) | |
| 3522 return res; | |
| 3523 | |
| 3524 DIGIT(a, used) = carry; | |
| 3525 } | |
| 3526 #endif | |
| 3527 | |
| 3528 return MP_OKAY; | |
| 3529 } /* end s_mp_add() */ | |
| 3530 | |
| 3531 /* }}} */ | |
| 3532 | |
| 3533 /* Compute c = |a| + |b| */ /* magnitude addition */ | |
| 3534 mp_err s_mp_add_3arg(const mp_int *a, const mp_int *b, mp_int *c) | |
| 3535 { | |
| 3536 mp_digit *pa, *pb, *pc; | |
| 3537 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) | |
| 3538 mp_word w = 0; | |
| 3539 #else | |
| 3540 mp_digit sum, carry = 0, d; | |
| 3541 #endif | |
| 3542 mp_size ix; | |
| 3543 mp_size used; | |
| 3544 mp_err res; | |
| 3545 | |
| 3546 MP_SIGN(c) = MP_SIGN(a); | |
| 3547 if (MP_USED(a) < MP_USED(b)) { | |
| 3548 const mp_int *xch = a; | |
| 3549 a = b; | |
| 3550 b = xch; | |
| 3551 } | |
| 3552 | |
| 3553 /* Make sure a has enough precision for the output value */ | |
| 3554 if (MP_OKAY != (res = s_mp_pad(c, MP_USED(a)))) | |
| 3555 return res; | |
| 3556 | |
| 3557 /* | |
| 3558 Add up all digits up to the precision of b. If b had initially | |
| 3559 the same precision as a, or greater, we took care of it by the | |
| 3560 exchange step above, so there is no problem. If b had initially | |
| 3561 less precision, we'll have to make sure the carry out is duly | |
| 3562 propagated upward among the higher-order digits of the sum. | |
| 3563 */ | |
| 3564 pa = MP_DIGITS(a); | |
| 3565 pb = MP_DIGITS(b); | |
| 3566 pc = MP_DIGITS(c); | |
| 3567 used = MP_USED(b); | |
| 3568 for (ix = 0; ix < used; ix++) { | |
| 3569 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) | |
| 3570 w = w + *pa++ + *pb++; | |
| 3571 *pc++ = ACCUM(w); | |
| 3572 w = CARRYOUT(w); | |
| 3573 #else | |
| 3574 d = *pa++; | |
| 3575 sum = d + *pb++; | |
| 3576 d = (sum < d); /* detect overflow */ | |
| 3577 *pc++ = sum += carry; | |
| 3578 carry = d + (sum < carry); /* detect overflow */ | |
| 3579 #endif | |
| 3580 } | |
| 3581 | |
| 3582 /* If we run out of 'b' digits before we're actually done, make | |
| 3583 sure the carries get propagated upward... | |
| 3584 */ | |
| 3585 for (used = MP_USED(a); ix < used; ++ix) { | |
| 3586 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) | |
| 3587 w = w + *pa++; | |
| 3588 *pc++ = ACCUM(w); | |
| 3589 w = CARRYOUT(w); | |
| 3590 #else | |
| 3591 *pc++ = sum = carry + *pa++; | |
| 3592 carry = (sum < carry); | |
| 3593 #endif | |
| 3594 } | |
| 3595 | |
| 3596 /* If there's an overall carry out, increase precision and include | |
| 3597 it. We could have done this initially, but why touch the memory | |
| 3598 allocator unless we're sure we have to? | |
| 3599 */ | |
| 3600 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) | |
| 3601 if (w) { | |
| 3602 if((res = s_mp_pad(c, used + 1)) != MP_OKAY) | |
| 3603 return res; | |
| 3604 | |
| 3605 DIGIT(c, used) = (mp_digit)w; | |
| 3606 ++used; | |
| 3607 } | |
| 3608 #else | |
| 3609 if (carry) { | |
| 3610 if((res = s_mp_pad(c, used + 1)) != MP_OKAY) | |
| 3611 return res; | |
| 3612 | |
| 3613 DIGIT(c, used) = carry; | |
| 3614 ++used; | |
| 3615 } | |
| 3616 #endif | |
| 3617 MP_USED(c) = used; | |
| 3618 return MP_OKAY; | |
| 3619 } | |
| 3620 /* {{{ s_mp_add_offset(a, b, offset) */ | |
| 3621 | |
| 3622 /* Compute a = |a| + ( |b| * (RADIX ** offset) ) */ | |
| 3623 mp_err s_mp_add_offset(mp_int *a, mp_int *b, mp_size offset) | |
| 3624 { | |
| 3625 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) | |
| 3626 mp_word w, k = 0; | |
| 3627 #else | |
| 3628 mp_digit d, sum, carry = 0; | |
| 3629 #endif | |
| 3630 mp_size ib; | |
| 3631 mp_size ia; | |
| 3632 mp_size lim; | |
| 3633 mp_err res; | |
| 3634 | |
| 3635 /* Make sure a has enough precision for the output value */ | |
| 3636 lim = MP_USED(b) + offset; | |
| 3637 if((lim > USED(a)) && (res = s_mp_pad(a, lim)) != MP_OKAY) | |
| 3638 return res; | |
| 3639 | |
| 3640 /* | |
| 3641 Add up all digits up to the precision of b. If b had initially | |
| 3642 the same precision as a, or greater, we took care of it by the | |
| 3643 padding step above, so there is no problem. If b had initially | |
| 3644 less precision, we'll have to make sure the carry out is duly | |
| 3645 propagated upward among the higher-order digits of the sum. | |
| 3646 */ | |
| 3647 lim = USED(b); | |
| 3648 for(ib = 0, ia = offset; ib < lim; ib++, ia++) { | |
| 3649 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) | |
| 3650 w = (mp_word)DIGIT(a, ia) + DIGIT(b, ib) + k; | |
| 3651 DIGIT(a, ia) = ACCUM(w); | |
| 3652 k = CARRYOUT(w); | |
| 3653 #else | |
| 3654 d = MP_DIGIT(a, ia); | |
| 3655 sum = d + MP_DIGIT(b, ib); | |
| 3656 d = (sum < d); | |
| 3657 MP_DIGIT(a,ia) = sum += carry; | |
| 3658 carry = d + (sum < carry); | |
| 3659 #endif | |
| 3660 } | |
| 3661 | |
| 3662 /* If we run out of 'b' digits before we're actually done, make | |
| 3663 sure the carries get propagated upward... | |
| 3664 */ | |
| 3665 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) | |
| 3666 for (lim = MP_USED(a); k && (ia < lim); ++ia) { | |
| 3667 w = (mp_word)DIGIT(a, ia) + k; | |
| 3668 DIGIT(a, ia) = ACCUM(w); | |
| 3669 k = CARRYOUT(w); | |
