Index: mozilla/security/nss/lib/freebl/pqg.c |
=================================================================== |
--- mozilla/security/nss/lib/freebl/pqg.c (revision 191424) |
+++ mozilla/security/nss/lib/freebl/pqg.c (working copy) |
@@ -1,1849 +0,0 @@ |
-/* This Source Code Form is subject to the terms of the Mozilla Public |
- * License, v. 2.0. If a copy of the MPL was not distributed with this |
- * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
- |
-/* |
- * PQG parameter generation/verification. Based on FIPS 186-3. |
- * |
- * $Id: pqg.c,v 1.26 2012/12/13 22:47:15 wtc%google.com Exp $ |
- */ |
-#ifdef FREEBL_NO_DEPEND |
-#include "stubs.h" |
-#endif |
- |
-#include "prerr.h" |
-#include "secerr.h" |
- |
-#include "prtypes.h" |
-#include "blapi.h" |
-#include "secitem.h" |
-#include "mpi.h" |
-#include "mpprime.h" |
-#include "mplogic.h" |
-#include "secmpi.h" |
- |
-#define MAX_ITERATIONS 1000 /* Maximum number of iterations of primegen */ |
- |
-typedef enum { |
- FIPS186_1_TYPE, /* Probablistic */ |
- FIPS186_3_TYPE, /* Probablistic */ |
- FIPS186_3_ST_TYPE /* Shawe-Taylor provable */ |
-} pqgGenType; |
- |
-/* |
- * These test iterations are quite a bit larger than we previously had. |
- * This is because FIPS 186-3 is worried about the primes in PQG generation. |
- * It may be possible to purposefully construct composites which more |
- * iterations of Miller-Rabin than the for your normal randomly selected |
- * numbers.There are 3 ways to counter this: 1) use one of the cool provably |
- * prime algorithms (which would require a lot more work than DSA-2 deservers. |
- * 2) add a Lucas primality test (which requires coding a Lucas primality test, |
- * or 3) use a larger M-R test count. I chose the latter. It increases the time |
- * that it takes to prove the selected prime, but it shouldn't increase the |
- * overall time to run the algorithm (non-primes should still faile M-R |
- * realively quickly). If you want to get that last bit of performance, |
- * implement Lucas and adjust these two functions. See FIPS 186-3 Appendix C |
- * and F for more information. |
- */ |
-int prime_testcount_p(int L, int N) |
-{ |
- switch (L) { |
- case 1024: |
- return 40; |
- case 2048: |
- return 56; |
- case 3072: |
- return 64; |
- default: |
- break; |
- } |
- return 50; /* L = 512-960 */ |
-} |
- |
-/* The q numbers are different if you run M-R followd by Lucas. I created |
- * a separate function so if someone wanted to add the Lucas check, they |
- * could do so fairly easily */ |
-int prime_testcount_q(int L, int N) |
-{ |
- return prime_testcount_p(L,N); |
-} |
- |
-/* |
- * generic function to make sure our input matches DSA2 requirements |
- * this gives us one place to go if we need to bump the requirements in the |
- * future. |
- */ |
-static SECStatus |
-pqg_validate_dsa2(unsigned int L, unsigned int N) |
-{ |
- |
- switch (L) { |
- case 1024: |
- if (N != DSA1_Q_BITS) { |
- PORT_SetError(SEC_ERROR_INVALID_ARGS); |
- return SECFailure; |
- } |
- break; |
- case 2048: |
- if ((N != 224) && (N != 256)) { |
- PORT_SetError(SEC_ERROR_INVALID_ARGS); |
- return SECFailure; |
- } |
- break; |
- case 3072: |
- if (N != 256) { |
- PORT_SetError(SEC_ERROR_INVALID_ARGS); |
- return SECFailure; |
- } |
- break; |
- default: |
- PORT_SetError(SEC_ERROR_INVALID_ARGS); |
- return SECFailure; |
- } |
- return SECSuccess; |
-} |
- |
-static unsigned int |
-pqg_get_default_N(unsigned int L) |
-{ |
- unsigned int N = 0; |
- switch (L) { |
- case 1024: |
- N = DSA1_Q_BITS; |
- break; |
- case 2048: |
- N = 224; |
- break; |
- case 3072: |
- N = 256; |
- break; |
- default: |
- PORT_SetError(SEC_ERROR_INVALID_ARGS); |
- break; /* N already set to zero */ |
- } |
- return N; |
-} |
- |
-/* |
- * Select the lowest hash algorithm usable |
- */ |
-static HASH_HashType |
-getFirstHash(unsigned int L, unsigned int N) |
-{ |
- if (N < 224) { |
- return HASH_AlgSHA1; |
- } |
- if (N < 256) { |
- return HASH_AlgSHA224; |
- } |
- if (N < 384) { |
- return HASH_AlgSHA256; |
- } |
- if (N < 512) { |
- return HASH_AlgSHA384; |
- } |
- return HASH_AlgSHA512; |
-} |
- |
-/* |
- * find the next usable hash algorthim |
- */ |
-static HASH_HashType |
-getNextHash(HASH_HashType hashtype) |
-{ |
- switch (hashtype) { |
- case HASH_AlgSHA1: |
- hashtype = HASH_AlgSHA224; |
- break; |
- case HASH_AlgSHA224: |
- hashtype = HASH_AlgSHA256; |
- break; |
- case HASH_AlgSHA256: |
- hashtype = HASH_AlgSHA384; |
- break; |
- case HASH_AlgSHA384: |
- hashtype = HASH_AlgSHA512; |
- break; |
- case HASH_AlgSHA512: |
- default: |
- hashtype = HASH_AlgTOTAL; |
- break; |
- } |
- return hashtype; |
-} |
- |
-static unsigned int |
-HASH_ResultLen(HASH_HashType type) |
-{ |
- const SECHashObject *hash_obj = HASH_GetRawHashObject(type); |
- if (hash_obj == NULL) { |
- return 0; |
- } |
- return hash_obj->length; |
-} |
- |
-static SECStatus |
-HASH_HashBuf(HASH_HashType type, unsigned char *dest, |
- const unsigned char *src, PRUint32 src_len) |
-{ |
- const SECHashObject *hash_obj = HASH_GetRawHashObject(type); |
- void *hashcx = NULL; |
- unsigned int dummy; |
- |
- if (hash_obj == NULL) { |
- return SECFailure; |
- } |
- |
- hashcx = hash_obj->create(); |
- if (hashcx == NULL) { |
- return SECFailure; |
- } |
- hash_obj->begin(hashcx); |
- hash_obj->update(hashcx,src,src_len); |
- hash_obj->end(hashcx,dest, &dummy, hash_obj->length); |
- hash_obj->destroy(hashcx, PR_TRUE); |
- return SECSuccess; |
-} |
- |
-unsigned int |
-PQG_GetLength(const SECItem *obj) |
-{ |
- unsigned int len = obj->len; |
- |
- if (obj->data == NULL) { |
- return 0; |
- } |
- if (len > 1 && obj->data[0] == 0) { |
- len--; |
- } |
- return len; |
-} |
- |
-SECStatus |
-PQG_Check(const PQGParams *params) |
-{ |
- unsigned int L,N; |
- SECStatus rv = SECSuccess; |
- |
- if (params == NULL) { |
- PORT_SetError(SEC_ERROR_INVALID_ARGS); |
- return SECFailure; |
- } |
- |
- L = PQG_GetLength(¶ms->prime)*BITS_PER_BYTE; |
- N = PQG_GetLength(¶ms->subPrime)*BITS_PER_BYTE; |
- |
- if (L < 1024) { |
- int j; |
- |
- /* handle DSA1 pqg parameters with less thatn 1024 bits*/ |
- if ( N != DSA1_Q_BITS ) { |
- PORT_SetError(SEC_ERROR_INVALID_ARGS); |
- return SECFailure; |
- } |
- j = PQG_PBITS_TO_INDEX(L); |
- if ( j < 0 ) { |
- PORT_SetError(SEC_ERROR_INVALID_ARGS); |
- rv = SECFailure; |
- } |
- } else { |
- /* handle DSA2 parameters (includes DSA1, 1024 bits) */ |
- rv = pqg_validate_dsa2(L, N); |
- } |
- return rv; |
-} |
- |
-HASH_HashType |
-PQG_GetHashType(const PQGParams *params) |
-{ |
- unsigned int L,N; |
- |
- if (params == NULL) { |
- PORT_SetError(SEC_ERROR_INVALID_ARGS); |
- return HASH_AlgNULL; |
- } |
- |
- L = PQG_GetLength(¶ms->prime)*BITS_PER_BYTE; |
- N = PQG_GetLength(¶ms->subPrime)*BITS_PER_BYTE; |
- return getFirstHash(L, N); |
-} |
- |
-/* Get a seed for generating P and Q. If in testing mode, copy in the |
-** seed from FIPS 186-1 appendix 5. Otherwise, obtain bytes from the |
-** global random number generator. |
-*/ |
-static SECStatus |
-getPQseed(SECItem *seed, PRArenaPool* arena) |
-{ |
- SECStatus rv; |
- |
- if (!seed->data) { |
- seed->data = (unsigned char*)PORT_ArenaZAlloc(arena, seed->len); |
- } |
- if (!seed->data) { |
- PORT_SetError(SEC_ERROR_NO_MEMORY); |
- return SECFailure; |
- } |
- rv = RNG_GenerateGlobalRandomBytes(seed->data, seed->len); |
- /* |
- * NIST CMVP disallows a sequence of 20 bytes with the most |
- * significant byte equal to 0. Perhaps they interpret |
- * "a sequence of at least 160 bits" as "a number >= 2^159". |
