Index: mozilla/security/nss/lib/freebl/ecl/ecp_jac.c |
=================================================================== |
--- mozilla/security/nss/lib/freebl/ecl/ecp_jac.c (revision 191424) |
+++ mozilla/security/nss/lib/freebl/ecl/ecp_jac.c (working copy) |
@@ -1,514 +0,0 @@ |
-/* This Source Code Form is subject to the terms of the Mozilla Public |
- * License, v. 2.0. If a copy of the MPL was not distributed with this |
- * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
- |
-#include "ecp.h" |
-#include "mplogic.h" |
-#include <stdlib.h> |
-#ifdef ECL_DEBUG |
-#include <assert.h> |
-#endif |
- |
-/* Converts a point P(px, py) from affine coordinates to Jacobian |
- * projective coordinates R(rx, ry, rz). Assumes input is already |
- * field-encoded using field_enc, and returns output that is still |
- * field-encoded. */ |
-mp_err |
-ec_GFp_pt_aff2jac(const mp_int *px, const mp_int *py, mp_int *rx, |
- mp_int *ry, mp_int *rz, const ECGroup *group) |
-{ |
- mp_err res = MP_OKAY; |
- |
- if (ec_GFp_pt_is_inf_aff(px, py) == MP_YES) { |
- MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz)); |
- } else { |
- MP_CHECKOK(mp_copy(px, rx)); |
- MP_CHECKOK(mp_copy(py, ry)); |
- MP_CHECKOK(mp_set_int(rz, 1)); |
- if (group->meth->field_enc) { |
- MP_CHECKOK(group->meth->field_enc(rz, rz, group->meth)); |
- } |
- } |
- CLEANUP: |
- return res; |
-} |
- |
-/* Converts a point P(px, py, pz) from Jacobian projective coordinates to |
- * affine coordinates R(rx, ry). P and R can share x and y coordinates. |
- * Assumes input is already field-encoded using field_enc, and returns |
- * output that is still field-encoded. */ |
-mp_err |
-ec_GFp_pt_jac2aff(const mp_int *px, const mp_int *py, const mp_int *pz, |
- mp_int *rx, mp_int *ry, const ECGroup *group) |
-{ |
- mp_err res = MP_OKAY; |
- mp_int z1, z2, z3; |
- |
- MP_DIGITS(&z1) = 0; |
- MP_DIGITS(&z2) = 0; |
- MP_DIGITS(&z3) = 0; |
- MP_CHECKOK(mp_init(&z1)); |
- MP_CHECKOK(mp_init(&z2)); |
- MP_CHECKOK(mp_init(&z3)); |
- |
- /* if point at infinity, then set point at infinity and exit */ |
- if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) { |
- MP_CHECKOK(ec_GFp_pt_set_inf_aff(rx, ry)); |
- goto CLEANUP; |
- } |
- |
- /* transform (px, py, pz) into (px / pz^2, py / pz^3) */ |
- if (mp_cmp_d(pz, 1) == 0) { |
- MP_CHECKOK(mp_copy(px, rx)); |
- MP_CHECKOK(mp_copy(py, ry)); |
- } else { |
- MP_CHECKOK(group->meth->field_div(NULL, pz, &z1, group->meth)); |
- MP_CHECKOK(group->meth->field_sqr(&z1, &z2, group->meth)); |
- MP_CHECKOK(group->meth->field_mul(&z1, &z2, &z3, group->meth)); |
- MP_CHECKOK(group->meth->field_mul(px, &z2, rx, group->meth)); |
- MP_CHECKOK(group->meth->field_mul(py, &z3, ry, group->meth)); |
- } |
- |
- CLEANUP: |
- mp_clear(&z1); |
- mp_clear(&z2); |
- mp_clear(&z3); |
- return res; |
-} |
- |
-/* Checks if point P(px, py, pz) is at infinity. Uses Jacobian |
- * coordinates. */ |
-mp_err |
-ec_GFp_pt_is_inf_jac(const mp_int *px, const mp_int *py, const mp_int *pz) |
