Index: mozilla/security/nss/lib/freebl/rsa.c |
=================================================================== |
--- mozilla/security/nss/lib/freebl/rsa.c (revision 191424) |
+++ mozilla/security/nss/lib/freebl/rsa.c (working copy) |
@@ -1,1580 +0,0 @@ |
-/* This Source Code Form is subject to the terms of the Mozilla Public |
- * License, v. 2.0. If a copy of the MPL was not distributed with this |
- * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
- |
-/* |
- * RSA key generation, public key op, private key op. |
- * |
- * $Id: rsa.c,v 1.44 2012/04/25 14:49:43 gerv%gerv.net Exp $ |
- */ |
-#ifdef FREEBL_NO_DEPEND |
-#include "stubs.h" |
-#endif |
- |
-#include "secerr.h" |
- |
-#include "prclist.h" |
-#include "nssilock.h" |
-#include "prinit.h" |
-#include "blapi.h" |
-#include "mpi.h" |
-#include "mpprime.h" |
-#include "mplogic.h" |
-#include "secmpi.h" |
-#include "secitem.h" |
-#include "blapii.h" |
- |
-/* |
-** Number of times to attempt to generate a prime (p or q) from a random |
-** seed (the seed changes for each iteration). |
-*/ |
-#define MAX_PRIME_GEN_ATTEMPTS 10 |
-/* |
-** Number of times to attempt to generate a key. The primes p and q change |
-** for each attempt. |
-*/ |
-#define MAX_KEY_GEN_ATTEMPTS 10 |
- |
-/* Blinding Parameters max cache size */ |
-#define RSA_BLINDING_PARAMS_MAX_CACHE_SIZE 20 |
- |
-/* exponent should not be greater than modulus */ |
-#define BAD_RSA_KEY_SIZE(modLen, expLen) \ |
- ((expLen) > (modLen) || (modLen) > RSA_MAX_MODULUS_BITS/8 || \ |
- (expLen) > RSA_MAX_EXPONENT_BITS/8) |
- |
-struct blindingParamsStr; |
-typedef struct blindingParamsStr blindingParams; |
- |
-struct blindingParamsStr { |
- blindingParams *next; |
- mp_int f, g; /* blinding parameter */ |
- int counter; /* number of remaining uses of (f, g) */ |
-}; |
- |
-/* |
-** RSABlindingParamsStr |
-** |
-** For discussion of Paul Kocher's timing attack against an RSA private key |
-** operation, see http://www.cryptography.com/timingattack/paper.html. The |
-** countermeasure to this attack, known as blinding, is also discussed in |
-** the Handbook of Applied Cryptography, 11.118-11.119. |
-*/ |
-struct RSABlindingParamsStr |
-{ |
- /* Blinding-specific parameters */ |
- PRCList link; /* link to list of structs */ |
- SECItem modulus; /* list element "key" */ |
- blindingParams *free, *bp; /* Blinding parameters queue */ |
- blindingParams array[RSA_BLINDING_PARAMS_MAX_CACHE_SIZE]; |
-}; |
-typedef struct RSABlindingParamsStr RSABlindingParams; |
- |
-/* |
-** RSABlindingParamsListStr |
-** |
-** List of key-specific blinding params. The arena holds the volatile pool |
-** of memory for each entry and the list itself. The lock is for list |
-** operations, in this case insertions and iterations, as well as control |
-** of the counter for each set of blinding parameters. |
-*/ |
-struct RSABlindingParamsListStr |
-{ |
- PZLock *lock; /* Lock for the list */ |
- PRCondVar *cVar; /* Condidtion Variable */ |
- int waitCount; /* Number of threads waiting on cVar */ |
- PRCList head; /* Pointer to the list */ |
-}; |
- |
-/* |
-** The master blinding params list. |
-*/ |
-static struct RSABlindingParamsListStr blindingParamsList = { 0 }; |
- |
-/* Number of times to reuse (f, g). Suggested by Paul Kocher */ |
-#define RSA_BLINDING_PARAMS_MAX_REUSE 50 |
- |
-/* Global, allows optional use of blinding. On by default. */ |
-/* Cannot be changed at the moment, due to thread-safety issues. */ |
-static PRBool nssRSAUseBlinding = PR_TRUE; |
- |
-static SECStatus |
-rsa_build_from_primes(mp_int *p, mp_int *q, |
- mp_int *e, PRBool needPublicExponent, |
- mp_int *d, PRBool needPrivateExponent, |
- RSAPrivateKey *key, unsigned int keySizeInBits) |
-{ |
- mp_int n, phi; |
- mp_int psub1, qsub1, tmp; |
- mp_err err = MP_OKAY; |
- SECStatus rv = SECSuccess; |
- MP_DIGITS(&n) = 0; |
- MP_DIGITS(&phi) = 0; |
- MP_DIGITS(&psub1) = 0; |
- MP_DIGITS(&qsub1) = 0; |
- MP_DIGITS(&tmp) = 0; |
- CHECK_MPI_OK( mp_init(&n) ); |
- CHECK_MPI_OK( mp_init(&phi) ); |
- CHECK_MPI_OK( mp_init(&psub1) ); |
- CHECK_MPI_OK( mp_init(&qsub1) ); |
- CHECK_MPI_OK( mp_init(&tmp) ); |
- /* 1. Compute n = p*q */ |
- CHECK_MPI_OK( mp_mul(p, q, &n) ); |
- /* verify that the modulus has the desired number of bits */ |
- if ((unsigned)mpl_significant_bits(&n) != keySizeInBits) { |
- PORT_SetError(SEC_ERROR_NEED_RANDOM); |
- rv = SECFailure; |
- goto cleanup; |
- } |
- |
- /* at least one exponent must be given */ |
- PORT_Assert(!(needPublicExponent && needPrivateExponent)); |
- |
- /* 2. Compute phi = (p-1)*(q-1) */ |
- CHECK_MPI_OK( mp_sub_d(p, 1, &psub1) ); |
- CHECK_MPI_OK( mp_sub_d(q, 1, &qsub1) ); |
- if (needPublicExponent || needPrivateExponent) { |
- CHECK_MPI_OK( mp_mul(&psub1, &qsub1, &phi) ); |
- /* 3. Compute d = e**-1 mod(phi) */ |
- /* or e = d**-1 mod(phi) as necessary */ |
- if (needPublicExponent) { |
- err = mp_invmod(d, &phi, e); |
- } else { |
- err = mp_invmod(e, &phi, d); |
- } |
- } else { |
- err = MP_OKAY; |
- } |
- /* Verify that phi(n) and e have no common divisors */ |
- if (err != MP_OKAY) { |
- if (err == MP_UNDEF) { |
- PORT_SetError(SEC_ERROR_NEED_RANDOM); |
- err = MP_OKAY; /* to keep PORT_SetError from being called again */ |
- rv = SECFailure; |
- } |
- goto cleanup; |
- } |
- |
- /* 4. Compute exponent1 = d mod (p-1) */ |
- CHECK_MPI_OK( mp_mod(d, &psub1, &tmp) ); |
- MPINT_TO_SECITEM(&tmp, &key->exponent1, key->arena); |
- /* 5. Compute exponent2 = d mod (q-1) */ |
- CHECK_MPI_OK( mp_mod(d, &qsub1, &tmp) ); |
