OLD | NEW |
| (Empty) |
1 /* This Source Code Form is subject to the terms of the Mozilla Public | |
2 * License, v. 2.0. If a copy of the MPL was not distributed with this | |
3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ | |
4 | |
5 /* | |
6 * PQG parameter generation/verification. Based on FIPS 186-3. | |
7 * | |
8 * $Id: pqg.c,v 1.26 2012/12/13 22:47:15 wtc%google.com Exp $ | |
9 */ | |
10 #ifdef FREEBL_NO_DEPEND | |
11 #include "stubs.h" | |
12 #endif | |
13 | |
14 #include "prerr.h" | |
15 #include "secerr.h" | |
16 | |
17 #include "prtypes.h" | |
18 #include "blapi.h" | |
19 #include "secitem.h" | |
20 #include "mpi.h" | |
21 #include "mpprime.h" | |
22 #include "mplogic.h" | |
23 #include "secmpi.h" | |
24 | |
25 #define MAX_ITERATIONS 1000 /* Maximum number of iterations of primegen */ | |
26 | |
27 typedef enum { | |
28 FIPS186_1_TYPE, /* Probablistic */ | |
29 FIPS186_3_TYPE, /* Probablistic */ | |
30 FIPS186_3_ST_TYPE /* Shawe-Taylor provable */ | |
31 } pqgGenType; | |
32 | |
33 /* | |
34 * These test iterations are quite a bit larger than we previously had. | |
35 * This is because FIPS 186-3 is worried about the primes in PQG generation. | |
36 * It may be possible to purposefully construct composites which more | |
37 * iterations of Miller-Rabin than the for your normal randomly selected | |
38 * numbers.There are 3 ways to counter this: 1) use one of the cool provably | |
39 * prime algorithms (which would require a lot more work than DSA-2 deservers. | |
40 * 2) add a Lucas primality test (which requires coding a Lucas primality test, | |
41 * or 3) use a larger M-R test count. I chose the latter. It increases the time | |
42 * that it takes to prove the selected prime, but it shouldn't increase the | |
43 * overall time to run the algorithm (non-primes should still faile M-R | |
44 * realively quickly). If you want to get that last bit of performance, | |
45 * implement Lucas and adjust these two functions. See FIPS 186-3 Appendix C | |
46 * and F for more information. | |
47 */ | |
48 int prime_testcount_p(int L, int N) | |
49 { | |
50 switch (L) { | |
51 case 1024: | |
52 return 40; | |
53 case 2048: | |
54 return 56; | |
55 case 3072: | |
56 return 64; | |
57 default: | |
58 break; | |
59 } | |
60 return 50; /* L = 512-960 */ | |
61 } | |
62 | |
63 /* The q numbers are different if you run M-R followd by Lucas. I created | |
64 * a separate function so if someone wanted to add the Lucas check, they | |
65 * could do so fairly easily */ | |
66 int prime_testcount_q(int L, int N) | |
67 { | |
68 return prime_testcount_p(L,N); | |
69 } | |
70 | |
71 /* | |
72 * generic function to make sure our input matches DSA2 requirements | |
73 * this gives us one place to go if we need to bump the requirements in the | |
74 * future. | |
75 */ | |
76 static SECStatus | |
77 pqg_validate_dsa2(unsigned int L, unsigned int N) | |
78 { | |
79 | |
80 switch (L) { | |
81 case 1024: | |
82 if (N != DSA1_Q_BITS) { | |
83 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
84 return SECFailure; | |
85 } | |
86 break; | |
87 case 2048: | |
88 if ((N != 224) && (N != 256)) { | |
89 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
90 return SECFailure; | |
91 } | |
92 break; | |
93 case 3072: | |
94 if (N != 256) { | |
95 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
96 return SECFailure; | |
97 } | |
98 break; | |
99 default: | |
100 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
101 return SECFailure; | |
102 } | |
103 return SECSuccess; | |
104 } | |
105 | |
106 static unsigned int | |
107 pqg_get_default_N(unsigned int L) | |
108 { | |
109 unsigned int N = 0; | |
110 switch (L) { | |
111 case 1024: | |
112 N = DSA1_Q_BITS; | |
113 break; | |
114 case 2048: | |
115 N = 224; | |
116 break; | |
117 case 3072: | |
118 N = 256; | |
119 break; | |
120 default: | |
121 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
122 break; /* N already set to zero */ | |
123 } | |
124 return N; | |
125 } | |
126 | |
127 /* | |
128 * Select the lowest hash algorithm usable | |
129 */ | |
130 static HASH_HashType | |
131 getFirstHash(unsigned int L, unsigned int N) | |
132 { | |
133 if (N < 224) { | |
134 return HASH_AlgSHA1; | |
135 } | |
136 if (N < 256) { | |
137 return HASH_AlgSHA224; | |
138 } | |
139 if (N < 384) { | |
140 return HASH_AlgSHA256; | |
141 } | |
142 if (N < 512) { | |
143 return HASH_AlgSHA384; | |
144 } | |
145 return HASH_AlgSHA512; | |
146 } | |
147 | |
148 /* | |
149 * find the next usable hash algorthim | |
150 */ | |
151 static HASH_HashType | |
152 getNextHash(HASH_HashType hashtype) | |
153 { | |
154 switch (hashtype) { | |
155 case HASH_AlgSHA1: | |
156 hashtype = HASH_AlgSHA224; | |
157 break; | |
158 case HASH_AlgSHA224: | |
159 hashtype = HASH_AlgSHA256; | |
160 break; | |
161 case HASH_AlgSHA256: | |
162 hashtype = HASH_AlgSHA384; | |
163 break; | |
164 case HASH_AlgSHA384: | |
165 hashtype = HASH_AlgSHA512; | |
166 break; | |
167 case HASH_AlgSHA512: | |
168 default: | |
169 hashtype = HASH_AlgTOTAL; | |
170 break; | |
171 } | |
172 return hashtype; | |
173 } | |
174 | |
175 static unsigned int | |
176 HASH_ResultLen(HASH_HashType type) | |
177 { | |
178 const SECHashObject *hash_obj = HASH_GetRawHashObject(type); | |
179 if (hash_obj == NULL) { | |
180 return 0; | |
181 } | |
182 return hash_obj->length; | |
183 } | |
184 | |
185 static SECStatus | |
186 HASH_HashBuf(HASH_HashType type, unsigned char *dest, | |
187 const unsigned char *src, PRUint32 src_len) | |
188 { | |
189 const SECHashObject *hash_obj = HASH_GetRawHashObject(type); | |
190 void *hashcx = NULL; | |
191 unsigned int dummy; | |
192 | |
193 if (hash_obj == NULL) { | |
194 return SECFailure; | |
195 } | |
196 | |
197 hashcx = hash_obj->create(); | |
198 if (hashcx == NULL) { | |
199 return SECFailure; | |
200 } | |
201 hash_obj->begin(hashcx); | |
202 hash_obj->update(hashcx,src,src_len); | |
203 hash_obj->end(hashcx,dest, &dummy, hash_obj->length); | |
204 hash_obj->destroy(hashcx, PR_TRUE); | |
205 return SECSuccess; | |
206 } | |
207 | |
208 unsigned int | |
209 PQG_GetLength(const SECItem *obj) | |
210 { | |
211 unsigned int len = obj->len; | |
212 | |
213 if (obj->data == NULL) { | |
214 return 0; | |
215 } | |
216 if (len > 1 && obj->data[0] == 0) { | |
217 len--; | |
218 } | |
219 return len; | |
220 } | |
221 | |
222 SECStatus | |
223 PQG_Check(const PQGParams *params) | |
224 { | |
225 unsigned int L,N; | |
226 SECStatus rv = SECSuccess; | |
227 | |
228 if (params == NULL) { | |
229 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
230 return SECFailure; | |
231 } | |
232 | |
233 L = PQG_GetLength(¶ms->prime)*BITS_PER_BYTE; | |
234 N = PQG_GetLength(¶ms->subPrime)*BITS_PER_BYTE; | |
235 | |
236 if (L < 1024) { | |
237 int j; | |
238 | |
239 /* handle DSA1 pqg parameters with less thatn 1024 bits*/ | |
240 if ( N != DSA1_Q_BITS ) { | |
241 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
242 return SECFailure; | |
243 } | |
244 j = PQG_PBITS_TO_INDEX(L); | |
245 if ( j < 0 ) { | |
246 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
247 rv = SECFailure; | |
248 } | |
249 } else { | |
250 /* handle DSA2 parameters (includes DSA1, 1024 bits) */ | |
251 rv = pqg_validate_dsa2(L, N); | |
252 } | |
253 return rv; | |
254 } | |
255 | |
256 HASH_HashType | |
257 PQG_GetHashType(const PQGParams *params) | |
258 { | |
259 unsigned int L,N; | |
260 | |
261 if (params == NULL) { | |
262 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
263 return HASH_AlgNULL; | |
264 } | |
265 | |
266 L = PQG_GetLength(¶ms->prime)*BITS_PER_BYTE; | |
267 N = PQG_GetLength(¶ms->subPrime)*BITS_PER_BYTE; | |
268 return getFirstHash(L, N); | |
269 } | |
270 | |
271 /* Get a seed for generating P and Q. If in testing mode, copy in the | |
272 ** seed from FIPS 186-1 appendix 5. Otherwise, obtain bytes from the | |
273 ** global random number generator. | |
274 */ | |
275 static SECStatus | |
276 getPQseed(SECItem *seed, PRArenaPool* arena) | |
277 { | |
278 SECStatus rv; | |
279 | |
280 if (!seed->data) { | |
281 seed->data = (unsigned char*)PORT_ArenaZAlloc(arena, seed->len); | |
282 } | |
283 if (!seed->data) { | |
284 PORT_SetError(SEC_ERROR_NO_MEMORY); | |
285 return SECFailure; | |
286 } | |
287 rv = RNG_GenerateGlobalRandomBytes(seed->data, seed->len); | |
288 /* | |
289 * NIST CMVP disallows a sequence of 20 bytes with the most | |
290 * significant byte equal to 0. Perhaps they interpret | |
291 * "a sequence of at least 160 bits" as "a number >= 2^159". | |