- * So we always set the most significant bit to 1. (bug 334533) |
- */ |
- seed->data[0] |= 0x80; |
- return rv; |
-} |
- |
-/* Generate a candidate h value. If in testing mode, use the h value |
-** specified in FIPS 186-1 appendix 5, h = 2. Otherwise, obtain bytes |
-** from the global random number generator. |
-*/ |
-static SECStatus |
-generate_h_candidate(SECItem *hit, mp_int *H) |
-{ |
- SECStatus rv = SECSuccess; |
- mp_err err = MP_OKAY; |
-#ifdef FIPS_186_1_A5_TEST |
- memset(hit->data, 0, hit->len); |
- hit->data[hit->len-1] = 0x02; |
-#else |
- rv = RNG_GenerateGlobalRandomBytes(hit->data, hit->len); |
-#endif |
- if (rv) |
- return SECFailure; |
- err = mp_read_unsigned_octets(H, hit->data, hit->len); |
- if (err) { |
- MP_TO_SEC_ERROR(err); |
- return SECFailure; |
- } |
- return SECSuccess; |
-} |
- |
-static SECStatus |
-addToSeed(const SECItem * seed, |
- unsigned long addend, |
- int seedlen, /* g in 186-1 */ |
- SECItem * seedout) |
-{ |
- mp_int s, sum, modulus, tmp; |
- mp_err err = MP_OKAY; |
- SECStatus rv = SECSuccess; |
- MP_DIGITS(&s) = 0; |
- MP_DIGITS(&sum) = 0; |
- MP_DIGITS(&modulus) = 0; |
- MP_DIGITS(&tmp) = 0; |
- CHECK_MPI_OK( mp_init(&s) ); |
- CHECK_MPI_OK( mp_init(&sum) ); |
- CHECK_MPI_OK( mp_init(&modulus) ); |
- SECITEM_TO_MPINT(*seed, &s); /* s = seed */ |
- /* seed += addend */ |
- if (addend < MP_DIGIT_MAX) { |
- CHECK_MPI_OK( mp_add_d(&s, (mp_digit)addend, &s) ); |
- } else { |
- CHECK_MPI_OK( mp_init(&tmp) ); |
- CHECK_MPI_OK( mp_set_ulong(&tmp, addend) ); |
- CHECK_MPI_OK( mp_add(&s, &tmp, &s) ); |
- } |
- /*sum = s mod 2**seedlen */ |
- CHECK_MPI_OK( mp_div_2d(&s, (mp_digit)seedlen, NULL, &sum) ); |
- if (seedout->data != NULL) { |
- SECITEM_ZfreeItem(seedout, PR_FALSE); |
- } |
- MPINT_TO_SECITEM(&sum, seedout, NULL); |
-cleanup: |
- mp_clear(&s); |
- mp_clear(&sum); |
- mp_clear(&modulus); |
- mp_clear(&tmp); |
- if (err) { |
- MP_TO_SEC_ERROR(err); |
- return SECFailure; |
- } |
- return rv; |
-} |
- |
-/* Compute Hash[(SEED + addend) mod 2**g] |
-** Result is placed in shaOutBuf. |
-** This computation is used in steps 2 and 7 of FIPS 186 Appendix 2.2 and |
-** step 11.2 of FIPS 186-3 Appendix A.1.1.2 . |
-*/ |
-static SECStatus |
-addToSeedThenHash(HASH_HashType hashtype, |
- const SECItem * seed, |
- unsigned long addend, |
- int seedlen, /* g in 186-1 */ |
- unsigned char * hashOutBuf) |
-{ |
- SECItem str = { 0, 0, 0 }; |
- SECStatus rv; |
- rv = addToSeed(seed, addend, seedlen, &str); |
- if (rv != SECSuccess) { |
- return rv; |
- } |
- rv = HASH_HashBuf(hashtype, hashOutBuf, str.data, str.len);/* hash result */ |
- if (str.data) |
- SECITEM_ZfreeItem(&str, PR_FALSE); |
- return rv; |
-} |
- |
-/* |
-** Perform steps 2 and 3 of FIPS 186-1, appendix 2.2. |
-** Generate Q from seed. |
-*/ |
-static SECStatus |
-makeQfromSeed( |
- unsigned int g, /* input. Length of seed in bits. */ |
-const SECItem * seed, /* input. */ |
- mp_int * Q) /* output. */ |
-{ |
- unsigned char sha1[SHA1_LENGTH]; |
- unsigned char sha2[SHA1_LENGTH]; |
- unsigned char U[SHA1_LENGTH]; |
- SECStatus rv = SECSuccess; |
- mp_err err = MP_OKAY; |
- int i; |
- /* ****************************************************************** |
- ** Step 2. |
- ** "Compute U = SHA[SEED] XOR SHA[(SEED+1) mod 2**g]." |
- **/ |
- CHECK_SEC_OK( SHA1_HashBuf(sha1, seed->data, seed->len) ); |
- CHECK_SEC_OK( addToSeedThenHash(HASH_AlgSHA1, seed, 1, g, sha2) ); |
- for (i=0; i<SHA1_LENGTH; ++i) |
- U[i] = sha1[i] ^ sha2[i]; |
- /* ****************************************************************** |
- ** Step 3. |
- ** "Form Q from U by setting the most signficant bit (the 2**159 bit) |
- ** and the least signficant bit to 1. In terms of boolean operations, |
- ** Q = U OR 2**159 OR 1. Note that 2**159 < Q < 2**160." |
- */ |
- U[0] |= 0x80; /* U is MSB first */ |
- U[SHA1_LENGTH-1] |= 0x01; |
- err = mp_read_unsigned_octets(Q, U, SHA1_LENGTH); |
-cleanup: |
- memset(U, 0, SHA1_LENGTH); |
- memset(sha1, 0, SHA1_LENGTH); |
- memset(sha2, 0, SHA1_LENGTH); |
- if (err) { |
- MP_TO_SEC_ERROR(err); |
- return SECFailure; |
- } |
- return rv; |
-} |
- |
-/* |
-** Perform steps 6 and 7 of FIPS 186-3, appendix A.1.1.2. |
-** Generate Q from seed. |
-*/ |
-static SECStatus |
-makeQ2fromSeed( |
- HASH_HashType hashtype, /* selected Hashing algorithm */ |
- unsigned int N, /* input. Length of q in bits. */ |
-const SECItem * seed, /* input. */ |
- mp_int * Q) /* output. */ |
-{ |
- unsigned char U[HASH_LENGTH_MAX]; |
- SECStatus rv = SECSuccess; |
- mp_err err = MP_OKAY; |
- int N_bytes = N/BITS_PER_BYTE; /* length of N in bytes rather than bits */ |
- int hashLen = HASH_ResultLen(hashtype); |
- int offset = 0; |
- |
- /* ****************************************************************** |
- ** Step 6. |
- ** "Compute U = hash[SEED] mod 2**N-1]." |
- **/ |
- CHECK_SEC_OK( HASH_HashBuf(hashtype, U, seed->data, seed->len) ); |
- /* mod 2**N . Step 7 will explicitly set the top bit to 1, so no need |
- * to handle mod 2**N-1 */ |
- if (hashLen > N_bytes) { |
- offset = hashLen - N_bytes; |
- } |
- /* ****************************************************************** |
- ** Step 7. |
- ** computed_q = 2**(N-1) + U + 1 - (U mod 2) |
- ** |
- ** This is the same as: |
- ** computed_q = 2**(N-1) | U | 1; |
- */ |
- U[offset] |= 0x80; /* U is MSB first */ |
- U[hashLen-1] |= 0x01; |
- err = mp_read_unsigned_octets(Q, &U[offset], N_bytes); |
-cleanup: |
- memset(U, 0, HASH_LENGTH_MAX); |
- if (err) { |
- MP_TO_SEC_ERROR(err); |
- return SECFailure; |
- } |
- return rv; |
-} |
- |
-/* |
-** Perform steps from FIPS 186-3, Appendix A.1.2.1 and Appendix C.6 |
-** |
-** This generates a provable prime from two smaller prime. The resulting |
-** prime p will have q0 as a multiple of p-1. q0 can be 1. |
-** |
-** This implments steps 4 thorough 22 of FIPS 186-3 A.1.2.1 and |
-** steps 16 through 34 of FIPS 186-2 C.6 |
-*/ |
-#define MAX_ST_SEED_BITS HASH_LENGTH_MAX*BITS_PER_BYTE |
-SECStatus |
-makePrimefromPrimesShaweTaylor( |
- HASH_HashType hashtype, /* selected Hashing algorithm */ |
- unsigned int length, /* input. Length of prime in bits. */ |
- mp_int * c0, /* seed prime */ |
- mp_int * q, /* sub prime, can be 1 */ |
- mp_int * prime, /* output. */ |
- SECItem * prime_seed, /* input/output. */ |
- int * prime_gen_counter) /* input/output. */ |
-{ |
- mp_int c; |
- mp_int c0_2; |
- mp_int t; |
- mp_int a; |
- mp_int z; |
- mp_int two_length_minus_1; |
- SECStatus rv = SECFailure; |
- int hashlen = HASH_ResultLen(hashtype); |
- int outlen = hashlen*BITS_PER_BYTE; |
- int offset; |
- unsigned char bit, mask; |
- /* x needs to hold roundup(L/outlen)*outlen. |
- * This can be no larger than L+outlen-1, So we set it's size to |
- * our max L + max outlen and know we are safe */ |
- unsigned char x[DSA_MAX_P_BITS/8+HASH_LENGTH_MAX]; |
- mp_err err = MP_OKAY; |
- int i; |
- int iterations; |
- int old_counter; |
- |
- MP_DIGITS(&c) = 0; |
- MP_DIGITS(&c0_2) = 0; |
- MP_DIGITS(&t) = 0; |
- MP_DIGITS(&a) = 0; |
- MP_DIGITS(&z) = 0; |
- MP_DIGITS(&two_length_minus_1) = 0; |
- CHECK_MPI_OK( mp_init(&c) ); |
- CHECK_MPI_OK( mp_init(&c0_2) ); |
- CHECK_MPI_OK( mp_init(&t) ); |
- CHECK_MPI_OK( mp_init(&a) ); |
- CHECK_MPI_OK( mp_init(&z) ); |
- CHECK_MPI_OK( mp_init(&two_length_minus_1) ); |
- |
- |
- /* |
- ** There is a slight mapping of variable names depending on which |
- ** FIPS 186 steps are being carried out. The mapping is as follows: |
- ** variable A.1.2.1 C.6 |
- ** c0 p0 c0 |
- ** q q 1 |