| 3670 } | |
| 3671 #else | |
| 3672 for (lim = MP_USED(a); carry && (ia < lim); ++ia) { | |
| 3673 d = MP_DIGIT(a, ia); | |
| 3674 MP_DIGIT(a,ia) = sum = d + carry; | |
| 3675 carry = (sum < d); | |
| 3676 } | |
| 3677 #endif | |
| 3678 | |
| 3679 /* If there's an overall carry out, increase precision and include | |
| 3680 it. We could have done this initially, but why touch the memory | |
| 3681 allocator unless we're sure we have to? | |
| 3682 */ | |
| 3683 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) | |
| 3684 if(k) { | |
| 3685 if((res = s_mp_pad(a, USED(a) + 1)) != MP_OKAY) | |
| 3686 return res; | |
| 3687 | |
| 3688 DIGIT(a, ia) = (mp_digit)k; | |
| 3689 } | |
| 3690 #else | |
| 3691 if (carry) { | |
| 3692 if((res = s_mp_pad(a, lim + 1)) != MP_OKAY) | |
| 3693 return res; | |
| 3694 | |
| 3695 DIGIT(a, lim) = carry; | |
| 3696 } | |
| 3697 #endif | |
| 3698 s_mp_clamp(a); | |
| 3699 | |
| 3700 return MP_OKAY; | |
| 3701 | |
| 3702 } /* end s_mp_add_offset() */ | |
| 3703 | |
| 3704 /* }}} */ | |
| 3705 | |
| 3706 /* {{{ s_mp_sub(a, b) */ | |
| 3707 | |
| 3708 /* Compute a = |a| - |b|, assumes |a| >= |b| */ | |
| 3709 mp_err s_mp_sub(mp_int *a, const mp_int *b) /* magnitude subtract */ | |
| 3710 { | |
| 3711 mp_digit *pa, *pb, *limit; | |
| 3712 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) | |
| 3713 mp_sword w = 0; | |
| 3714 #else | |
| 3715 mp_digit d, diff, borrow = 0; | |
| 3716 #endif | |
| 3717 | |
| 3718 /* | |
| 3719 Subtract and propagate borrow. Up to the precision of b, this | |
| 3720 accounts for the digits of b; after that, we just make sure the | |
| 3721 carries get to the right place. This saves having to pad b out to | |
| 3722 the precision of a just to make the loops work right... | |
| 3723 */ | |
| 3724 pa = MP_DIGITS(a); | |
| 3725 pb = MP_DIGITS(b); | |
| 3726 limit = pb + MP_USED(b); | |
| 3727 while (pb < limit) { | |
| 3728 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) | |
| 3729 w = w + *pa - *pb++; | |
| 3730 *pa++ = ACCUM(w); | |
| 3731 w >>= MP_DIGIT_BIT; | |
| 3732 #else | |
| 3733 d = *pa; | |
| 3734 diff = d - *pb++; | |
| 3735 d = (diff > d); /* detect borrow */ | |
| 3736 if (borrow && --diff == MP_DIGIT_MAX) | |
| 3737 ++d; | |
| 3738 *pa++ = diff; | |
| 3739 borrow = d; | |
| 3740 #endif | |
| 3741 } | |
| 3742 limit = MP_DIGITS(a) + MP_USED(a); | |
| 3743 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) | |
| 3744 while (w && pa < limit) { | |
| 3745 w = w + *pa; | |
| 3746 *pa++ = ACCUM(w); | |
| 3747 w >>= MP_DIGIT_BIT; | |
| 3748 } | |
| 3749 #else | |
| 3750 while (borrow && pa < limit) { | |
| 3751 d = *pa; | |
| 3752 *pa++ = diff = d - borrow; | |
| 3753 borrow = (diff > d); | |
| 3754 } | |
| 3755 #endif | |
| 3756 | |
| 3757 /* Clobber any leading zeroes we created */ | |
| 3758 s_mp_clamp(a); | |
| 3759 | |
| 3760 /* | |
| 3761 If there was a borrow out, then |b| > |a| in violation | |
| 3762 of our input invariant. We've already done the work, | |
| 3763 but we'll at least complain about it... | |
| 3764 */ | |
| 3765 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) | |
| 3766 return w ? MP_RANGE : MP_OKAY; | |
| 3767 #else | |
| 3768 return borrow ? MP_RANGE : MP_OKAY; | |
| 3769 #endif | |
| 3770 } /* end s_mp_sub() */ | |
| 3771 | |
| 3772 /* }}} */ | |
| 3773 | |
| 3774 /* Compute c = |a| - |b|, assumes |a| >= |b| */ /* magnitude subtract */ | |
| 3775 mp_err s_mp_sub_3arg(const mp_int *a, const mp_int *b, mp_int *c) | |
| 3776 { | |
| 3777 mp_digit *pa, *pb, *pc; | |
| 3778 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) | |
| 3779 mp_sword w = 0; | |
| 3780 #else | |
| 3781 mp_digit d, diff, borrow = 0; | |
| 3782 #endif | |
| 3783 int ix, limit; | |
| 3784 mp_err res; | |
| 3785 | |
| 3786 MP_SIGN(c) = MP_SIGN(a); | |
| 3787 | |
| 3788 /* Make sure a has enough precision for the output value */ | |
| 3789 if (MP_OKAY != (res = s_mp_pad(c, MP_USED(a)))) | |
| 3790 return res; | |
| 3791 | |
| 3792 /* | |
| 3793 Subtract and propagate borrow. Up to the precision of b, this | |
| 3794 accounts for the digits of b; after that, we just make sure the | |
| 3795 carries get to the right place. This saves having to pad b out to | |
| 3796 the precision of a just to make the loops work right... | |
| 3797 */ | |
| 3798 pa = MP_DIGITS(a); | |
| 3799 pb = MP_DIGITS(b); | |
| 3800 pc = MP_DIGITS(c); | |
| 3801 limit = MP_USED(b); | |
| 3802 for (ix = 0; ix < limit; ++ix) { | |
| 3803 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) | |
| 3804 w = w + *pa++ - *pb++; | |
| 3805 *pc++ = ACCUM(w); | |
| 3806 w >>= MP_DIGIT_BIT; | |
| 3807 #else | |
| 3808 d = *pa++; | |
| 3809 diff = d - *pb++; | |
| 3810 d = (diff > d); | |
| 3811 if (borrow && --diff == MP_DIGIT_MAX) | |
| 3812 ++d; | |
| 3813 *pc++ = diff; | |
| 3814 borrow = d; | |
| 3815 #endif | |
| 3816 } | |
| 3817 for (limit = MP_USED(a); ix < limit; ++ix) { | |
| 3818 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) | |
| 3819 w = w + *pa++; | |
| 3820 *pc++ = ACCUM(w); | |
| 3821 w >>= MP_DIGIT_BIT; | |
| 3822 #else | |
| 3823 d = *pa++; | |
| 3824 *pc++ = diff = d - borrow; | |