-{ |
- return mp_cmp_z(pz); |
-} |
- |
-/* Sets P(px, py, pz) to be the point at infinity. Uses Jacobian |
- * coordinates. */ |
-mp_err |
-ec_GFp_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz) |
-{ |
- mp_zero(pz); |
- return MP_OKAY; |
-} |
- |
-/* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is |
- * (qx, qy, 1). Elliptic curve points P, Q, and R can all be identical. |
- * Uses mixed Jacobian-affine coordinates. Assumes input is already |
- * field-encoded using field_enc, and returns output that is still |
- * field-encoded. Uses equation (2) from Brown, Hankerson, Lopez, and |
- * Menezes. Software Implementation of the NIST Elliptic Curves Over Prime |
- * Fields. */ |
-mp_err |
-ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py, const mp_int *pz, |
- const mp_int *qx, const mp_int *qy, mp_int *rx, |
- mp_int *ry, mp_int *rz, const ECGroup *group) |
-{ |
- mp_err res = MP_OKAY; |
- mp_int A, B, C, D, C2, C3; |
- |
- MP_DIGITS(&A) = 0; |
- MP_DIGITS(&B) = 0; |
- MP_DIGITS(&C) = 0; |
- MP_DIGITS(&D) = 0; |
- MP_DIGITS(&C2) = 0; |
- MP_DIGITS(&C3) = 0; |
- MP_CHECKOK(mp_init(&A)); |
- MP_CHECKOK(mp_init(&B)); |
- MP_CHECKOK(mp_init(&C)); |
- MP_CHECKOK(mp_init(&D)); |
- MP_CHECKOK(mp_init(&C2)); |
- MP_CHECKOK(mp_init(&C3)); |
- |
- /* If either P or Q is the point at infinity, then return the other |
- * point */ |
- if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) { |
- MP_CHECKOK(ec_GFp_pt_aff2jac(qx, qy, rx, ry, rz, group)); |
- goto CLEANUP; |
- } |
- if (ec_GFp_pt_is_inf_aff(qx, qy) == MP_YES) { |
- MP_CHECKOK(mp_copy(px, rx)); |
- MP_CHECKOK(mp_copy(py, ry)); |
- MP_CHECKOK(mp_copy(pz, rz)); |
- goto CLEANUP; |
- } |
- |
- /* A = qx * pz^2, B = qy * pz^3 */ |
- MP_CHECKOK(group->meth->field_sqr(pz, &A, group->meth)); |
- MP_CHECKOK(group->meth->field_mul(&A, pz, &B, group->meth)); |
- MP_CHECKOK(group->meth->field_mul(&A, qx, &A, group->meth)); |
- MP_CHECKOK(group->meth->field_mul(&B, qy, &B, group->meth)); |
- |
- /* C = A - px, D = B - py */ |
- MP_CHECKOK(group->meth->field_sub(&A, px, &C, group->meth)); |
- MP_CHECKOK(group->meth->field_sub(&B, py, &D, group->meth)); |
- |
- /* C2 = C^2, C3 = C^3 */ |
- MP_CHECKOK(group->meth->field_sqr(&C, &C2, group->meth)); |
- MP_CHECKOK(group->meth->field_mul(&C, &C2, &C3, group->meth)); |
- |
- /* rz = pz * C */ |
- MP_CHECKOK(group->meth->field_mul(pz, &C, rz, group->meth)); |
- |
- /* C = px * C^2 */ |
- MP_CHECKOK(group->meth->field_mul(px, &C2, &C, group->meth)); |
- /* A = D^2 */ |
- MP_CHECKOK(group->meth->field_sqr(&D, &A, group->meth)); |
- |
- /* rx = D^2 - (C^3 + 2 * (px * C^2)) */ |
- MP_CHECKOK(group->meth->field_add(&C, &C, rx, group->meth)); |
- MP_CHECKOK(group->meth->field_add(&C3, rx, rx, group->meth)); |
- MP_CHECKOK(group->meth->field_sub(&A, rx, rx, group->meth)); |
- |
- /* C3 = py * C^3 */ |
- MP_CHECKOK(group->meth->field_mul(py, &C3, &C3, group->meth)); |
- |