292 * So we always set the most significant bit to 1. (bug 334533) | |
293 */ | |
294 seed->data[0] |= 0x80; | |
295 return rv; | |
296 } | |
297 | |
298 /* Generate a candidate h value. If in testing mode, use the h value | |
299 ** specified in FIPS 186-1 appendix 5, h = 2. Otherwise, obtain bytes | |
300 ** from the global random number generator. | |
301 */ | |
302 static SECStatus | |
303 generate_h_candidate(SECItem *hit, mp_int *H) | |
304 { | |
305 SECStatus rv = SECSuccess; | |
306 mp_err err = MP_OKAY; | |
307 #ifdef FIPS_186_1_A5_TEST | |
308 memset(hit->data, 0, hit->len); | |
309 hit->data[hit->len-1] = 0x02; | |
310 #else | |
311 rv = RNG_GenerateGlobalRandomBytes(hit->data, hit->len); | |
312 #endif | |
313 if (rv) | |
314 return SECFailure; | |
315 err = mp_read_unsigned_octets(H, hit->data, hit->len); | |
316 if (err) { | |
317 MP_TO_SEC_ERROR(err); | |
318 return SECFailure; | |
319 } | |
320 return SECSuccess; | |
321 } | |
322 | |
323 static SECStatus | |
324 addToSeed(const SECItem * seed, | |
325 unsigned long addend, | |
326 int seedlen, /* g in 186-1 */ | |
327 SECItem * seedout) | |
328 { | |
329 mp_int s, sum, modulus, tmp; | |
330 mp_err err = MP_OKAY; | |
331 SECStatus rv = SECSuccess; | |
332 MP_DIGITS(&s) = 0; | |
333 MP_DIGITS(&sum) = 0; | |
334 MP_DIGITS(&modulus) = 0; | |
335 MP_DIGITS(&tmp) = 0; | |
336 CHECK_MPI_OK( mp_init(&s) ); | |
337 CHECK_MPI_OK( mp_init(&sum) ); | |
338 CHECK_MPI_OK( mp_init(&modulus) ); | |
339 SECITEM_TO_MPINT(*seed, &s); /* s = seed */ | |
340 /* seed += addend */ | |
341 if (addend < MP_DIGIT_MAX) { | |
342 CHECK_MPI_OK( mp_add_d(&s, (mp_digit)addend, &s) ); | |
343 } else { | |
344 CHECK_MPI_OK( mp_init(&tmp) ); | |
345 CHECK_MPI_OK( mp_set_ulong(&tmp, addend) ); | |
346 CHECK_MPI_OK( mp_add(&s, &tmp, &s) ); | |
347 } | |
348 /*sum = s mod 2**seedlen */ | |
349 CHECK_MPI_OK( mp_div_2d(&s, (mp_digit)seedlen, NULL, &sum) ); | |
350 if (seedout->data != NULL) { | |
351 SECITEM_ZfreeItem(seedout, PR_FALSE); | |
352 } | |
353 MPINT_TO_SECITEM(&sum, seedout, NULL); | |
354 cleanup: | |
355 mp_clear(&s); | |
356 mp_clear(&sum); | |
357 mp_clear(&modulus); | |
358 mp_clear(&tmp); | |
359 if (err) { | |
360 MP_TO_SEC_ERROR(err); | |
361 return SECFailure; | |
362 } | |
363 return rv; | |
364 } | |
365 | |
366 /* Compute Hash[(SEED + addend) mod 2**g] | |
367 ** Result is placed in shaOutBuf. | |
368 ** This computation is used in steps 2 and 7 of FIPS 186 Appendix 2.2 and | |
369 ** step 11.2 of FIPS 186-3 Appendix A.1.1.2 . | |
370 */ | |
371 static SECStatus | |
372 addToSeedThenHash(HASH_HashType hashtype, | |
373 const SECItem * seed, | |
374 unsigned long addend, | |
375 int seedlen, /* g in 186-1 */ | |
376 unsigned char * hashOutBuf) | |
377 { | |
378 SECItem str = { 0, 0, 0 }; | |
379 SECStatus rv; | |
380 rv = addToSeed(seed, addend, seedlen, &str); | |
381 if (rv != SECSuccess) { | |
382 return rv; | |
383 } | |
384 rv = HASH_HashBuf(hashtype, hashOutBuf, str.data, str.len);/* hash result */ | |
385 if (str.data) | |
386 SECITEM_ZfreeItem(&str, PR_FALSE); | |
387 return rv; | |
388 } | |
389 | |
390 /* | |
391 ** Perform steps 2 and 3 of FIPS 186-1, appendix 2.2. | |
392 ** Generate Q from seed. | |
393 */ | |
394 static SECStatus | |
395 makeQfromSeed( | |
396 unsigned int g, /* input. Length of seed in bits. */ | |
397 const SECItem * seed, /* input. */ | |
398 mp_int * Q) /* output. */ | |
399 { | |
400 unsigned char sha1[SHA1_LENGTH]; | |
401 unsigned char sha2[SHA1_LENGTH]; | |
402 unsigned char U[SHA1_LENGTH]; | |
403 SECStatus rv = SECSuccess; | |
404 mp_err err = MP_OKAY; | |
405 int i; | |
406 /* ****************************************************************** | |
407 ** Step 2. | |
408 ** "Compute U = SHA[SEED] XOR SHA[(SEED+1) mod 2**g]." | |
409 **/ | |
410 CHECK_SEC_OK( SHA1_HashBuf(sha1, seed->data, seed->len) ); | |
411 CHECK_SEC_OK( addToSeedThenHash(HASH_AlgSHA1, seed, 1, g, sha2) ); | |
412 for (i=0; i<SHA1_LENGTH; ++i) | |
413 U[i] = sha1[i] ^ sha2[i]; | |
414 /* ****************************************************************** | |
415 ** Step 3. | |
416 ** "Form Q from U by setting the most signficant bit (the 2**159 bit) | |
417 ** and the least signficant bit to 1. In terms of boolean operations, | |
418 ** Q = U OR 2**159 OR 1. Note that 2**159 < Q < 2**160." | |
419 */ | |
420 U[0] |= 0x80; /* U is MSB first */ | |
421 U[SHA1_LENGTH-1] |= 0x01; | |
422 err = mp_read_unsigned_octets(Q, U, SHA1_LENGTH); | |
423 cleanup: | |
424 memset(U, 0, SHA1_LENGTH); | |
425 memset(sha1, 0, SHA1_LENGTH); | |
426 memset(sha2, 0, SHA1_LENGTH); | |
427 if (err) { | |
428 MP_TO_SEC_ERROR(err); | |
429 return SECFailure; | |
430 } | |
431 return rv; | |
432 } | |
433 | |
434 /* | |
435 ** Perform steps 6 and 7 of FIPS 186-3, appendix A.1.1.2. | |
436 ** Generate Q from seed. | |
437 */ | |
438 static SECStatus | |
439 makeQ2fromSeed( | |
440 HASH_HashType hashtype, /* selected Hashing algorithm */ | |
441 unsigned int N, /* input. Length of q in bits. */ | |
442 const SECItem * seed, /* input. */ | |
443 mp_int * Q) /* output. */ | |
444 { | |
445 unsigned char U[HASH_LENGTH_MAX]; | |
446 SECStatus rv = SECSuccess; | |
447 mp_err err = MP_OKAY; | |
448 int N_bytes = N/BITS_PER_BYTE; /* length of N in bytes rather than bits */ | |
449 int hashLen = HASH_ResultLen(hashtype); | |
450 int offset = 0; | |
451 | |
452 /* ****************************************************************** | |
453 ** Step 6. | |
454 ** "Compute U = hash[SEED] mod 2**N-1]." | |
455 **/ | |
456 CHECK_SEC_OK( HASH_HashBuf(hashtype, U, seed->data, seed->len) ); | |
457 /* mod 2**N . Step 7 will explicitly set the top bit to 1, so no need | |
458 * to handle mod 2**N-1 */ | |
459 if (hashLen > N_bytes) { | |
460 offset = hashLen - N_bytes; | |
461 } | |
462 /* ****************************************************************** | |
463 ** Step 7. | |
464 ** computed_q = 2**(N-1) + U + 1 - (U mod 2) | |
465 ** | |
466 ** This is the same as: | |
467 ** computed_q = 2**(N-1) | U | 1; | |
468 */ | |
469 U[offset] |= 0x80; /* U is MSB first */ | |
470 U[hashLen-1] |= 0x01; | |
471 err = mp_read_unsigned_octets(Q, &U[offset], N_bytes); | |
472 cleanup: | |
473 memset(U, 0, HASH_LENGTH_MAX); | |
474 if (err) { | |
475 MP_TO_SEC_ERROR(err); | |
476 return SECFailure; | |
477 } | |
478 return rv; | |
479 } | |
480 | |
481 /* | |
482 ** Perform steps from FIPS 186-3, Appendix A.1.2.1 and Appendix C.6 | |
483 ** | |
484 ** This generates a provable prime from two smaller prime. The resulting | |
485 ** prime p will have q0 as a multiple of p-1. q0 can be 1. | |
486 ** | |
487 ** This implments steps 4 thorough 22 of FIPS 186-3 A.1.2.1 and | |
488 ** steps 16 through 34 of FIPS 186-2 C.6 | |
489 */ | |
490 #define MAX_ST_SEED_BITS HASH_LENGTH_MAX*BITS_PER_BYTE | |
491 SECStatus | |
492 makePrimefromPrimesShaweTaylor( | |
493 HASH_HashType hashtype, /* selected Hashing algorithm */ | |
494 unsigned int length, /* input. Length of prime in bits. */ | |
495 mp_int * c0, /* seed prime */ | |
496 mp_int * q, /* sub prime, can be 1 */ | |
497 mp_int * prime, /* output. */ | |
498 SECItem * prime_seed, /* input/output. */ | |
499 int * prime_gen_counter) /* input/output. */ | |
500 { | |
501 mp_int c; | |
502 mp_int c0_2; | |
503 mp_int t; | |
504 mp_int a; | |
505 mp_int z; | |
506 mp_int two_length_minus_1; | |
507 SECStatus rv = SECFailure; | |
508 int hashlen = HASH_ResultLen(hashtype); | |
509 int outlen = hashlen*BITS_PER_BYTE; | |
510 int offset; | |
511 unsigned char bit, mask; | |
512 /* x needs to hold roundup(L/outlen)*outlen. | |
513 * This can be no larger than L+outlen-1, So we set it's size to | |
514 * our max L + max outlen and know we are safe */ | |
515 unsigned char x[DSA_MAX_P_BITS/8+HASH_LENGTH_MAX]; | |
516 mp_err err = MP_OKAY; | |
517 int i; | |
518 int iterations; | |
519 int old_counter; | |
520 | |
521 MP_DIGITS(&c) = 0; | |
522 MP_DIGITS(&c0_2) = 0; | |
523 MP_DIGITS(&t) = 0; | |
524 MP_DIGITS(&a) = 0; | |
525 MP_DIGITS(&z) = 0; | |
526 MP_DIGITS(&two_length_minus_1) = 0; | |
527 CHECK_MPI_OK( mp_init(&c) ); | |
528 CHECK_MPI_OK( mp_init(&c0_2) ); | |
529 CHECK_MPI_OK( mp_init(&t) ); | |
530 CHECK_MPI_OK( mp_init(&a) ); | |
531 CHECK_MPI_OK( mp_init(&z) ); | |
532 CHECK_MPI_OK( mp_init(&two_length_minus_1) ); | |
533 | |
534 | |
535 /* | |
536 ** There is a slight mapping of variable names depending on which | |
537 ** FIPS 186 steps are being carried out. The mapping is as follows: | |
538 ** variable A.1.2.1 C.6 | |
539 ** c0 p0 c0 | |
540 ** q q 1 | |
541 ** c p c | |