| 3825 borrow = (diff > d); | |
| 3826 #endif | |
| 3827 } | |
| 3828 | |
| 3829 /* Clobber any leading zeroes we created */ | |
| 3830 MP_USED(c) = ix; | |
| 3831 s_mp_clamp(c); | |
| 3832 | |
| 3833 /* | |
| 3834 If there was a borrow out, then |b| > |a| in violation | |
| 3835 of our input invariant. We've already done the work, | |
| 3836 but we'll at least complain about it... | |
| 3837 */ | |
| 3838 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) | |
| 3839 return w ? MP_RANGE : MP_OKAY; | |
| 3840 #else | |
| 3841 return borrow ? MP_RANGE : MP_OKAY; | |
| 3842 #endif | |
| 3843 } | |
| 3844 /* {{{ s_mp_mul(a, b) */ | |
| 3845 | |
| 3846 /* Compute a = |a| * |b| */ | |
| 3847 mp_err s_mp_mul(mp_int *a, const mp_int *b) | |
| 3848 { | |
| 3849 return mp_mul(a, b, a); | |
| 3850 } /* end s_mp_mul() */ | |
| 3851 | |
| 3852 /* }}} */ | |
| 3853 | |
| 3854 #if defined(MP_USE_UINT_DIGIT) && defined(MP_USE_LONG_LONG_MULTIPLY) | |
| 3855 /* This trick works on Sparc V8 CPUs with the Workshop compilers. */ | |
| 3856 #define MP_MUL_DxD(a, b, Phi, Plo) \ | |
| 3857 { unsigned long long product = (unsigned long long)a * b; \ | |
| 3858 Plo = (mp_digit)product; \ | |
| 3859 Phi = (mp_digit)(product >> MP_DIGIT_BIT); } | |
| 3860 #elif defined(OSF1) | |
| 3861 #define MP_MUL_DxD(a, b, Phi, Plo) \ | |
| 3862 { Plo = asm ("mulq %a0, %a1, %v0", a, b);\ | |
| 3863 Phi = asm ("umulh %a0, %a1, %v0", a, b); } | |
| 3864 #else | |
| 3865 #define MP_MUL_DxD(a, b, Phi, Plo) \ | |
| 3866 { mp_digit a0b1, a1b0; \ | |
| 3867 Plo = (a & MP_HALF_DIGIT_MAX) * (b & MP_HALF_DIGIT_MAX); \ | |
| 3868 Phi = (a >> MP_HALF_DIGIT_BIT) * (b >> MP_HALF_DIGIT_BIT); \ | |
| 3869 a0b1 = (a & MP_HALF_DIGIT_MAX) * (b >> MP_HALF_DIGIT_BIT); \ | |
| 3870 a1b0 = (a >> MP_HALF_DIGIT_BIT) * (b & MP_HALF_DIGIT_MAX); \ | |
| 3871 a1b0 += a0b1; \ | |
| 3872 Phi += a1b0 >> MP_HALF_DIGIT_BIT; \ | |
| 3873 if (a1b0 < a0b1) \ | |
| 3874 Phi += MP_HALF_RADIX; \ | |
| 3875 a1b0 <<= MP_HALF_DIGIT_BIT; \ | |
| 3876 Plo += a1b0; \ | |
| 3877 if (Plo < a1b0) \ | |
| 3878 ++Phi; \ | |
| 3879 } | |
| 3880 #endif | |
| 3881 | |
| 3882 #if !defined(MP_ASSEMBLY_MULTIPLY) | |
| 3883 /* c = a * b */ | |
| 3884 void s_mpv_mul_d(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *c) | |
| 3885 { | |
| 3886 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_MUL_WORD) | |
| 3887 mp_digit d = 0; | |
| 3888 | |
| 3889 /* Inner product: Digits of a */ | |
| 3890 while (a_len--) { | |
| 3891 mp_word w = ((mp_word)b * *a++) + d; | |
| 3892 *c++ = ACCUM(w); | |
| 3893 d = CARRYOUT(w); | |
| 3894 } | |
| 3895 *c = d; | |
| 3896 #else | |
| 3897 mp_digit carry = 0; | |
| 3898 while (a_len--) { | |
| 3899 mp_digit a_i = *a++; | |
| 3900 mp_digit a0b0, a1b1; | |
| 3901 | |
| 3902 MP_MUL_DxD(a_i, b, a1b1, a0b0); | |
| 3903 | |
| 3904 a0b0 += carry; | |
| 3905 if (a0b0 < carry) | |
| 3906 ++a1b1; | |
| 3907 *c++ = a0b0; | |
| 3908 carry = a1b1; | |
| 3909 } | |
| 3910 *c = carry; | |
| 3911 #endif | |
| 3912 } | |
| 3913 | |
| 3914 /* c += a * b */ | |
| 3915 void s_mpv_mul_d_add(const mp_digit *a, mp_size a_len, mp_digit b, | |
| 3916 mp_digit *c) | |
| 3917 { | |
| 3918 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_MUL_WORD) | |
| 3919 mp_digit d = 0; | |
| 3920 | |
| 3921 /* Inner product: Digits of a */ | |
| 3922 while (a_len--) { | |
| 3923 mp_word w = ((mp_word)b * *a++) + *c + d; | |
| 3924 *c++ = ACCUM(w); | |
| 3925 d = CARRYOUT(w); | |
| 3926 } | |
| 3927 *c = d; | |
| 3928 #else | |
| 3929 mp_digit carry = 0; | |
| 3930 while (a_len--) { | |
| 3931 mp_digit a_i = *a++; | |
| 3932 mp_digit a0b0, a1b1; | |
| 3933 | |
| 3934 MP_MUL_DxD(a_i, b, a1b1, a0b0); | |
| 3935 | |
| 3936 a0b0 += carry; | |
| 3937 if (a0b0 < carry) | |
| 3938 ++a1b1; | |
| 3939 a0b0 += a_i = *c; | |
| 3940 if (a0b0 < a_i) | |
| 3941 ++a1b1; | |
| 3942 *c++ = a0b0; | |
| 3943 carry = a1b1; | |
| 3944 } | |
| 3945 *c = carry; | |
| 3946 #endif | |
| 3947 } | |
| 3948 | |
| 3949 /* Presently, this is only used by the Montgomery arithmetic code. */ | |
| 3950 /* c += a * b */ | |
| 3951 void s_mpv_mul_d_add_prop(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit
*c) | |
| 3952 { | |
| 3953 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_MUL_WORD) | |
| 3954 mp_digit d = 0; | |
| 3955 | |
| 3956 /* Inner product: Digits of a */ | |
| 3957 while (a_len--) { | |
| 3958 mp_word w = ((mp_word)b * *a++) + *c + d; | |
| 3959 *c++ = ACCUM(w); | |
| 3960 d = CARRYOUT(w); | |
| 3961 } | |
| 3962 | |
| 3963 while (d) { | |
| 3964 mp_word w = (mp_word)*c + d; | |
| 3965 *c++ = ACCUM(w); | |
| 3966 d = CARRYOUT(w); | |
| 3967 } | |
| 3968 #else | |
| 3969 mp_digit carry = 0; | |
| 3970 while (a_len--) { | |
| 3971 mp_digit a_i = *a++; | |
| 3972 mp_digit a0b0, a1b1; | |
| 3973 | |
| 3974 MP_MUL_DxD(a_i, b, a1b1, a0b0); | |
| 3975 | |
| 3976 a0b0 += carry; | |
| 3977 if (a0b0 < carry) | |
| 3978 ++a1b1; | |
| 3979 | |
| 3980 a0b0 += a_i = *c; | |
| 3981 if (a0b0 < a_i) | |
| 3982 ++a1b1; | |
| 3983 | |
| 3984 *c++ = a0b0; | |
| 3985 carry = a1b1; | |
| 3986 } | |
| 3987 while (carry) { | |
| 3988 mp_digit c_i = *c; | |
| 3989 carry += c_i; | |