- ** c p c |
- ** c0_2 2*p0*q 2*c0 |
- ** length L length |
- ** prime_seed pseed prime_seed |
- ** prime_gen_counter pgen_counter prime_gen_counter |
- ** |
- ** Also note: or iterations variable is actually iterations+1, since |
- ** iterations+1 works better in C. |
- */ |
- |
- /* Step 4/16 iterations = ceiling(length/outlen)-1 */ |
- iterations = (length+outlen-1)/outlen; /* NOTE: iterations +1 */ |
- /* Step 5/17 old_counter = prime_gen_counter */ |
- old_counter = *prime_gen_counter; |
- /* |
- ** Comment: Generate a pseudorandom integer x in the interval |
- ** [2**(lenght-1), 2**length]. |
- ** |
- ** Step 6/18 x = 0 |
- */ |
- PORT_Memset(x, 0, sizeof(x)); |
- /* |
- ** Step 7/19 for i = 0 to iterations do |
- ** x = x + (HASH(prime_seed + i) * 2^(i*outlen)) |
- */ |
- for (i=0; i < iterations; i++) { |
- /* is bigger than prime_seed should get to */ |
- CHECK_SEC_OK( addToSeedThenHash(hashtype, prime_seed, i, |
- MAX_ST_SEED_BITS,&x[(iterations - i - 1)*hashlen])); |
- } |
- /* Step 8/20 prime_seed = prime_seed + iterations + 1 */ |
- CHECK_SEC_OK(addToSeed(prime_seed, iterations, MAX_ST_SEED_BITS, |
- prime_seed)); |
- /* |
- ** Step 9/21 x = 2 ** (length-1) + x mod 2 ** (length-1) |
- ** |
- ** This step mathematically sets the high bit and clears out |
- ** all the other bits higher than length. 'x' is stored |
- ** in the x array, MSB first. The above formula gives us an 'x' |
- ** which is length bytes long and has the high bit set. We also know |
- ** that length <= iterations*outlen since |
- ** iterations=ceiling(length/outlen). First we find the offset in |
- ** bytes into the array where the high bit is. |
- */ |
- offset = (outlen*iterations - length)/BITS_PER_BYTE; |
- /* now we want to set the 'high bit', since length may not be a |
- * multiple of 8,*/ |
- bit = 1 << ((length-1) & 0x7); /* select the proper bit in the byte */ |
- /* we need to zero out the rest of the bits in the byte above */ |
- mask = (bit-1); |
- /* now we set it */ |
- x[offset] = (mask & x[offset]) | bit; |
- /* |
- ** Comment: Generate a candidate prime c in the interval |
- ** [2**(lenght-1), 2**length]. |
- ** |
- ** Step 10 t = ceiling(x/(2q(p0))) |
- ** Step 22 t = ceiling(x/(2(c0))) |
- */ |
- CHECK_MPI_OK( mp_read_unsigned_octets(&t, &x[offset], |
- hashlen*iterations - offset ) ); /* t = x */ |
- CHECK_MPI_OK( mp_mul(c0, q, &c0_2) ); /* c0_2 is now c0*q */ |
- CHECK_MPI_OK( mp_add(&c0_2, &c0_2, &c0_2) ); /* c0_2 is now 2*q*c0 */ |
- CHECK_MPI_OK( mp_add(&t, &c0_2, &t) ); /* t = x+2*q*c0 */ |
- CHECK_MPI_OK( mp_sub_d(&t, (mp_digit) 1, &t) ); /* t = x+2*q*c0 -1 */ |
- /* t = floor((x+2qc0-1)/2qc0) = ceil(x/2qc0) */ |
- CHECK_MPI_OK( mp_div(&t, &c0_2, &t, NULL) ); |
- /* |
- ** step 11: if (2tqp0 +1 > 2**length), then t = ceiling(2**(length-1)/2qp0) |
- ** step 12: t = 2tqp0 +1. |
- ** |
- ** step 23: if (2tc0 +1 > 2**length), then t = ceiling(2**(length-1)/2c0) |
- ** step 24: t = 2tc0 +1. |
- */ |
- CHECK_MPI_OK( mp_2expt(&two_length_minus_1, length-1) ); |
-step_23: |
- CHECK_MPI_OK( mp_mul(&t, &c0_2, &c) ); /* c = t*2qc0 */ |
- CHECK_MPI_OK( mp_add_d(&c, (mp_digit)1, &c) ); /* c= 2tqc0 + 1*/ |
- if (mpl_significant_bits(&c) > length) { /* if c > 2**length */ |
- CHECK_MPI_OK( mp_sub_d(&c0_2, (mp_digit) 1, &t) ); /* t = 2qc0-1 */ |
- /* t = 2**(length-1) + 2qc0 -1 */ |
- CHECK_MPI_OK( mp_add(&two_length_minus_1,&t, &t) ); |
- /* t = floor((2**(length-1)+2qc0 -1)/2qco) |
- * = ceil(2**(lenght-2)/2qc0) */ |
- CHECK_MPI_OK( mp_div(&t, &c0_2, &t, NULL) ); |
- CHECK_MPI_OK( mp_mul(&t, &c0_2, &c) ); |
- CHECK_MPI_OK( mp_add_d(&c, (mp_digit)1, &c) ); /* c= 2tqc0 + 1*/ |
- } |
- /* Step 13/25 prime_gen_counter = prime_gen_counter + 1*/ |
- (*prime_gen_counter)++; |
- /* |
- ** Comment: Test the candidate prime c for primality; first pick an |
- ** integer a between 2 and c-2. |
- ** |
- ** Step 14/26 a=0 |
- */ |
- PORT_Memset(x, 0, sizeof(x)); /* use x for a */ |
- /* |
- ** Step 15/27 for i = 0 to iterations do |
- ** a = a + (HASH(prime_seed + i) * 2^(i*outlen)) |
- ** |
- ** NOTE: we reuse the x array for 'a' initially. |
- */ |
- for (i=0; i < iterations; i++) { |
- /* MAX_ST_SEED_BITS is bigger than prime_seed should get to */ |
- CHECK_SEC_OK(addToSeedThenHash(hashtype, prime_seed, i, |
- MAX_ST_SEED_BITS,&x[(iterations - i - 1)*hashlen])); |
- } |
- /* Step 16/28 prime_seed = prime_seed + iterations + 1 */ |
- CHECK_SEC_OK(addToSeed(prime_seed, iterations, MAX_ST_SEED_BITS, |
- prime_seed)); |
- /* Step 17/29 a = 2 + (a mod (c-3)). */ |
- CHECK_MPI_OK( mp_read_unsigned_octets(&a, x, iterations*hashlen) ); |
- CHECK_MPI_OK( mp_sub_d(&c, (mp_digit) 3, &z) ); /* z = c -3 */ |
- CHECK_MPI_OK( mp_mod(&a, &z, &a) ); /* a = a mod c -3 */ |
- CHECK_MPI_OK( mp_add_d(&a, (mp_digit) 2, &a) ); /* a = 2 + a mod c -3 */ |
- /* |
- ** Step 18 z = a**(2tq) mod p. |
- ** Step 30 z = a**(2t) mod c. |
- */ |
- CHECK_MPI_OK( mp_mul(&t, q, &z) ); /* z = tq */ |
- CHECK_MPI_OK( mp_add(&z, &z, &z) ); /* z = 2tq */ |
- CHECK_MPI_OK( mp_exptmod(&a, &z, &c, &z) ); /* z = a**(2tq) mod c */ |
- /* |
- ** Step 19 if (( 1 == GCD(z-1,p)) and ( 1 == z**p0 mod p )), then |
- ** Step 31 if (( 1 == GCD(z-1,c)) and ( 1 == z**c0 mod c )), then |
- */ |
- CHECK_MPI_OK( mp_sub_d(&z, (mp_digit) 1, &a) ); |
- CHECK_MPI_OK( mp_gcd(&a,&c,&a )); |
- if (mp_cmp_d(&a, (mp_digit)1) == 0) { |
- CHECK_MPI_OK( mp_exptmod(&z, c0, &c, &a) ); |
- if (mp_cmp_d(&a, (mp_digit)1) == 0) { |
- /* Step 31.1 prime = c */ |
- CHECK_MPI_OK( mp_copy(&c, prime) ); |
- /* |
- ** Step 31.2 return Success, prime, prime_seed, |
- ** prime_gen_counter |
- */ |
- rv = SECSuccess; |
- goto cleanup; |
- } |
- } |
- /* |
- ** Step 20/32 If (prime_gen_counter > 4 * length + old_counter then |
- ** return (FAILURE, 0, 0, 0). |
- ** NOTE: the test is reversed, so we fall through on failure to the |
- ** cleanup routine |
- */ |
- if (*prime_gen_counter < (4*length + old_counter)) { |
- /* Step 21/33 t = t + 1 */ |
- CHECK_MPI_OK( mp_add_d(&t, (mp_digit) 1, &t) ); |
- /* Step 22/34 Go to step 23/11 */ |
- goto step_23; |
- } |
- |
- /* if (prime_gencont > (4*length + old_counter), fall through to failure */ |
- rv = SECFailure; /* really is already set, but paranoia is good */ |
- |
-cleanup: |
- mp_clear(&c); |
- mp_clear(&c0_2); |
- mp_clear(&t); |
- mp_clear(&a); |
- mp_clear(&z); |
- mp_clear(&two_length_minus_1); |
- if (err) { |
- MP_TO_SEC_ERROR(err); |
- rv = SECFailure; |
- } |
- if (rv == SECFailure) { |
- mp_zero(prime); |
- if (prime_seed->data) { |
- SECITEM_FreeItem(prime_seed, PR_FALSE); |
- } |
- *prime_gen_counter = 0; |
- } |
- return rv; |
-} |
- |
-/* |
-** Perform steps from FIPS 186-3, Appendix C.6 |
-** |
-** This generates a provable prime from a seed |
-*/ |
-SECStatus |
-makePrimefromSeedShaweTaylor( |
- HASH_HashType hashtype, /* selected Hashing algorithm */ |
- unsigned int length, /* input. Length of prime in bits. */ |
-const SECItem * input_seed, /* input. */ |
- mp_int * prime, /* output. */ |
- SECItem * prime_seed, /* output. */ |
- int * prime_gen_counter) /* output. */ |
-{ |
- mp_int c; |
- mp_int c0; |
- mp_int one; |
- SECStatus rv = SECFailure; |
- int hashlen = HASH_ResultLen(hashtype); |
- int outlen = hashlen*BITS_PER_BYTE; |
- int offset; |
- unsigned char bit, mask; |
- unsigned char x[HASH_LENGTH_MAX*2]; |
- mp_digit dummy; |
- mp_err err = MP_OKAY; |
- int i; |
- |
- MP_DIGITS(&c) = 0; |
- MP_DIGITS(&c0) = 0; |
- MP_DIGITS(&one) = 0; |
- CHECK_MPI_OK( mp_init(&c) ); |
- CHECK_MPI_OK( mp_init(&c0) ); |
