| Index: mozilla/security/nss/lib/freebl/ecl/ecp_jm.c
|
| ===================================================================
|
| --- mozilla/security/nss/lib/freebl/ecl/ecp_jm.c (revision 191424)
|
| +++ mozilla/security/nss/lib/freebl/ecl/ecp_jm.c (working copy)
|
| @@ -1,289 +0,0 @@
|
| -/* This Source Code Form is subject to the terms of the Mozilla Public
|
| - * License, v. 2.0. If a copy of the MPL was not distributed with this
|
| - * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
| -
|
| -#include "ecp.h"
|
| -#include "ecl-priv.h"
|
| -#include "mplogic.h"
|
| -#include <stdlib.h>
|
| -
|
| -#define MAX_SCRATCH 6
|
| -
|
| -/* Computes R = 2P. Elliptic curve points P and R can be identical. Uses
|
| - * Modified Jacobian coordinates.
|
| - *
|
| - * Assumes input is already field-encoded using field_enc, and returns
|
| - * output that is still field-encoded.
|
| - *
|
| - */
|
| -mp_err
|
| -ec_GFp_pt_dbl_jm(const mp_int *px, const mp_int *py, const mp_int *pz,
|
| - const mp_int *paz4, mp_int *rx, mp_int *ry, mp_int *rz,
|
| - mp_int *raz4, mp_int scratch[], const ECGroup *group)
|
| -{
|
| - mp_err res = MP_OKAY;
|
| - mp_int *t0, *t1, *M, *S;
|
| -
|
| - t0 = &scratch[0];
|
| - t1 = &scratch[1];
|
| - M = &scratch[2];
|
| - S = &scratch[3];
|
| -
|
| -#if MAX_SCRATCH < 4
|
| -#error "Scratch array defined too small "
|
| -#endif
|
| -
|
| - /* Check for point at infinity */
|
| - if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
|
| - /* Set r = pt at infinity by setting rz = 0 */
|
| -
|
| - MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz));
|
| - goto CLEANUP;
|
| - }
|
| -
|
| - /* M = 3 (px^2) + a*(pz^4) */
|
| - MP_CHECKOK(group->meth->field_sqr(px, t0, group->meth));
|
| - MP_CHECKOK(group->meth->field_add(t0, t0, M, group->meth));
|
| - MP_CHECKOK(group->meth->field_add(t0, M, t0, group->meth));
|
| - MP_CHECKOK(group->meth->field_add(t0, paz4, M, group->meth));
|
| -
|
| - /* rz = 2 * py * pz */
|
| - MP_CHECKOK(group->meth->field_mul(py, pz, S, group->meth));
|
| - MP_CHECKOK(group->meth->field_add(S, S, rz, group->meth));
|
| -
|
| - /* t0 = 2y^2 , t1 = 8y^4 */
|
| - MP_CHECKOK(group->meth->field_sqr(py, t0, group->meth));
|
| - MP_CHECKOK(group->meth->field_add(t0, t0, t0, group->meth));
|
| - MP_CHECKOK(group->meth->field_sqr(t0, t1, group->meth));
|
| - MP_CHECKOK(group->meth->field_add(t1, t1, t1, group->meth));
|
| -
|
| - /* S = 4 * px * py^2 = 2 * px * t0 */
|
| - MP_CHECKOK(group->meth->field_mul(px, t0, S, group->meth));
|
| - MP_CHECKOK(group->meth->field_add(S, S, S, group->meth));
|
| -
|
| -
|
| - /* rx = M^2 - 2S */
|
| - MP_CHECKOK(group->meth->field_sqr(M, rx, group->meth));
|
| - MP_CHECKOK(group->meth->field_sub(rx, S, rx, group->meth));
|
| - MP_CHECKOK(group->meth->field_sub(rx, S, rx, group->meth));
|
| -
|
| - /* ry = M * (S - rx) - t1 */
|
| - MP_CHECKOK(group->meth->field_sub(S, rx, S, group->meth));
|
| - MP_CHECKOK(group->meth->field_mul(S, M, ry, group->meth));
|
| - MP_CHECKOK(group->meth->field_sub(ry, t1, ry, group->meth));
|
| -
|
| - /* ra*z^4 = 2*t1*(apz4) */
|
| - MP_CHECKOK(group->meth->field_mul(paz4, t1, raz4, group->meth));
|
| - MP_CHECKOK(group->meth->field_add(raz4, raz4, raz4, group->meth));
|
| -
|
| -
|
| - CLEANUP:
|
| - return res;
|
| -}
|
| -
|
| -/* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
|
| - * (qx, qy, 1). Elliptic curve points P, Q, and R can all be identical.