- /* ry = D * (px * C^2 - rx) - py * C^3 */ |
- MP_CHECKOK(group->meth->field_sub(&C, rx, ry, group->meth)); |
- MP_CHECKOK(group->meth->field_mul(&D, ry, ry, group->meth)); |
- MP_CHECKOK(group->meth->field_sub(ry, &C3, ry, group->meth)); |
- |
- CLEANUP: |
- mp_clear(&A); |
- mp_clear(&B); |
- mp_clear(&C); |
- mp_clear(&D); |
- mp_clear(&C2); |
- mp_clear(&C3); |
- return res; |
-} |
- |
-/* Computes R = 2P. Elliptic curve points P and R can be identical. Uses |
- * Jacobian coordinates. |
- * |
- * Assumes input is already field-encoded using field_enc, and returns |
- * output that is still field-encoded. |
- * |
- * This routine implements Point Doubling in the Jacobian Projective |
- * space as described in the paper "Efficient elliptic curve exponentiation |
- * using mixed coordinates", by H. Cohen, A Miyaji, T. Ono. |
- */ |
-mp_err |
-ec_GFp_pt_dbl_jac(const mp_int *px, const mp_int *py, const mp_int *pz, |
- mp_int *rx, mp_int *ry, mp_int *rz, const ECGroup *group) |
-{ |
- mp_err res = MP_OKAY; |
- mp_int t0, t1, M, S; |
- |
- MP_DIGITS(&t0) = 0; |
- MP_DIGITS(&t1) = 0; |
- MP_DIGITS(&M) = 0; |
- MP_DIGITS(&S) = 0; |
- MP_CHECKOK(mp_init(&t0)); |
- MP_CHECKOK(mp_init(&t1)); |
- MP_CHECKOK(mp_init(&M)); |
- MP_CHECKOK(mp_init(&S)); |
- |
- if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) { |
- MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz)); |
- goto CLEANUP; |
- } |
- |
- if (mp_cmp_d(pz, 1) == 0) { |
- /* M = 3 * px^2 + a */ |
- MP_CHECKOK(group->meth->field_sqr(px, &t0, group->meth)); |
- MP_CHECKOK(group->meth->field_add(&t0, &t0, &M, group->meth)); |
- MP_CHECKOK(group->meth->field_add(&t0, &M, &t0, group->meth)); |
- MP_CHECKOK(group->meth-> |
- field_add(&t0, &group->curvea, &M, group->meth)); |
- } else if (mp_cmp_int(&group->curvea, -3) == 0) { |
- /* M = 3 * (px + pz^2) * (px - pz^2) */ |
- MP_CHECKOK(group->meth->field_sqr(pz, &M, group->meth)); |
- MP_CHECKOK(group->meth->field_add(px, &M, &t0, group->meth)); |
- MP_CHECKOK(group->meth->field_sub(px, &M, &t1, group->meth)); |
- MP_CHECKOK(group->meth->field_mul(&t0, &t1, &M, group->meth)); |
- MP_CHECKOK(group->meth->field_add(&M, &M, &t0, group->meth)); |
- MP_CHECKOK(group->meth->field_add(&t0, &M, &M, group->meth)); |
- } else { |
- /* M = 3 * (px^2) + a * (pz^4) */ |
- MP_CHECKOK(group->meth->field_sqr(px, &t0, group->meth)); |
- MP_CHECKOK(group->meth->field_add(&t0, &t0, &M, group->meth)); |
- MP_CHECKOK(group->meth->field_add(&t0, &M, &t0, group->meth)); |
- MP_CHECKOK(group->meth->field_sqr(pz, &M, group->meth)); |
- MP_CHECKOK(group->meth->field_sqr(&M, &M, group->meth)); |
- MP_CHECKOK(group->meth-> |
- field_mul(&M, &group->curvea, &M, group->meth)); |
- MP_CHECKOK(group->meth->field_add(&M, &t0, &M, group->meth)); |
- } |
- |
- /* rz = 2 * py * pz */ |
- /* t0 = 4 * py^2 */ |
- if (mp_cmp_d(pz, 1) == 0) { |
- MP_CHECKOK(group->meth->field_add(py, py, rz, group->meth)); |
- MP_CHECKOK(group->meth->field_sqr(rz, &t0, group->meth)); |