- CHECK_MPI_OK( mp_init(&one) ); |
- |
- /* Step 1. if length < 2 then return (FAILURE, 0, 0, 0) */ |
- if (length < 2) { |
- rv = SECFailure; |
- goto cleanup; |
- } |
- /* Step 2. if length >= 33 then goto step 14 */ |
- if (length >= 33) { |
- mp_zero(&one); |
- CHECK_MPI_OK( mp_add_d(&one, (mp_digit) 1, &one) ); |
- |
- /* Step 14 (status, c0, prime_seed, prime_gen_counter) = |
- ** (ST_Random_Prime((ceil(length/2)+1, input_seed) |
- */ |
- rv = makePrimefromSeedShaweTaylor(hashtype, (length+1)/2+1, |
- input_seed, &c0, prime_seed, prime_gen_counter); |
- /* Step 15 if FAILURE is returned, return (FAILURE, 0, 0, 0). */ |
- if (rv != SECSuccess) { |
- goto cleanup; |
- } |
- /* Steps 16-34 */ |
- rv = makePrimefromPrimesShaweTaylor(hashtype,length, &c0, &one, |
- prime, prime_seed, prime_gen_counter); |
- goto cleanup; /* we're done, one way or the other */ |
- } |
- /* Step 3 prime_seed = input_seed */ |
- CHECK_SEC_OK(SECITEM_CopyItem(NULL, prime_seed, input_seed)); |
- /* Step 4 prime_gen_count = 0 */ |
- *prime_gen_counter = 0; |
- |
-step_5: |
- /* Step 5 c = Hash(prime_seed) xor Hash(prime_seed+1). */ |
- CHECK_SEC_OK(HASH_HashBuf(hashtype, x, prime_seed->data, prime_seed->len) ); |
- CHECK_SEC_OK(addToSeedThenHash(hashtype, prime_seed, 1, |
- MAX_ST_SEED_BITS, &x[hashlen]) ); |
- for (i=0; i < hashlen; i++) { |
- x[i] = x[i] ^ x[i+hashlen]; |
- } |
- /* Step 6 c = 2**length-1 + c mod 2**length-1 */ |
- /* This step mathematically sets the high bit and clears out |
- ** all the other bits higher than length. Right now c is stored |
- ** in the x array, MSB first. The above formula gives us a c which |
- ** is length bytes long and has the high bit set. We also know that |
- ** length < outlen since the smallest outlen is 160 bits and the largest |
- ** length at this point is 32 bits. So first we find the offset in bytes |
- ** into the array where the high bit is. |
- */ |
- offset = (outlen - length)/BITS_PER_BYTE; |
- /* now we want to set the 'high bit'. We have to calculate this since |
- * length may not be a multiple of 8.*/ |
- bit = 1 << ((length-1) & 0x7); /* select the proper bit in the byte */ |
- /* we need to zero out the rest of the bits in the byte above */ |
- mask = (bit-1); |
- /* now we set it */ |
- x[offset] = (mask & x[offset]) | bit; |
- /* Step 7 c = c*floor(c/2) + 1 */ |
- /* set the low bit. much easier to find (the end of the array) */ |
- x[hashlen-1] |= 1; |
- /* now that we've set our bits, we can create our candidate "c" */ |
- CHECK_MPI_OK( mp_read_unsigned_octets(&c, &x[offset], hashlen-offset) ); |
- /* Step 8 prime_gen_counter = prime_gen_counter + 1 */ |
- (*prime_gen_counter)++; |
- /* Step 9 prime_seed = prime_seed + 2 */ |
- CHECK_SEC_OK(addToSeed(prime_seed, 2, MAX_ST_SEED_BITS, prime_seed)); |
- /* Step 10 Perform deterministic primality test on c. For example, since |
- ** c is small, it's primality can be tested by trial division, See |
- ** See Appendic C.7. |
- ** |
- ** We in fact test with trial division. mpi has a built int trial divider |
- ** that divides all divisors up to 2^16. |
- */ |
- if (prime_tab[prime_tab_size-1] < 0xFFF1) { |
- /* we aren't testing all the primes between 0 and 2^16, we really |
- * can't use this construction. Just fail. */ |
- rv = SECFailure; |
- goto cleanup; |
- } |
- dummy = prime_tab_size; |
- err = mpp_divis_primes(&c, &dummy); |
- /* Step 11 if c is prime then */ |
- if (err == MP_NO) { |
- /* Step 11.1 prime = c */ |
- CHECK_MPI_OK( mp_copy(&c, prime) ); |
- /* Step 11.2 return SUCCESS prime, prime_seed, prime_gen_counter */ |
- err = MP_OKAY; |
- rv = SECSuccess; |
- goto cleanup; |
- } else if (err != MP_YES) { |
- goto cleanup; /* function failed, bail out */ |
- } else { |
- /* reset mp_err */ |
- err = MP_OKAY; |
- } |
- /* |
- ** Step 12 if (prime_gen_counter > (4*len)) |
- ** then return (FAILURE, 0, 0, 0)) |
- ** Step 13 goto step 5 |
- */ |
- if (*prime_gen_counter <= (4*length)) { |
- goto step_5; |
- } |
- /* if (prime_gencont > 4*length), fall through to failure */ |
- rv = SECFailure; /* really is already set, but paranoia is good */ |
- |
-cleanup: |
- mp_clear(&c); |
- mp_clear(&c0); |
- mp_clear(&one); |
- if (err) { |
- MP_TO_SEC_ERROR(err); |
- rv = SECFailure; |
- } |
- if (rv == SECFailure) { |
- mp_zero(prime); |
- if (prime_seed->data) { |
- SECITEM_FreeItem(prime_seed, PR_FALSE); |
- } |
- *prime_gen_counter = 0; |
- } |
- return rv; |
-} |
- |
- |
-/* |
- * Find a Q and algorithm from Seed. |
- */ |
-static SECStatus |
-findQfromSeed( |
- unsigned int L, /* input. Length of p in bits. */ |
- unsigned int N, /* input. Length of q in bits. */ |
- unsigned int g, /* input. Length of seed in bits. */ |
-const SECItem * seed, /* input. */ |
- mp_int * Q, /* input. */ |
- mp_int * Q_, /* output. */ |
- int * qseed_len, /* output */ |
- HASH_HashType *hashtypePtr, /* output. Hash uses */ |
- pqgGenType *typePtr) /* output. Generation Type used */ |
-{ |
- HASH_HashType hashtype; |
- SECItem firstseed = { 0, 0, 0 }; |
- SECItem qseed = { 0, 0, 0 }; |
- SECStatus rv; |
- |
- *qseed_len = 0; /* only set if FIPS186_3_ST_TYPE */ |
- |
- /* handle legacy small DSA first can only be FIPS186_1_TYPE */ |
- if (L < 1024) { |
- rv =makeQfromSeed(g,seed,Q_); |
- if ((rv == SECSuccess) && (mp_cmp(Q,Q_) == 0)) { |
- *hashtypePtr = HASH_AlgSHA1; |
- *typePtr = FIPS186_1_TYPE; |
- return SECSuccess; |
- } |
- return SECFailure; |
- } |
- /* 1024 could use FIPS186_1 or FIPS186_3 algorithms, we need to try |
- * them both */ |
- if (L == 1024) { |
- rv = makeQfromSeed(g,seed,Q_); |
- if (rv == SECSuccess) { |
- if (mp_cmp(Q,Q_) == 0) { |
- *hashtypePtr = HASH_AlgSHA1; |
- *typePtr = FIPS186_1_TYPE; |
- return SECSuccess; |
- } |
- } |
- /* fall through for FIPS186_3 types */ |
- } |
- /* at this point we know we aren't using FIPS186_1, start trying FIPS186_3 |
- * with appropriate hash types */ |
- for (hashtype = getFirstHash(L,N); hashtype != HASH_AlgTOTAL; |
- hashtype=getNextHash(hashtype)) { |
- rv = makeQ2fromSeed(hashtype, N, seed, Q_); |
- if (rv != SECSuccess) { |
- continue; |
- } |
- if (mp_cmp(Q,Q_) == 0) { |
- *hashtypePtr = hashtype; |
- *typePtr = FIPS186_3_TYPE; |
- return SECSuccess; |
- } |
- } |
- /* |
- * OK finally try FIPS186_3 Shawe-Taylor |
- */ |
- firstseed = *seed; |
- firstseed.len = seed->len/3; |
- for (hashtype = getFirstHash(L,N); hashtype != HASH_AlgTOTAL; |
- hashtype=getNextHash(hashtype)) { |
- int count; |
- |
- rv = makePrimefromSeedShaweTaylor(hashtype, N, &firstseed, Q_, |
- &qseed, &count); |
- if (rv != SECSuccess) { |
- continue; |
- } |
- if (mp_cmp(Q,Q_) == 0) { |
- /* check qseed as well... */ |
- int offset = seed->len - qseed.len; |
- if ((offset < 0) || |
- (PORT_Memcmp(&seed->data[offset],qseed.data,qseed.len) != 0)) { |
- /* we found q, but the seeds don't match. This isn't an |
- * accident, someone has been tweeking with the seeds, just |
- * fail a this point. */ |
- SECITEM_FreeItem(&qseed,PR_FALSE); |
- return SECFailure; |
- } |
- *qseed_len = qseed.len; |
- *hashtypePtr = hashtype; |
- *typePtr = FIPS186_3_ST_TYPE; |
- SECITEM_FreeItem(&qseed, PR_FALSE); |
- return SECSuccess; |
- } |
- SECITEM_FreeItem(&qseed, PR_FALSE); |
- } |
- /* no hash algorithms found which match seed to Q, fail */ |
- return SECFailure; |
-} |
- |
- |
- |
-/* |
-** Perform steps 7, 8 and 9 of FIPS 186, appendix 2.2. |
-** which are the same as steps 11.1-11.5 of FIPS 186-2, App A.1.1.2 |
-** Generate P from Q, seed, L, and offset. |
-*/ |
-static SECStatus |