| 3990 *c++ = carry; | |
| 3991 carry = carry < c_i; | |
| 3992 } | |
| 3993 #endif | |
| 3994 } | |
| 3995 #endif | |
| 3996 | |
| 3997 #if defined(MP_USE_UINT_DIGIT) && defined(MP_USE_LONG_LONG_MULTIPLY) | |
| 3998 /* This trick works on Sparc V8 CPUs with the Workshop compilers. */ | |
| 3999 #define MP_SQR_D(a, Phi, Plo) \ | |
| 4000 { unsigned long long square = (unsigned long long)a * a; \ | |
| 4001 Plo = (mp_digit)square; \ | |
| 4002 Phi = (mp_digit)(square >> MP_DIGIT_BIT); } | |
| 4003 #elif defined(OSF1) | |
| 4004 #define MP_SQR_D(a, Phi, Plo) \ | |
| 4005 { Plo = asm ("mulq %a0, %a0, %v0", a);\ | |
| 4006 Phi = asm ("umulh %a0, %a0, %v0", a); } | |
| 4007 #else | |
| 4008 #define MP_SQR_D(a, Phi, Plo) \ | |
| 4009 { mp_digit Pmid; \ | |
| 4010 Plo = (a & MP_HALF_DIGIT_MAX) * (a & MP_HALF_DIGIT_MAX); \ | |
| 4011 Phi = (a >> MP_HALF_DIGIT_BIT) * (a >> MP_HALF_DIGIT_BIT); \ | |
| 4012 Pmid = (a & MP_HALF_DIGIT_MAX) * (a >> MP_HALF_DIGIT_BIT); \ | |
| 4013 Phi += Pmid >> (MP_HALF_DIGIT_BIT - 1); \ | |
| 4014 Pmid <<= (MP_HALF_DIGIT_BIT + 1); \ | |
| 4015 Plo += Pmid; \ | |
| 4016 if (Plo < Pmid) \ | |
| 4017 ++Phi; \ | |
| 4018 } | |
| 4019 #endif | |
| 4020 | |
| 4021 #if !defined(MP_ASSEMBLY_SQUARE) | |
| 4022 /* Add the squares of the digits of a to the digits of b. */ | |
| 4023 void s_mpv_sqr_add_prop(const mp_digit *pa, mp_size a_len, mp_digit *ps) | |
| 4024 { | |
| 4025 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_MUL_WORD) | |
| 4026 mp_word w; | |
| 4027 mp_digit d; | |
| 4028 mp_size ix; | |
| 4029 | |
| 4030 w = 0; | |
| 4031 #define ADD_SQUARE(n) \ | |
| 4032 d = pa[n]; \ | |
| 4033 w += (d * (mp_word)d) + ps[2*n]; \ | |
| 4034 ps[2*n] = ACCUM(w); \ | |
| 4035 w = (w >> DIGIT_BIT) + ps[2*n+1]; \ | |
| 4036 ps[2*n+1] = ACCUM(w); \ | |
| 4037 w = (w >> DIGIT_BIT) | |
| 4038 | |
| 4039 for (ix = a_len; ix >= 4; ix -= 4) { | |
| 4040 ADD_SQUARE(0); | |
| 4041 ADD_SQUARE(1); | |
| 4042 ADD_SQUARE(2); | |
| 4043 ADD_SQUARE(3); | |
| 4044 pa += 4; | |
| 4045 ps += 8; | |
| 4046 } | |
| 4047 if (ix) { | |
| 4048 ps += 2*ix; | |
| 4049 pa += ix; | |
| 4050 switch (ix) { | |
| 4051 case 3: ADD_SQUARE(-3); /* FALLTHRU */ | |
| 4052 case 2: ADD_SQUARE(-2); /* FALLTHRU */ | |
| 4053 case 1: ADD_SQUARE(-1); /* FALLTHRU */ | |
| 4054 case 0: break; | |
| 4055 } | |
| 4056 } | |
| 4057 while (w) { | |
| 4058 w += *ps; | |
| 4059 *ps++ = ACCUM(w); | |
| 4060 w = (w >> DIGIT_BIT); | |
| 4061 } | |
| 4062 #else | |
| 4063 mp_digit carry = 0; | |
| 4064 while (a_len--) { | |
| 4065 mp_digit a_i = *pa++; | |
| 4066 mp_digit a0a0, a1a1; | |
| 4067 | |
| 4068 MP_SQR_D(a_i, a1a1, a0a0); | |
| 4069 | |
| 4070 /* here a1a1 and a0a0 constitute a_i ** 2 */ | |
| 4071 a0a0 += carry; | |
| 4072 if (a0a0 < carry) | |
| 4073 ++a1a1; | |
| 4074 | |
| 4075 /* now add to ps */ | |
| 4076 a0a0 += a_i = *ps; | |
| 4077 if (a0a0 < a_i) | |
| 4078 ++a1a1; | |
| 4079 *ps++ = a0a0; | |
| 4080 a1a1 += a_i = *ps; | |
| 4081 carry = (a1a1 < a_i); | |
| 4082 *ps++ = a1a1; | |
| 4083 } | |
| 4084 while (carry) { | |
| 4085 mp_digit s_i = *ps; | |
| 4086 carry += s_i; | |
| 4087 *ps++ = carry; | |
| 4088 carry = carry < s_i; | |
| 4089 } | |
| 4090 #endif | |
| 4091 } | |
| 4092 #endif | |
| 4093 | |
| 4094 #if (defined(MP_NO_MP_WORD) || defined(MP_NO_DIV_WORD)) \ | |
| 4095 && !defined(MP_ASSEMBLY_DIV_2DX1D) | |
| 4096 /* | |
| 4097 ** Divide 64-bit (Nhi,Nlo) by 32-bit divisor, which must be normalized | |
| 4098 ** so its high bit is 1. This code is from NSPR. | |
| 4099 */ | |
| 4100 mp_err s_mpv_div_2dx1d(mp_digit Nhi, mp_digit Nlo, mp_digit divisor, | |
| 4101 mp_digit *qp, mp_digit *rp) | |
| 4102 { | |
| 4103 mp_digit d1, d0, q1, q0; | |
| 4104 mp_digit r1, r0, m; | |
| 4105 | |
| 4106 d1 = divisor >> MP_HALF_DIGIT_BIT; | |
| 4107 d0 = divisor & MP_HALF_DIGIT_MAX; | |
| 4108 r1 = Nhi % d1; | |
| 4109 q1 = Nhi / d1; | |
| 4110 m = q1 * d0; | |
| 4111 r1 = (r1 << MP_HALF_DIGIT_BIT) | (Nlo >> MP_HALF_DIGIT_BIT); | |
| 4112 if (r1 < m) { | |
| 4113 q1--, r1 += divisor; | |
| 4114 if (r1 >= divisor && r1 < m) { | |
| 4115 q1--, r1 += divisor; | |
| 4116 } | |
| 4117 } | |
| 4118 r1 -= m; | |
| 4119 r0 = r1 % d1; | |
| 4120 q0 = r1 / d1; | |
| 4121 m = q0 * d0; | |
| 4122 r0 = (r0 << MP_HALF_DIGIT_BIT) | (Nlo & MP_HALF_DIGIT_MAX); | |
| 4123 if (r0 < m) { | |
| 4124 q0--, r0 += divisor; | |
| 4125 if (r0 >= divisor && r0 < m) { | |
| 4126 q0--, r0 += divisor; | |
| 4127 } | |
| 4128 } | |
| 4129 if (qp) | |
| 4130 *qp = (q1 << MP_HALF_DIGIT_BIT) | q0; | |
| 4131 if (rp) | |
| 4132 *rp = r0 - m; | |
| 4133 return MP_OKAY; | |
| 4134 } | |
| 4135 #endif | |
| 4136 | |
| 4137 #if MP_SQUARE | |
| 4138 /* {{{ s_mp_sqr(a) */ | |
| 4139 | |
| 4140 mp_err s_mp_sqr(mp_int *a) | |
| 4141 { | |
| 4142 mp_err res; | |
| 4143 mp_int tmp; | |
| 4144 | |
| 4145 if((res = mp_init_size(&tmp, 2 * USED(a))) != MP_OKAY) | |
| 4146 return res; | |
| 4147 res = mp_sqr(a, &tmp); | |
| 4148 if (res == MP_OKAY) { | |
| 4149 s_mp_exch(&tmp, a); | |
| 4150 } | |
| 4151 mp_clear(&tmp); | |
| 4152 return res; | |
| 4153 } | |
| 4154 | |
| 4155 /* }}} */ | |
| 4156 #endif | |
| 4157 | |