- MPINT_TO_SECITEM(&tmp, &key->exponent2, key->arena); |
- /* 6. Compute coefficient = q**-1 mod p */ |
- CHECK_MPI_OK( mp_invmod(q, p, &tmp) ); |
- MPINT_TO_SECITEM(&tmp, &key->coefficient, key->arena); |
- |
- /* copy our calculated results, overwrite what is there */ |
- key->modulus.data = NULL; |
- MPINT_TO_SECITEM(&n, &key->modulus, key->arena); |
- key->privateExponent.data = NULL; |
- MPINT_TO_SECITEM(d, &key->privateExponent, key->arena); |
- key->publicExponent.data = NULL; |
- MPINT_TO_SECITEM(e, &key->publicExponent, key->arena); |
- key->prime1.data = NULL; |
- MPINT_TO_SECITEM(p, &key->prime1, key->arena); |
- key->prime2.data = NULL; |
- MPINT_TO_SECITEM(q, &key->prime2, key->arena); |
-cleanup: |
- mp_clear(&n); |
- mp_clear(&phi); |
- mp_clear(&psub1); |
- mp_clear(&qsub1); |
- mp_clear(&tmp); |
- if (err) { |
- MP_TO_SEC_ERROR(err); |
- rv = SECFailure; |
- } |
- return rv; |
-} |
-static SECStatus |
-generate_prime(mp_int *prime, int primeLen) |
-{ |
- mp_err err = MP_OKAY; |
- SECStatus rv = SECSuccess; |
- unsigned long counter = 0; |
- int piter; |
- unsigned char *pb = NULL; |
- pb = PORT_Alloc(primeLen); |
- if (!pb) { |
- PORT_SetError(SEC_ERROR_NO_MEMORY); |
- goto cleanup; |
- } |
- for (piter = 0; piter < MAX_PRIME_GEN_ATTEMPTS; piter++) { |
- CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(pb, primeLen) ); |
- pb[0] |= 0xC0; /* set two high-order bits */ |
- pb[primeLen-1] |= 0x01; /* set low-order bit */ |
- CHECK_MPI_OK( mp_read_unsigned_octets(prime, pb, primeLen) ); |
- err = mpp_make_prime(prime, primeLen * 8, PR_FALSE, &counter); |
- if (err != MP_NO) |
- goto cleanup; |
- /* keep going while err == MP_NO */ |
- } |
-cleanup: |
- if (pb) |
- PORT_ZFree(pb, primeLen); |
- if (err) { |
- MP_TO_SEC_ERROR(err); |
- rv = SECFailure; |
- } |
- return rv; |
-} |
- |
-/* |
-** Generate and return a new RSA public and private key. |
-** Both keys are encoded in a single RSAPrivateKey structure. |
-** "cx" is the random number generator context |
-** "keySizeInBits" is the size of the key to be generated, in bits. |
-** 512, 1024, etc. |
-** "publicExponent" when not NULL is a pointer to some data that |
-** represents the public exponent to use. The data is a byte |
-** encoded integer, in "big endian" order. |
-*/ |
-RSAPrivateKey * |
-RSA_NewKey(int keySizeInBits, SECItem *publicExponent) |
-{ |
- unsigned int primeLen; |
- mp_int p, q, e, d; |
- int kiter; |
- mp_err err = MP_OKAY; |
- SECStatus rv = SECSuccess; |
- int prerr = 0; |
- RSAPrivateKey *key = NULL; |
- PRArenaPool *arena = NULL; |
- /* Require key size to be a multiple of 16 bits. */ |
- if (!publicExponent || keySizeInBits % 16 != 0 || |
- BAD_RSA_KEY_SIZE(keySizeInBits/8, publicExponent->len)) { |
- PORT_SetError(SEC_ERROR_INVALID_ARGS); |
- return NULL; |
- } |
- /* 1. Allocate arena & key */ |
- arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE); |
- if (!arena) { |
- PORT_SetError(SEC_ERROR_NO_MEMORY); |
- return NULL; |
- } |
- key = PORT_ArenaZNew(arena, RSAPrivateKey); |
- if (!key) { |
- PORT_SetError(SEC_ERROR_NO_MEMORY); |
- PORT_FreeArena(arena, PR_TRUE); |
- return NULL; |
- } |
- key->arena = arena; |
- /* length of primes p and q (in bytes) */ |
- primeLen = keySizeInBits / (2 * BITS_PER_BYTE); |
- MP_DIGITS(&p) = 0; |
- MP_DIGITS(&q) = 0; |
- MP_DIGITS(&e) = 0; |
- MP_DIGITS(&d) = 0; |
- CHECK_MPI_OK( mp_init(&p) ); |
- CHECK_MPI_OK( mp_init(&q) ); |
- CHECK_MPI_OK( mp_init(&e) ); |
- CHECK_MPI_OK( mp_init(&d) ); |
- /* 2. Set the version number (PKCS1 v1.5 says it should be zero) */ |
- SECITEM_AllocItem(arena, &key->version, 1); |
- key->version.data[0] = 0; |
- /* 3. Set the public exponent */ |
- SECITEM_TO_MPINT(*publicExponent, &e); |
- kiter = 0; |
- do { |
- prerr = 0; |
- PORT_SetError(0); |
- CHECK_SEC_OK( generate_prime(&p, primeLen) ); |
- CHECK_SEC_OK( generate_prime(&q, primeLen) ); |
- /* Assure q < p */ |
- if (mp_cmp(&p, &q) < 0) |
- mp_exch(&p, &q); |
- /* Attempt to use these primes to generate a key */ |
- rv = rsa_build_from_primes(&p, &q, |
- &e, PR_FALSE, /* needPublicExponent=false */ |
- &d, PR_TRUE, /* needPrivateExponent=true */ |
- key, keySizeInBits); |
- if (rv == SECSuccess) |
- break; /* generated two good primes */ |
- prerr = PORT_GetError(); |
- kiter++; |
- /* loop until have primes */ |
- } while (prerr == SEC_ERROR_NEED_RANDOM && kiter < MAX_KEY_GEN_ATTEMPTS); |
- if (prerr) |
- goto cleanup; |
-cleanup: |
- mp_clear(&p); |
- mp_clear(&q); |
- mp_clear(&e); |
- mp_clear(&d); |
- if (err) { |
- MP_TO_SEC_ERROR(err); |
- rv = SECFailure; |
- } |
- if (rv && arena) { |
- PORT_FreeArena(arena, PR_TRUE); |
- key = NULL; |
- } |
- return key; |
-} |
- |
-mp_err |
-rsa_is_prime(mp_int *p) { |
- int res; |
- |
- /* run a Fermat test */ |
- res = mpp_fermat(p, 2); |
- if (res != MP_OKAY) { |
- return res; |
- } |
- |
- /* If that passed, run some Miller-Rabin tests */ |
- res = mpp_pprime(p, 2); |
- return res; |
-} |
- |
-/* |
- * Try to find the two primes based on 2 exponents plus either a prime |
- * or a modulus. |
- * |
- * In: e, d and either p or n (depending on the setting of hasModulus). |
- * Out: p,q. |
- * |
- * Step 1, Since d = e**-1 mod phi, we know that d*e == 1 mod phi, or |
- * d*e = 1+k*phi, or d*e-1 = k*phi. since d is less than phi and e is |
- * usually less than d, then k must be an integer between e-1 and 1 |
- * (probably on the order of e). |
- * Step 1a, If we were passed just a prime, we can divide k*phi by that |