- } else { |
- MP_CHECKOK(group->meth->field_add(py, py, &t0, group->meth)); |
- MP_CHECKOK(group->meth->field_mul(&t0, pz, rz, group->meth)); |
- MP_CHECKOK(group->meth->field_sqr(&t0, &t0, group->meth)); |
- } |
- |
- /* S = 4 * px * py^2 = px * (2 * py)^2 */ |
- MP_CHECKOK(group->meth->field_mul(px, &t0, &S, group->meth)); |
- |
- /* rx = M^2 - 2 * S */ |
- MP_CHECKOK(group->meth->field_add(&S, &S, &t1, group->meth)); |
- MP_CHECKOK(group->meth->field_sqr(&M, rx, group->meth)); |
- MP_CHECKOK(group->meth->field_sub(rx, &t1, rx, group->meth)); |
- |
- /* ry = M * (S - rx) - 8 * py^4 */ |
- MP_CHECKOK(group->meth->field_sqr(&t0, &t1, group->meth)); |
- if (mp_isodd(&t1)) { |
- MP_CHECKOK(mp_add(&t1, &group->meth->irr, &t1)); |
- } |
- MP_CHECKOK(mp_div_2(&t1, &t1)); |
- MP_CHECKOK(group->meth->field_sub(&S, rx, &S, group->meth)); |
- MP_CHECKOK(group->meth->field_mul(&M, &S, &M, group->meth)); |
- MP_CHECKOK(group->meth->field_sub(&M, &t1, ry, group->meth)); |
- |
- CLEANUP: |
- mp_clear(&t0); |
- mp_clear(&t1); |
- mp_clear(&M); |
- mp_clear(&S); |
- return res; |
-} |
- |
-/* by default, this routine is unused and thus doesn't need to be compiled */ |
-#ifdef ECL_ENABLE_GFP_PT_MUL_JAC |
-/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters |
- * a, b and p are the elliptic curve coefficients and the prime that |
- * determines the field GFp. Elliptic curve points P and R can be |
- * identical. Uses mixed Jacobian-affine coordinates. Assumes input is |
- * already field-encoded using field_enc, and returns output that is still |
- * field-encoded. Uses 4-bit window method. */ |
-mp_err |
-ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px, const mp_int *py, |
- mp_int *rx, mp_int *ry, const ECGroup *group) |
-{ |
- mp_err res = MP_OKAY; |
- mp_int precomp[16][2], rz; |
- int i, ni, d; |
- |
- MP_DIGITS(&rz) = 0; |
- for (i = 0; i < 16; i++) { |
- MP_DIGITS(&precomp[i][0]) = 0; |
- MP_DIGITS(&precomp[i][1]) = 0; |
- } |
- |
- ARGCHK(group != NULL, MP_BADARG); |
- ARGCHK((n != NULL) && (px != NULL) && (py != NULL), MP_BADARG); |
- |
- /* initialize precomputation table */ |
- for (i = 0; i < 16; i++) { |
- MP_CHECKOK(mp_init(&precomp[i][0])); |
- MP_CHECKOK(mp_init(&precomp[i][1])); |
- } |
- |
- /* fill precomputation table */ |
- mp_zero(&precomp[0][0]); |
- mp_zero(&precomp[0][1]); |
- MP_CHECKOK(mp_copy(px, &precomp[1][0])); |
- MP_CHECKOK(mp_copy(py, &precomp[1][1])); |
- for (i = 2; i < 16; i++) { |
- MP_CHECKOK(group-> |
- point_add(&precomp[1][0], &precomp[1][1], |
- &precomp[i - 1][0], &precomp[i - 1][1], |
- &precomp[i][0], &precomp[i][1], group)); |
- } |
- |
- d = (mpl_significant_bits(n) + 3) / 4; |
- |
- /* R = inf */ |
- MP_CHECKOK(mp_init(&rz)); |
- MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz)); |
- |
- for (i = d - 1; i >= 0; i--) { |
- /* compute window ni */ |
- ni = MP_GET_BIT(n, 4 * i + 3); |
- ni <<= 1; |
- ni |= MP_GET_BIT(n, 4 * i + 2); |
- ni <<= 1; |