| 4158 /* {{{ s_mp_div(a, b) */ | |
| 4159 | |
| 4160 /* | |
| 4161 s_mp_div(a, b) | |
| 4162 | |
| 4163 Compute a = a / b and b = a mod b. Assumes b > a. | |
| 4164 */ | |
| 4165 | |
| 4166 mp_err s_mp_div(mp_int *rem, /* i: dividend, o: remainder */ | |
| 4167 mp_int *div, /* i: divisor */ | |
| 4168 mp_int *quot) /* i: 0; o: quotient */ | |
| 4169 { | |
| 4170 mp_int part, t; | |
| 4171 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_DIV_WORD) | |
| 4172 mp_word q_msd; | |
| 4173 #else | |
| 4174 mp_digit q_msd; | |
| 4175 #endif | |
| 4176 mp_err res; | |
| 4177 mp_digit d; | |
| 4178 mp_digit div_msd; | |
| 4179 int ix; | |
| 4180 | |
| 4181 if(mp_cmp_z(div) == 0) | |
| 4182 return MP_RANGE; | |
| 4183 | |
| 4184 DIGITS(&t) = 0; | |
| 4185 /* Shortcut if divisor is power of two */ | |
| 4186 if((ix = s_mp_ispow2(div)) >= 0) { | |
| 4187 MP_CHECKOK( mp_copy(rem, quot) ); | |
| 4188 s_mp_div_2d(quot, (mp_digit)ix); | |
| 4189 s_mp_mod_2d(rem, (mp_digit)ix); | |
| 4190 | |
| 4191 return MP_OKAY; | |
| 4192 } | |
| 4193 | |
| 4194 MP_SIGN(rem) = ZPOS; | |
| 4195 MP_SIGN(div) = ZPOS; | |
| 4196 | |
| 4197 /* A working temporary for division */ | |
| 4198 MP_CHECKOK( mp_init_size(&t, MP_ALLOC(rem))); | |
| 4199 | |
| 4200 /* Normalize to optimize guessing */ | |
| 4201 MP_CHECKOK( s_mp_norm(rem, div, &d) ); | |
| 4202 | |
| 4203 part = *rem; | |
| 4204 | |
| 4205 /* Perform the division itself...woo! */ | |
| 4206 MP_USED(quot) = MP_ALLOC(quot); | |
| 4207 | |
| 4208 /* Find a partial substring of rem which is at least div */ | |
| 4209 /* If we didn't find one, we're finished dividing */ | |
| 4210 while (MP_USED(rem) > MP_USED(div) || s_mp_cmp(rem, div) >= 0) { | |
| 4211 int i; | |
| 4212 int unusedRem; | |
| 4213 | |
| 4214 unusedRem = MP_USED(rem) - MP_USED(div); | |
| 4215 MP_DIGITS(&part) = MP_DIGITS(rem) + unusedRem; | |
| 4216 MP_ALLOC(&part) = MP_ALLOC(rem) - unusedRem; | |
| 4217 MP_USED(&part) = MP_USED(div); | |
| 4218 if (s_mp_cmp(&part, div) < 0) { | |
| 4219 -- unusedRem; | |
| 4220 #if MP_ARGCHK == 2 | |
| 4221 assert(unusedRem >= 0); | |
| 4222 #endif | |
| 4223 -- MP_DIGITS(&part); | |
| 4224 ++ MP_USED(&part); | |
| 4225 ++ MP_ALLOC(&part); | |
| 4226 } | |
| 4227 | |
| 4228 /* Compute a guess for the next quotient digit */ | |
| 4229 q_msd = MP_DIGIT(&part, MP_USED(&part) - 1); | |
| 4230 div_msd = MP_DIGIT(div, MP_USED(div) - 1); | |
| 4231 if (q_msd >= div_msd) { | |
| 4232 q_msd = 1; | |
| 4233 } else if (MP_USED(&part) > 1) { | |
| 4234 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_DIV_WORD) | |
| 4235 q_msd = (q_msd << MP_DIGIT_BIT) | MP_DIGIT(&part, MP_USED(&part) - 2); | |
| 4236 q_msd /= div_msd; | |
| 4237 if (q_msd == RADIX) | |
| 4238 --q_msd; | |
| 4239 #else | |
| 4240 mp_digit r; | |
| 4241 MP_CHECKOK( s_mpv_div_2dx1d(q_msd, MP_DIGIT(&part, MP_USED(&part) - 2), | |
| 4242 div_msd, &q_msd, &r) ); | |
| 4243 #endif | |
| 4244 } else { | |
| 4245 q_msd = 0; | |
| 4246 } | |
| 4247 #if MP_ARGCHK == 2 | |
| 4248 assert(q_msd > 0); /* This case should never occur any more. */ | |
| 4249 #endif | |
| 4250 if (q_msd <= 0) | |
| 4251 break; | |
| 4252 | |
| 4253 /* See what that multiplies out to */ | |
| 4254 mp_copy(div, &t); | |
| 4255 MP_CHECKOK( s_mp_mul_d(&t, (mp_digit)q_msd) ); | |
| 4256 | |
| 4257 /* | |
| 4258 If it's too big, back it off. We should not have to do this | |
| 4259 more than once, or, in rare cases, twice. Knuth describes a | |
| 4260 method by which this could be reduced to a maximum of once, but | |
| 4261 I didn't implement that here. | |
| 4262 * When using s_mpv_div_2dx1d, we may have to do this 3 times. | |
| 4263 */ | |
| 4264 for (i = 4; s_mp_cmp(&t, &part) > 0 && i > 0; --i) { | |
| 4265 --q_msd; | |
| 4266 s_mp_sub(&t, div); /* t -= div */ | |
| 4267 } | |
| 4268 if (i < 0) { | |
| 4269 res = MP_RANGE; | |
| 4270 goto CLEANUP; | |
| 4271 } | |
| 4272 | |
| 4273 /* At this point, q_msd should be the right next digit */ | |
| 4274 MP_CHECKOK( s_mp_sub(&part, &t) ); /* part -= t */ | |
| 4275 s_mp_clamp(rem); | |
| 4276 | |
| 4277 /* | |
| 4278 Include the digit in the quotient. We allocated enough memory | |
| 4279 for any quotient we could ever possibly get, so we should not | |
| 4280 have to check for failures here | |
| 4281 */ | |
| 4282 MP_DIGIT(quot, unusedRem) = (mp_digit)q_msd; | |
| 4283 } | |
| 4284 | |
| 4285 /* Denormalize remainder */ | |
| 4286 if (d) { | |
| 4287 s_mp_div_2d(rem, d); | |
| 4288 } | |
| 4289 | |
| 4290 s_mp_clamp(quot); | |
| 4291 | |
| 4292 CLEANUP: | |
| 4293 mp_clear(&t); | |
| 4294 | |
| 4295 return res; | |
| 4296 | |
| 4297 } /* end s_mp_div() */ | |
| 4298 | |
| 4299 | |
| 4300 /* }}} */ | |
| 4301 | |
| 4302 /* {{{ s_mp_2expt(a, k) */ | |
| 4303 | |
| 4304 mp_err s_mp_2expt(mp_int *a, mp_digit k) | |
| 4305 { | |
| 4306 mp_err res; | |
| 4307 mp_size dig, bit; | |
| 4308 | |
| 4309 dig = k / DIGIT_BIT; | |
| 4310 bit = k % DIGIT_BIT; | |
| 4311 | |
| 4312 mp_zero(a); | |
| 4313 if((res = s_mp_pad(a, dig + 1)) != MP_OKAY) | |
| 4314 return res; | |
| 4315 | |
| 4316 DIGIT(a, dig) |= ((mp_digit)1 << bit); | |
| 4317 | |
| 4318 return MP_OKAY; | |
| 4319 | |