- * prime-1 and get k*(q-1). This will reduce the size of our division |
- * through the rest of the loop. |
- * Step 2, Loop through the values k=e-1 to 1 looking for k. k should be on |
- * the order or e, and e is typically small. This may take a while for |
- * a large random e. We are looking for a k that divides kphi |
- * evenly. Once we find a k that divides kphi evenly, we assume it |
- * is the true k. It's possible this k is not the 'true' k but has |
- * swapped factors of p-1 and/or q-1. Because of this, we |
- * tentatively continue Steps 3-6 inside this loop, and may return looking |
- * for another k on failure. |
- * Step 3, Calculate are tentative phi=kphi/k. Note: real phi is (p-1)*(q-1). |
- * Step 4a, if we have a prime, kphi is already k*(q-1), so phi is or tenative |
- * q-1. q = phi+1. If k is correct, q should be the right length and |
- * prime. |
- * Step 4b, It's possible q-1 and k could have swapped factors. We now have a |
- * possible solution that meets our criteria. It may not be the only |
- * solution, however, so we keep looking. If we find more than one, |
- * we will fail since we cannot determine which is the correct |
- * solution, and returning the wrong modulus will compromise both |
- * moduli. If no other solution is found, we return the unique solution. |
- * Step 5a, If we have the modulus (n=pq), then use the following formula to |
- * calculate s=(p+q): , phi = (p-1)(q-1) = pq -p-q +1 = n-s+1. so |
- * s=n-phi+1. |
- * Step 5b, Use n=pq and s=p+q to solve for p and q as follows: |
- * since q=s-p, then n=p*(s-p)= sp - p^2, rearranging p^2-s*p+n = 0. |
- * from the quadratic equation we have p=1/2*(s+sqrt(s*s-4*n)) and |
- * q=1/2*(s-sqrt(s*s-4*n)) if s*s-4*n is a perfect square, we are DONE. |
- * If it is not, continue in our look looking for another k. NOTE: the |
- * code actually distributes the 1/2 and results in the equations: |
- * sqrt = sqrt(s/2*s/2-n), p=s/2+sqrt, q=s/2-sqrt. The algebra saves us |
- * and extra divide by 2 and a multiply by 4. |
- * |
- * This will return p & q. q may be larger than p in the case that p was given |
- * and it was the smaller prime. |
- */ |
-static mp_err |
-rsa_get_primes_from_exponents(mp_int *e, mp_int *d, mp_int *p, mp_int *q, |
- mp_int *n, PRBool hasModulus, |
- unsigned int keySizeInBits) |
-{ |
- mp_int kphi; /* k*phi */ |
- mp_int k; /* current guess at 'k' */ |
- mp_int phi; /* (p-1)(q-1) */ |
- mp_int s; /* p+q/2 (s/2 in the algebra) */ |
- mp_int r; /* remainder */ |
- mp_int tmp; /* p-1 if p is given, n+1 is modulus is given */ |
- mp_int sqrt; /* sqrt(s/2*s/2-n) */ |
- mp_err err = MP_OKAY; |
- unsigned int order_k; |
- |
- MP_DIGITS(&kphi) = 0; |
- MP_DIGITS(&phi) = 0; |
- MP_DIGITS(&s) = 0; |
- MP_DIGITS(&k) = 0; |
- MP_DIGITS(&r) = 0; |
- MP_DIGITS(&tmp) = 0; |
- MP_DIGITS(&sqrt) = 0; |
- CHECK_MPI_OK( mp_init(&kphi) ); |
- CHECK_MPI_OK( mp_init(&phi) ); |
- CHECK_MPI_OK( mp_init(&s) ); |
- CHECK_MPI_OK( mp_init(&k) ); |
- CHECK_MPI_OK( mp_init(&r) ); |
- CHECK_MPI_OK( mp_init(&tmp) ); |
- CHECK_MPI_OK( mp_init(&sqrt) ); |
- |
- /* our algorithm looks for a factor k whose maximum size is dependent |
- * on the size of our smallest exponent, which had better be the public |
- * exponent (if it's the private, the key is vulnerable to a brute force |
- * attack). |
- * |
- * since our factor search is linear, we need to limit the maximum |
- * size of the public key. this should not be a problem normally, since |
- * public keys are usually small. |
- * |
- * if we want to handle larger public key sizes, we should have |
- * a version which tries to 'completely' factor k*phi (where completely |
- * means 'factor into primes, or composites with which are products of |
- * large primes). Once we have all the factors, we can sort them out and |
- * try different combinations to form our phi. The risk is if (p-1)/2, |
- * (q-1)/2, and k are all large primes. In any case if the public key |
- * is small (order of 20 some bits), then a linear search for k is |
- * manageable. |
- */ |
- if (mpl_significant_bits(e) > 23) { |
- err=MP_RANGE; |
- goto cleanup; |
- } |
- |
- /* calculate k*phi = e*d - 1 */ |
- CHECK_MPI_OK( mp_mul(e, d, &kphi) ); |
- CHECK_MPI_OK( mp_sub_d(&kphi, 1, &kphi) ); |
- |
- |
- /* kphi is (e*d)-1, which is the same as k*(p-1)(q-1) |
- * d < (p-1)(q-1), therefor k must be less than e-1 |
- * We can narrow down k even more, though. Since p and q are odd and both |
- * have their high bit set, then we know that phi must be on order of |
- * keySizeBits. |
- */ |
- order_k = (unsigned)mpl_significant_bits(&kphi) - keySizeInBits; |
- |
- /* for (k=kinit; order(k) >= order_k; k--) { */ |
- /* k=kinit: k can't be bigger than kphi/2^(keySizeInBits -1) */ |
- CHECK_MPI_OK( mp_2expt(&k,keySizeInBits-1) ); |
- CHECK_MPI_OK( mp_div(&kphi, &k, &k, NULL)); |
- if (mp_cmp(&k,e) >= 0) { |
- /* also can't be bigger then e-1 */ |
- CHECK_MPI_OK( mp_sub_d(e, 1, &k) ); |
- } |
- |
- /* calculate our temp value */ |
- /* This saves recalculating this value when the k guess is wrong, which |
- * is reasonably frequent. */ |
- /* for the modulus case, tmp = n+1 (used to calculate p+q = tmp - phi) */ |
- /* for the prime case, tmp = p-1 (used to calculate q-1= phi/tmp) */ |
- if (hasModulus) { |
- CHECK_MPI_OK( mp_add_d(n, 1, &tmp) ); |
- } else { |
- CHECK_MPI_OK( mp_sub_d(p, 1, &tmp) ); |
- CHECK_MPI_OK(mp_div(&kphi,&tmp,&kphi,&r)); |
- if (mp_cmp_z(&r) != 0) { |
- /* p-1 doesn't divide kphi, some parameter wasn't correct */ |
- err=MP_RANGE; |