542 ** c0_2 2*p0*q 2*c0 | |
543 ** length L length | |
544 ** prime_seed pseed prime_seed | |
545 ** prime_gen_counter pgen_counter prime_gen_counter | |
546 ** | |
547 ** Also note: or iterations variable is actually iterations+1, since | |
548 ** iterations+1 works better in C. | |
549 */ | |
550 | |
551 /* Step 4/16 iterations = ceiling(length/outlen)-1 */ | |
552 iterations = (length+outlen-1)/outlen; /* NOTE: iterations +1 */ | |
553 /* Step 5/17 old_counter = prime_gen_counter */ | |
554 old_counter = *prime_gen_counter; | |
555 /* | |
556 ** Comment: Generate a pseudorandom integer x in the interval | |
557 ** [2**(lenght-1), 2**length]. | |
558 ** | |
559 ** Step 6/18 x = 0 | |
560 */ | |
561 PORT_Memset(x, 0, sizeof(x)); | |
562 /* | |
563 ** Step 7/19 for i = 0 to iterations do | |
564 ** x = x + (HASH(prime_seed + i) * 2^(i*outlen)) | |
565 */ | |
566 for (i=0; i < iterations; i++) { | |
567 /* is bigger than prime_seed should get to */ | |
568 CHECK_SEC_OK( addToSeedThenHash(hashtype, prime_seed, i, | |
569 MAX_ST_SEED_BITS,&x[(iterations - i - 1)*hashlen])); | |
570 } | |
571 /* Step 8/20 prime_seed = prime_seed + iterations + 1 */ | |
572 CHECK_SEC_OK(addToSeed(prime_seed, iterations, MAX_ST_SEED_BITS, | |
573 prime_seed)); | |
574 /* | |
575 ** Step 9/21 x = 2 ** (length-1) + x mod 2 ** (length-1) | |
576 ** | |
577 ** This step mathematically sets the high bit and clears out | |
578 ** all the other bits higher than length. 'x' is stored | |
579 ** in the x array, MSB first. The above formula gives us an 'x' | |
580 ** which is length bytes long and has the high bit set. We also know | |
581 ** that length <= iterations*outlen since | |
582 ** iterations=ceiling(length/outlen). First we find the offset in | |
583 ** bytes into the array where the high bit is. | |
584 */ | |
585 offset = (outlen*iterations - length)/BITS_PER_BYTE; | |
586 /* now we want to set the 'high bit', since length may not be a | |
587 * multiple of 8,*/ | |
588 bit = 1 << ((length-1) & 0x7); /* select the proper bit in the byte */ | |
589 /* we need to zero out the rest of the bits in the byte above */ | |
590 mask = (bit-1); | |
591 /* now we set it */ | |
592 x[offset] = (mask & x[offset]) | bit; | |
593 /* | |
594 ** Comment: Generate a candidate prime c in the interval | |
595 ** [2**(lenght-1), 2**length]. | |
596 ** | |
597 ** Step 10 t = ceiling(x/(2q(p0))) | |
598 ** Step 22 t = ceiling(x/(2(c0))) | |
599 */ | |
600 CHECK_MPI_OK( mp_read_unsigned_octets(&t, &x[offset], | |
601 hashlen*iterations - offset ) ); /* t = x */ | |
602 CHECK_MPI_OK( mp_mul(c0, q, &c0_2) ); /* c0_2 is now c0*q */ | |
603 CHECK_MPI_OK( mp_add(&c0_2, &c0_2, &c0_2) ); /* c0_2 is now 2*q*c0 */ | |
604 CHECK_MPI_OK( mp_add(&t, &c0_2, &t) ); /* t = x+2*q*c0 */ | |
605 CHECK_MPI_OK( mp_sub_d(&t, (mp_digit) 1, &t) ); /* t = x+2*q*c0 -1 */ | |
606 /* t = floor((x+2qc0-1)/2qc0) = ceil(x/2qc0) */ | |
607 CHECK_MPI_OK( mp_div(&t, &c0_2, &t, NULL) ); | |
608 /* | |
609 ** step 11: if (2tqp0 +1 > 2**length), then t = ceiling(2**(length-1)/2qp0) | |
610 ** step 12: t = 2tqp0 +1. | |
611 ** | |
612 ** step 23: if (2tc0 +1 > 2**length), then t = ceiling(2**(length-1)/2c0) | |
613 ** step 24: t = 2tc0 +1. | |
614 */ | |
615 CHECK_MPI_OK( mp_2expt(&two_length_minus_1, length-1) ); | |
616 step_23: | |
617 CHECK_MPI_OK( mp_mul(&t, &c0_2, &c) ); /* c = t*2qc0 */ | |
618 CHECK_MPI_OK( mp_add_d(&c, (mp_digit)1, &c) ); /* c= 2tqc0 + 1*/ | |
619 if (mpl_significant_bits(&c) > length) { /* if c > 2**length */ | |
620 CHECK_MPI_OK( mp_sub_d(&c0_2, (mp_digit) 1, &t) ); /* t = 2qc0-1 */ | |
621 /* t = 2**(length-1) + 2qc0 -1 */ | |
622 CHECK_MPI_OK( mp_add(&two_length_minus_1,&t, &t) ); | |
623 /* t = floor((2**(length-1)+2qc0 -1)/2qco) | |
624 * = ceil(2**(lenght-2)/2qc0) */ | |
625 CHECK_MPI_OK( mp_div(&t, &c0_2, &t, NULL) ); | |
626 CHECK_MPI_OK( mp_mul(&t, &c0_2, &c) ); | |
627 CHECK_MPI_OK( mp_add_d(&c, (mp_digit)1, &c) ); /* c= 2tqc0 + 1*/ | |
628 } | |
629 /* Step 13/25 prime_gen_counter = prime_gen_counter + 1*/ | |
630 (*prime_gen_counter)++; | |
631 /* | |
632 ** Comment: Test the candidate prime c for primality; first pick an | |
633 ** integer a between 2 and c-2. | |
634 ** | |
635 ** Step 14/26 a=0 | |
636 */ | |
637 PORT_Memset(x, 0, sizeof(x)); /* use x for a */ | |
638 /* | |
639 ** Step 15/27 for i = 0 to iterations do | |
640 ** a = a + (HASH(prime_seed + i) * 2^(i*outlen)) | |
641 ** | |
642 ** NOTE: we reuse the x array for 'a' initially. | |
643 */ | |
644 for (i=0; i < iterations; i++) { | |
645 /* MAX_ST_SEED_BITS is bigger than prime_seed should get to */ | |
646 CHECK_SEC_OK(addToSeedThenHash(hashtype, prime_seed, i, | |
647 MAX_ST_SEED_BITS,&x[(iterations - i - 1)*hashlen])); | |
648 } | |
649 /* Step 16/28 prime_seed = prime_seed + iterations + 1 */ | |
650 CHECK_SEC_OK(addToSeed(prime_seed, iterations, MAX_ST_SEED_BITS, | |
651 prime_seed)); | |
652 /* Step 17/29 a = 2 + (a mod (c-3)). */ | |
653 CHECK_MPI_OK( mp_read_unsigned_octets(&a, x, iterations*hashlen) ); | |
654 CHECK_MPI_OK( mp_sub_d(&c, (mp_digit) 3, &z) ); /* z = c -3 */ | |
655 CHECK_MPI_OK( mp_mod(&a, &z, &a) ); /* a = a mod c -3 */ | |
656 CHECK_MPI_OK( mp_add_d(&a, (mp_digit) 2, &a) ); /* a = 2 + a mod c -3 */ | |
657 /* | |
658 ** Step 18 z = a**(2tq) mod p. | |
659 ** Step 30 z = a**(2t) mod c. | |
660 */ | |
661 CHECK_MPI_OK( mp_mul(&t, q, &z) ); /* z = tq */ | |
662 CHECK_MPI_OK( mp_add(&z, &z, &z) ); /* z = 2tq */ | |
663 CHECK_MPI_OK( mp_exptmod(&a, &z, &c, &z) ); /* z = a**(2tq) mod c */ | |
664 /* | |
665 ** Step 19 if (( 1 == GCD(z-1,p)) and ( 1 == z**p0 mod p )), then | |
666 ** Step 31 if (( 1 == GCD(z-1,c)) and ( 1 == z**c0 mod c )), then | |
667 */ | |
668 CHECK_MPI_OK( mp_sub_d(&z, (mp_digit) 1, &a) ); | |
669 CHECK_MPI_OK( mp_gcd(&a,&c,&a )); | |
670 if (mp_cmp_d(&a, (mp_digit)1) == 0) { | |
671 CHECK_MPI_OK( mp_exptmod(&z, c0, &c, &a) ); | |
672 if (mp_cmp_d(&a, (mp_digit)1) == 0) { | |
673 /* Step 31.1 prime = c */ | |
674 CHECK_MPI_OK( mp_copy(&c, prime) ); | |
675 /* | |
676 ** Step 31.2 return Success, prime, prime_seed, | |
677 ** prime_gen_counter | |
678 */ | |
679 rv = SECSuccess; | |
680 goto cleanup; | |
681 } | |
682 } | |
683 /* | |
684 ** Step 20/32 If (prime_gen_counter > 4 * length + old_counter then | |
685 ** return (FAILURE, 0, 0, 0). | |
686 ** NOTE: the test is reversed, so we fall through on failure to the | |
687 ** cleanup routine | |
688 */ | |
689 if (*prime_gen_counter < (4*length + old_counter)) { | |
690 /* Step 21/33 t = t + 1 */ | |
691 CHECK_MPI_OK( mp_add_d(&t, (mp_digit) 1, &t) ); | |
692 /* Step 22/34 Go to step 23/11 */ | |
693 goto step_23; | |
694 } | |
695 | |
696 /* if (prime_gencont > (4*length + old_counter), fall through to failure */ | |
697 rv = SECFailure; /* really is already set, but paranoia is good */ | |
698 | |
699 cleanup: | |
700 mp_clear(&c); | |
701 mp_clear(&c0_2); | |
702 mp_clear(&t); | |
703 mp_clear(&a); | |
704 mp_clear(&z); | |
705 mp_clear(&two_length_minus_1); | |
706 if (err) { | |
707 MP_TO_SEC_ERROR(err); | |
708 rv = SECFailure; | |
709 } | |
710 if (rv == SECFailure) { | |
711 mp_zero(prime); | |
712 if (prime_seed->data) { | |
713 SECITEM_FreeItem(prime_seed, PR_FALSE); | |
714 } | |
715 *prime_gen_counter = 0; | |
716 } | |
717 return rv; | |
718 } | |
719 | |
720 /* | |
721 ** Perform steps from FIPS 186-3, Appendix C.6 | |
722 ** | |
723 ** This generates a provable prime from a seed | |
724 */ | |
725 SECStatus | |
726 makePrimefromSeedShaweTaylor( | |
727 HASH_HashType hashtype, /* selected Hashing algorithm */ | |
728 unsigned int length, /* input. Length of prime in bits. */ | |
729 const SECItem * input_seed, /* input. */ | |
730 mp_int * prime, /* output. */ | |
731 SECItem * prime_seed, /* output. */ | |
732 int * prime_gen_counter) /* output. */ | |
733 { | |
734 mp_int c; | |
735 mp_int c0; | |
736 mp_int one; | |
737 SECStatus rv = SECFailure; | |
738 int hashlen = HASH_ResultLen(hashtype); | |
739 int outlen = hashlen*BITS_PER_BYTE; | |
740 int offset; | |
741 unsigned char bit, mask; | |
742 unsigned char x[HASH_LENGTH_MAX*2]; | |
743 mp_digit dummy; | |
744 mp_err err = MP_OKAY; | |
745 int i; | |
746 | |
747 MP_DIGITS(&c) = 0; | |
748 MP_DIGITS(&c0) = 0; | |
749 MP_DIGITS(&one) = 0; | |
750 CHECK_MPI_OK( mp_init(&c) ); | |
751 CHECK_MPI_OK( mp_init(&c0) ); | |
752 CHECK_MPI_OK( mp_init(&one) ); | |
753 | |
754 /* Step 1. if length < 2 then return (FAILURE, 0, 0, 0) */ | |
755 if (length < 2) { | |
756 rv = SECFailure; | |
757 goto cleanup; | |
758 } | |