- ni |= MP_GET_BIT(n, 4 * i + 1); |
- ni <<= 1; |
- ni |= MP_GET_BIT(n, 4 * i); |
- /* R = 2^4 * R */ |
- MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group)); |
- MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group)); |
- MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group)); |
- MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group)); |
- /* R = R + (ni * P) */ |
- MP_CHECKOK(ec_GFp_pt_add_jac_aff |
- (rx, ry, &rz, &precomp[ni][0], &precomp[ni][1], rx, ry, |
- &rz, group)); |
- } |
- |
- /* convert result S to affine coordinates */ |
- MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group)); |
- |
- CLEANUP: |
- mp_clear(&rz); |
- for (i = 0; i < 16; i++) { |
- mp_clear(&precomp[i][0]); |
- mp_clear(&precomp[i][1]); |
- } |
- return res; |
-} |
-#endif |
- |
-/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G + |
- * k2 * P(x, y), where G is the generator (base point) of the group of |
- * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL. |
- * Uses mixed Jacobian-affine coordinates. Input and output values are |
- * assumed to be NOT field-encoded. Uses algorithm 15 (simultaneous |
- * multiple point multiplication) from Brown, Hankerson, Lopez, Menezes. |
- * Software Implementation of the NIST Elliptic Curves over Prime Fields. */ |
-mp_err |
-ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px, |
- const mp_int *py, mp_int *rx, mp_int *ry, |
- const ECGroup *group) |
-{ |
- mp_err res = MP_OKAY; |
- mp_int precomp[4][4][2]; |
- mp_int rz; |
- const mp_int *a, *b; |
- int i, j; |
- int ai, bi, d; |
- |
- for (i = 0; i < 4; i++) { |
- for (j = 0; j < 4; j++) { |
- MP_DIGITS(&precomp[i][j][0]) = 0; |
- MP_DIGITS(&precomp[i][j][1]) = 0; |
- } |
- } |
- MP_DIGITS(&rz) = 0; |
- |
- ARGCHK(group != NULL, MP_BADARG); |
- ARGCHK(!((k1 == NULL) |
- && ((k2 == NULL) || (px == NULL) |
- || (py == NULL))), MP_BADARG); |
- |
- /* if some arguments are not defined used ECPoint_mul */ |
- if (k1 == NULL) { |
- return ECPoint_mul(group, k2, px, py, rx, ry); |
- } else if ((k2 == NULL) || (px == NULL) || (py == NULL)) { |
- return ECPoint_mul(group, k1, NULL, NULL, rx, ry); |
- } |
- |
- /* initialize precomputation table */ |
- for (i = 0; i < 4; i++) { |
- for (j = 0; j < 4; j++) { |
- MP_CHECKOK(mp_init(&precomp[i][j][0])); |
- MP_CHECKOK(mp_init(&precomp[i][j][1])); |
- } |
- } |
- |
- /* fill precomputation table */ |
- /* assign {k1, k2} = {a, b} such that len(a) >= len(b) */ |
- if (mpl_significant_bits(k1) < mpl_significant_bits(k2)) { |
- a = k2; |
- b = k1; |
- if (group->meth->field_enc) { |
- MP_CHECKOK(group->meth-> |
- field_enc(px, &precomp[1][0][0], group->meth)); |
- MP_CHECKOK(group->meth-> |
- field_enc(py, &precomp[1][0][1], group->meth)); |
- } else { |
- MP_CHECKOK(mp_copy(px, &precomp[1][0][0])); |
- MP_CHECKOK(mp_copy(py, &precomp[1][0][1])); |
- } |
- MP_CHECKOK(mp_copy(&group->genx, &precomp[0][1][0])); |
- MP_CHECKOK(mp_copy(&group->geny, &precomp[0][1][1])); |
- } else { |