- goto cleanup; |
- } |
- mp_zero(q); |
- /* kphi is now k*(q-1) */ |
- } |
- |
- /* rest of the for loop */ |
- for (; (err == MP_OKAY) && (mpl_significant_bits(&k) >= order_k); |
- err = mp_sub_d(&k, 1, &k)) { |
- /* looking for k as a factor of kphi */ |
- CHECK_MPI_OK(mp_div(&kphi,&k,&phi,&r)); |
- if (mp_cmp_z(&r) != 0) { |
- /* not a factor, try the next one */ |
- continue; |
- } |
- /* we have a possible phi, see if it works */ |
- if (!hasModulus) { |
- if ((unsigned)mpl_significant_bits(&phi) != keySizeInBits/2) { |
- /* phi is not the right size */ |
- continue; |
- } |
- /* phi should be divisible by 2, since |
- * q is odd and phi=(q-1). */ |
- if (mpp_divis_d(&phi,2) == MP_NO) { |
- /* phi is not divisible by 4 */ |
- continue; |
- } |
- /* we now have a candidate for the second prime */ |
- CHECK_MPI_OK(mp_add_d(&phi, 1, &tmp)); |
- |
- /* check to make sure it is prime */ |
- err = rsa_is_prime(&tmp); |
- if (err != MP_OKAY) { |
- if (err == MP_NO) { |
- /* No, then we still have the wrong phi */ |
- err = MP_OKAY; |
- continue; |
- } |
- goto cleanup; |
- } |
- /* |
- * It is possible that we have the wrong phi if |
- * k_guess*(q_guess-1) = k*(q-1) (k and q-1 have swapped factors). |
- * since our q_quess is prime, however. We have found a valid |
- * rsa key because: |
- * q is the correct order of magnitude. |
- * phi = (p-1)(q-1) where p and q are both primes. |
- * e*d mod phi = 1. |
- * There is no way to know from the info given if this is the |
- * original key. We never want to return the wrong key because if |
- * two moduli with the same factor is known, then euclid's gcd |
- * algorithm can be used to find that factor. Even though the |
- * caller didn't pass the original modulus, it doesn't mean the |
- * modulus wasn't known or isn't available somewhere. So to be safe |
- * if we can't be sure we have the right q, we don't return any. |
- * |
- * So to make sure we continue looking for other valid q's. If none |
- * are found, then we can safely return this one, otherwise we just |
- * fail */ |
- if (mp_cmp_z(q) != 0) { |
- /* this is the second valid q, don't return either, |
- * just fail */ |
- err = MP_RANGE; |
- break; |
- } |
- /* we only have one q so far, save it and if no others are found, |
- * it's safe to return it */ |
- CHECK_MPI_OK(mp_copy(&tmp, q)); |
- continue; |
- } |
- /* test our tentative phi */ |
- /* phi should be the correct order */ |
- if ((unsigned)mpl_significant_bits(&phi) != keySizeInBits) { |
- /* phi is not the right size */ |
- continue; |
- } |
- /* phi should be divisible by 4, since |
- * p and q are odd and phi=(p-1)(q-1). */ |
- if (mpp_divis_d(&phi,4) == MP_NO) { |
- /* phi is not divisible by 4 */ |
- continue; |
- } |
- /* n was given, calculate s/2=(p+q)/2 */ |
- CHECK_MPI_OK( mp_sub(&tmp, &phi, &s) ); |
- CHECK_MPI_OK( mp_div_2(&s, &s) ); |
- |
- /* calculate sqrt(s/2*s/2-n) */ |
- CHECK_MPI_OK(mp_sqr(&s,&sqrt)); |
- CHECK_MPI_OK(mp_sub(&sqrt,n,&r)); /* r as a tmp */ |
- CHECK_MPI_OK(mp_sqrt(&r,&sqrt)); |
- /* make sure it's a perfect square */ |
- /* r is our original value we took the square root of */ |
- /* q is the square of our tentative square root. They should be equal*/ |
- CHECK_MPI_OK(mp_sqr(&sqrt,q)); /* q as a tmp */ |
- if (mp_cmp(&r,q) != 0) { |
- /* sigh according to the doc, mp_sqrt could return sqrt-1 */ |
- CHECK_MPI_OK(mp_add_d(&sqrt,1,&sqrt)); |
- CHECK_MPI_OK(mp_sqr(&sqrt,q)); |
- if (mp_cmp(&r,q) != 0) { |
- /* s*s-n not a perfect square, this phi isn't valid, find * another.*/ |
- continue; |
- } |
- } |
- |
- /* NOTE: In this case we know we have the one and only answer. |
- * "Why?", you ask. Because: |
- * 1) n is a composite of two large primes (or it wasn't a |
- * valid RSA modulus). |
- * 2) If we know any number such that x^2-n is a perfect square |
- * and x is not (n+1)/2, then we can calculate 2 non-trivial |
- * factors of n. |
- * 3) Since we know that n has only 2 non-trivial prime factors, |
- * we know the two factors we have are the only possible factors. |
- */ |
- |
- /* Now we are home free to calculate p and q */ |
- /* p = s/2 + sqrt, q= s/2 - sqrt */ |
- CHECK_MPI_OK(mp_add(&s,&sqrt,p)); |
- CHECK_MPI_OK(mp_sub(&s,&sqrt,q)); |
- break; |
- } |
- if ((unsigned)mpl_significant_bits(&k) < order_k) { |
- if (hasModulus || (mp_cmp_z(q) == 0)) { |
- /* If we get here, something was wrong with the parameters we |
- * were given */ |
- err = MP_RANGE; |
- } |
- } |
-cleanup: |
- mp_clear(&kphi); |
- mp_clear(&phi); |
- mp_clear(&s); |
- mp_clear(&k); |
- mp_clear(&r); |
- mp_clear(&tmp); |
- mp_clear(&sqrt); |
- return err; |
-} |
- |
-/* |
- * take a private key with only a few elements and fill out the missing pieces. |
- * |
- * All the entries will be overwritten with data allocated out of the arena |
- * If no arena is supplied, one will be created. |
- * |
- * The following fields must be supplied in order for this function |
- * to succeed: |
- * one of either publicExponent or privateExponent |
- * two more of the following 5 parameters. |
- * modulus (n) |
- * prime1 (p) |
- * prime2 (q) |
- * publicExponent (e) |
- * privateExponent (d) |
- * |
- * NOTE: if only the publicExponent, privateExponent, and one prime is given, |
- * then there may be more than one RSA key that matches that combination. |
- * |
- * All parameters will be replaced in the key structure with new parameters |
- * Allocated out of the arena. There is no attempt to free the old structures. |