759 /* Step 2. if length >= 33 then goto step 14 */ | |
760 if (length >= 33) { | |
761 mp_zero(&one); | |
762 CHECK_MPI_OK( mp_add_d(&one, (mp_digit) 1, &one) ); | |
763 | |
764 /* Step 14 (status, c0, prime_seed, prime_gen_counter) = | |
765 ** (ST_Random_Prime((ceil(length/2)+1, input_seed) | |
766 */ | |
767 rv = makePrimefromSeedShaweTaylor(hashtype, (length+1)/2+1, | |
768 input_seed, &c0, prime_seed, prime_gen_counter); | |
769 /* Step 15 if FAILURE is returned, return (FAILURE, 0, 0, 0). */ | |
770 if (rv != SECSuccess) { | |
771 goto cleanup; | |
772 } | |
773 /* Steps 16-34 */ | |
774 rv = makePrimefromPrimesShaweTaylor(hashtype,length, &c0, &one, | |
775 prime, prime_seed, prime_gen_counter); | |
776 goto cleanup; /* we're done, one way or the other */ | |
777 } | |
778 /* Step 3 prime_seed = input_seed */ | |
779 CHECK_SEC_OK(SECITEM_CopyItem(NULL, prime_seed, input_seed)); | |
780 /* Step 4 prime_gen_count = 0 */ | |
781 *prime_gen_counter = 0; | |
782 | |
783 step_5: | |
784 /* Step 5 c = Hash(prime_seed) xor Hash(prime_seed+1). */ | |
785 CHECK_SEC_OK(HASH_HashBuf(hashtype, x, prime_seed->data, prime_seed->len) ); | |
786 CHECK_SEC_OK(addToSeedThenHash(hashtype, prime_seed, 1, | |
787 MAX_ST_SEED_BITS, &x[hashlen]) ); | |
788 for (i=0; i < hashlen; i++) { | |
789 x[i] = x[i] ^ x[i+hashlen]; | |
790 } | |
791 /* Step 6 c = 2**length-1 + c mod 2**length-1 */ | |
792 /* This step mathematically sets the high bit and clears out | |
793 ** all the other bits higher than length. Right now c is stored | |
794 ** in the x array, MSB first. The above formula gives us a c which | |
795 ** is length bytes long and has the high bit set. We also know that | |
796 ** length < outlen since the smallest outlen is 160 bits and the largest | |
797 ** length at this point is 32 bits. So first we find the offset in bytes | |
798 ** into the array where the high bit is. | |
799 */ | |
800 offset = (outlen - length)/BITS_PER_BYTE; | |
801 /* now we want to set the 'high bit'. We have to calculate this since | |
802 * length may not be a multiple of 8.*/ | |
803 bit = 1 << ((length-1) & 0x7); /* select the proper bit in the byte */ | |
804 /* we need to zero out the rest of the bits in the byte above */ | |
805 mask = (bit-1); | |
806 /* now we set it */ | |
807 x[offset] = (mask & x[offset]) | bit; | |
808 /* Step 7 c = c*floor(c/2) + 1 */ | |
809 /* set the low bit. much easier to find (the end of the array) */ | |
810 x[hashlen-1] |= 1; | |
811 /* now that we've set our bits, we can create our candidate "c" */ | |
812 CHECK_MPI_OK( mp_read_unsigned_octets(&c, &x[offset], hashlen-offset) ); | |
813 /* Step 8 prime_gen_counter = prime_gen_counter + 1 */ | |
814 (*prime_gen_counter)++; | |
815 /* Step 9 prime_seed = prime_seed + 2 */ | |
816 CHECK_SEC_OK(addToSeed(prime_seed, 2, MAX_ST_SEED_BITS, prime_seed)); | |
817 /* Step 10 Perform deterministic primality test on c. For example, since | |
818 ** c is small, it's primality can be tested by trial division, See | |
819 ** See Appendic C.7. | |
820 ** | |
821 ** We in fact test with trial division. mpi has a built int trial divider | |
822 ** that divides all divisors up to 2^16. | |
823 */ | |
824 if (prime_tab[prime_tab_size-1] < 0xFFF1) { | |
825 /* we aren't testing all the primes between 0 and 2^16, we really | |
826 * can't use this construction. Just fail. */ | |
827 rv = SECFailure; | |
828 goto cleanup; | |
829 } | |
830 dummy = prime_tab_size; | |
831 err = mpp_divis_primes(&c, &dummy); | |
832 /* Step 11 if c is prime then */ | |
833 if (err == MP_NO) { | |
834 /* Step 11.1 prime = c */ | |
835 CHECK_MPI_OK( mp_copy(&c, prime) ); | |
836 /* Step 11.2 return SUCCESS prime, prime_seed, prime_gen_counter */ | |
837 err = MP_OKAY; | |
838 rv = SECSuccess; | |
839 goto cleanup; | |
840 } else if (err != MP_YES) { | |
841 goto cleanup; /* function failed, bail out */ | |
842 } else { | |
843 /* reset mp_err */ | |
844 err = MP_OKAY; | |
845 } | |
846 /* | |
847 ** Step 12 if (prime_gen_counter > (4*len)) | |
848 ** then return (FAILURE, 0, 0, 0)) | |
849 ** Step 13 goto step 5 | |
850 */ | |
851 if (*prime_gen_counter <= (4*length)) { | |
852 goto step_5; | |
853 } | |
854 /* if (prime_gencont > 4*length), fall through to failure */ | |
855 rv = SECFailure; /* really is already set, but paranoia is good */ | |
856 | |
857 cleanup: | |
858 mp_clear(&c); | |
859 mp_clear(&c0); | |
860 mp_clear(&one); | |
861 if (err) { | |
862 MP_TO_SEC_ERROR(err); | |
863 rv = SECFailure; | |
864 } | |
865 if (rv == SECFailure) { | |
866 mp_zero(prime); | |
867 if (prime_seed->data) { | |
868 SECITEM_FreeItem(prime_seed, PR_FALSE); | |
869 } | |
870 *prime_gen_counter = 0; | |
871 } | |
872 return rv; | |
873 } | |
874 | |
875 | |
876 /* | |
877 * Find a Q and algorithm from Seed. | |
878 */ | |
879 static SECStatus | |
880 findQfromSeed( | |
881 unsigned int L, /* input. Length of p in bits. */ | |
882 unsigned int N, /* input. Length of q in bits. */ | |
883 unsigned int g, /* input. Length of seed in bits. */ | |
884 const SECItem * seed, /* input. */ | |
885 mp_int * Q, /* input. */ | |
886 mp_int * Q_, /* output. */ | |
887 int * qseed_len, /* output */ | |
888 HASH_HashType *hashtypePtr, /* output. Hash uses */ | |
889 pqgGenType *typePtr) /* output. Generation Type used */ | |
890 { | |
891 HASH_HashType hashtype; | |
892 SECItem firstseed = { 0, 0, 0 }; | |
893 SECItem qseed = { 0, 0, 0 }; | |
894 SECStatus rv; | |
895 | |
896 *qseed_len = 0; /* only set if FIPS186_3_ST_TYPE */ | |
897 | |
898 /* handle legacy small DSA first can only be FIPS186_1_TYPE */ | |
899 if (L < 1024) { | |
900 rv =makeQfromSeed(g,seed,Q_); | |
901 if ((rv == SECSuccess) && (mp_cmp(Q,Q_) == 0)) { | |
902 *hashtypePtr = HASH_AlgSHA1; | |
903 *typePtr = FIPS186_1_TYPE; | |
904 return SECSuccess; | |
905 } | |
906 return SECFailure; | |
907 } | |
908 /* 1024 could use FIPS186_1 or FIPS186_3 algorithms, we need to try | |
909 * them both */ | |
910 if (L == 1024) { | |
911 rv = makeQfromSeed(g,seed,Q_); | |
912 if (rv == SECSuccess) { | |
913 if (mp_cmp(Q,Q_) == 0) { | |
914 *hashtypePtr = HASH_AlgSHA1; | |
915 *typePtr = FIPS186_1_TYPE; | |
916 return SECSuccess; | |
917 } | |
918 } | |
919 /* fall through for FIPS186_3 types */ | |
920 } | |
921 /* at this point we know we aren't using FIPS186_1, start trying FIPS186_3 | |
922 * with appropriate hash types */ | |
923 for (hashtype = getFirstHash(L,N); hashtype != HASH_AlgTOTAL; | |
924 hashtype=getNextHash(hashtype)) { | |
925 rv = makeQ2fromSeed(hashtype, N, seed, Q_); | |
926 if (rv != SECSuccess) { | |
927 continue; | |
928 } | |
929 if (mp_cmp(Q,Q_) == 0) { | |
930 *hashtypePtr = hashtype; | |
931 *typePtr = FIPS186_3_TYPE; | |
932 return SECSuccess; | |
933 } | |
934 } | |
935 /* | |
936 * OK finally try FIPS186_3 Shawe-Taylor | |
937 */ | |
938 firstseed = *seed; | |
939 firstseed.len = seed->len/3; | |
940 for (hashtype = getFirstHash(L,N); hashtype != HASH_AlgTOTAL; | |
941 hashtype=getNextHash(hashtype)) { | |
942 int count; | |
943 | |
944 rv = makePrimefromSeedShaweTaylor(hashtype, N, &firstseed, Q_, | |
945 &qseed, &count); | |
946 if (rv != SECSuccess) { | |
947 continue; | |
948 } | |
949 if (mp_cmp(Q,Q_) == 0) { | |
950 /* check qseed as well... */ | |
951 int offset = seed->len - qseed.len; | |
952 if ((offset < 0) || | |
953 (PORT_Memcmp(&seed->data[offset],qseed.data,qseed.len) != 0)) { | |
954 /* we found q, but the seeds don't match. This isn't an | |
955 * accident, someone has been tweeking with the seeds, just | |
956 * fail a this point. */ | |
957 SECITEM_FreeItem(&qseed,PR_FALSE); | |
958 return SECFailure; | |
959 } | |
960 *qseed_len = qseed.len; | |
961 *hashtypePtr = hashtype; | |
962 *typePtr = FIPS186_3_ST_TYPE; | |
963 SECITEM_FreeItem(&qseed, PR_FALSE); | |
964 return SECSuccess; | |
965 } | |
966 SECITEM_FreeItem(&qseed, PR_FALSE); | |
967 } | |
968 /* no hash algorithms found which match seed to Q, fail */ | |
969 return SECFailure; | |
970 } | |
971 | |
972 | |
973 | |
974 /* | |
975 ** Perform steps 7, 8 and 9 of FIPS 186, appendix 2.2. | |
976 ** which are the same as steps 11.1-11.5 of FIPS 186-2, App A.1.1.2 | |
977 ** Generate P from Q, seed, L, and offset. | |
978 */ | |
979 static SECStatus | |
980 makePfromQandSeed( | |
981 HASH_HashType hashtype, /* selected Hashing algorithm */ | |
982 unsigned int L, /* Length of P in bits. Per FIPS 186. */ | |
983 unsigned int N, /* Length of Q in bits. Per FIPS 186. */ | |
984 unsigned int offset, /* Per FIPS 186, App 2.2. & 186-3 App A.1.1.2 */ | |