- a = k1; |
- b = k2; |
- MP_CHECKOK(mp_copy(&group->genx, &precomp[1][0][0])); |
- MP_CHECKOK(mp_copy(&group->geny, &precomp[1][0][1])); |
- if (group->meth->field_enc) { |
- MP_CHECKOK(group->meth-> |
- field_enc(px, &precomp[0][1][0], group->meth)); |
- MP_CHECKOK(group->meth-> |
- field_enc(py, &precomp[0][1][1], group->meth)); |
- } else { |
- MP_CHECKOK(mp_copy(px, &precomp[0][1][0])); |
- MP_CHECKOK(mp_copy(py, &precomp[0][1][1])); |
- } |
- } |
- /* precompute [*][0][*] */ |
- mp_zero(&precomp[0][0][0]); |
- mp_zero(&precomp[0][0][1]); |
- MP_CHECKOK(group-> |
- point_dbl(&precomp[1][0][0], &precomp[1][0][1], |
- &precomp[2][0][0], &precomp[2][0][1], group)); |
- MP_CHECKOK(group-> |
- point_add(&precomp[1][0][0], &precomp[1][0][1], |
- &precomp[2][0][0], &precomp[2][0][1], |
- &precomp[3][0][0], &precomp[3][0][1], group)); |
- /* precompute [*][1][*] */ |
- for (i = 1; i < 4; i++) { |
- MP_CHECKOK(group-> |
- point_add(&precomp[0][1][0], &precomp[0][1][1], |
- &precomp[i][0][0], &precomp[i][0][1], |
- &precomp[i][1][0], &precomp[i][1][1], group)); |
- } |
- /* precompute [*][2][*] */ |
- MP_CHECKOK(group-> |
- point_dbl(&precomp[0][1][0], &precomp[0][1][1], |
- &precomp[0][2][0], &precomp[0][2][1], group)); |
- for (i = 1; i < 4; i++) { |
- MP_CHECKOK(group-> |
- point_add(&precomp[0][2][0], &precomp[0][2][1], |
- &precomp[i][0][0], &precomp[i][0][1], |
- &precomp[i][2][0], &precomp[i][2][1], group)); |
- } |
- /* precompute [*][3][*] */ |
- MP_CHECKOK(group-> |
- point_add(&precomp[0][1][0], &precomp[0][1][1], |
- &precomp[0][2][0], &precomp[0][2][1], |
- &precomp[0][3][0], &precomp[0][3][1], group)); |
- for (i = 1; i < 4; i++) { |
- MP_CHECKOK(group-> |
- point_add(&precomp[0][3][0], &precomp[0][3][1], |
- &precomp[i][0][0], &precomp[i][0][1], |
- &precomp[i][3][0], &precomp[i][3][1], group)); |
- } |
- |
- d = (mpl_significant_bits(a) + 1) / 2; |
- |
- /* R = inf */ |
- MP_CHECKOK(mp_init(&rz)); |
- MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz)); |
- |
- for (i = d - 1; i >= 0; i--) { |
- ai = MP_GET_BIT(a, 2 * i + 1); |
- ai <<= 1; |
- ai |= MP_GET_BIT(a, 2 * i); |
- bi = MP_GET_BIT(b, 2 * i + 1); |
- bi <<= 1; |
- bi |= MP_GET_BIT(b, 2 * i); |
- /* R = 2^2 * R */ |
- MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group)); |
- MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group)); |
- /* R = R + (ai * A + bi * B) */ |
- MP_CHECKOK(ec_GFp_pt_add_jac_aff |
- (rx, ry, &rz, &precomp[ai][bi][0], &precomp[ai][bi][1], |
- rx, ry, &rz, group)); |
- } |
- |
- MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group)); |
- |
- if (group->meth->field_dec) { |
- MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth)); |
- MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth)); |
- } |
- |
- CLEANUP: |
- mp_clear(&rz); |
- for (i = 0; i < 4; i++) { |
- for (j = 0; j < 4; j++) { |
- mp_clear(&precomp[i][j][0]); |
- mp_clear(&precomp[i][j][1]); |
- } |
- } |
- return res; |
-} |