- * Prime1 will always be greater than prime2 (even if the caller supplies the |
- * smaller prime as prime1 or the larger prime as prime2). The parameters are |
- * not overwritten on failure. |
- * |
- * How it works: |
- * We can generate all the parameters from: |
- * one of the exponents, plus the two primes. (rsa_build_key_from_primes) * |
- * If we are given one of the exponents and both primes, we are done. |
- * If we are given one of the exponents, the modulus and one prime, we |
- * caclulate the second prime by dividing the modulus by the given |
- * prime, giving us and exponent and 2 primes. |
- * If we are given 2 exponents and either the modulus or one of the primes |
- * we calculate k*phi = d*e-1, where k is an integer less than d which |
- * divides d*e-1. We find factor k so we can isolate phi. |
- * phi = (p-1)(q-1) |
- * If one of the primes are given, we can use phi to find the other prime |
- * as follows: q = (phi/(p-1)) + 1. We now have 2 primes and an |
- * exponent. (NOTE: if more then one prime meets this condition, the |
- * operation will fail. See comments elsewhere in this file about this). |
- * If the modulus is given, then we can calculate the sum of the primes |
- * as follows: s := (p+q), phi = (p-1)(q-1) = pq -p - q +1, pq = n -> |
- * phi = n - s + 1, s = n - phi +1. Now that we have s = p+q and n=pq, |
- * we can solve our 2 equations and 2 unknowns as follows: q=s-p -> |
- * n=p*(s-p)= sp -p^2 -> p^2-sp+n = 0. Using the quadratic to solve for |
- * p, p=1/2*(s+ sqrt(s*s-4*n)) [q=1/2*(s-sqrt(s*s-4*n)]. We again have |
- * 2 primes and an exponent. |
- * |
- */ |
-SECStatus |
-RSA_PopulatePrivateKey(RSAPrivateKey *key) |
-{ |
- PRArenaPool *arena = NULL; |
- PRBool needPublicExponent = PR_TRUE; |
- PRBool needPrivateExponent = PR_TRUE; |
- PRBool hasModulus = PR_FALSE; |
- unsigned int keySizeInBits = 0; |
- int prime_count = 0; |
- /* standard RSA nominclature */ |
- mp_int p, q, e, d, n; |
- /* remainder */ |
- mp_int r; |
- mp_err err = 0; |
- SECStatus rv = SECFailure; |
- |
- MP_DIGITS(&p) = 0; |
- MP_DIGITS(&q) = 0; |
- MP_DIGITS(&e) = 0; |
- MP_DIGITS(&d) = 0; |
- MP_DIGITS(&n) = 0; |
- MP_DIGITS(&r) = 0; |
- CHECK_MPI_OK( mp_init(&p) ); |
- CHECK_MPI_OK( mp_init(&q) ); |
- CHECK_MPI_OK( mp_init(&e) ); |
- CHECK_MPI_OK( mp_init(&d) ); |
- CHECK_MPI_OK( mp_init(&n) ); |
- CHECK_MPI_OK( mp_init(&r) ); |
- |
- /* if the key didn't already have an arena, create one. */ |
- if (key->arena == NULL) { |
- arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE); |
- if (!arena) { |
- goto cleanup; |
- } |
- key->arena = arena; |
- } |
- |
- /* load up the known exponents */ |
- if (key->publicExponent.data) { |
- SECITEM_TO_MPINT(key->publicExponent, &e); |
- needPublicExponent = PR_FALSE; |
- } |
- if (key->privateExponent.data) { |
- SECITEM_TO_MPINT(key->privateExponent, &d); |
- needPrivateExponent = PR_FALSE; |
- } |
- if (needPrivateExponent && needPublicExponent) { |
- /* Not enough information, we need at least one exponent */ |
- err = MP_BADARG; |
- goto cleanup; |
- } |
- |
- /* load up the known primes. If only one prime is given, it will be |
- * assigned 'p'. Once we have both primes, well make sure p is the larger. |
- * The value prime_count tells us howe many we have acquired. |
- */ |
- if (key->prime1.data) { |
- int primeLen = key->prime1.len; |
- if (key->prime1.data[0] == 0) { |
- primeLen--; |
- } |
- keySizeInBits = primeLen * 2 * BITS_PER_BYTE; |
- SECITEM_TO_MPINT(key->prime1, &p); |
- prime_count++; |
- } |
- if (key->prime2.data) { |
- int primeLen = key->prime2.len; |
- if (key->prime2.data[0] == 0) { |
- primeLen--; |
- } |
- keySizeInBits = primeLen * 2 * BITS_PER_BYTE; |
- SECITEM_TO_MPINT(key->prime2, prime_count ? &q : &p); |
- prime_count++; |
- } |
- /* load up the modulus */ |
- if (key->modulus.data) { |
- int modLen = key->modulus.len; |
- if (key->modulus.data[0] == 0) { |
- modLen--; |
- } |
- keySizeInBits = modLen * BITS_PER_BYTE; |
- SECITEM_TO_MPINT(key->modulus, &n); |
- hasModulus = PR_TRUE; |
- } |
- /* if we have the modulus and one prime, calculate the second. */ |
- if ((prime_count == 1) && (hasModulus)) { |
- mp_div(&n,&p,&q,&r); |
- if (mp_cmp_z(&r) != 0) { |
- /* p is not a factor or n, fail */ |
- err = MP_BADARG; |
- goto cleanup; |
- } |
- prime_count++; |
- } |
- |
- /* If we didn't have enough primes try to calculate the primes from |
- * the exponents */ |
- if (prime_count < 2) { |
- /* if we don't have at least 2 primes at this point, then we need both |
- * exponents and one prime or a modulus*/ |
- if (!needPublicExponent && !needPrivateExponent && |
- ((prime_count > 0) || hasModulus)) { |
- CHECK_MPI_OK(rsa_get_primes_from_exponents(&e,&d,&p,&q, |
- &n,hasModulus,keySizeInBits)); |
- } else { |
- /* not enough given parameters to get both primes */ |
- err = MP_BADARG; |
- goto cleanup; |
- } |
- } |
- |
- /* force p to the the larger prime */ |
- if (mp_cmp(&p, &q) < 0) |
- mp_exch(&p, &q); |
- |
- /* we now have our 2 primes and at least one exponent, we can fill |
- * in the key */ |
- rv = rsa_build_from_primes(&p, &q, |
- &e, needPublicExponent, |
- &d, needPrivateExponent, |
- key, keySizeInBits); |
-cleanup: |
- mp_clear(&p); |
- mp_clear(&q); |
- mp_clear(&e); |
- mp_clear(&d); |
- mp_clear(&n); |
- mp_clear(&r); |
- if (err) { |
- MP_TO_SEC_ERROR(err); |
- rv = SECFailure; |
- } |
- if (rv && arena) { |
- PORT_FreeArena(arena, PR_TRUE); |
- key->arena = NULL; |
- } |
- return rv; |
-} |
- |
-static unsigned int |
-rsa_modulusLen(SECItem *modulus) |