985 unsigned int seedlen, /* input. Length of seed in bits. (g in 186-1)*/ | |
986 const SECItem * seed, /* input. */ | |
987 const mp_int * Q, /* input. */ | |
988 mp_int * P) /* output. */ | |
989 { | |
990 unsigned int j; /* Per FIPS 186-3 App. A.1.1.2 (k in 186-1)*/ | |
991 unsigned int n; /* Per FIPS 186, appendix 2.2. */ | |
992 mp_digit b; /* Per FIPS 186, appendix 2.2. */ | |
993 unsigned int outlen; /* Per FIPS 186-3 App. A.1.1.2 */ | |
994 unsigned int hashlen; /* outlen in bytes */ | |
995 unsigned char V_j[HASH_LENGTH_MAX]; | |
996 mp_int W, X, c, twoQ, V_n, tmp; | |
997 mp_err err = MP_OKAY; | |
998 SECStatus rv = SECSuccess; | |
999 /* Initialize bignums */ | |
1000 MP_DIGITS(&W) = 0; | |
1001 MP_DIGITS(&X) = 0; | |
1002 MP_DIGITS(&c) = 0; | |
1003 MP_DIGITS(&twoQ) = 0; | |
1004 MP_DIGITS(&V_n) = 0; | |
1005 MP_DIGITS(&tmp) = 0; | |
1006 CHECK_MPI_OK( mp_init(&W) ); | |
1007 CHECK_MPI_OK( mp_init(&X) ); | |
1008 CHECK_MPI_OK( mp_init(&c) ); | |
1009 CHECK_MPI_OK( mp_init(&twoQ) ); | |
1010 CHECK_MPI_OK( mp_init(&tmp) ); | |
1011 CHECK_MPI_OK( mp_init(&V_n) ); | |
1012 | |
1013 hashlen = HASH_ResultLen(hashtype); | |
1014 outlen = hashlen*BITS_PER_BYTE; | |
1015 | |
1016 /* L - 1 = n*outlen + b */ | |
1017 n = (L - 1) / outlen; | |
1018 b = (L - 1) % outlen; | |
1019 | |
1020 /* ****************************************************************** | |
1021 ** Step 11.1 (Step 7 in 186-1) | |
1022 ** "for j = 0 ... n let | |
1023 ** V_j = SHA[(SEED + offset + j) mod 2**seedlen]." | |
1024 ** | |
1025 ** Step 11.2 (Step 8 in 186-1) | |
1026 ** "W = V_0 + (V_1 * 2**outlen) + ... + (V_n-1 * 2**((n-1)*outlen)) | |
1027 ** + ((V_n mod 2**b) * 2**(n*outlen)) | |
1028 */ | |
1029 for (j=0; j<n; ++j) { /* Do the first n terms of V_j */ | |
1030 /* Do step 11.1 for iteration j. | |
1031 ** V_j = HASH[(seed + offset + j) mod 2**g] | |
1032 */ | |
1033 CHECK_SEC_OK( addToSeedThenHash(hashtype,seed,offset+j, seedlen, V_j) ); | |
1034 /* Do step 11.2 for iteration j. | |
1035 ** W += V_j * 2**(j*outlen) | |
1036 */ | |
1037 OCTETS_TO_MPINT(V_j, &tmp, hashlen); /* get bignum V_j */ | |
1038 CHECK_MPI_OK( mpl_lsh(&tmp, &tmp, j*outlen) );/* tmp=V_j << j*outlen */ | |
1039 CHECK_MPI_OK( mp_add(&W, &tmp, &W) ); /* W += tmp */ | |
1040 } | |
1041 /* Step 11.2, continued. | |
1042 ** [W += ((V_n mod 2**b) * 2**(n*outlen))] | |
1043 */ | |
1044 CHECK_SEC_OK( addToSeedThenHash(hashtype, seed, offset + n, seedlen, V_j) ); | |
1045 OCTETS_TO_MPINT(V_j, &V_n, hashlen); /* get bignum V_n */ | |
1046 CHECK_MPI_OK( mp_div_2d(&V_n, b, NULL, &tmp) ); /* tmp = V_n mod 2**b */ | |
1047 CHECK_MPI_OK( mpl_lsh(&tmp, &tmp, n*outlen) ); /* tmp = tmp << n*outlen */ | |
1048 CHECK_MPI_OK( mp_add(&W, &tmp, &W) ); /* W += tmp */ | |
1049 /* Step 11.3, (Step 8 in 186-1) | |
1050 ** "X = W + 2**(L-1). | |
1051 ** Note that 0 <= W < 2**(L-1) and hence 2**(L-1) <= X < 2**L." | |
1052 */ | |
1053 CHECK_MPI_OK( mpl_set_bit(&X, (mp_size)(L-1), 1) ); /* X = 2**(L-1) */ | |
1054 CHECK_MPI_OK( mp_add(&X, &W, &X) ); /* X += W */ | |
1055 /************************************************************* | |
1056 ** Step 11.4. (Step 9 in 186-1) | |
1057 ** "c = X mod 2q" | |
1058 */ | |
1059 CHECK_MPI_OK( mp_mul_2(Q, &twoQ) ); /* 2q */ | |
1060 CHECK_MPI_OK( mp_mod(&X, &twoQ, &c) ); /* c = X mod 2q */ | |
1061 /************************************************************* | |
1062 ** Step 11.5. (Step 9 in 186-1) | |
1063 ** "p = X - (c - 1). | |
1064 ** Note that p is congruent to 1 mod 2q." | |
1065 */ | |
1066 CHECK_MPI_OK( mp_sub_d(&c, 1, &c) ); /* c -= 1 */ | |
1067 CHECK_MPI_OK( mp_sub(&X, &c, P) ); /* P = X - c */ | |
1068 cleanup: | |
1069 mp_clear(&W); | |
1070 mp_clear(&X); | |
1071 mp_clear(&c); | |
1072 mp_clear(&twoQ); | |
1073 mp_clear(&V_n); | |
1074 mp_clear(&tmp); | |
1075 if (err) { | |
1076 MP_TO_SEC_ERROR(err); | |
1077 return SECFailure; | |
1078 } | |
1079 return rv; | |
1080 } | |
1081 | |
1082 /* | |
1083 ** Generate G from h, P, and Q. | |
1084 */ | |
1085 static SECStatus | |
1086 makeGfromH(const mp_int *P, /* input. */ | |
1087 const mp_int *Q, /* input. */ | |
1088 mp_int *H, /* input and output. */ | |
1089 mp_int *G, /* output. */ | |
1090 PRBool *passed) | |
1091 { | |
1092 mp_int exp, pm1; | |
1093 mp_err err = MP_OKAY; | |
1094 SECStatus rv = SECSuccess; | |
1095 *passed = PR_FALSE; | |
1096 MP_DIGITS(&exp) = 0; | |
1097 MP_DIGITS(&pm1) = 0; | |
1098 CHECK_MPI_OK( mp_init(&exp) ); | |
1099 CHECK_MPI_OK( mp_init(&pm1) ); | |
1100 CHECK_MPI_OK( mp_sub_d(P, 1, &pm1) ); /* P - 1 */ | |
1101 if ( mp_cmp(H, &pm1) >= 0) /* H >= P-1 */ | |
1102 CHECK_MPI_OK( mp_sub(H, &pm1, H) ); /* H = H mod (P-1) */ | |
1103 /* Let b = 2**n (smallest power of 2 greater than P). | |
1104 ** Since P-1 >= b/2, and H < b, quotient(H/(P-1)) = 0 or 1 | |
1105 ** so the above operation safely computes H mod (P-1) | |
1106 */ | |
1107 /* Check for H = to 0 or 1. Regen H if so. (Regen means return error). */ | |
1108 if (mp_cmp_d(H, 1) <= 0) { | |
1109 rv = SECFailure; | |
1110 goto cleanup; | |
1111 } | |
1112 /* Compute G, according to the equation G = (H ** ((P-1)/Q)) mod P */ | |
1113 CHECK_MPI_OK( mp_div(&pm1, Q, &exp, NULL) ); /* exp = (P-1)/Q */ | |
1114 CHECK_MPI_OK( mp_exptmod(H, &exp, P, G) ); /* G = H ** exp mod P */ | |
1115 /* Check for G == 0 or G == 1, return error if so. */ | |
1116 if (mp_cmp_d(G, 1) <= 0) { | |
1117 rv = SECFailure; | |
1118 goto cleanup; | |
1119 } | |
1120 *passed = PR_TRUE; | |
1121 cleanup: | |
1122 mp_clear(&exp); | |
1123 mp_clear(&pm1); | |
1124 if (err) { | |
1125 MP_TO_SEC_ERROR(err); | |
1126 rv = SECFailure; | |
1127 } | |
1128 return rv; | |
1129 } | |
1130 | |
1131 /* | |
1132 ** Generate G from seed, index, P, and Q. | |
1133 */ | |
1134 static SECStatus | |
1135 makeGfromIndex(HASH_HashType hashtype, | |
1136 const mp_int *P, /* input. */ | |
1137 const mp_int *Q, /* input. */ | |
1138 const SECItem *seed, /* input. */ | |
1139 unsigned char index, /* input. */ | |
1140 mp_int *G) /* input/output */ | |
1141 { | |
1142 mp_int e, pm1, W; | |
1143 unsigned int count; | |
1144 unsigned char data[HASH_LENGTH_MAX]; | |
1145 unsigned int len; | |
1146 mp_err err = MP_OKAY; | |
1147 SECStatus rv = SECSuccess; | |
1148 const SECHashObject *hashobj; | |
1149 void *hashcx = NULL; | |
1150 | |
1151 MP_DIGITS(&e) = 0; | |
1152 MP_DIGITS(&pm1) = 0; | |
1153 MP_DIGITS(&W) = 0; | |
1154 CHECK_MPI_OK( mp_init(&e) ); | |
1155 CHECK_MPI_OK( mp_init(&pm1) ); | |
1156 CHECK_MPI_OK( mp_init(&W) ); | |
1157 | |
1158 /* initialize our hash stuff */ | |
1159 hashobj = HASH_GetRawHashObject(hashtype); | |
1160 if (hashobj == NULL) { | |
1161 /* shouldn't happen */ | |
1162 PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); | |
1163 rv = SECFailure; | |
1164 goto cleanup; | |
1165 } | |
1166 hashcx = hashobj->create(); | |
1167 if (hashcx == NULL) { | |
1168 rv = SECFailure; | |
1169 goto cleanup; | |
1170 } | |
1171 | |
1172 CHECK_MPI_OK( mp_sub_d(P, 1, &pm1) ); /* P - 1 */ | |
1173 /* Step 3 e = (p-1)/q */ | |
1174 CHECK_MPI_OK( mp_div(&pm1, Q, &e, NULL) ); /* e = (P-1)/Q */ | |
1175 /* Steps 4, 5, and 6 */ | |
1176 /* count is a 16 bit value in the spec. We actually represent count | |
1177 * as more than 16 bits so we can easily detect the 16 bit overflow */ | |
1178 #define MAX_COUNT 0x10000 | |
1179 for (count = 1; count < MAX_COUNT; count++) { | |
1180 /* step 7 | |
1181 * U = domain_param_seed || "ggen" || index || count | |
1182 * step 8 | |
1183 * W = HASH(U) | |
1184 */ | |
1185 hashobj->begin(hashcx); | |
1186 hashobj->update(hashcx,seed->data,seed->len); | |
1187 hashobj->update(hashcx, (unsigned char *)"ggen", 4); | |
1188 hashobj->update(hashcx,&index, 1); | |
1189 data[0] = (count >> 8) & 0xff; | |
1190 data[1] = count & 0xff; | |
1191 hashobj->update(hashcx, data, 2); | |
1192 hashobj->end(hashcx, data, &len, sizeof(data)); | |
1193 OCTETS_TO_MPINT(data, &W, len); | |
1194 /* step 9. g = W**e mod p */ | |
1195 CHECK_MPI_OK( mp_exptmod(&W, &e, P, G) ); | |
1196 /* step 10. if (g < 2) then goto step 5 */ | |
1197 /* NOTE: this weird construct is to keep the flow according to the spec. | |
1198 * the continue puts us back to step 5 of the for loop */ | |
1199 if (mp_cmp_d(G, 2) < 0) { | |
1200 continue; | |
1201 } | |
1202 break; /* step 11 follows step 10 if the test condition is false */ | |
1203 } | |
1204 if (count >= MAX_COUNT) { | |
1205 rv = SECFailure; /* last part of step 6 */ | |
1206 } | |
1207 /* step 11. | |
1208 * return valid G */ | |
1209 cleanup: | |
1210 PORT_Memset(data, 0, sizeof(data)); | |
1211 if (hashcx) { | |