-makePfromQandSeed( |
- HASH_HashType hashtype, /* selected Hashing algorithm */ |
- unsigned int L, /* Length of P in bits. Per FIPS 186. */ |
- unsigned int N, /* Length of Q in bits. Per FIPS 186. */ |
- unsigned int offset, /* Per FIPS 186, App 2.2. & 186-3 App A.1.1.2 */ |
- unsigned int seedlen, /* input. Length of seed in bits. (g in 186-1)*/ |
-const SECItem * seed, /* input. */ |
-const mp_int * Q, /* input. */ |
- mp_int * P) /* output. */ |
-{ |
- unsigned int j; /* Per FIPS 186-3 App. A.1.1.2 (k in 186-1)*/ |
- unsigned int n; /* Per FIPS 186, appendix 2.2. */ |
- mp_digit b; /* Per FIPS 186, appendix 2.2. */ |
- unsigned int outlen; /* Per FIPS 186-3 App. A.1.1.2 */ |
- unsigned int hashlen; /* outlen in bytes */ |
- unsigned char V_j[HASH_LENGTH_MAX]; |
- mp_int W, X, c, twoQ, V_n, tmp; |
- mp_err err = MP_OKAY; |
- SECStatus rv = SECSuccess; |
- /* Initialize bignums */ |
- MP_DIGITS(&W) = 0; |
- MP_DIGITS(&X) = 0; |
- MP_DIGITS(&c) = 0; |
- MP_DIGITS(&twoQ) = 0; |
- MP_DIGITS(&V_n) = 0; |
- MP_DIGITS(&tmp) = 0; |
- CHECK_MPI_OK( mp_init(&W) ); |
- CHECK_MPI_OK( mp_init(&X) ); |
- CHECK_MPI_OK( mp_init(&c) ); |
- CHECK_MPI_OK( mp_init(&twoQ) ); |
- CHECK_MPI_OK( mp_init(&tmp) ); |
- CHECK_MPI_OK( mp_init(&V_n) ); |
- |
- hashlen = HASH_ResultLen(hashtype); |
- outlen = hashlen*BITS_PER_BYTE; |
- |
- /* L - 1 = n*outlen + b */ |
- n = (L - 1) / outlen; |
- b = (L - 1) % outlen; |
- |
- /* ****************************************************************** |
- ** Step 11.1 (Step 7 in 186-1) |
- ** "for j = 0 ... n let |
- ** V_j = SHA[(SEED + offset + j) mod 2**seedlen]." |
- ** |
- ** Step 11.2 (Step 8 in 186-1) |
- ** "W = V_0 + (V_1 * 2**outlen) + ... + (V_n-1 * 2**((n-1)*outlen)) |
- ** + ((V_n mod 2**b) * 2**(n*outlen)) |
- */ |
- for (j=0; j<n; ++j) { /* Do the first n terms of V_j */ |
- /* Do step 11.1 for iteration j. |
- ** V_j = HASH[(seed + offset + j) mod 2**g] |
- */ |
- CHECK_SEC_OK( addToSeedThenHash(hashtype,seed,offset+j, seedlen, V_j) ); |
- /* Do step 11.2 for iteration j. |
- ** W += V_j * 2**(j*outlen) |
- */ |
- OCTETS_TO_MPINT(V_j, &tmp, hashlen); /* get bignum V_j */ |
- CHECK_MPI_OK( mpl_lsh(&tmp, &tmp, j*outlen) );/* tmp=V_j << j*outlen */ |
- CHECK_MPI_OK( mp_add(&W, &tmp, &W) ); /* W += tmp */ |
- } |
- /* Step 11.2, continued. |
- ** [W += ((V_n mod 2**b) * 2**(n*outlen))] |
- */ |
- CHECK_SEC_OK( addToSeedThenHash(hashtype, seed, offset + n, seedlen, V_j) ); |
- OCTETS_TO_MPINT(V_j, &V_n, hashlen); /* get bignum V_n */ |
- CHECK_MPI_OK( mp_div_2d(&V_n, b, NULL, &tmp) ); /* tmp = V_n mod 2**b */ |
- CHECK_MPI_OK( mpl_lsh(&tmp, &tmp, n*outlen) ); /* tmp = tmp << n*outlen */ |
- CHECK_MPI_OK( mp_add(&W, &tmp, &W) ); /* W += tmp */ |
- /* Step 11.3, (Step 8 in 186-1) |
- ** "X = W + 2**(L-1). |
- ** Note that 0 <= W < 2**(L-1) and hence 2**(L-1) <= X < 2**L." |
- */ |
- CHECK_MPI_OK( mpl_set_bit(&X, (mp_size)(L-1), 1) ); /* X = 2**(L-1) */ |
- CHECK_MPI_OK( mp_add(&X, &W, &X) ); /* X += W */ |
- /************************************************************* |
- ** Step 11.4. (Step 9 in 186-1) |
- ** "c = X mod 2q" |
- */ |
- CHECK_MPI_OK( mp_mul_2(Q, &twoQ) ); /* 2q */ |
- CHECK_MPI_OK( mp_mod(&X, &twoQ, &c) ); /* c = X mod 2q */ |
- /************************************************************* |
- ** Step 11.5. (Step 9 in 186-1) |
- ** "p = X - (c - 1). |
- ** Note that p is congruent to 1 mod 2q." |
- */ |
- CHECK_MPI_OK( mp_sub_d(&c, 1, &c) ); /* c -= 1 */ |
- CHECK_MPI_OK( mp_sub(&X, &c, P) ); /* P = X - c */ |
-cleanup: |
- mp_clear(&W); |
- mp_clear(&X); |
- mp_clear(&c); |
- mp_clear(&twoQ); |
- mp_clear(&V_n); |
- mp_clear(&tmp); |
- if (err) { |
- MP_TO_SEC_ERROR(err); |
- return SECFailure; |
- } |
- return rv; |
-} |
- |
-/* |
-** Generate G from h, P, and Q. |
-*/ |
-static SECStatus |
-makeGfromH(const mp_int *P, /* input. */ |
- const mp_int *Q, /* input. */ |
- mp_int *H, /* input and output. */ |
- mp_int *G, /* output. */ |
- PRBool *passed) |
-{ |
- mp_int exp, pm1; |
- mp_err err = MP_OKAY; |
- SECStatus rv = SECSuccess; |
- *passed = PR_FALSE; |
- MP_DIGITS(&exp) = 0; |
- MP_DIGITS(&pm1) = 0; |
- CHECK_MPI_OK( mp_init(&exp) ); |
- CHECK_MPI_OK( mp_init(&pm1) ); |
- CHECK_MPI_OK( mp_sub_d(P, 1, &pm1) ); /* P - 1 */ |
- if ( mp_cmp(H, &pm1) >= 0) /* H >= P-1 */ |
- CHECK_MPI_OK( mp_sub(H, &pm1, H) ); /* H = H mod (P-1) */ |
- /* Let b = 2**n (smallest power of 2 greater than P). |
- ** Since P-1 >= b/2, and H < b, quotient(H/(P-1)) = 0 or 1 |
- ** so the above operation safely computes H mod (P-1) |
- */ |
- /* Check for H = to 0 or 1. Regen H if so. (Regen means return error). */ |
- if (mp_cmp_d(H, 1) <= 0) { |
- rv = SECFailure; |
- goto cleanup; |
- } |
- /* Compute G, according to the equation G = (H ** ((P-1)/Q)) mod P */ |
- CHECK_MPI_OK( mp_div(&pm1, Q, &exp, NULL) ); /* exp = (P-1)/Q */ |
- CHECK_MPI_OK( mp_exptmod(H, &exp, P, G) ); /* G = H ** exp mod P */ |
- /* Check for G == 0 or G == 1, return error if so. */ |
- if (mp_cmp_d(G, 1) <= 0) { |
- rv = SECFailure; |
- goto cleanup; |
- } |
- *passed = PR_TRUE; |
-cleanup: |
- mp_clear(&exp); |
- mp_clear(&pm1); |
- if (err) { |
- MP_TO_SEC_ERROR(err); |
- rv = SECFailure; |
- } |
- return rv; |
-} |
- |
-/* |
-** Generate G from seed, index, P, and Q. |
-*/ |
-static SECStatus |
-makeGfromIndex(HASH_HashType hashtype, |
- const mp_int *P, /* input. */ |
- const mp_int *Q, /* input. */ |
- const SECItem *seed, /* input. */ |
- unsigned char index, /* input. */ |
- mp_int *G) /* input/output */ |
-{ |
- mp_int e, pm1, W; |
- unsigned int count; |
- unsigned char data[HASH_LENGTH_MAX]; |
- unsigned int len; |
- mp_err err = MP_OKAY; |
- SECStatus rv = SECSuccess; |
- const SECHashObject *hashobj; |
- void *hashcx = NULL; |
- |
- MP_DIGITS(&e) = 0; |
- MP_DIGITS(&pm1) = 0; |
- MP_DIGITS(&W) = 0; |
- CHECK_MPI_OK( mp_init(&e) ); |
- CHECK_MPI_OK( mp_init(&pm1) ); |
- CHECK_MPI_OK( mp_init(&W) ); |
- |
- /* initialize our hash stuff */ |
- hashobj = HASH_GetRawHashObject(hashtype); |
- if (hashobj == NULL) { |
- /* shouldn't happen */ |
- PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); |
- rv = SECFailure; |
- goto cleanup; |
- } |
- hashcx = hashobj->create(); |
- if (hashcx == NULL) { |
- rv = SECFailure; |
- goto cleanup; |
- } |
- |
- CHECK_MPI_OK( mp_sub_d(P, 1, &pm1) ); /* P - 1 */ |
- /* Step 3 e = (p-1)/q */ |
- CHECK_MPI_OK( mp_div(&pm1, Q, &e, NULL) ); /* e = (P-1)/Q */ |
- /* Steps 4, 5, and 6 */ |
- /* count is a 16 bit value in the spec. We actually represent count |
- * as more than 16 bits so we can easily detect the 16 bit overflow */ |
-#define MAX_COUNT 0x10000 |
- for (count = 1; count < MAX_COUNT; count++) { |
- /* step 7 |
- * U = domain_param_seed || "ggen" || index || count |
- * step 8 |
- * W = HASH(U) |
- */ |
- hashobj->begin(hashcx); |
- hashobj->update(hashcx,seed->data,seed->len); |
- hashobj->update(hashcx, (unsigned char *)"ggen", 4); |
- hashobj->update(hashcx,&index, 1); |
- data[0] = (count >> 8) & 0xff; |
- data[1] = count & 0xff; |
- hashobj->update(hashcx, data, 2); |
- hashobj->end(hashcx, data, &len, sizeof(data)); |
- OCTETS_TO_MPINT(data, &W, len); |
- /* step 9. g = W**e mod p */ |
- CHECK_MPI_OK( mp_exptmod(&W, &e, P, G) ); |
- /* step 10. if (g < 2) then goto step 5 */ |
- /* NOTE: this weird construct is to keep the flow according to the spec. |
- * the continue puts us back to step 5 of the for loop */ |
- if (mp_cmp_d(G, 2) < 0) { |
- continue; |
- } |
- break; /* step 11 follows step 10 if the test condition is false */ |