-{ |
- unsigned char byteZero = modulus->data[0]; |
- unsigned int modLen = modulus->len - !byteZero; |
- return modLen; |
-} |
- |
-/* |
-** Perform a raw public-key operation |
-** Length of input and output buffers are equal to key's modulus len. |
-*/ |
-SECStatus |
-RSA_PublicKeyOp(RSAPublicKey *key, |
- unsigned char *output, |
- const unsigned char *input) |
-{ |
- unsigned int modLen, expLen, offset; |
- mp_int n, e, m, c; |
- mp_err err = MP_OKAY; |
- SECStatus rv = SECSuccess; |
- if (!key || !output || !input) { |
- PORT_SetError(SEC_ERROR_INVALID_ARGS); |
- return SECFailure; |
- } |
- MP_DIGITS(&n) = 0; |
- MP_DIGITS(&e) = 0; |
- MP_DIGITS(&m) = 0; |
- MP_DIGITS(&c) = 0; |
- CHECK_MPI_OK( mp_init(&n) ); |
- CHECK_MPI_OK( mp_init(&e) ); |
- CHECK_MPI_OK( mp_init(&m) ); |
- CHECK_MPI_OK( mp_init(&c) ); |
- modLen = rsa_modulusLen(&key->modulus); |
- expLen = rsa_modulusLen(&key->publicExponent); |
- /* 1. Obtain public key (n, e) */ |
- if (BAD_RSA_KEY_SIZE(modLen, expLen)) { |
- PORT_SetError(SEC_ERROR_INVALID_KEY); |
- rv = SECFailure; |
- goto cleanup; |
- } |
- SECITEM_TO_MPINT(key->modulus, &n); |
- SECITEM_TO_MPINT(key->publicExponent, &e); |
- if (e.used > n.used) { |
- /* exponent should not be greater than modulus */ |
- PORT_SetError(SEC_ERROR_INVALID_KEY); |
- rv = SECFailure; |
- goto cleanup; |
- } |
- /* 2. check input out of range (needs to be in range [0..n-1]) */ |
- offset = (key->modulus.data[0] == 0) ? 1 : 0; /* may be leading 0 */ |
- if (memcmp(input, key->modulus.data + offset, modLen) >= 0) { |
- PORT_SetError(SEC_ERROR_INPUT_LEN); |
- rv = SECFailure; |
- goto cleanup; |
- } |
- /* 2 bis. Represent message as integer in range [0..n-1] */ |
- CHECK_MPI_OK( mp_read_unsigned_octets(&m, input, modLen) ); |
- /* 3. Compute c = m**e mod n */ |
-#ifdef USE_MPI_EXPT_D |
- /* XXX see which is faster */ |
- if (MP_USED(&e) == 1) { |
- CHECK_MPI_OK( mp_exptmod_d(&m, MP_DIGIT(&e, 0), &n, &c) ); |
- } else |
-#endif |
- CHECK_MPI_OK( mp_exptmod(&m, &e, &n, &c) ); |
- /* 4. result c is ciphertext */ |
- err = mp_to_fixlen_octets(&c, output, modLen); |
- if (err >= 0) err = MP_OKAY; |
-cleanup: |
- mp_clear(&n); |
- mp_clear(&e); |
- mp_clear(&m); |
- mp_clear(&c); |
- if (err) { |
- MP_TO_SEC_ERROR(err); |
- rv = SECFailure; |
- } |
- return rv; |
-} |
- |
-/* |
-** RSA Private key operation (no CRT). |
-*/ |
-static SECStatus |
-rsa_PrivateKeyOpNoCRT(RSAPrivateKey *key, mp_int *m, mp_int *c, mp_int *n, |
- unsigned int modLen) |
-{ |
- mp_int d; |
- mp_err err = MP_OKAY; |
- SECStatus rv = SECSuccess; |
- MP_DIGITS(&d) = 0; |
- CHECK_MPI_OK( mp_init(&d) ); |
- SECITEM_TO_MPINT(key->privateExponent, &d); |
- /* 1. m = c**d mod n */ |
- CHECK_MPI_OK( mp_exptmod(c, &d, n, m) ); |
-cleanup: |
- mp_clear(&d); |
- if (err) { |
- MP_TO_SEC_ERROR(err); |
- rv = SECFailure; |
- } |
- return rv; |
-} |
- |
-/* |
-** RSA Private key operation using CRT. |
-*/ |
-static SECStatus |
-rsa_PrivateKeyOpCRTNoCheck(RSAPrivateKey *key, mp_int *m, mp_int *c) |
-{ |
- mp_int p, q, d_p, d_q, qInv; |
- mp_int m1, m2, h, ctmp; |
- mp_err err = MP_OKAY; |
- SECStatus rv = SECSuccess; |
- MP_DIGITS(&p) = 0; |
- MP_DIGITS(&q) = 0; |
- MP_DIGITS(&d_p) = 0; |
- MP_DIGITS(&d_q) = 0; |
- MP_DIGITS(&qInv) = 0; |
- MP_DIGITS(&m1) = 0; |
- MP_DIGITS(&m2) = 0; |
- MP_DIGITS(&h) = 0; |
- MP_DIGITS(&ctmp) = 0; |
- CHECK_MPI_OK( mp_init(&p) ); |
- CHECK_MPI_OK( mp_init(&q) ); |
- CHECK_MPI_OK( mp_init(&d_p) ); |
- CHECK_MPI_OK( mp_init(&d_q) ); |
- CHECK_MPI_OK( mp_init(&qInv) ); |
- CHECK_MPI_OK( mp_init(&m1) ); |
- CHECK_MPI_OK( mp_init(&m2) ); |
- CHECK_MPI_OK( mp_init(&h) ); |
- CHECK_MPI_OK( mp_init(&ctmp) ); |
- /* copy private key parameters into mp integers */ |
- SECITEM_TO_MPINT(key->prime1, &p); /* p */ |
- SECITEM_TO_MPINT(key->prime2, &q); /* q */ |
- SECITEM_TO_MPINT(key->exponent1, &d_p); /* d_p = d mod (p-1) */ |
- SECITEM_TO_MPINT(key->exponent2, &d_q); /* d_q = d mod (q-1) */ |
- SECITEM_TO_MPINT(key->coefficient, &qInv); /* qInv = q**-1 mod p */ |
- /* 1. m1 = c**d_p mod p */ |
- CHECK_MPI_OK( mp_mod(c, &p, &ctmp) ); |
- CHECK_MPI_OK( mp_exptmod(&ctmp, &d_p, &p, &m1) ); |
- /* 2. m2 = c**d_q mod q */ |
- CHECK_MPI_OK( mp_mod(c, &q, &ctmp) ); |
- CHECK_MPI_OK( mp_exptmod(&ctmp, &d_q, &q, &m2) ); |
- /* 3. h = (m1 - m2) * qInv mod p */ |
- CHECK_MPI_OK( mp_submod(&m1, &m2, &p, &h) ); |
- CHECK_MPI_OK( mp_mulmod(&h, &qInv, &p, &h) ); |
- /* 4. m = m2 + h * q */ |
- CHECK_MPI_OK( mp_mul(&h, &q, m) ); |
- CHECK_MPI_OK( mp_add(m, &m2, m) ); |
-cleanup: |
- mp_clear(&p); |
- mp_clear(&q); |
- mp_clear(&d_p); |
- mp_clear(&d_q); |
- mp_clear(&qInv); |
- mp_clear(&m1); |
- mp_clear(&m2); |
- mp_clear(&h); |
- mp_clear(&ctmp); |
- if (err) { |
- MP_TO_SEC_ERROR(err); |
- rv = SECFailure; |
- } |
- return rv; |
-} |
- |
-/* |
-** An attack against RSA CRT was described by Boneh, DeMillo, and Lipton in: |
-** "On the Importance of Eliminating Errors in Cryptographic Computations", |
-** http://theory.stanford.edu/~dabo/papers/faults.ps.gz |
-** |
-** As a defense against the attack, carry out the private key operation, |
-** followed up with a public key operation to invert the result. |
-** Verify that result against the input. |
-*/ |
-static SECStatus |
-rsa_PrivateKeyOpCRTCheckedPubKey(RSAPrivateKey *key, mp_int *m, mp_int *c) |
-{ |
- mp_int n, e, v; |
- mp_err err = MP_OKAY; |
- SECStatus rv = SECSuccess; |
- MP_DIGITS(&n) = 0; |
- MP_DIGITS(&e) = 0; |
- MP_DIGITS(&v) = 0; |
- CHECK_MPI_OK( mp_init(&n) ); |