1212 hashobj->destroy(hashcx, PR_TRUE); | |
1213 } | |
1214 mp_clear(&e); | |
1215 mp_clear(&pm1); | |
1216 mp_clear(&W); | |
1217 if (err) { | |
1218 MP_TO_SEC_ERROR(err); | |
1219 rv = SECFailure; | |
1220 } | |
1221 return rv; | |
1222 } | |
1223 | |
1224 /* This code uses labels and gotos, so that it can follow the numbered | |
1225 ** steps in the algorithms from FIPS 186-3 appendix A.1.1.2 very closely, | |
1226 ** and so that the correctness of this code can be easily verified. | |
1227 ** So, please forgive the ugly c code. | |
1228 **/ | |
1229 static SECStatus | |
1230 pqg_ParamGen(unsigned int L, unsigned int N, pqgGenType type, | |
1231 unsigned int seedBytes, PQGParams **pParams, PQGVerify **pVfy) | |
1232 { | |
1233 unsigned int n; /* Per FIPS 186, app 2.2. 186-3 app A.1.1.2 */ | |
1234 unsigned int b; /* Per FIPS 186, app 2.2. 186-3 app A.1.1.2 */ | |
1235 unsigned int seedlen; /* Per FIPS 186-3 app A.1.1.2 (was 'g' 186-1)*/ | |
1236 unsigned int counter; /* Per FIPS 186, app 2.2. 186-3 app A.1.1.2 */ | |
1237 unsigned int offset; /* Per FIPS 186, app 2.2. 186-3 app A.1.1.2 */ | |
1238 unsigned int outlen; /* Per FIPS 186-3, appendix A.1.1.2. */ | |
1239 unsigned int maxCount; | |
1240 HASH_HashType hashtype; | |
1241 SECItem *seed; /* Per FIPS 186, app 2.2. 186-3 app A.1.1.2 */ | |
1242 PRArenaPool *arena = NULL; | |
1243 PQGParams *params = NULL; | |
1244 PQGVerify *verify = NULL; | |
1245 PRBool passed; | |
1246 SECItem hit = { 0, 0, 0 }; | |
1247 SECItem firstseed = { 0, 0, 0 }; | |
1248 SECItem qseed = { 0, 0, 0 }; | |
1249 SECItem pseed = { 0, 0, 0 }; | |
1250 mp_int P, Q, G, H, l, p0; | |
1251 mp_err err = MP_OKAY; | |
1252 SECStatus rv = SECFailure; | |
1253 int iterations = 0; | |
1254 | |
1255 | |
1256 /* Step 1. L and N already checked by caller*/ | |
1257 /* Step 2. if (seedlen < N) return INVALID; */ | |
1258 if (seedBytes < N/BITS_PER_BYTE || !pParams || !pVfy) { | |
1259 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
1260 return SECFailure; | |
1261 } | |
1262 /* Initialize an arena for the params. */ | |
1263 arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE); | |
1264 if (!arena) { | |
1265 PORT_SetError(SEC_ERROR_NO_MEMORY); | |
1266 return SECFailure; | |
1267 } | |
1268 params = (PQGParams *)PORT_ArenaZAlloc(arena, sizeof(PQGParams)); | |
1269 if (!params) { | |
1270 PORT_SetError(SEC_ERROR_NO_MEMORY); | |
1271 PORT_FreeArena(arena, PR_TRUE); | |
1272 return SECFailure; | |
1273 } | |
1274 params->arena = arena; | |
1275 /* Initialize an arena for the verify. */ | |
1276 arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE); | |
1277 if (!arena) { | |
1278 PORT_SetError(SEC_ERROR_NO_MEMORY); | |
1279 PORT_FreeArena(params->arena, PR_TRUE); | |
1280 return SECFailure; | |
1281 } | |
1282 verify = (PQGVerify *)PORT_ArenaZAlloc(arena, sizeof(PQGVerify)); | |
1283 if (!verify) { | |
1284 PORT_SetError(SEC_ERROR_NO_MEMORY); | |
1285 PORT_FreeArena(arena, PR_TRUE); | |
1286 PORT_FreeArena(params->arena, PR_TRUE); | |
1287 return SECFailure; | |
1288 } | |
1289 verify->arena = arena; | |
1290 seed = &verify->seed; | |
1291 arena = NULL; | |
1292 /* Initialize bignums */ | |
1293 MP_DIGITS(&P) = 0; | |
1294 MP_DIGITS(&Q) = 0; | |
1295 MP_DIGITS(&G) = 0; | |
1296 MP_DIGITS(&H) = 0; | |
1297 MP_DIGITS(&l) = 0; | |
1298 MP_DIGITS(&p0) = 0; | |
1299 CHECK_MPI_OK( mp_init(&P) ); | |
1300 CHECK_MPI_OK( mp_init(&Q) ); | |
1301 CHECK_MPI_OK( mp_init(&G) ); | |
1302 CHECK_MPI_OK( mp_init(&H) ); | |
1303 CHECK_MPI_OK( mp_init(&l) ); | |
1304 CHECK_MPI_OK( mp_init(&p0) ); | |
1305 | |
1306 /* Select Hash and Compute lengths. */ | |
1307 /* getFirstHash gives us the smallest acceptable hash for this key | |
1308 * strength */ | |
1309 hashtype = getFirstHash(L,N); | |
1310 outlen = HASH_ResultLen(hashtype)*BITS_PER_BYTE; | |
1311 | |
1312 /* Step 3: n = Ceil(L/outlen)-1; (same as n = Floor((L-1)/outlen)) */ | |
1313 n = (L - 1) / outlen; | |
1314 /* Step 4: b = L -1 - (n*outlen); (same as n = (L-1) mod outlen) */ | |
1315 b = (L - 1) % outlen; | |
1316 seedlen = seedBytes * BITS_PER_BYTE; /* bits in seed */ | |
1317 step_5: | |
1318 /* ****************************************************************** | |
1319 ** Step 5. (Step 1 in 186-1) | |
1320 ** "Choose an abitrary sequence of at least N bits and call it SEED. | |
1321 ** Let g be the length of SEED in bits." | |
1322 */ | |
1323 if (++iterations > MAX_ITERATIONS) { /* give up after a while */ | |
1324 PORT_SetError(SEC_ERROR_NEED_RANDOM); | |
1325 goto cleanup; | |
1326 } | |
1327 seed->len = seedBytes; | |
1328 CHECK_SEC_OK( getPQseed(seed, verify->arena) ); | |
1329 /* ****************************************************************** | |
1330 ** Step 6. (Step 2 in 186-1) | |
1331 ** | |
1332 ** "Compute U = SHA[SEED] XOR SHA[(SEED+1) mod 2**g]. (186-1)" | |
1333 ** "Compute U = HASH[SEED] 2**(N-1). (186-3)" | |
1334 ** | |
1335 ** Step 7. (Step 3 in 186-1) | |
1336 ** "Form Q from U by setting the most signficant bit (the 2**159 bit) | |
1337 ** and the least signficant bit to 1. In terms of boolean operations, | |
1338 ** Q = U OR 2**159 OR 1. Note that 2**159 < Q < 2**160. (186-1)" | |
1339 ** | |
1340 ** "q = 2**(N-1) + U + 1 - (U mod 2) (186-3) | |
1341 ** | |
1342 ** Note: Both formulations are the same for U < 2**(N-1) and N=160 | |
1343 ** | |
1344 ** If using Shawe-Taylor, We do the entire A.1.2.1.2 setps in the block | |
1345 ** FIPS186_3_ST_TYPE. | |
1346 */ | |
1347 if (type == FIPS186_1_TYPE) { | |
1348 CHECK_SEC_OK( makeQfromSeed(seedlen, seed, &Q) ); | |
1349 } else if (type == FIPS186_3_TYPE) { | |
1350 CHECK_SEC_OK( makeQ2fromSeed(hashtype, N, seed, &Q) ); | |
1351 } else { | |
1352 /* FIPS186_3_ST_TYPE */ | |
1353 int qgen_counter, pgen_counter; | |
1354 | |
1355 /* Step 1 (L,N) already checked for acceptability */ | |
1356 | |
1357 firstseed = *seed; | |
1358 qgen_counter = 0; | |
1359 /* Step 2. Use N and firstseed to generate random prime q | |
1360 * using Apendix C.6 */ | |
1361 CHECK_SEC_OK( makePrimefromSeedShaweTaylor(hashtype, N, &firstseed, &Q, | |
1362 &qseed, &qgen_counter) ); | |
1363 /* Step 3. Use floor(L/2+1) and qseed to generate random prime p0 | |
1364 * using Appendix C.6 */ | |
1365 pgen_counter = 0; | |
1366 CHECK_SEC_OK( makePrimefromSeedShaweTaylor(hashtype, (L+1)/2+1, | |
1367 &qseed, &p0, &pseed, &pgen_counter) ); | |
1368 /* Steps 4-22 FIPS 186-3 appendix A.1.2.1.2 */ | |
1369 CHECK_SEC_OK( makePrimefromPrimesShaweTaylor(hashtype, L, | |
1370 &p0, &Q, &P, &pseed, &pgen_counter) ); | |
1371 | |
1372 /* combine all the seeds */ | |
1373 seed->len = firstseed.len +qseed.len + pseed.len; | |
1374 seed->data = PORT_ArenaZAlloc(verify->arena, seed->len); | |
1375 if (seed->data == NULL) { | |
1376 goto cleanup; | |
1377 } | |
1378 PORT_Memcpy(seed->data, firstseed.data, firstseed.len); | |
1379 PORT_Memcpy(seed->data+firstseed.len, pseed.data, pseed.len); | |
1380 PORT_Memcpy(seed->data+firstseed.len+pseed.len, qseed.data, qseed.len); | |
1381 counter = 0 ; /* (qgen_counter << 16) | pgen_counter; */ | |
1382 | |
1383 /* we've generated both P and Q now, skip to generating G */ | |
1384 goto generate_G; | |
1385 } | |
1386 /* ****************************************************************** | |
1387 ** Step 8. (Step 4 in 186-1) | |
1388 ** "Use a robust primality testing algorithm to test whether q is prime." | |
1389 ** | |
1390 ** Appendix 2.1 states that a Rabin test with at least 50 iterations | |
1391 ** "will give an acceptable probability of error." | |
1392 */ | |
1393 /*CHECK_SEC_OK( prm_RabinTest(&Q, &passed) );*/ | |
1394 err = mpp_pprime(&Q, prime_testcount_q(L,N)); | |
1395 passed = (err == MP_YES) ? SECSuccess : SECFailure; | |
1396 /* ****************************************************************** | |
1397 ** Step 9. (Step 5 in 186-1) "If q is not prime, goto step 5 (1 in 186-1)." | |
1398 */ | |
1399 if (passed != SECSuccess) | |
1400 goto step_5; | |
1401 /* ****************************************************************** | |
1402 ** Step 10. | |
1403 ** offset = 1; | |
1404 **( Step 6b 186-1)"Let counter = 0 and offset = 2." | |
1405 */ | |
1406 offset = (type == FIPS186_1_TYPE) ? 2 : 1; | |
1407 /* | |
1408 ** Step 11. (Step 6a,13a,14 in 186-1) | |
1409 ** For counter - 0 to (4L-1) do | |
1410 ** | |
1411 */ | |
1412 maxCount = L >= 1024 ? (4*L - 1) : 4095; | |
1413 for (counter = 0; counter <= maxCount; counter++) { | |
1414 /* ****************************************************************** | |
1415 ** Step 11.1 (Step 7 in 186-1) | |