| 4320 } /* end s_mp_2expt() */ | |
| 4321 | |
| 4322 /* }}} */ | |
| 4323 | |
| 4324 /* {{{ s_mp_reduce(x, m, mu) */ | |
| 4325 | |
| 4326 /* | |
| 4327 Compute Barrett reduction, x (mod m), given a precomputed value for | |
| 4328 mu = b^2k / m, where b = RADIX and k = #digits(m). This should be | |
| 4329 faster than straight division, when many reductions by the same | |
| 4330 value of m are required (such as in modular exponentiation). This | |
| 4331 can nearly halve the time required to do modular exponentiation, | |
| 4332 as compared to using the full integer divide to reduce. | |
| 4333 | |
| 4334 This algorithm was derived from the _Handbook of Applied | |
| 4335 Cryptography_ by Menezes, Oorschot and VanStone, Ch. 14, | |
| 4336 pp. 603-604. | |
| 4337 */ | |
| 4338 | |
| 4339 mp_err s_mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu) | |
| 4340 { | |
| 4341 mp_int q; | |
| 4342 mp_err res; | |
| 4343 | |
| 4344 if((res = mp_init_copy(&q, x)) != MP_OKAY) | |
| 4345 return res; | |
| 4346 | |
| 4347 s_mp_rshd(&q, USED(m) - 1); /* q1 = x / b^(k-1) */ | |
| 4348 s_mp_mul(&q, mu); /* q2 = q1 * mu */ | |
| 4349 s_mp_rshd(&q, USED(m) + 1); /* q3 = q2 / b^(k+1) */ | |
| 4350 | |
| 4351 /* x = x mod b^(k+1), quick (no division) */ | |
| 4352 s_mp_mod_2d(x, DIGIT_BIT * (USED(m) + 1)); | |
| 4353 | |
| 4354 /* q = q * m mod b^(k+1), quick (no division) */ | |
| 4355 s_mp_mul(&q, m); | |
| 4356 s_mp_mod_2d(&q, DIGIT_BIT * (USED(m) + 1)); | |
| 4357 | |
| 4358 /* x = x - q */ | |
| 4359 if((res = mp_sub(x, &q, x)) != MP_OKAY) | |
| 4360 goto CLEANUP; | |
| 4361 | |
| 4362 /* If x < 0, add b^(k+1) to it */ | |
| 4363 if(mp_cmp_z(x) < 0) { | |
| 4364 mp_set(&q, 1); | |
| 4365 if((res = s_mp_lshd(&q, USED(m) + 1)) != MP_OKAY) | |
| 4366 goto CLEANUP; | |
| 4367 if((res = mp_add(x, &q, x)) != MP_OKAY) | |
| 4368 goto CLEANUP; | |
| 4369 } | |
| 4370 | |
| 4371 /* Back off if it's too big */ | |
| 4372 while(mp_cmp(x, m) >= 0) { | |
| 4373 if((res = s_mp_sub(x, m)) != MP_OKAY) | |
| 4374 break; | |
| 4375 } | |
| 4376 | |
| 4377 CLEANUP: | |
| 4378 mp_clear(&q); | |
| 4379 | |
| 4380 return res; | |
| 4381 | |
| 4382 } /* end s_mp_reduce() */ | |
| 4383 | |
| 4384 /* }}} */ | |
| 4385 | |
| 4386 /* }}} */ | |
| 4387 | |
| 4388 /* {{{ Primitive comparisons */ | |
| 4389 | |
| 4390 /* {{{ s_mp_cmp(a, b) */ | |
| 4391 | |
| 4392 /* Compare |a| <=> |b|, return 0 if equal, <0 if a<b, >0 if a>b */ | |
| 4393 int s_mp_cmp(const mp_int *a, const mp_int *b) | |
| 4394 { | |
| 4395 mp_size used_a = MP_USED(a); | |
| 4396 { | |
| 4397 mp_size used_b = MP_USED(b); | |
| 4398 | |
| 4399 if (used_a > used_b) | |
| 4400 goto IS_GT; | |
| 4401 if (used_a < used_b) | |
| 4402 goto IS_LT; | |
| 4403 } | |
| 4404 { | |
| 4405 mp_digit *pa, *pb; | |
| 4406 mp_digit da = 0, db = 0; | |
| 4407 | |
| 4408 #define CMP_AB(n) if ((da = pa[n]) != (db = pb[n])) goto done | |
| 4409 | |
| 4410 pa = MP_DIGITS(a) + used_a; | |
| 4411 pb = MP_DIGITS(b) + used_a; | |
| 4412 while (used_a >= 4) { | |
| 4413 pa -= 4; | |
| 4414 pb -= 4; | |
| 4415 used_a -= 4; | |
| 4416 CMP_AB(3); | |
| 4417 CMP_AB(2); | |
| 4418 CMP_AB(1); | |
| 4419 CMP_AB(0); | |
| 4420 } | |
| 4421 while (used_a-- > 0 && ((da = *--pa) == (db = *--pb))) | |
| 4422 /* do nothing */; | |
| 4423 done: | |
| 4424 if (da > db) | |
| 4425 goto IS_GT; | |
| 4426 if (da < db) | |
| 4427 goto IS_LT; | |
| 4428 } | |
| 4429 return MP_EQ; | |
| 4430 IS_LT: | |
| 4431 return MP_LT; | |
| 4432 IS_GT: | |
| 4433 return MP_GT; | |
| 4434 } /* end s_mp_cmp() */ | |
| 4435 | |
| 4436 /* }}} */ | |
| 4437 | |
| 4438 /* {{{ s_mp_cmp_d(a, d) */ | |
| 4439 | |
| 4440 /* Compare |a| <=> d, return 0 if equal, <0 if a<d, >0 if a>d */ | |
| 4441 int s_mp_cmp_d(const mp_int *a, mp_digit d) | |
| 4442 { | |
| 4443 if(USED(a) > 1) | |
| 4444 return MP_GT; | |
| 4445 | |
| 4446 if(DIGIT(a, 0) < d) | |
| 4447 return MP_LT; | |
| 4448 else if(DIGIT(a, 0) > d) | |
| 4449 return MP_GT; | |
| 4450 else | |
| 4451 return MP_EQ; | |
| 4452 | |
| 4453 } /* end s_mp_cmp_d() */ | |
| 4454 | |
| 4455 /* }}} */ | |
| 4456 | |
| 4457 /* {{{ s_mp_ispow2(v) */ | |
| 4458 | |
| 4459 /* | |
| 4460 Returns -1 if the value is not a power of two; otherwise, it returns | |
| 4461 k such that v = 2^k, i.e. lg(v). | |
| 4462 */ | |
| 4463 int s_mp_ispow2(const mp_int *v) | |
| 4464 { | |
| 4465 mp_digit d; | |
| 4466 int extra = 0, ix; | |
| 4467 | |
| 4468 ix = MP_USED(v) - 1; | |
| 4469 d = MP_DIGIT(v, ix); /* most significant digit of v */ | |
| 4470 | |
| 4471 extra = s_mp_ispow2d(d); | |
| 4472 if (extra < 0 || ix == 0) | |
| 4473 return extra; | |
| 4474 | |
| 4475 while (--ix >= 0) { | |
| 4476 if (DIGIT(v, ix) != 0) | |
| 4477 return -1; /* not a power of two */ | |
| 4478 extra += MP_DIGIT_BIT; | |
| 4479 } | |
| 4480 | |
| 4481 return extra; | |
| 4482 | |
| 4483 } /* end s_mp_ispow2() */ | |
| 4484 | |
| 4485 /* }}} */ | |
| 4486 | |
| 4487 /* {{{ s_mp_ispow2d(d) */ | |
| 4488 | |
| 4489 int s_mp_ispow2d(mp_digit d) | |
| 4490 { | |
| 4491 if ((d != 0) && ((d & (d-1)) == 0)) { /* d is a power of 2 */ | |
| 4492 int pow = 0; | |
| 4493 #if defined (MP_USE_UINT_DIGIT) | |