- } |
- if (count >= MAX_COUNT) { |
- rv = SECFailure; /* last part of step 6 */ |
- } |
- /* step 11. |
- * return valid G */ |
-cleanup: |
- PORT_Memset(data, 0, sizeof(data)); |
- if (hashcx) { |
- hashobj->destroy(hashcx, PR_TRUE); |
- } |
- mp_clear(&e); |
- mp_clear(&pm1); |
- mp_clear(&W); |
- if (err) { |
- MP_TO_SEC_ERROR(err); |
- rv = SECFailure; |
- } |
- return rv; |
-} |
- |
-/* This code uses labels and gotos, so that it can follow the numbered |
-** steps in the algorithms from FIPS 186-3 appendix A.1.1.2 very closely, |
-** and so that the correctness of this code can be easily verified. |
-** So, please forgive the ugly c code. |
-**/ |
-static SECStatus |
-pqg_ParamGen(unsigned int L, unsigned int N, pqgGenType type, |
- unsigned int seedBytes, PQGParams **pParams, PQGVerify **pVfy) |
-{ |
- unsigned int n; /* Per FIPS 186, app 2.2. 186-3 app A.1.1.2 */ |
- unsigned int b; /* Per FIPS 186, app 2.2. 186-3 app A.1.1.2 */ |
- unsigned int seedlen; /* Per FIPS 186-3 app A.1.1.2 (was 'g' 186-1)*/ |
- unsigned int counter; /* Per FIPS 186, app 2.2. 186-3 app A.1.1.2 */ |
- unsigned int offset; /* Per FIPS 186, app 2.2. 186-3 app A.1.1.2 */ |
- unsigned int outlen; /* Per FIPS 186-3, appendix A.1.1.2. */ |
- unsigned int maxCount; |
- HASH_HashType hashtype; |
- SECItem *seed; /* Per FIPS 186, app 2.2. 186-3 app A.1.1.2 */ |
- PRArenaPool *arena = NULL; |
- PQGParams *params = NULL; |
- PQGVerify *verify = NULL; |
- PRBool passed; |
- SECItem hit = { 0, 0, 0 }; |
- SECItem firstseed = { 0, 0, 0 }; |
- SECItem qseed = { 0, 0, 0 }; |
- SECItem pseed = { 0, 0, 0 }; |
- mp_int P, Q, G, H, l, p0; |
- mp_err err = MP_OKAY; |
- SECStatus rv = SECFailure; |
- int iterations = 0; |
- |
- |
- /* Step 1. L and N already checked by caller*/ |
- /* Step 2. if (seedlen < N) return INVALID; */ |
- if (seedBytes < N/BITS_PER_BYTE || !pParams || !pVfy) { |
- PORT_SetError(SEC_ERROR_INVALID_ARGS); |
- return SECFailure; |
- } |
- /* Initialize an arena for the params. */ |
- arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE); |
- if (!arena) { |
- PORT_SetError(SEC_ERROR_NO_MEMORY); |
- return SECFailure; |
- } |
- params = (PQGParams *)PORT_ArenaZAlloc(arena, sizeof(PQGParams)); |
- if (!params) { |
- PORT_SetError(SEC_ERROR_NO_MEMORY); |
- PORT_FreeArena(arena, PR_TRUE); |
- return SECFailure; |
- } |
- params->arena = arena; |
- /* Initialize an arena for the verify. */ |
- arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE); |
- if (!arena) { |
- PORT_SetError(SEC_ERROR_NO_MEMORY); |
- PORT_FreeArena(params->arena, PR_TRUE); |
- return SECFailure; |
- } |
- verify = (PQGVerify *)PORT_ArenaZAlloc(arena, sizeof(PQGVerify)); |
- if (!verify) { |
- PORT_SetError(SEC_ERROR_NO_MEMORY); |
- PORT_FreeArena(arena, PR_TRUE); |
- PORT_FreeArena(params->arena, PR_TRUE); |
- return SECFailure; |
- } |
- verify->arena = arena; |
- seed = &verify->seed; |
- arena = NULL; |
- /* Initialize bignums */ |
- MP_DIGITS(&P) = 0; |
- MP_DIGITS(&Q) = 0; |
- MP_DIGITS(&G) = 0; |
- MP_DIGITS(&H) = 0; |
- MP_DIGITS(&l) = 0; |
- MP_DIGITS(&p0) = 0; |
- CHECK_MPI_OK( mp_init(&P) ); |
- CHECK_MPI_OK( mp_init(&Q) ); |
- CHECK_MPI_OK( mp_init(&G) ); |
- CHECK_MPI_OK( mp_init(&H) ); |
- CHECK_MPI_OK( mp_init(&l) ); |
- CHECK_MPI_OK( mp_init(&p0) ); |
- |
- /* Select Hash and Compute lengths. */ |
- /* getFirstHash gives us the smallest acceptable hash for this key |
- * strength */ |
- hashtype = getFirstHash(L,N); |
- outlen = HASH_ResultLen(hashtype)*BITS_PER_BYTE; |
- |
- /* Step 3: n = Ceil(L/outlen)-1; (same as n = Floor((L-1)/outlen)) */ |
- n = (L - 1) / outlen; |
- /* Step 4: b = L -1 - (n*outlen); (same as n = (L-1) mod outlen) */ |
- b = (L - 1) % outlen; |
- seedlen = seedBytes * BITS_PER_BYTE; /* bits in seed */ |
-step_5: |
- /* ****************************************************************** |
- ** Step 5. (Step 1 in 186-1) |
- ** "Choose an abitrary sequence of at least N bits and call it SEED. |
- ** Let g be the length of SEED in bits." |
- */ |
- if (++iterations > MAX_ITERATIONS) { /* give up after a while */ |
- PORT_SetError(SEC_ERROR_NEED_RANDOM); |
- goto cleanup; |
- } |
- seed->len = seedBytes; |
- CHECK_SEC_OK( getPQseed(seed, verify->arena) ); |
- /* ****************************************************************** |
- ** Step 6. (Step 2 in 186-1) |
- ** |
- ** "Compute U = SHA[SEED] XOR SHA[(SEED+1) mod 2**g]. (186-1)" |
- ** "Compute U = HASH[SEED] 2**(N-1). (186-3)" |
- ** |
- ** Step 7. (Step 3 in 186-1) |
- ** "Form Q from U by setting the most signficant bit (the 2**159 bit) |
- ** and the least signficant bit to 1. In terms of boolean operations, |
- ** Q = U OR 2**159 OR 1. Note that 2**159 < Q < 2**160. (186-1)" |
- ** |
- ** "q = 2**(N-1) + U + 1 - (U mod 2) (186-3) |
- ** |
- ** Note: Both formulations are the same for U < 2**(N-1) and N=160 |
- ** |
- ** If using Shawe-Taylor, We do the entire A.1.2.1.2 setps in the block |
- ** FIPS186_3_ST_TYPE. |
- */ |
- if (type == FIPS186_1_TYPE) { |
- CHECK_SEC_OK( makeQfromSeed(seedlen, seed, &Q) ); |
- } else if (type == FIPS186_3_TYPE) { |
- CHECK_SEC_OK( makeQ2fromSeed(hashtype, N, seed, &Q) ); |
- } else { |
- /* FIPS186_3_ST_TYPE */ |
- int qgen_counter, pgen_counter; |
- |
- /* Step 1 (L,N) already checked for acceptability */ |
- |
- firstseed = *seed; |
- qgen_counter = 0; |
- /* Step 2. Use N and firstseed to generate random prime q |
- * using Apendix C.6 */ |
- CHECK_SEC_OK( makePrimefromSeedShaweTaylor(hashtype, N, &firstseed, &Q, |
- &qseed, &qgen_counter) ); |
- /* Step 3. Use floor(L/2+1) and qseed to generate random prime p0 |
- * using Appendix C.6 */ |
- pgen_counter = 0; |
- CHECK_SEC_OK( makePrimefromSeedShaweTaylor(hashtype, (L+1)/2+1, |
- &qseed, &p0, &pseed, &pgen_counter) ); |
- /* Steps 4-22 FIPS 186-3 appendix A.1.2.1.2 */ |
- CHECK_SEC_OK( makePrimefromPrimesShaweTaylor(hashtype, L, |
- &p0, &Q, &P, &pseed, &pgen_counter) ); |
- |
- /* combine all the seeds */ |
- seed->len = firstseed.len +qseed.len + pseed.len; |
- seed->data = PORT_ArenaZAlloc(verify->arena, seed->len); |
- if (seed->data == NULL) { |
- goto cleanup; |
- } |
- PORT_Memcpy(seed->data, firstseed.data, firstseed.len); |
- PORT_Memcpy(seed->data+firstseed.len, pseed.data, pseed.len); |
- PORT_Memcpy(seed->data+firstseed.len+pseed.len, qseed.data, qseed.len); |
- counter = 0 ; /* (qgen_counter << 16) | pgen_counter; */ |
- |
- /* we've generated both P and Q now, skip to generating G */ |
- goto generate_G; |
- } |
- /* ****************************************************************** |
- ** Step 8. (Step 4 in 186-1) |
- ** "Use a robust primality testing algorithm to test whether q is prime." |
- ** |
- ** Appendix 2.1 states that a Rabin test with at least 50 iterations |
- ** "will give an acceptable probability of error." |
- */ |
- /*CHECK_SEC_OK( prm_RabinTest(&Q, &passed) );*/ |
- err = mpp_pprime(&Q, prime_testcount_q(L,N)); |
- passed = (err == MP_YES) ? SECSuccess : SECFailure; |
- /* ****************************************************************** |
- ** Step 9. (Step 5 in 186-1) "If q is not prime, goto step 5 (1 in 186-1)." |
- */ |
- if (passed != SECSuccess) |
- goto step_5; |
- /* ****************************************************************** |
- ** Step 10. |
- ** offset = 1; |
- **( Step 6b 186-1)"Let counter = 0 and offset = 2." |
- */ |
- offset = (type == FIPS186_1_TYPE) ? 2 : 1; |
- /* |
- ** Step 11. (Step 6a,13a,14 in 186-1) |
- ** For counter - 0 to (4L-1) do |
- ** |
- */ |
- maxCount = L >= 1024 ? (4*L - 1) : 4095; |