1416 ** "for j = 0 ... n let | |
1417 ** V_j = HASH[(SEED + offset + j) mod 2**seedlen]." | |
1418 ** | |
1419 ** Step 11.2 (Step 8 in 186-1) | |
1420 ** "W = V_0 + V_1*2**outlen+...+ V_n-1 * 2**((n-1)*outlen) + | |
1421 ** ((Vn* mod 2**b)*2**(n*outlen))" | |
1422 ** Step 11.3 (Step 8 in 186-1) | |
1423 ** "X = W + 2**(L-1) | |
1424 ** Note that 0 <= W < 2**(L-1) and hence 2**(L-1) <= X < 2**L." | |
1425 ** | |
1426 ** Step 11.4 (Step 9 in 186-1). | |
1427 ** "c = X mod 2q" | |
1428 ** | |
1429 ** Step 11.5 (Step 9 in 186-1). | |
1430 ** " p = X - (c - 1). | |
1431 ** Note that p is congruent to 1 mod 2q." | |
1432 */ | |
1433 CHECK_SEC_OK( makePfromQandSeed(hashtype, L, N, offset, seedlen, | |
1434 seed, &Q, &P) ); | |
1435 /************************************************************* | |
1436 ** Step 11.6. (Step 10 in 186-1) | |
1437 ** "if p < 2**(L-1), then goto step 11.9. (step 13 in 186-1)" | |
1438 */ | |
1439 CHECK_MPI_OK( mpl_set_bit(&l, (mp_size)(L-1), 1) ); /* l = 2**(L-1) */ | |
1440 if (mp_cmp(&P, &l) < 0) | |
1441 goto step_11_9; | |
1442 /************************************************************ | |
1443 ** Step 11.7 (step 11 in 186-1) | |
1444 ** "Perform a robust primality test on p." | |
1445 */ | |
1446 /*CHECK_SEC_OK( prm_RabinTest(&P, &passed) );*/ | |
1447 err = mpp_pprime(&P, prime_testcount_p(L, N)); | |
1448 passed = (err == MP_YES) ? SECSuccess : SECFailure; | |
1449 /* ****************************************************************** | |
1450 ** Step 11.8. "If p is determined to be primed return VALID | |
1451 ** values of p, q, seed and counter." | |
1452 */ | |
1453 if (passed == SECSuccess) | |
1454 break; | |
1455 step_11_9: | |
1456 /* ****************************************************************** | |
1457 ** Step 11.9. "offset = offset + n + 1." | |
1458 */ | |
1459 offset += n + 1; | |
1460 } | |
1461 /* ****************************************************************** | |
1462 ** Step 12. "goto step 5." | |
1463 ** | |
1464 ** NOTE: if counter <= maxCount, then we exited the loop at Step 11.8 | |
1465 ** and now need to return p,q, seed, and counter. | |
1466 */ | |
1467 if (counter > maxCount) | |
1468 goto step_5; | |
1469 | |
1470 generate_G: | |
1471 /* ****************************************************************** | |
1472 ** returning p, q, seed and counter | |
1473 */ | |
1474 if (type == FIPS186_1_TYPE) { | |
1475 /* Generate g, This is called the "Unverifiable Generation of g | |
1476 * in FIPA186-3 Appedix A.2.1. For compatibility we maintain | |
1477 * this version of the code */ | |
1478 SECITEM_AllocItem(NULL, &hit, L/8); /* h is no longer than p */ | |
1479 if (!hit.data) goto cleanup; | |
1480 do { | |
1481 /* loop generate h until 1<h<p-1 and (h**[(p-1)/q])mod p > 1 */ | |
1482 CHECK_SEC_OK( generate_h_candidate(&hit, &H) ); | |
1483 CHECK_SEC_OK( makeGfromH(&P, &Q, &H, &G, &passed) ); | |
1484 } while (passed != PR_TRUE); | |
1485 MPINT_TO_SECITEM(&H, &verify->h, verify->arena); | |
1486 } else { | |
1487 unsigned char index = 1; /* default to 1 */ | |
1488 verify->h.data = (unsigned char *)PORT_ArenaZAlloc(verify->arena, 1); | |
1489 if (verify->h.data == NULL) { goto cleanup; } | |
1490 verify->h.len = 1; | |
1491 verify->h.data[0] = index; | |
1492 /* Generate g, using the FIPS 186-3 Appendix A.23 */ | |
1493 CHECK_SEC_OK(makeGfromIndex(hashtype, &P, &Q, seed, index, &G) ); | |
1494 } | |
1495 /* All generation is done. Now, save the PQG params. */ | |
1496 MPINT_TO_SECITEM(&P, ¶ms->prime, params->arena); | |
1497 MPINT_TO_SECITEM(&Q, ¶ms->subPrime, params->arena); | |
1498 MPINT_TO_SECITEM(&G, ¶ms->base, params->arena); | |
1499 verify->counter = counter; | |
1500 *pParams = params; | |
1501 *pVfy = verify; | |
1502 cleanup: | |
1503 if (pseed.data) { | |
1504 PORT_Free(pseed.data); | |
1505 } | |
1506 if (qseed.data) { | |
1507 PORT_Free(qseed.data); | |
1508 } | |
1509 mp_clear(&P); | |
1510 mp_clear(&Q); | |
1511 mp_clear(&G); | |
1512 mp_clear(&H); | |
1513 mp_clear(&l); | |
1514 mp_clear(&p0); | |
1515 if (err) { | |
1516 MP_TO_SEC_ERROR(err); | |
1517 rv = SECFailure; | |
1518 } | |
1519 if (rv) { | |
1520 PORT_FreeArena(params->arena, PR_TRUE); | |
1521 PORT_FreeArena(verify->arena, PR_TRUE); | |
1522 } | |
1523 if (hit.data) { | |
1524 SECITEM_FreeItem(&hit, PR_FALSE); | |
1525 } | |
1526 return rv; | |
1527 } | |
1528 | |
1529 SECStatus | |
1530 PQG_ParamGen(unsigned int j, PQGParams **pParams, PQGVerify **pVfy) | |
1531 { | |
1532 unsigned int L; /* Length of P in bits. Per FIPS 186. */ | |
1533 unsigned int seedBytes; | |
1534 | |
1535 if (j > 8 || !pParams || !pVfy) { | |
1536 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
1537 return SECFailure; | |
1538 } | |
1539 L = 512 + (j * 64); /* bits in P */ | |
1540 seedBytes = L/8; | |
1541 return pqg_ParamGen(L, DSA1_Q_BITS, FIPS186_1_TYPE, seedBytes, | |
1542 pParams, pVfy); | |
1543 } | |
1544 | |
1545 SECStatus | |
1546 PQG_ParamGenSeedLen(unsigned int j, unsigned int seedBytes, | |
1547 PQGParams **pParams, PQGVerify **pVfy) | |
1548 { | |
1549 unsigned int L; /* Length of P in bits. Per FIPS 186. */ | |
1550 | |
1551 if (j > 8 || !pParams || !pVfy) { | |
1552 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
1553 return SECFailure; | |
1554 } | |
1555 L = 512 + (j * 64); /* bits in P */ | |
1556 return pqg_ParamGen(L, DSA1_Q_BITS, FIPS186_1_TYPE, seedBytes, | |
1557 pParams, pVfy); | |
1558 } | |
1559 | |
1560 SECStatus | |
1561 PQG_ParamGenV2(unsigned int L, unsigned int N, unsigned int seedBytes, | |
1562 PQGParams **pParams, PQGVerify **pVfy) | |
1563 { | |
1564 if (N == 0) { | |
1565 N = pqg_get_default_N(L); | |
1566 } | |
1567 if (seedBytes == 0) { | |
1568 /* seedBytes == L/8 for probable primes, N/8 for Shawe-Taylor Primes */ | |
1569 seedBytes = N/8; | |
1570 } | |
1571 if (pqg_validate_dsa2(L,N) != SECSuccess) { | |
1572 /* error code already set */ | |
1573 return SECFailure; | |
1574 } | |
1575 return pqg_ParamGen(L, N, FIPS186_3_ST_TYPE, seedBytes, pParams, pVfy); | |
1576 } | |
1577 | |
1578 | |
1579 /* | |
1580 * verify can use vfy structures returned from either FIPS186-1 or | |
1581 * FIPS186-2, and can handle differences in selected Hash functions to | |
1582 * generate the parameters. | |
1583 */ | |
1584 SECStatus | |
1585 PQG_VerifyParams(const PQGParams *params, | |
1586 const PQGVerify *vfy, SECStatus *result) | |
1587 { | |
1588 SECStatus rv = SECSuccess; | |
1589 unsigned int g, n, L, N, offset, outlen; | |
1590 mp_int p0, P, Q, G, P_, Q_, G_, r, h; | |
1591 mp_err err = MP_OKAY; | |
1592 int j; | |
1593 unsigned int counter_max = 0; /* handle legacy L < 1024 */ | |
1594 int qseed_len; | |
1595 SECItem pseed_ = {0, 0, 0}; | |
1596 HASH_HashType hashtype; | |
1597 pqgGenType type; | |
1598 | |
1599 #define CHECKPARAM(cond) \ | |
1600 if (!(cond)) { \ | |
1601 *result = SECFailure; \ | |
1602 goto cleanup; \ | |
1603 } | |
1604 if (!params || !vfy || !result) { | |
1605 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
1606 return SECFailure; | |
1607 } | |
1608 /* always need at least p, q, and seed for any meaningful check */ | |
1609 if ((params->prime.len == 0) || (params->subPrime.len == 0) || | |
1610 (vfy->seed.len == 0)) { | |
1611 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
1612 return SECFailure; | |
1613 } | |
1614 /* we want to either check PQ or G or both. If we don't have G, make | |
1615 * sure we have count so we can check P. */ | |
1616 if ((params->base.len == 0) && (vfy->counter == -1)) { | |
1617 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
1618 return SECFailure; | |
1619 } | |
1620 | |
1621 MP_DIGITS(&p0) = 0; | |
1622 MP_DIGITS(&P) = 0; | |
1623 MP_DIGITS(&Q) = 0; | |
1624 MP_DIGITS(&G) = 0; | |
1625 MP_DIGITS(&P_) = 0; | |
1626 MP_DIGITS(&Q_) = 0; | |
1627 MP_DIGITS(&G_) = 0; | |
1628 MP_DIGITS(&r) = 0; | |
1629 MP_DIGITS(&h) = 0; | |
1630 CHECK_MPI_OK( mp_init(&p0) ); | |
1631 CHECK_MPI_OK( mp_init(&P) ); | |
1632 CHECK_MPI_OK( mp_init(&Q) ); | |
1633 CHECK_MPI_OK( mp_init(&G) ); | |
1634 CHECK_MPI_OK( mp_init(&P_) ); | |
1635 CHECK_MPI_OK( mp_init(&Q_) ); | |
1636 CHECK_MPI_OK( mp_init(&G_) ); | |
1637 CHECK_MPI_OK( mp_init(&r) ); | |
1638 CHECK_MPI_OK( mp_init(&h) ); | |
1639 *result = SECSuccess; | |
1640 SECITEM_TO_MPINT(params->prime, &P); | |
1641 SECITEM_TO_MPINT(params->subPrime, &Q); | |
1642 /* if G isn't specified, just check P and Q */ | |
1643 if (params->base.len != 0) { | |
1644 SECITEM_TO_MPINT(params->base, &G); | |
1645 } | |
1646 /* 1. Check (L,N) pair */ | |
1647 N = mpl_significant_bits(&Q); | |