| 4494 if (d & 0xffff0000U) | |
| 4495 pow += 16; | |
| 4496 if (d & 0xff00ff00U) | |
| 4497 pow += 8; | |
| 4498 if (d & 0xf0f0f0f0U) | |
| 4499 pow += 4; | |
| 4500 if (d & 0xccccccccU) | |
| 4501 pow += 2; | |
| 4502 if (d & 0xaaaaaaaaU) | |
| 4503 pow += 1; | |
| 4504 #elif defined(MP_USE_LONG_LONG_DIGIT) | |
| 4505 if (d & 0xffffffff00000000ULL) | |
| 4506 pow += 32; | |
| 4507 if (d & 0xffff0000ffff0000ULL) | |
| 4508 pow += 16; | |
| 4509 if (d & 0xff00ff00ff00ff00ULL) | |
| 4510 pow += 8; | |
| 4511 if (d & 0xf0f0f0f0f0f0f0f0ULL) | |
| 4512 pow += 4; | |
| 4513 if (d & 0xccccccccccccccccULL) | |
| 4514 pow += 2; | |
| 4515 if (d & 0xaaaaaaaaaaaaaaaaULL) | |
| 4516 pow += 1; | |
| 4517 #elif defined(MP_USE_LONG_DIGIT) | |
| 4518 if (d & 0xffffffff00000000UL) | |
| 4519 pow += 32; | |
| 4520 if (d & 0xffff0000ffff0000UL) | |
| 4521 pow += 16; | |
| 4522 if (d & 0xff00ff00ff00ff00UL) | |
| 4523 pow += 8; | |
| 4524 if (d & 0xf0f0f0f0f0f0f0f0UL) | |
| 4525 pow += 4; | |
| 4526 if (d & 0xccccccccccccccccUL) | |
| 4527 pow += 2; | |
| 4528 if (d & 0xaaaaaaaaaaaaaaaaUL) | |
| 4529 pow += 1; | |
| 4530 #else | |
| 4531 #error "unknown type for mp_digit" | |
| 4532 #endif | |
| 4533 return pow; | |
| 4534 } | |
| 4535 return -1; | |
| 4536 | |
| 4537 } /* end s_mp_ispow2d() */ | |
| 4538 | |
| 4539 /* }}} */ | |
| 4540 | |
| 4541 /* }}} */ | |
| 4542 | |
| 4543 /* {{{ Primitive I/O helpers */ | |
| 4544 | |
| 4545 /* {{{ s_mp_tovalue(ch, r) */ | |
| 4546 | |
| 4547 /* | |
| 4548 Convert the given character to its digit value, in the given radix. | |
| 4549 If the given character is not understood in the given radix, -1 is | |
| 4550 returned. Otherwise the digit's numeric value is returned. | |
| 4551 | |
| 4552 The results will be odd if you use a radix < 2 or > 62, you are | |
| 4553 expected to know what you're up to. | |
| 4554 */ | |
| 4555 int s_mp_tovalue(char ch, int r) | |
| 4556 { | |
| 4557 int val, xch; | |
| 4558 | |
| 4559 if(r > 36) | |
| 4560 xch = ch; | |
| 4561 else | |
| 4562 xch = toupper(ch); | |
| 4563 | |
| 4564 if(isdigit(xch)) | |
| 4565 val = xch - '0'; | |
| 4566 else if(isupper(xch)) | |
| 4567 val = xch - 'A' + 10; | |
| 4568 else if(islower(xch)) | |
| 4569 val = xch - 'a' + 36; | |
| 4570 else if(xch == '+') | |
| 4571 val = 62; | |
| 4572 else if(xch == '/') | |
| 4573 val = 63; | |
| 4574 else | |
| 4575 return -1; | |
| 4576 | |
| 4577 if(val < 0 || val >= r) | |
| 4578 return -1; | |
| 4579 | |
| 4580 return val; | |
| 4581 | |
| 4582 } /* end s_mp_tovalue() */ | |
| 4583 | |
| 4584 /* }}} */ | |
| 4585 | |
| 4586 /* {{{ s_mp_todigit(val, r, low) */ | |
| 4587 | |
| 4588 /* | |
| 4589 Convert val to a radix-r digit, if possible. If val is out of range | |
| 4590 for r, returns zero. Otherwise, returns an ASCII character denoting | |
| 4591 the value in the given radix. | |
| 4592 | |
| 4593 The results may be odd if you use a radix < 2 or > 64, you are | |
| 4594 expected to know what you're doing. | |
| 4595 */ | |
| 4596 | |
| 4597 char s_mp_todigit(mp_digit val, int r, int low) | |
| 4598 { | |
| 4599 char ch; | |
| 4600 | |
| 4601 if(val >= r) | |
| 4602 return 0; | |
| 4603 | |
| 4604 ch = s_dmap_1[val]; | |
| 4605 | |
| 4606 if(r <= 36 && low) | |
| 4607 ch = tolower(ch); | |
| 4608 | |
| 4609 return ch; | |
| 4610 | |
| 4611 } /* end s_mp_todigit() */ | |
| 4612 | |
| 4613 /* }}} */ | |
| 4614 | |
| 4615 /* {{{ s_mp_outlen(bits, radix) */ | |
| 4616 | |
| 4617 /* | |
| 4618 Return an estimate for how long a string is needed to hold a radix | |
| 4619 r representation of a number with 'bits' significant bits, plus an | |
| 4620 extra for a zero terminator (assuming C style strings here) | |
| 4621 */ | |
| 4622 int s_mp_outlen(int bits, int r) | |
| 4623 { | |
| 4624 return (int)((double)bits * LOG_V_2(r) + 1.5) + 1; | |
| 4625 | |
| 4626 } /* end s_mp_outlen() */ | |
| 4627 | |
| 4628 /* }}} */ | |
| 4629 | |
| 4630 /* }}} */ | |
| 4631 | |
| 4632 /* {{{ mp_read_unsigned_octets(mp, str, len) */ | |
| 4633 /* mp_read_unsigned_octets(mp, str, len) | |
| 4634 Read in a raw value (base 256) into the given mp_int | |
| 4635 No sign bit, number is positive. Leading zeros ignored. | |
| 4636 */ | |
| 4637 | |
| 4638 mp_err | |
| 4639 mp_read_unsigned_octets(mp_int *mp, const unsigned char *str, mp_size len) | |
| 4640 { | |
| 4641 int count; | |
| 4642 mp_err res; | |
| 4643 mp_digit d; | |
| 4644 | |
| 4645 ARGCHK(mp != NULL && str != NULL && len > 0, MP_BADARG); | |
| 4646 | |
| 4647 mp_zero(mp); | |
| 4648 | |
| 4649 count = len % sizeof(mp_digit); | |
| 4650 if (count) { | |
| 4651 for (d = 0; count-- > 0; --len) { | |
| 4652 d = (d << 8) | *str++; | |
| 4653 } | |
| 4654 MP_DIGIT(mp, 0) = d; | |
| 4655 } | |
| 4656 | |
| 4657 /* Read the rest of the digits */ | |
| 4658 for(; len > 0; len -= sizeof(mp_digit)) { | |
| 4659 for (d = 0, count = sizeof(mp_digit); count > 0; --count) { | |
| 4660 d = (d << 8) | *str++; | |
| 4661 } | |
| 4662 if (MP_EQ == mp_cmp_z(mp)) { | |
| 4663 if (!d) | |
| 4664 continue; | |
| 4665 } else { | |
| 4666 if((res = s_mp_lshd(mp, 1)) != MP_OKAY) | |
| 4667 return res; | |