|
| - * Uses mixed Modified_Jacobian-affine coordinates. Assumes input is
|
| - * already field-encoded using field_enc, and returns output that is still
|
| - * field-encoded. */
|
| -mp_err
|
| -ec_GFp_pt_add_jm_aff(const mp_int *px, const mp_int *py, const mp_int *pz,
|
| - const mp_int *paz4, const mp_int *qx,
|
| - const mp_int *qy, mp_int *rx, mp_int *ry, mp_int *rz,
|
| - mp_int *raz4, mp_int scratch[], const ECGroup *group)
|
| -{
|
| - mp_err res = MP_OKAY;
|
| - mp_int *A, *B, *C, *D, *C2, *C3;
|
| -
|
| - A = &scratch[0];
|
| - B = &scratch[1];
|
| - C = &scratch[2];
|
| - D = &scratch[3];
|
| - C2 = &scratch[4];
|
| - C3 = &scratch[5];
|
| -
|
| -#if MAX_SCRATCH < 6
|
| -#error "Scratch array defined too small "
|
| -#endif
|
| -
|
| - /* If either P or Q is the point at infinity, then return the other
|
| - * point */
|
| - if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
|
| - MP_CHECKOK(ec_GFp_pt_aff2jac(qx, qy, rx, ry, rz, group));
|
| - MP_CHECKOK(group->meth->field_sqr(rz, raz4, group->meth));
|
| - MP_CHECKOK(group->meth->field_sqr(raz4, raz4, group->meth));
|
| - MP_CHECKOK(group->meth->
|
| - field_mul(raz4, &group->curvea, raz4, group->meth));
|
| - goto CLEANUP;
|
| - }
|
| - if (ec_GFp_pt_is_inf_aff(qx, qy) == MP_YES) {
|
| - MP_CHECKOK(mp_copy(px, rx));
|
| - MP_CHECKOK(mp_copy(py, ry));
|
| - MP_CHECKOK(mp_copy(pz, rz));
|
| - MP_CHECKOK(mp_copy(paz4, raz4));
|
| - goto CLEANUP;
|
| - }
|
| -
|
| - /* A = qx * pz^2, B = qy * pz^3 */
|
| - MP_CHECKOK(group->meth->field_sqr(pz, A, group->meth));
|
| - MP_CHECKOK(group->meth->field_mul(A, pz, B, group->meth));
|
| - MP_CHECKOK(group->meth->field_mul(A, qx, A, group->meth));
|
| - MP_CHECKOK(group->meth->field_mul(B, qy, B, group->meth));
|
| -
|
| - /* C = A - px, D = B - py */
|
| - MP_CHECKOK(group->meth->field_sub(A, px, C, group->meth));
|
| - MP_CHECKOK(group->meth->field_sub(B, py, D, group->meth));
|
| -
|
| - /* C2 = C^2, C3 = C^3 */
|
| - MP_CHECKOK(group->meth->field_sqr(C, C2, group->meth));
|
| - MP_CHECKOK(group->meth->field_mul(C, C2, C3, group->meth));
|
| -
|
| - /* rz = pz * C */
|
| - MP_CHECKOK(group->meth->field_mul(pz, C, rz, group->meth));
|
| -
|
| - /* C = px * C^2 */
|
| - MP_CHECKOK(group->meth->field_mul(px, C2, C, group->meth));
|
| - /* A = D^2 */
|
| - MP_CHECKOK(group->meth->field_sqr(D, A, group->meth));
|
| -
|
| - /* rx = D^2 - (C^3 + 2 * (px * C^2)) */
|
| - MP_CHECKOK(group->meth->field_add(C, C, rx, group->meth));
|
| - MP_CHECKOK(group->meth->field_add(C3, rx, rx, group->meth));
|
| - MP_CHECKOK(group->meth->field_sub(A, rx, rx, group->meth));
|
| -
|
| - /* C3 = py * C^3 */
|
| - MP_CHECKOK(group->meth->field_mul(py, C3, C3, group->meth));
|
| -
|
| - /* ry = D * (px * C^2 - rx) - py * C^3 */
|
| - MP_CHECKOK(group->meth->field_sub(C, rx, ry, group->meth));
|
| - MP_CHECKOK(group->meth->field_mul(D, ry, ry, group->meth));
|
| - MP_CHECKOK(group->meth->field_sub(ry, C3, ry, group->meth));
|
| -
|
| - /* raz4 = a * rz^4 */
|
| - MP_CHECKOK(group->meth->field_sqr(rz, raz4, group->meth));
|
| - MP_CHECKOK(group->meth->field_sqr(raz4, raz4, group->meth));
|
| - MP_CHECKOK(group->meth->
|
| - field_mul(raz4, &group->curvea, raz4, group->meth));
|
| -CLEANUP:
|
| - return res;
|
| -}
|
| -
|
| -/* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic
|
| - * curve points P and R can be identical. Uses mixed Modified-Jacobian
|
| - * co-ordinates for doubling and Chudnovsky Jacobian coordinates for
|