1648 L = mpl_significant_bits(&P); | |
1649 if (L < 1024) { | |
1650 /* handle DSA1 pqg parameters with less thatn 1024 bits*/ | |
1651 CHECKPARAM( N == DSA1_Q_BITS ); | |
1652 j = PQG_PBITS_TO_INDEX(L); | |
1653 CHECKPARAM( j >= 0 && j <= 8 ); | |
1654 counter_max = 4096; | |
1655 } else { | |
1656 /* handle DSA2 parameters (includes DSA1, 1024 bits) */ | |
1657 CHECKPARAM(pqg_validate_dsa2(L, N) == SECSuccess); | |
1658 counter_max = 4*L; | |
1659 } | |
1660 /* 3. G < P */ | |
1661 if (params->base.len != 0) { | |
1662 CHECKPARAM( mp_cmp(&G, &P) < 0 ); | |
1663 } | |
1664 /* 4. P % Q == 1 */ | |
1665 CHECK_MPI_OK( mp_mod(&P, &Q, &r) ); | |
1666 CHECKPARAM( mp_cmp_d(&r, 1) == 0 ); | |
1667 /* 5. Q is prime */ | |
1668 CHECKPARAM( mpp_pprime(&Q, prime_testcount_q(L,N)) == MP_YES ); | |
1669 /* 6. P is prime */ | |
1670 CHECKPARAM( mpp_pprime(&P, prime_testcount_p(L,N)) == MP_YES ); | |
1671 /* Steps 7-12 are done only if the optional PQGVerify is supplied. */ | |
1672 /* continue processing P */ | |
1673 /* 7. counter < 4*L */ | |
1674 CHECKPARAM( (vfy->counter == -1) || (vfy->counter < counter_max) ); | |
1675 /* 8. g >= N and g < 2*L (g is length of seed in bits) */ | |
1676 g = vfy->seed.len * 8; | |
1677 CHECKPARAM( g >= N && g < counter_max/2 ); | |
1678 /* 9. Q generated from SEED matches Q in PQGParams. */ | |
1679 /* This function checks all possible hash and generation types to | |
1680 * find a Q_ which matches Q. */ | |
1681 CHECKPARAM( findQfromSeed(L, N, g, &vfy->seed, &Q, &Q_, &qseed_len, | |
1682 &hashtype, &type) == SECSuccess ); | |
1683 CHECKPARAM( mp_cmp(&Q, &Q_) == 0 ); | |
1684 if (type == FIPS186_3_ST_TYPE) { | |
1685 SECItem qseed = { 0, 0, 0 }; | |
1686 SECItem pseed = { 0, 0, 0 }; | |
1687 int first_seed_len; | |
1688 int pgen_counter = 0; | |
1689 | |
1690 /* extract pseed and qseed from domain_parameter_seed, which is | |
1691 * first_seed || pseed || qseed. qseed is first_seed + small_integer | |
1692 * pseed is qseed + small_integer. This means most of the time | |
1693 * first_seed.len == qseed.len == pseed.len. Rarely qseed.len and/or | |
1694 * pseed.len will be one greater than first_seed.len, so we can | |
1695 * depend on the fact that | |
1696 * first_seed.len = floor(domain_parameter_seed.len/3). | |
1697 * findQfromSeed returned qseed.len, so we can calculate pseed.len as | |
1698 * pseed.len = domain_parameter_seed.len - first_seed.len - qseed.len | |
1699 * this is probably over kill, since 99.999% of the time they will all | |
1700 * be equal. | |
1701 * | |
1702 * With the lengths, we can now find the offsets; | |
1703 * first_seed.data = domain_parameter_seed.data + 0 | |
1704 * pseed.data = domain_parameter_seed.data + first_seed.len | |
1705 * qseed.data = domain_parameter_seed.data | |
1706 * + domain_paramter_seed.len - qseed.len | |
1707 * | |
1708 */ | |
1709 first_seed_len = vfy->seed.len/3; | |
1710 CHECKPARAM(qseed_len < vfy->seed.len); | |
1711 CHECKPARAM(first_seed_len*8 > N-1); | |
1712 CHECKPARAM(first_seed_len+qseed_len < vfy->seed.len); | |
1713 qseed.len = qseed_len; | |
1714 qseed.data = vfy->seed.data + vfy->seed.len - qseed.len; | |
1715 pseed.len = vfy->seed.len - (first_seed_len+qseed_len); | |
1716 pseed.data = vfy->seed.data + first_seed_len; | |
1717 | |
1718 /* | |
1719 * now complete FIPS 186-3 A.1.2.1.2. Step 1 was completed | |
1720 * above in our initial checks, Step 2 was completed by | |
1721 * findQfromSeed */ | |
1722 | |
1723 /* Step 3 (status, c0, prime_seed, prime_gen_counter) = | |
1724 ** (ST_Random_Prime((ceil(length/2)+1, input_seed) | |
1725 */ | |
1726 CHECK_SEC_OK( makePrimefromSeedShaweTaylor(hashtype, (L+1)/2+1, | |
1727 &qseed, &p0, &pseed_, &pgen_counter) ); | |
1728 /* Steps 4-22 FIPS 186-3 appendix A.1.2.1.2 */ | |
1729 CHECK_SEC_OK( makePrimefromPrimesShaweTaylor(hashtype, L, | |
1730 &p0, &Q_, &P_, &pseed_, &pgen_counter) ); | |
1731 CHECKPARAM( mp_cmp(&P, &P_) == 0 ); | |
1732 /* make sure pseed wasn't tampered with (since it is part of | |
1733 * calculating G) */ | |
1734 CHECKPARAM( SECITEM_CompareItem(&pseed, &pseed_) == SECEqual ); | |
1735 } else if (vfy->counter == -1) { | |
1736 /* If counter is set to -1, we are really only verifying G, skip | |
1737 * the remainder of the checks for P */ | |
1738 CHECKPARAM(type != FIPS186_1_TYPE); /* we only do this for DSA2 */ | |
1739 } else { | |
1740 /* 10. P generated from (L, counter, g, SEED, Q) matches P | |
1741 * in PQGParams. */ | |
1742 outlen = HASH_ResultLen(hashtype)*BITS_PER_BYTE; | |
1743 n = (L - 1) / outlen; | |
1744 offset = vfy->counter * (n + 1) + ((type == FIPS186_1_TYPE) ? 2 : 1); | |
1745 CHECK_SEC_OK( makePfromQandSeed(hashtype, L, N, offset, g, &vfy->seed, | |
1746 &Q, &P_) ); | |
1747 CHECKPARAM( mp_cmp(&P, &P_) == 0 ); | |
1748 } | |
1749 | |
1750 /* now check G, skip if don't have a g */ | |
1751 if (params->base.len == 0) goto cleanup; | |
1752 | |
1753 /* first Always check that G is OK FIPS186-3 A.2.2 & A.2.4*/ | |
1754 /* 1. 2 < G < P-1 */ | |
1755 /* P is prime, p-1 == zero 1st bit */ | |
1756 CHECK_MPI_OK( mpl_set_bit(&P, 0, 0) ); | |
1757 CHECKPARAM( mp_cmp_d(&G, 2) > 0 && mp_cmp(&G, &P) < 0 ); | |
1758 CHECK_MPI_OK( mpl_set_bit(&P, 0, 1) ); /* set it back */ | |
1759 /* 2. verify g**q mod p == 1 */ | |
1760 CHECK_MPI_OK( mp_exptmod(&G, &Q, &P, &h) ); /* h = G ** Q mod P */ | |
1761 CHECKPARAM(mp_cmp_d(&h, 1) == 0); | |
1762 | |
1763 /* no h, the above is the best we can do */ | |
1764 if (vfy->h.len == 0) { | |
1765 if (type != FIPS186_1_TYPE) { | |
1766 *result = SECWouldBlock; | |
1767 } | |
1768 goto cleanup; | |
1769 } | |
1770 | |
1771 /* | |
1772 * If h is one byte and FIPS186-3 was used to generate Q (we've verified | |
1773 * Q was generated from seed already, then we assume that FIPS 186-3 | |
1774 * appendix A.2.3 was used to generate G. Otherwise we assume A.2.1 was | |
1775 * used to generate G. | |
1776 */ | |
1777 if ((vfy->h.len == 1) && (type != FIPS186_1_TYPE)) { | |
1778 /* A.2.3 */ | |
1779 CHECK_SEC_OK(makeGfromIndex(hashtype, &P, &Q, &vfy->seed, | |
1780 vfy->h.data[0], &G_) ); | |
1781 CHECKPARAM( mp_cmp(&G, &G_) == 0 ); | |
1782 } else { | |
1783 int passed; | |
1784 /* A.2.1 */ | |
1785 SECITEM_TO_MPINT(vfy->h, &h); | |
1786 /* 11. 1 < h < P-1 */ | |
1787 /* P is prime, p-1 == zero 1st bit */ | |
1788 CHECK_MPI_OK( mpl_set_bit(&P, 0, 0) ); | |
1789 CHECKPARAM( mp_cmp_d(&G, 2) > 0 && mp_cmp(&G, &P) ); | |
1790 CHECK_MPI_OK( mpl_set_bit(&P, 0, 1) ); /* set it back */ | |
1791 /* 12. G generated from h matches G in PQGParams. */ | |
1792 CHECK_SEC_OK( makeGfromH(&P, &Q, &h, &G_, &passed) ); | |
1793 CHECKPARAM( passed && mp_cmp(&G, &G_) == 0 ); | |
1794 } | |
1795 cleanup: | |
1796 mp_clear(&p0); | |
1797 mp_clear(&P); | |
1798 mp_clear(&Q); | |
1799 mp_clear(&G); | |
1800 mp_clear(&P_); | |
1801 mp_clear(&Q_); | |
1802 mp_clear(&G_); | |
1803 mp_clear(&r); | |
1804 mp_clear(&h); | |
1805 if (pseed_.data) { | |
1806 SECITEM_FreeItem(&pseed_,PR_FALSE); | |
1807 } | |
1808 if (err) { | |
1809 MP_TO_SEC_ERROR(err); | |
1810 rv = SECFailure; | |
1811 } | |
1812 return rv; | |
1813 } | |
1814 | |
1815 /************************************************************************** | |
1816 * Free the PQGParams struct and the things it points to. * | |
1817 **************************************************************************/ | |
1818 void | |
1819 PQG_DestroyParams(PQGParams *params) | |
1820 { | |
1821 if (params == NULL) | |
1822 return; | |
1823 if (params->arena != NULL) { | |
1824 PORT_FreeArena(params->arena, PR_FALSE); /* don't zero it */ | |
1825 } else { | |
1826 SECITEM_FreeItem(¶ms->prime, PR_FALSE); /* don't free prime */ | |
1827 SECITEM_FreeItem(¶ms->subPrime, PR_FALSE); /* don't free subPrime */ | |
1828 SECITEM_FreeItem(¶ms->base, PR_FALSE); /* don't free base */ | |
1829 PORT_Free(params); | |
1830 } | |
1831 } | |
1832 | |
1833 /************************************************************************** | |
1834 * Free the PQGVerify struct and the things it points to. * | |
1835 **************************************************************************/ | |
1836 | |
1837 void | |
1838 PQG_DestroyVerify(PQGVerify *vfy) | |
1839 { | |
1840 if (vfy == NULL) | |
1841 return; | |
1842 if (vfy->arena != NULL) { | |
1843 PORT_FreeArena(vfy->arena, PR_FALSE); /* don't zero it */ | |
1844 } else { | |
1845 SECITEM_FreeItem(&vfy->seed, PR_FALSE); /* don't free seed */ | |
1846 SECITEM_FreeItem(&vfy->h, PR_FALSE); /* don't free h */ | |
1847 PORT_Free(vfy); | |
1848 } | |
1849 } | |
OLD | NEW |