- for (counter = 0; counter <= maxCount; counter++) { |
- /* ****************************************************************** |
- ** Step 11.1 (Step 7 in 186-1) |
- ** "for j = 0 ... n let |
- ** V_j = HASH[(SEED + offset + j) mod 2**seedlen]." |
- ** |
- ** Step 11.2 (Step 8 in 186-1) |
- ** "W = V_0 + V_1*2**outlen+...+ V_n-1 * 2**((n-1)*outlen) + |
- ** ((Vn* mod 2**b)*2**(n*outlen))" |
- ** Step 11.3 (Step 8 in 186-1) |
- ** "X = W + 2**(L-1) |
- ** Note that 0 <= W < 2**(L-1) and hence 2**(L-1) <= X < 2**L." |
- ** |
- ** Step 11.4 (Step 9 in 186-1). |
- ** "c = X mod 2q" |
- ** |
- ** Step 11.5 (Step 9 in 186-1). |
- ** " p = X - (c - 1). |
- ** Note that p is congruent to 1 mod 2q." |
- */ |
- CHECK_SEC_OK( makePfromQandSeed(hashtype, L, N, offset, seedlen, |
- seed, &Q, &P) ); |
- /************************************************************* |
- ** Step 11.6. (Step 10 in 186-1) |
- ** "if p < 2**(L-1), then goto step 11.9. (step 13 in 186-1)" |
- */ |
- CHECK_MPI_OK( mpl_set_bit(&l, (mp_size)(L-1), 1) ); /* l = 2**(L-1) */ |
- if (mp_cmp(&P, &l) < 0) |
- goto step_11_9; |
- /************************************************************ |
- ** Step 11.7 (step 11 in 186-1) |
- ** "Perform a robust primality test on p." |
- */ |
- /*CHECK_SEC_OK( prm_RabinTest(&P, &passed) );*/ |
- err = mpp_pprime(&P, prime_testcount_p(L, N)); |
- passed = (err == MP_YES) ? SECSuccess : SECFailure; |
- /* ****************************************************************** |
- ** Step 11.8. "If p is determined to be primed return VALID |
- ** values of p, q, seed and counter." |
- */ |
- if (passed == SECSuccess) |
- break; |
-step_11_9: |
- /* ****************************************************************** |
- ** Step 11.9. "offset = offset + n + 1." |
- */ |
- offset += n + 1; |
- } |
- /* ****************************************************************** |
- ** Step 12. "goto step 5." |
- ** |
- ** NOTE: if counter <= maxCount, then we exited the loop at Step 11.8 |
- ** and now need to return p,q, seed, and counter. |
- */ |
- if (counter > maxCount) |
- goto step_5; |
- |
-generate_G: |
- /* ****************************************************************** |
- ** returning p, q, seed and counter |
- */ |
- if (type == FIPS186_1_TYPE) { |
- /* Generate g, This is called the "Unverifiable Generation of g |
- * in FIPA186-3 Appedix A.2.1. For compatibility we maintain |
- * this version of the code */ |
- SECITEM_AllocItem(NULL, &hit, L/8); /* h is no longer than p */ |
- if (!hit.data) goto cleanup; |
- do { |
- /* loop generate h until 1<h<p-1 and (h**[(p-1)/q])mod p > 1 */ |
- CHECK_SEC_OK( generate_h_candidate(&hit, &H) ); |
- CHECK_SEC_OK( makeGfromH(&P, &Q, &H, &G, &passed) ); |
- } while (passed != PR_TRUE); |
- MPINT_TO_SECITEM(&H, &verify->h, verify->arena); |
- } else { |
- unsigned char index = 1; /* default to 1 */ |
- verify->h.data = (unsigned char *)PORT_ArenaZAlloc(verify->arena, 1); |
- if (verify->h.data == NULL) { goto cleanup; } |
- verify->h.len = 1; |
- verify->h.data[0] = index; |
- /* Generate g, using the FIPS 186-3 Appendix A.23 */ |
- CHECK_SEC_OK(makeGfromIndex(hashtype, &P, &Q, seed, index, &G) ); |
- } |
- /* All generation is done. Now, save the PQG params. */ |
- MPINT_TO_SECITEM(&P, ¶ms->prime, params->arena); |
- MPINT_TO_SECITEM(&Q, ¶ms->subPrime, params->arena); |
- MPINT_TO_SECITEM(&G, ¶ms->base, params->arena); |
- verify->counter = counter; |
- *pParams = params; |
- *pVfy = verify; |
-cleanup: |
- if (pseed.data) { |
- PORT_Free(pseed.data); |
- } |
- if (qseed.data) { |
- PORT_Free(qseed.data); |
- } |
- mp_clear(&P); |
- mp_clear(&Q); |
- mp_clear(&G); |
- mp_clear(&H); |
- mp_clear(&l); |
- mp_clear(&p0); |
- if (err) { |
- MP_TO_SEC_ERROR(err); |
- rv = SECFailure; |
- } |
- if (rv) { |
- PORT_FreeArena(params->arena, PR_TRUE); |
- PORT_FreeArena(verify->arena, PR_TRUE); |
- } |
- if (hit.data) { |
- SECITEM_FreeItem(&hit, PR_FALSE); |
- } |
- return rv; |
-} |
- |
-SECStatus |
-PQG_ParamGen(unsigned int j, PQGParams **pParams, PQGVerify **pVfy) |
-{ |
- unsigned int L; /* Length of P in bits. Per FIPS 186. */ |
- unsigned int seedBytes; |
- |
- if (j > 8 || !pParams || !pVfy) { |
- PORT_SetError(SEC_ERROR_INVALID_ARGS); |
- return SECFailure; |
- } |
- L = 512 + (j * 64); /* bits in P */ |
- seedBytes = L/8; |
- return pqg_ParamGen(L, DSA1_Q_BITS, FIPS186_1_TYPE, seedBytes, |
- pParams, pVfy); |
-} |
- |
-SECStatus |
-PQG_ParamGenSeedLen(unsigned int j, unsigned int seedBytes, |
- PQGParams **pParams, PQGVerify **pVfy) |
-{ |
- unsigned int L; /* Length of P in bits. Per FIPS 186. */ |
- |
- if (j > 8 || !pParams || !pVfy) { |
- PORT_SetError(SEC_ERROR_INVALID_ARGS); |
- return SECFailure; |
- } |
- L = 512 + (j * 64); /* bits in P */ |
- return pqg_ParamGen(L, DSA1_Q_BITS, FIPS186_1_TYPE, seedBytes, |
- pParams, pVfy); |
-} |
- |
-SECStatus |
-PQG_ParamGenV2(unsigned int L, unsigned int N, unsigned int seedBytes, |
- PQGParams **pParams, PQGVerify **pVfy) |
-{ |
- if (N == 0) { |
- N = pqg_get_default_N(L); |
- } |
- if (seedBytes == 0) { |
- /* seedBytes == L/8 for probable primes, N/8 for Shawe-Taylor Primes */ |
- seedBytes = N/8; |
- } |
- if (pqg_validate_dsa2(L,N) != SECSuccess) { |
- /* error code already set */ |
- return SECFailure; |
- } |
- return pqg_ParamGen(L, N, FIPS186_3_ST_TYPE, seedBytes, pParams, pVfy); |
-} |
- |
- |
-/* |
- * verify can use vfy structures returned from either FIPS186-1 or |
- * FIPS186-2, and can handle differences in selected Hash functions to |
- * generate the parameters. |
- */ |
-SECStatus |
-PQG_VerifyParams(const PQGParams *params, |
- const PQGVerify *vfy, SECStatus *result) |
-{ |
- SECStatus rv = SECSuccess; |
- unsigned int g, n, L, N, offset, outlen; |
- mp_int p0, P, Q, G, P_, Q_, G_, r, h; |
- mp_err err = MP_OKAY; |
- int j; |
- unsigned int counter_max = 0; /* handle legacy L < 1024 */ |
- int qseed_len; |
- SECItem pseed_ = {0, 0, 0}; |
- HASH_HashType hashtype; |
- pqgGenType type; |
- |
-#define CHECKPARAM(cond) \ |
- if (!(cond)) { \ |
- *result = SECFailure; \ |
- goto cleanup; \ |
- } |
- if (!params || !vfy || !result) { |
- PORT_SetError(SEC_ERROR_INVALID_ARGS); |
- return SECFailure; |
- } |
- /* always need at least p, q, and seed for any meaningful check */ |
- if ((params->prime.len == 0) || (params->subPrime.len == 0) || |
- (vfy->seed.len == 0)) { |
- PORT_SetError(SEC_ERROR_INVALID_ARGS); |
- return SECFailure; |
- } |
- /* we want to either check PQ or G or both. If we don't have G, make |
- * sure we have count so we can check P. */ |
- if ((params->base.len == 0) && (vfy->counter == -1)) { |
- PORT_SetError(SEC_ERROR_INVALID_ARGS); |
- return SECFailure; |
- } |
- |
- MP_DIGITS(&p0) = 0; |
- MP_DIGITS(&P) = 0; |
- MP_DIGITS(&Q) = 0; |
- MP_DIGITS(&G) = 0; |
- MP_DIGITS(&P_) = 0; |
- MP_DIGITS(&Q_) = 0; |
- MP_DIGITS(&G_) = 0; |
- MP_DIGITS(&r) = 0; |
- MP_DIGITS(&h) = 0; |
- CHECK_MPI_OK( mp_init(&p0) ); |
- CHECK_MPI_OK( mp_init(&P) ); |
- CHECK_MPI_OK( mp_init(&Q) ); |
- CHECK_MPI_OK( mp_init(&G) ); |
- CHECK_MPI_OK( mp_init(&P_) ); |
- CHECK_MPI_OK( mp_init(&Q_) ); |
- CHECK_MPI_OK( mp_init(&G_) ); |
- CHECK_MPI_OK( mp_init(&r) ); |
- CHECK_MPI_OK( mp_init(&h) ); |
- *result = SECSuccess; |
- SECITEM_TO_MPINT(params->prime, &P); |
- SECITEM_TO_MPINT(params->subPrime, &Q); |
- /* if G isn't specified, just check P and Q */ |
- if (params->base.len != 0) { |
- SECITEM_TO_MPINT(params->base, &G); |
- } |
- /* 1. Check (L,N) pair */ |
- N = mpl_significant_bits(&Q); |
