Index: mozilla/security/nss/lib/freebl/ecl/ecp_jm.c |
=================================================================== |
--- mozilla/security/nss/lib/freebl/ecl/ecp_jm.c (revision 191424) |
+++ mozilla/security/nss/lib/freebl/ecl/ecp_jm.c (working copy) |
@@ -1,289 +0,0 @@ |
-/* This Source Code Form is subject to the terms of the Mozilla Public |
- * License, v. 2.0. If a copy of the MPL was not distributed with this |
- * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
- |
-#include "ecp.h" |
-#include "ecl-priv.h" |
-#include "mplogic.h" |
-#include <stdlib.h> |
- |
-#define MAX_SCRATCH 6 |
- |
-/* Computes R = 2P. Elliptic curve points P and R can be identical. Uses |
- * Modified Jacobian coordinates. |
- * |
- * Assumes input is already field-encoded using field_enc, and returns |
- * output that is still field-encoded. |
- * |
- */ |
-mp_err |
-ec_GFp_pt_dbl_jm(const mp_int *px, const mp_int *py, const mp_int *pz, |
- const mp_int *paz4, mp_int *rx, mp_int *ry, mp_int *rz, |
- mp_int *raz4, mp_int scratch[], const ECGroup *group) |
-{ |
- mp_err res = MP_OKAY; |
- mp_int *t0, *t1, *M, *S; |
- |
- t0 = &scratch[0]; |
- t1 = &scratch[1]; |
- M = &scratch[2]; |
- S = &scratch[3]; |
- |
-#if MAX_SCRATCH < 4 |
-#error "Scratch array defined too small " |
-#endif |
- |
- /* Check for point at infinity */ |
- if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) { |
- /* Set r = pt at infinity by setting rz = 0 */ |
- |
- MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz)); |
- goto CLEANUP; |
- } |
- |
- /* M = 3 (px^2) + a*(pz^4) */ |
- MP_CHECKOK(group->meth->field_sqr(px, t0, group->meth)); |
- MP_CHECKOK(group->meth->field_add(t0, t0, M, group->meth)); |
- MP_CHECKOK(group->meth->field_add(t0, M, t0, group->meth)); |
- MP_CHECKOK(group->meth->field_add(t0, paz4, M, group->meth)); |
- |
- /* rz = 2 * py * pz */ |
- MP_CHECKOK(group->meth->field_mul(py, pz, S, group->meth)); |
- MP_CHECKOK(group->meth->field_add(S, S, rz, group->meth)); |
- |
- /* t0 = 2y^2 , t1 = 8y^4 */ |
- MP_CHECKOK(group->meth->field_sqr(py, t0, group->meth)); |
- MP_CHECKOK(group->meth->field_add(t0, t0, t0, group->meth)); |
- MP_CHECKOK(group->meth->field_sqr(t0, t1, group->meth)); |
- MP_CHECKOK(group->meth->field_add(t1, t1, t1, group->meth)); |
- |
- /* S = 4 * px * py^2 = 2 * px * t0 */ |
- MP_CHECKOK(group->meth->field_mul(px, t0, S, group->meth)); |
- MP_CHECKOK(group->meth->field_add(S, S, S, group->meth)); |
- |
- |
- /* rx = M^2 - 2S */ |
- MP_CHECKOK(group->meth->field_sqr(M, rx, group->meth)); |
- MP_CHECKOK(group->meth->field_sub(rx, S, rx, group->meth)); |
- MP_CHECKOK(group->meth->field_sub(rx, S, rx, group->meth)); |
- |
- /* ry = M * (S - rx) - t1 */ |
- MP_CHECKOK(group->meth->field_sub(S, rx, S, group->meth)); |
- MP_CHECKOK(group->meth->field_mul(S, M, ry, group->meth)); |
- MP_CHECKOK(group->meth->field_sub(ry, t1, ry, group->meth)); |
- |
- /* ra*z^4 = 2*t1*(apz4) */ |
- MP_CHECKOK(group->meth->field_mul(paz4, t1, raz4, group->meth)); |
- MP_CHECKOK(group->meth->field_add(raz4, raz4, raz4, group->meth)); |
- |
- |
- CLEANUP: |
- return res; |
-} |
- |
-/* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is |
- * (qx, qy, 1). Elliptic curve points P, Q, and R can all be identical. |