- CHECK_MPI_OK( mp_init(&e) ); |
- CHECK_MPI_OK( mp_init(&v) ); |
- CHECK_SEC_OK( rsa_PrivateKeyOpCRTNoCheck(key, m, c) ); |
- SECITEM_TO_MPINT(key->modulus, &n); |
- SECITEM_TO_MPINT(key->publicExponent, &e); |
- /* Perform a public key operation v = m ** e mod n */ |
- CHECK_MPI_OK( mp_exptmod(m, &e, &n, &v) ); |
- if (mp_cmp(&v, c) != 0) { |
- rv = SECFailure; |
- } |
-cleanup: |
- mp_clear(&n); |
- mp_clear(&e); |
- mp_clear(&v); |
- if (err) { |
- MP_TO_SEC_ERROR(err); |
- rv = SECFailure; |
- } |
- return rv; |
-} |
- |
-static PRCallOnceType coBPInit = { 0, 0, 0 }; |
-static PRStatus |
-init_blinding_params_list(void) |
-{ |
- blindingParamsList.lock = PZ_NewLock(nssILockOther); |
- if (!blindingParamsList.lock) { |
- PORT_SetError(SEC_ERROR_NO_MEMORY); |
- return PR_FAILURE; |
- } |
- blindingParamsList.cVar = PR_NewCondVar( blindingParamsList.lock ); |
- if (!blindingParamsList.cVar) { |
- PORT_SetError(SEC_ERROR_NO_MEMORY); |
- return PR_FAILURE; |
- } |
- blindingParamsList.waitCount = 0; |
- PR_INIT_CLIST(&blindingParamsList.head); |
- return PR_SUCCESS; |
-} |
- |
-static SECStatus |
-generate_blinding_params(RSAPrivateKey *key, mp_int* f, mp_int* g, mp_int *n, |
- unsigned int modLen) |
-{ |
- SECStatus rv = SECSuccess; |
- mp_int e, k; |
- mp_err err = MP_OKAY; |
- unsigned char *kb = NULL; |
- |
- MP_DIGITS(&e) = 0; |
- MP_DIGITS(&k) = 0; |
- CHECK_MPI_OK( mp_init(&e) ); |
- CHECK_MPI_OK( mp_init(&k) ); |
- SECITEM_TO_MPINT(key->publicExponent, &e); |
- /* generate random k < n */ |
- kb = PORT_Alloc(modLen); |
- if (!kb) { |
- PORT_SetError(SEC_ERROR_NO_MEMORY); |
- goto cleanup; |
- } |
- CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(kb, modLen) ); |
- CHECK_MPI_OK( mp_read_unsigned_octets(&k, kb, modLen) ); |
- /* k < n */ |
- CHECK_MPI_OK( mp_mod(&k, n, &k) ); |
- /* f = k**e mod n */ |
- CHECK_MPI_OK( mp_exptmod(&k, &e, n, f) ); |
- /* g = k**-1 mod n */ |
- CHECK_MPI_OK( mp_invmod(&k, n, g) ); |
-cleanup: |
- if (kb) |
- PORT_ZFree(kb, modLen); |
- mp_clear(&k); |
- mp_clear(&e); |
- if (err) { |
- MP_TO_SEC_ERROR(err); |
- rv = SECFailure; |
- } |
- return rv; |
-} |
- |
-static SECStatus |
-init_blinding_params(RSABlindingParams *rsabp, RSAPrivateKey *key, |
- mp_int *n, unsigned int modLen) |
-{ |
- blindingParams * bp = rsabp->array; |
- int i = 0; |
- |
- /* Initialize the list pointer for the element */ |
- PR_INIT_CLIST(&rsabp->link); |
- for (i = 0; i < RSA_BLINDING_PARAMS_MAX_CACHE_SIZE; ++i, ++bp) { |
- bp->next = bp + 1; |
- MP_DIGITS(&bp->f) = 0; |
- MP_DIGITS(&bp->g) = 0; |
- bp->counter = 0; |
- } |
- /* The last bp->next value was initialized with out |
- * of rsabp->array pointer and must be set to NULL |
- */ |
- rsabp->array[RSA_BLINDING_PARAMS_MAX_CACHE_SIZE - 1].next = NULL; |
- |
- bp = rsabp->array; |
- rsabp->bp = NULL; |
- rsabp->free = bp; |
- |
- /* List elements are keyed using the modulus */ |
- SECITEM_CopyItem(NULL, &rsabp->modulus, &key->modulus); |
- |
- return SECSuccess; |
-} |
- |
-static SECStatus |
-get_blinding_params(RSAPrivateKey *key, mp_int *n, unsigned int modLen, |
- mp_int *f, mp_int *g) |
-{ |
- RSABlindingParams *rsabp = NULL; |
- blindingParams *bpUnlinked = NULL; |
- blindingParams *bp, *prevbp = NULL; |
- PRCList *el; |
- SECStatus rv = SECSuccess; |
- mp_err err = MP_OKAY; |
- int cmp = -1; |
- PRBool holdingLock = PR_FALSE; |
- |
- do { |
- if (blindingParamsList.lock == NULL) { |
- PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); |
- return SECFailure; |
- } |
- /* Acquire the list lock */ |
- PZ_Lock(blindingParamsList.lock); |
- holdingLock = PR_TRUE; |
- |
- /* Walk the list looking for the private key */ |
- for (el = PR_NEXT_LINK(&blindingParamsList.head); |
- el != &blindingParamsList.head; |
- el = PR_NEXT_LINK(el)) { |
- rsabp = (RSABlindingParams *)el; |
- cmp = SECITEM_CompareItem(&rsabp->modulus, &key->modulus); |
- if (cmp >= 0) { |
- /* The key is found or not in the list. */ |
- break; |
- } |
- } |
- |
- if (cmp) { |
- /* At this point, the key is not in the list. el should point to |
- ** the list element before which this key should be inserted. |
- */ |
- rsabp = PORT_ZNew(RSABlindingParams); |
- if (!rsabp) { |
- PORT_SetError(SEC_ERROR_NO_MEMORY); |
- goto cleanup; |
- } |
- |
- rv = init_blinding_params(rsabp, key, n, modLen); |
- if (rv != SECSuccess) { |
- PORT_ZFree(rsabp, sizeof(RSABlindingParams)); |
- goto cleanup; |
- } |
- |
- /* Insert the new element into the list |
- ** If inserting in the middle of the list, el points to the link |
- ** to insert before. Otherwise, the link needs to be appended to |
- ** the end of the list, which is the same as inserting before the |
- ** head (since el would have looped back to the head). |
- */ |
- PR_INSERT_BEFORE(&rsabp->link, el); |
- } |
- |
- /* We've found (or created) the RSAblindingParams struct for this key. |
- * Now, search its list of ready blinding params for a usable one. |
- */ |
- while (0 != (bp = rsabp->bp)) { |
- if (--(bp->counter) > 0) { |
- /* Found a match and there are still remaining uses left */ |
- /* Return the parameters */ |
- CHECK_MPI_OK( mp_copy(&bp->f, f) ); |
- CHECK_MPI_OK( mp_copy(&bp->g, g) ); |
- |
- PZ_Unlock(blindingParamsList.lock); |
- return SECSuccess; |
- } |
- /* exhausted this one, give its values to caller, and |
- * then retire it. |
- */ |
- mp_exch(&bp->f, f); |
- mp_exch(&bp->g, g); |
- mp_clear( &bp->f ); |
- mp_clear( &bp->g ); |
- bp->counter = 0; |
- /* Move to free list */ |
- rsabp->bp = bp->next; |
- bp->next = rsabp->free; |