- L = mpl_significant_bits(&P); |
- if (L < 1024) { |
- /* handle DSA1 pqg parameters with less thatn 1024 bits*/ |
- CHECKPARAM( N == DSA1_Q_BITS ); |
- j = PQG_PBITS_TO_INDEX(L); |
- CHECKPARAM( j >= 0 && j <= 8 ); |
- counter_max = 4096; |
- } else { |
- /* handle DSA2 parameters (includes DSA1, 1024 bits) */ |
- CHECKPARAM(pqg_validate_dsa2(L, N) == SECSuccess); |
- counter_max = 4*L; |
- } |
- /* 3. G < P */ |
- if (params->base.len != 0) { |
- CHECKPARAM( mp_cmp(&G, &P) < 0 ); |
- } |
- /* 4. P % Q == 1 */ |
- CHECK_MPI_OK( mp_mod(&P, &Q, &r) ); |
- CHECKPARAM( mp_cmp_d(&r, 1) == 0 ); |
- /* 5. Q is prime */ |
- CHECKPARAM( mpp_pprime(&Q, prime_testcount_q(L,N)) == MP_YES ); |
- /* 6. P is prime */ |
- CHECKPARAM( mpp_pprime(&P, prime_testcount_p(L,N)) == MP_YES ); |
- /* Steps 7-12 are done only if the optional PQGVerify is supplied. */ |
- /* continue processing P */ |
- /* 7. counter < 4*L */ |
- CHECKPARAM( (vfy->counter == -1) || (vfy->counter < counter_max) ); |
- /* 8. g >= N and g < 2*L (g is length of seed in bits) */ |
- g = vfy->seed.len * 8; |
- CHECKPARAM( g >= N && g < counter_max/2 ); |
- /* 9. Q generated from SEED matches Q in PQGParams. */ |
- /* This function checks all possible hash and generation types to |
- * find a Q_ which matches Q. */ |
- CHECKPARAM( findQfromSeed(L, N, g, &vfy->seed, &Q, &Q_, &qseed_len, |
- &hashtype, &type) == SECSuccess ); |
- CHECKPARAM( mp_cmp(&Q, &Q_) == 0 ); |
- if (type == FIPS186_3_ST_TYPE) { |
- SECItem qseed = { 0, 0, 0 }; |
- SECItem pseed = { 0, 0, 0 }; |
- int first_seed_len; |
- int pgen_counter = 0; |
- |
- /* extract pseed and qseed from domain_parameter_seed, which is |
- * first_seed || pseed || qseed. qseed is first_seed + small_integer |
- * pseed is qseed + small_integer. This means most of the time |
- * first_seed.len == qseed.len == pseed.len. Rarely qseed.len and/or |
- * pseed.len will be one greater than first_seed.len, so we can |
- * depend on the fact that |
- * first_seed.len = floor(domain_parameter_seed.len/3). |
- * findQfromSeed returned qseed.len, so we can calculate pseed.len as |
- * pseed.len = domain_parameter_seed.len - first_seed.len - qseed.len |
- * this is probably over kill, since 99.999% of the time they will all |
- * be equal. |
- * |
- * With the lengths, we can now find the offsets; |
- * first_seed.data = domain_parameter_seed.data + 0 |
- * pseed.data = domain_parameter_seed.data + first_seed.len |
- * qseed.data = domain_parameter_seed.data |
- * + domain_paramter_seed.len - qseed.len |
- * |
- */ |
- first_seed_len = vfy->seed.len/3; |
- CHECKPARAM(qseed_len < vfy->seed.len); |
- CHECKPARAM(first_seed_len*8 > N-1); |
- CHECKPARAM(first_seed_len+qseed_len < vfy->seed.len); |
- qseed.len = qseed_len; |
- qseed.data = vfy->seed.data + vfy->seed.len - qseed.len; |
- pseed.len = vfy->seed.len - (first_seed_len+qseed_len); |
- pseed.data = vfy->seed.data + first_seed_len; |
- |
- /* |
- * now complete FIPS 186-3 A.1.2.1.2. Step 1 was completed |
- * above in our initial checks, Step 2 was completed by |
- * findQfromSeed */ |
- |
- /* Step 3 (status, c0, prime_seed, prime_gen_counter) = |
- ** (ST_Random_Prime((ceil(length/2)+1, input_seed) |
- */ |
- CHECK_SEC_OK( makePrimefromSeedShaweTaylor(hashtype, (L+1)/2+1, |
- &qseed, &p0, &pseed_, &pgen_counter) ); |
- /* Steps 4-22 FIPS 186-3 appendix A.1.2.1.2 */ |
- CHECK_SEC_OK( makePrimefromPrimesShaweTaylor(hashtype, L, |
- &p0, &Q_, &P_, &pseed_, &pgen_counter) ); |
- CHECKPARAM( mp_cmp(&P, &P_) == 0 ); |
- /* make sure pseed wasn't tampered with (since it is part of |
- * calculating G) */ |
- CHECKPARAM( SECITEM_CompareItem(&pseed, &pseed_) == SECEqual ); |
- } else if (vfy->counter == -1) { |
- /* If counter is set to -1, we are really only verifying G, skip |
- * the remainder of the checks for P */ |
- CHECKPARAM(type != FIPS186_1_TYPE); /* we only do this for DSA2 */ |
- } else { |
- /* 10. P generated from (L, counter, g, SEED, Q) matches P |
- * in PQGParams. */ |
- outlen = HASH_ResultLen(hashtype)*BITS_PER_BYTE; |
- n = (L - 1) / outlen; |
- offset = vfy->counter * (n + 1) + ((type == FIPS186_1_TYPE) ? 2 : 1); |
- CHECK_SEC_OK( makePfromQandSeed(hashtype, L, N, offset, g, &vfy->seed, |
- &Q, &P_) ); |
- CHECKPARAM( mp_cmp(&P, &P_) == 0 ); |
- } |
- |
- /* now check G, skip if don't have a g */ |
- if (params->base.len == 0) goto cleanup; |
- |
- /* first Always check that G is OK FIPS186-3 A.2.2 & A.2.4*/ |
- /* 1. 2 < G < P-1 */ |
- /* P is prime, p-1 == zero 1st bit */ |
- CHECK_MPI_OK( mpl_set_bit(&P, 0, 0) ); |
- CHECKPARAM( mp_cmp_d(&G, 2) > 0 && mp_cmp(&G, &P) < 0 ); |
- CHECK_MPI_OK( mpl_set_bit(&P, 0, 1) ); /* set it back */ |
- /* 2. verify g**q mod p == 1 */ |
- CHECK_MPI_OK( mp_exptmod(&G, &Q, &P, &h) ); /* h = G ** Q mod P */ |
- CHECKPARAM(mp_cmp_d(&h, 1) == 0); |
- |
- /* no h, the above is the best we can do */ |
- if (vfy->h.len == 0) { |
- if (type != FIPS186_1_TYPE) { |
- *result = SECWouldBlock; |
- } |
- goto cleanup; |
- } |
- |
- /* |
- * If h is one byte and FIPS186-3 was used to generate Q (we've verified |
- * Q was generated from seed already, then we assume that FIPS 186-3 |
- * appendix A.2.3 was used to generate G. Otherwise we assume A.2.1 was |
- * used to generate G. |
- */ |
- if ((vfy->h.len == 1) && (type != FIPS186_1_TYPE)) { |
- /* A.2.3 */ |
- CHECK_SEC_OK(makeGfromIndex(hashtype, &P, &Q, &vfy->seed, |
- vfy->h.data[0], &G_) ); |
- CHECKPARAM( mp_cmp(&G, &G_) == 0 ); |
- } else { |
- int passed; |
- /* A.2.1 */ |
- SECITEM_TO_MPINT(vfy->h, &h); |
- /* 11. 1 < h < P-1 */ |
- /* P is prime, p-1 == zero 1st bit */ |
- CHECK_MPI_OK( mpl_set_bit(&P, 0, 0) ); |
- CHECKPARAM( mp_cmp_d(&G, 2) > 0 && mp_cmp(&G, &P) ); |
- CHECK_MPI_OK( mpl_set_bit(&P, 0, 1) ); /* set it back */ |
- /* 12. G generated from h matches G in PQGParams. */ |
- CHECK_SEC_OK( makeGfromH(&P, &Q, &h, &G_, &passed) ); |
- CHECKPARAM( passed && mp_cmp(&G, &G_) == 0 ); |
- } |
-cleanup: |
- mp_clear(&p0); |
- mp_clear(&P); |
- mp_clear(&Q); |
- mp_clear(&G); |
- mp_clear(&P_); |
- mp_clear(&Q_); |
- mp_clear(&G_); |
- mp_clear(&r); |
- mp_clear(&h); |
- if (pseed_.data) { |
- SECITEM_FreeItem(&pseed_,PR_FALSE); |
- } |
- if (err) { |
- MP_TO_SEC_ERROR(err); |
- rv = SECFailure; |
- } |
- return rv; |
-} |
- |
-/************************************************************************** |
- * Free the PQGParams struct and the things it points to. * |
- **************************************************************************/ |
-void |
-PQG_DestroyParams(PQGParams *params) |
-{ |
- if (params == NULL) |
- return; |
- if (params->arena != NULL) { |
- PORT_FreeArena(params->arena, PR_FALSE); /* don't zero it */ |
- } else { |
- SECITEM_FreeItem(¶ms->prime, PR_FALSE); /* don't free prime */ |
- SECITEM_FreeItem(¶ms->subPrime, PR_FALSE); /* don't free subPrime */ |
- SECITEM_FreeItem(¶ms->base, PR_FALSE); /* don't free base */ |
- PORT_Free(params); |
- } |
-} |
- |
-/************************************************************************** |
- * Free the PQGVerify struct and the things it points to. * |
- **************************************************************************/ |
- |
-void |
-PQG_DestroyVerify(PQGVerify *vfy) |
-{ |
- if (vfy == NULL) |
- return; |
- if (vfy->arena != NULL) { |
- PORT_FreeArena(vfy->arena, PR_FALSE); /* don't zero it */ |
- } else { |
- SECITEM_FreeItem(&vfy->seed, PR_FALSE); /* don't free seed */ |
- SECITEM_FreeItem(&vfy->h, PR_FALSE); /* don't free h */ |
- PORT_Free(vfy); |
- } |
-} |