| 4668 } | |
| 4669 MP_DIGIT(mp, 0) = d; | |
| 4670 } | |
| 4671 return MP_OKAY; | |
| 4672 } /* end mp_read_unsigned_octets() */ | |
| 4673 /* }}} */ | |
| 4674 | |
| 4675 /* {{{ mp_unsigned_octet_size(mp) */ | |
| 4676 int | |
| 4677 mp_unsigned_octet_size(const mp_int *mp) | |
| 4678 { | |
| 4679 int bytes; | |
| 4680 int ix; | |
| 4681 mp_digit d = 0; | |
| 4682 | |
| 4683 ARGCHK(mp != NULL, MP_BADARG); | |
| 4684 ARGCHK(MP_ZPOS == SIGN(mp), MP_BADARG); | |
| 4685 | |
| 4686 bytes = (USED(mp) * sizeof(mp_digit)); | |
| 4687 | |
| 4688 /* subtract leading zeros. */ | |
| 4689 /* Iterate over each digit... */ | |
| 4690 for(ix = USED(mp) - 1; ix >= 0; ix--) { | |
| 4691 d = DIGIT(mp, ix); | |
| 4692 if (d) | |
| 4693 break; | |
| 4694 bytes -= sizeof(d); | |
| 4695 } | |
| 4696 if (!bytes) | |
| 4697 return 1; | |
| 4698 | |
| 4699 /* Have MSD, check digit bytes, high order first */ | |
| 4700 for(ix = sizeof(mp_digit) - 1; ix >= 0; ix--) { | |
| 4701 unsigned char x = (unsigned char)(d >> (ix * CHAR_BIT)); | |
| 4702 if (x) | |
| 4703 break; | |
| 4704 --bytes; | |
| 4705 } | |
| 4706 return bytes; | |
| 4707 } /* end mp_unsigned_octet_size() */ | |
| 4708 /* }}} */ | |
| 4709 | |
| 4710 /* {{{ mp_to_unsigned_octets(mp, str) */ | |
| 4711 /* output a buffer of big endian octets no longer than specified. */ | |
| 4712 mp_err | |
| 4713 mp_to_unsigned_octets(const mp_int *mp, unsigned char *str, mp_size maxlen) | |
| 4714 { | |
| 4715 int ix, pos = 0; | |
| 4716 int bytes; | |
| 4717 | |
| 4718 ARGCHK(mp != NULL && str != NULL && !SIGN(mp), MP_BADARG); | |
| 4719 | |
| 4720 bytes = mp_unsigned_octet_size(mp); | |
| 4721 ARGCHK(bytes >= 0 && bytes <= maxlen, MP_BADARG); | |
| 4722 | |
| 4723 /* Iterate over each digit... */ | |
| 4724 for(ix = USED(mp) - 1; ix >= 0; ix--) { | |
| 4725 mp_digit d = DIGIT(mp, ix); | |
| 4726 int jx; | |
| 4727 | |
| 4728 /* Unpack digit bytes, high order first */ | |
| 4729 for(jx = sizeof(mp_digit) - 1; jx >= 0; jx--) { | |
| 4730 unsigned char x = (unsigned char)(d >> (jx * CHAR_BIT)); | |
| 4731 if (!pos && !x) /* suppress leading zeros */ | |
| 4732 continue; | |
| 4733 str[pos++] = x; | |
| 4734 } | |
| 4735 } | |
| 4736 if (!pos) | |
| 4737 str[pos++] = 0; | |
| 4738 return pos; | |
| 4739 } /* end mp_to_unsigned_octets() */ | |
| 4740 /* }}} */ | |
| 4741 | |
| 4742 /* {{{ mp_to_signed_octets(mp, str) */ | |
| 4743 /* output a buffer of big endian octets no longer than specified. */ | |
| 4744 mp_err | |
| 4745 mp_to_signed_octets(const mp_int *mp, unsigned char *str, mp_size maxlen) | |
| 4746 { | |
| 4747 int ix, pos = 0; | |
| 4748 int bytes; | |
| 4749 | |
| 4750 ARGCHK(mp != NULL && str != NULL && !SIGN(mp), MP_BADARG); | |
| 4751 | |
| 4752 bytes = mp_unsigned_octet_size(mp); | |
| 4753 ARGCHK(bytes >= 0 && bytes <= maxlen, MP_BADARG); | |
| 4754 | |
| 4755 /* Iterate over each digit... */ | |
| 4756 for(ix = USED(mp) - 1; ix >= 0; ix--) { | |
| 4757 mp_digit d = DIGIT(mp, ix); | |
| 4758 int jx; | |
| 4759 | |
| 4760 /* Unpack digit bytes, high order first */ | |
| 4761 for(jx = sizeof(mp_digit) - 1; jx >= 0; jx--) { | |
| 4762 unsigned char x = (unsigned char)(d >> (jx * CHAR_BIT)); | |
| 4763 if (!pos) { | |
| 4764 if (!x) /* suppress leading zeros */ | |
| 4765 continue; | |
| 4766 if (x & 0x80) { /* add one leading zero to make output positive. */ | |
| 4767 ARGCHK(bytes + 1 <= maxlen, MP_BADARG); | |
| 4768 if (bytes + 1 > maxlen) | |
| 4769 return MP_BADARG; | |
| 4770 str[pos++] = 0; | |
| 4771 } | |
| 4772 } | |
| 4773 str[pos++] = x; | |
| 4774 } | |
| 4775 } | |
| 4776 if (!pos) | |
| 4777 str[pos++] = 0; | |
| 4778 return pos; | |
| 4779 } /* end mp_to_signed_octets() */ | |
| 4780 /* }}} */ | |
| 4781 | |
| 4782 /* {{{ mp_to_fixlen_octets(mp, str) */ | |
| 4783 /* output a buffer of big endian octets exactly as long as requested. */ | |
| 4784 mp_err | |
| 4785 mp_to_fixlen_octets(const mp_int *mp, unsigned char *str, mp_size length) | |
| 4786 { | |
| 4787 int ix, pos = 0; | |
| 4788 int bytes; | |
| 4789 | |
| 4790 ARGCHK(mp != NULL && str != NULL && !SIGN(mp), MP_BADARG); | |
| 4791 | |
| 4792 bytes = mp_unsigned_octet_size(mp); | |
| 4793 ARGCHK(bytes >= 0 && bytes <= length, MP_BADARG); | |
| 4794 | |
| 4795 /* place any needed leading zeros */ | |
| 4796 for (;length > bytes; --length) { | |
| 4797 *str++ = 0; | |
| 4798 } | |
| 4799 | |
| 4800 /* Iterate over each digit... */ | |
| 4801 for(ix = USED(mp) - 1; ix >= 0; ix--) { | |
| 4802 mp_digit d = DIGIT(mp, ix); | |
| 4803 int jx; | |
| 4804 | |
| 4805 /* Unpack digit bytes, high order first */ | |
| 4806 for(jx = sizeof(mp_digit) - 1; jx >= 0; jx--) { | |
| 4807 unsigned char x = (unsigned char)(d >> (jx * CHAR_BIT)); | |
| 4808 if (!pos && !x) /* suppress leading zeros */ | |
| 4809 continue; | |
| 4810 str[pos++] = x; | |
| 4811 } | |
| 4812 } | |
| 4813 if (!pos) | |
| 4814 str[pos++] = 0; | |
| 4815 return MP_OKAY; | |
| 4816 } /* end mp_to_fixlen_octets() */ | |
| 4817 /* }}} */ | |
| 4818 | |
| 4819 | |
| 4820 /*------------------------------------------------------------------------*/ | |
| 4821 /* HERE THERE BE DRAGONS */ | |
| OLD | NEW |