- * Uses mixed Modified_Jacobian-affine coordinates. Assumes input is |
- * already field-encoded using field_enc, and returns output that is still |
- * field-encoded. */ |
-mp_err |
-ec_GFp_pt_add_jm_aff(const mp_int *px, const mp_int *py, const mp_int *pz, |
- const mp_int *paz4, const mp_int *qx, |
- const mp_int *qy, mp_int *rx, mp_int *ry, mp_int *rz, |
- mp_int *raz4, mp_int scratch[], const ECGroup *group) |
-{ |
- mp_err res = MP_OKAY; |
- mp_int *A, *B, *C, *D, *C2, *C3; |
- |
- A = &scratch[0]; |
- B = &scratch[1]; |
- C = &scratch[2]; |
- D = &scratch[3]; |
- C2 = &scratch[4]; |
- C3 = &scratch[5]; |
- |
-#if MAX_SCRATCH < 6 |
-#error "Scratch array defined too small " |
-#endif |
- |
- /* If either P or Q is the point at infinity, then return the other |
- * point */ |
- if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) { |
- MP_CHECKOK(ec_GFp_pt_aff2jac(qx, qy, rx, ry, rz, group)); |
- MP_CHECKOK(group->meth->field_sqr(rz, raz4, group->meth)); |
- MP_CHECKOK(group->meth->field_sqr(raz4, raz4, group->meth)); |
- MP_CHECKOK(group->meth-> |
- field_mul(raz4, &group->curvea, raz4, group->meth)); |
- goto CLEANUP; |
- } |
- if (ec_GFp_pt_is_inf_aff(qx, qy) == MP_YES) { |
- MP_CHECKOK(mp_copy(px, rx)); |
- MP_CHECKOK(mp_copy(py, ry)); |
- MP_CHECKOK(mp_copy(pz, rz)); |
- MP_CHECKOK(mp_copy(paz4, raz4)); |
- goto CLEANUP; |
- } |
- |
- /* A = qx * pz^2, B = qy * pz^3 */ |
- MP_CHECKOK(group->meth->field_sqr(pz, A, group->meth)); |
- MP_CHECKOK(group->meth->field_mul(A, pz, B, group->meth)); |
- MP_CHECKOK(group->meth->field_mul(A, qx, A, group->meth)); |
- MP_CHECKOK(group->meth->field_mul(B, qy, B, group->meth)); |
- |
- /* C = A - px, D = B - py */ |
- MP_CHECKOK(group->meth->field_sub(A, px, C, group->meth)); |
- MP_CHECKOK(group->meth->field_sub(B, py, D, group->meth)); |
- |
- /* C2 = C^2, C3 = C^3 */ |
- MP_CHECKOK(group->meth->field_sqr(C, C2, group->meth)); |
- MP_CHECKOK(group->meth->field_mul(C, C2, C3, group->meth)); |
- |
- /* rz = pz * C */ |
- MP_CHECKOK(group->meth->field_mul(pz, C, rz, group->meth)); |
- |
- /* C = px * C^2 */ |
- MP_CHECKOK(group->meth->field_mul(px, C2, C, group->meth)); |
- /* A = D^2 */ |
- MP_CHECKOK(group->meth->field_sqr(D, A, group->meth)); |
- |
- /* rx = D^2 - (C^3 + 2 * (px * C^2)) */ |
- MP_CHECKOK(group->meth->field_add(C, C, rx, group->meth)); |
- MP_CHECKOK(group->meth->field_add(C3, rx, rx, group->meth)); |
- MP_CHECKOK(group->meth->field_sub(A, rx, rx, group->meth)); |
- |
- /* C3 = py * C^3 */ |
- MP_CHECKOK(group->meth->field_mul(py, C3, C3, group->meth)); |
- |
- /* ry = D * (px * C^2 - rx) - py * C^3 */ |
- MP_CHECKOK(group->meth->field_sub(C, rx, ry, group->meth)); |
- MP_CHECKOK(group->meth->field_mul(D, ry, ry, group->meth)); |
- MP_CHECKOK(group->meth->field_sub(ry, C3, ry, group->meth)); |
- |
- /* raz4 = a * rz^4 */ |
- MP_CHECKOK(group->meth->field_sqr(rz, raz4, group->meth)); |
- MP_CHECKOK(group->meth->field_sqr(raz4, raz4, group->meth)); |
- MP_CHECKOK(group->meth-> |
- field_mul(raz4, &group->curvea, raz4, group->meth)); |
-CLEANUP: |
- return res; |
-} |
- |
-/* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic |
- * curve points P and R can be identical. Uses mixed Modified-Jacobian |
- * co-ordinates for doubling and Chudnovsky Jacobian coordinates for |