| - * additions. Assumes input is already field-encoded using field_enc, and
|
| - * returns output that is still field-encoded. Uses 5-bit window NAF
|
| - * method (algorithm 11) for scalar-point multiplication from Brown,
|
| - * Hankerson, Lopez, Menezes. Software Implementation of the NIST Elliptic
|
| - * Curves Over Prime Fields. */
|
| -mp_err
|
| -ec_GFp_pt_mul_jm_wNAF(const mp_int *n, const mp_int *px, const mp_int *py,
|
| - mp_int *rx, mp_int *ry, const ECGroup *group)
|
| -{
|
| - mp_err res = MP_OKAY;
|
| - mp_int precomp[16][2], rz, tpx, tpy;
|
| - mp_int raz4;
|
| - mp_int scratch[MAX_SCRATCH];
|
| - signed char *naf = NULL;
|
| - int i, orderBitSize;
|
| -
|
| - MP_DIGITS(&rz) = 0;
|
| - MP_DIGITS(&raz4) = 0;
|
| - MP_DIGITS(&tpx) = 0;
|
| - MP_DIGITS(&tpy) = 0;
|
| - for (i = 0; i < 16; i++) {
|
| - MP_DIGITS(&precomp[i][0]) = 0;
|
| - MP_DIGITS(&precomp[i][1]) = 0;
|
| - }
|
| - for (i = 0; i < MAX_SCRATCH; i++) {
|
| - MP_DIGITS(&scratch[i]) = 0;
|
| - }
|
| -
|
| - ARGCHK(group != NULL, MP_BADARG);
|
| - ARGCHK((n != NULL) && (px != NULL) && (py != NULL), MP_BADARG);
|
| -
|
| - /* initialize precomputation table */
|
| - MP_CHECKOK(mp_init(&tpx));
|
| - MP_CHECKOK(mp_init(&tpy));;
|
| - MP_CHECKOK(mp_init(&rz));
|
| - MP_CHECKOK(mp_init(&raz4));
|
| -
|
| - for (i = 0; i < 16; i++) {
|
| - MP_CHECKOK(mp_init(&precomp[i][0]));
|
| - MP_CHECKOK(mp_init(&precomp[i][1]));
|
| - }
|
| - for (i = 0; i < MAX_SCRATCH; i++) {
|
| - MP_CHECKOK(mp_init(&scratch[i]));
|
| - }
|
| -
|
| - /* Set out[8] = P */
|
| - MP_CHECKOK(mp_copy(px, &precomp[8][0]));
|
| - MP_CHECKOK(mp_copy(py, &precomp[8][1]));
|
| -
|
| - /* Set (tpx, tpy) = 2P */
|
| - MP_CHECKOK(group->
|
| - point_dbl(&precomp[8][0], &precomp[8][1], &tpx, &tpy,
|
| - group));
|
| -
|
| - /* Set 3P, 5P, ..., 15P */
|
| - for (i = 8; i < 15; i++) {
|
| - MP_CHECKOK(group->
|
| - point_add(&precomp[i][0], &precomp[i][1], &tpx, &tpy,
|
| - &precomp[i + 1][0], &precomp[i + 1][1],
|
| - group));
|
| - }
|
| -
|
| - /* Set -15P, -13P, ..., -P */
|
| - for (i = 0; i < 8; i++) {
|
| - MP_CHECKOK(mp_copy(&precomp[15 - i][0], &precomp[i][0]));
|
| - MP_CHECKOK(group->meth->
|
| - field_neg(&precomp[15 - i][1], &precomp[i][1],
|
| - group->meth));
|
| - }
|
| -
|
| - /* R = inf */
|
| - MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz));
|
| -
|
| - orderBitSize = mpl_significant_bits(&group->order);
|
| -
|
| - /* Allocate memory for NAF */
|
| - naf = (signed char *) malloc(sizeof(signed char) * (orderBitSize + 1));
|
| - if (naf == NULL) {
|
| - res = MP_MEM;
|
| - goto CLEANUP;
|
| - }
|
| -
|
| - /* Compute 5NAF */
|
| - ec_compute_wNAF(naf, orderBitSize, n, 5);
|
| -
|
| - /* wNAF method */
|
| - for (i = orderBitSize; i >= 0; i--) {
|
| - /* R = 2R */
|
| - ec_GFp_pt_dbl_jm(rx, ry, &rz, &raz4, rx, ry, &rz,
|
| - &raz4, scratch, group);
|
| - if (naf[i] != 0) {
|
| - ec_GFp_pt_add_jm_aff(rx, ry, &rz, &raz4,
|
| - &precomp[(naf[i] + 15) / 2][0],
|
| - &precomp[(naf[i] + 15) / 2][1], rx, ry,
|
| - &rz, &raz4, scratch, group);
|
| - }
|
| - }
|
| -
|
| - /* convert result S to affine coordinates */
|
| - MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group));
|
| -
|
| - CLEANUP:
|
| - for (i = 0; i < MAX_SCRATCH; i++) {
|
| - mp_clear(&scratch[i]);
|
| - }
|
| - for (i = 0; i < 16; i++) {
|
| - mp_clear(&precomp[i][0]);
|
| - mp_clear(&precomp[i][1]);
|
| - }
|
| - mp_clear(&tpx);
|
| - mp_clear(&tpy);
|
| - mp_clear(&rz);
|
| - mp_clear(&raz4);
|
| - free(naf);
|
| - return res;
|
| -}
|
|
|