- * additions. Assumes input is already field-encoded using field_enc, and |
- * returns output that is still field-encoded. Uses 5-bit window NAF |
- * method (algorithm 11) for scalar-point multiplication from Brown, |
- * Hankerson, Lopez, Menezes. Software Implementation of the NIST Elliptic |
- * Curves Over Prime Fields. */ |
-mp_err |
-ec_GFp_pt_mul_jm_wNAF(const mp_int *n, const mp_int *px, const mp_int *py, |
- mp_int *rx, mp_int *ry, const ECGroup *group) |
-{ |
- mp_err res = MP_OKAY; |
- mp_int precomp[16][2], rz, tpx, tpy; |
- mp_int raz4; |
- mp_int scratch[MAX_SCRATCH]; |
- signed char *naf = NULL; |
- int i, orderBitSize; |
- |
- MP_DIGITS(&rz) = 0; |
- MP_DIGITS(&raz4) = 0; |
- MP_DIGITS(&tpx) = 0; |
- MP_DIGITS(&tpy) = 0; |
- for (i = 0; i < 16; i++) { |
- MP_DIGITS(&precomp[i][0]) = 0; |
- MP_DIGITS(&precomp[i][1]) = 0; |
- } |
- for (i = 0; i < MAX_SCRATCH; i++) { |
- MP_DIGITS(&scratch[i]) = 0; |
- } |
- |
- ARGCHK(group != NULL, MP_BADARG); |
- ARGCHK((n != NULL) && (px != NULL) && (py != NULL), MP_BADARG); |
- |
- /* initialize precomputation table */ |
- MP_CHECKOK(mp_init(&tpx)); |
- MP_CHECKOK(mp_init(&tpy));; |
- MP_CHECKOK(mp_init(&rz)); |
- MP_CHECKOK(mp_init(&raz4)); |
- |
- for (i = 0; i < 16; i++) { |
- MP_CHECKOK(mp_init(&precomp[i][0])); |
- MP_CHECKOK(mp_init(&precomp[i][1])); |
- } |
- for (i = 0; i < MAX_SCRATCH; i++) { |
- MP_CHECKOK(mp_init(&scratch[i])); |
- } |
- |
- /* Set out[8] = P */ |
- MP_CHECKOK(mp_copy(px, &precomp[8][0])); |
- MP_CHECKOK(mp_copy(py, &precomp[8][1])); |
- |
- /* Set (tpx, tpy) = 2P */ |
- MP_CHECKOK(group-> |
- point_dbl(&precomp[8][0], &precomp[8][1], &tpx, &tpy, |
- group)); |
- |
- /* Set 3P, 5P, ..., 15P */ |
- for (i = 8; i < 15; i++) { |
- MP_CHECKOK(group-> |
- point_add(&precomp[i][0], &precomp[i][1], &tpx, &tpy, |
- &precomp[i + 1][0], &precomp[i + 1][1], |
- group)); |
- } |
- |
- /* Set -15P, -13P, ..., -P */ |
- for (i = 0; i < 8; i++) { |
- MP_CHECKOK(mp_copy(&precomp[15 - i][0], &precomp[i][0])); |
- MP_CHECKOK(group->meth-> |
- field_neg(&precomp[15 - i][1], &precomp[i][1], |
- group->meth)); |
- } |
- |
- /* R = inf */ |
- MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz)); |
- |
- orderBitSize = mpl_significant_bits(&group->order); |
- |
- /* Allocate memory for NAF */ |
- naf = (signed char *) malloc(sizeof(signed char) * (orderBitSize + 1)); |
- if (naf == NULL) { |
- res = MP_MEM; |
- goto CLEANUP; |
- } |
- |
- /* Compute 5NAF */ |
- ec_compute_wNAF(naf, orderBitSize, n, 5); |
- |
- /* wNAF method */ |
- for (i = orderBitSize; i >= 0; i--) { |
- /* R = 2R */ |
- ec_GFp_pt_dbl_jm(rx, ry, &rz, &raz4, rx, ry, &rz, |
- &raz4, scratch, group); |
- if (naf[i] != 0) { |
- ec_GFp_pt_add_jm_aff(rx, ry, &rz, &raz4, |
- &precomp[(naf[i] + 15) / 2][0], |
- &precomp[(naf[i] + 15) / 2][1], rx, ry, |
- &rz, &raz4, scratch, group); |
- } |
- } |
- |
- /* convert result S to affine coordinates */ |
- MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group)); |
- |
- CLEANUP: |
- for (i = 0; i < MAX_SCRATCH; i++) { |
- mp_clear(&scratch[i]); |
- } |
- for (i = 0; i < 16; i++) { |
- mp_clear(&precomp[i][0]); |
- mp_clear(&precomp[i][1]); |
- } |
- mp_clear(&tpx); |
- mp_clear(&tpy); |
- mp_clear(&rz); |
- mp_clear(&raz4); |
- free(naf); |
- return res; |
-} |