- rsabp->free = bp; |
- /* In case there're threads waiting for new blinding |
- * value - notify 1 thread the value is ready |
- */ |
- if (blindingParamsList.waitCount > 0) { |
- PR_NotifyCondVar( blindingParamsList.cVar ); |
- blindingParamsList.waitCount--; |
- } |
- PZ_Unlock(blindingParamsList.lock); |
- return SECSuccess; |
- } |
- /* We did not find a usable set of blinding params. Can we make one? */ |
- /* Find a free bp struct. */ |
- prevbp = NULL; |
- if ((bp = rsabp->free) != NULL) { |
- /* unlink this bp */ |
- rsabp->free = bp->next; |
- bp->next = NULL; |
- bpUnlinked = bp; /* In case we fail */ |
- |
- PZ_Unlock(blindingParamsList.lock); |
- holdingLock = PR_FALSE; |
- /* generate blinding parameter values for the current thread */ |
- CHECK_SEC_OK( generate_blinding_params(key, f, g, n, modLen ) ); |
- |
- /* put the blinding parameter values into cache */ |
- CHECK_MPI_OK( mp_init( &bp->f) ); |
- CHECK_MPI_OK( mp_init( &bp->g) ); |
- CHECK_MPI_OK( mp_copy( f, &bp->f) ); |
- CHECK_MPI_OK( mp_copy( g, &bp->g) ); |
- |
- /* Put this at head of queue of usable params. */ |
- PZ_Lock(blindingParamsList.lock); |
- holdingLock = PR_TRUE; |
- /* initialize RSABlindingParamsStr */ |
- bp->counter = RSA_BLINDING_PARAMS_MAX_REUSE; |
- bp->next = rsabp->bp; |
- rsabp->bp = bp; |
- bpUnlinked = NULL; |
- /* In case there're threads waiting for new blinding value |
- * just notify them the value is ready |
- */ |
- if (blindingParamsList.waitCount > 0) { |
- PR_NotifyAllCondVar( blindingParamsList.cVar ); |
- blindingParamsList.waitCount = 0; |
- } |
- PZ_Unlock(blindingParamsList.lock); |
- return SECSuccess; |
- } |
- /* Here, there are no usable blinding parameters available, |
- * and no free bp blocks, presumably because they're all |
- * actively having parameters generated for them. |
- * So, we need to wait here and not eat up CPU until some |
- * change happens. |
- */ |
- blindingParamsList.waitCount++; |
- PR_WaitCondVar( blindingParamsList.cVar, PR_INTERVAL_NO_TIMEOUT ); |
- PZ_Unlock(blindingParamsList.lock); |
- holdingLock = PR_FALSE; |
- } while (1); |
- |
-cleanup: |
- /* It is possible to reach this after the lock is already released. */ |
- if (bpUnlinked) { |
- if (!holdingLock) { |
- PZ_Lock(blindingParamsList.lock); |
- holdingLock = PR_TRUE; |
- } |
- bp = bpUnlinked; |
- mp_clear( &bp->f ); |
- mp_clear( &bp->g ); |
- bp->counter = 0; |
- /* Must put the unlinked bp back on the free list */ |
- bp->next = rsabp->free; |
- rsabp->free = bp; |
- } |
- if (holdingLock) { |
- PZ_Unlock(blindingParamsList.lock); |
- holdingLock = PR_FALSE; |
- } |
- if (err) { |
- MP_TO_SEC_ERROR(err); |
- } |
- return SECFailure; |
-} |
- |
-/* |
-** Perform a raw private-key operation |
-** Length of input and output buffers are equal to key's modulus len. |
-*/ |
-static SECStatus |
-rsa_PrivateKeyOp(RSAPrivateKey *key, |
- unsigned char *output, |
- const unsigned char *input, |
- PRBool check) |
-{ |
- unsigned int modLen; |
- unsigned int offset; |
- SECStatus rv = SECSuccess; |
- mp_err err; |
- mp_int n, c, m; |
- mp_int f, g; |
- if (!key || !output || !input) { |
- PORT_SetError(SEC_ERROR_INVALID_ARGS); |
- return SECFailure; |
- } |
- /* check input out of range (needs to be in range [0..n-1]) */ |
- modLen = rsa_modulusLen(&key->modulus); |
- offset = (key->modulus.data[0] == 0) ? 1 : 0; /* may be leading 0 */ |
- if (memcmp(input, key->modulus.data + offset, modLen) >= 0) { |
- PORT_SetError(SEC_ERROR_INVALID_ARGS); |
- return SECFailure; |
- } |
- MP_DIGITS(&n) = 0; |
- MP_DIGITS(&c) = 0; |
- MP_DIGITS(&m) = 0; |
- MP_DIGITS(&f) = 0; |
- MP_DIGITS(&g) = 0; |
- CHECK_MPI_OK( mp_init(&n) ); |
- CHECK_MPI_OK( mp_init(&c) ); |
- CHECK_MPI_OK( mp_init(&m) ); |
- CHECK_MPI_OK( mp_init(&f) ); |
- CHECK_MPI_OK( mp_init(&g) ); |
- SECITEM_TO_MPINT(key->modulus, &n); |
- OCTETS_TO_MPINT(input, &c, modLen); |
- /* If blinding, compute pre-image of ciphertext by multiplying by |
- ** blinding factor |
- */ |
- if (nssRSAUseBlinding) { |
- CHECK_SEC_OK( get_blinding_params(key, &n, modLen, &f, &g) ); |
- /* c' = c*f mod n */ |
- CHECK_MPI_OK( mp_mulmod(&c, &f, &n, &c) ); |
- } |
- /* Do the private key operation m = c**d mod n */ |
- if ( key->prime1.len == 0 || |
- key->prime2.len == 0 || |
- key->exponent1.len == 0 || |
- key->exponent2.len == 0 || |
- key->coefficient.len == 0) { |
- CHECK_SEC_OK( rsa_PrivateKeyOpNoCRT(key, &m, &c, &n, modLen) ); |
- } else if (check) { |
- CHECK_SEC_OK( rsa_PrivateKeyOpCRTCheckedPubKey(key, &m, &c) ); |
- } else { |
- CHECK_SEC_OK( rsa_PrivateKeyOpCRTNoCheck(key, &m, &c) ); |
- } |
- /* If blinding, compute post-image of plaintext by multiplying by |
- ** blinding factor |
- */ |
- if (nssRSAUseBlinding) { |
- /* m = m'*g mod n */ |
- CHECK_MPI_OK( mp_mulmod(&m, &g, &n, &m) ); |
- } |
- err = mp_to_fixlen_octets(&m, output, modLen); |
- if (err >= 0) err = MP_OKAY; |
-cleanup: |
- mp_clear(&n); |
- mp_clear(&c); |
- mp_clear(&m); |
- mp_clear(&f); |
- mp_clear(&g); |
- if (err) { |
- MP_TO_SEC_ERROR(err); |
- rv = SECFailure; |
- } |
- return rv; |
-} |
- |
-SECStatus |
-RSA_PrivateKeyOp(RSAPrivateKey *key, |
- unsigned char *output, |
- const unsigned char *input) |
-{ |
- return rsa_PrivateKeyOp(key, output, input, PR_FALSE); |
-} |
- |
-SECStatus |
-RSA_PrivateKeyOpDoubleChecked(RSAPrivateKey *key, |
- unsigned char *output, |
- const unsigned char *input) |
-{ |
- return rsa_PrivateKeyOp(key, output, input, PR_TRUE); |
-} |
- |
-static SECStatus |
-swap_in_key_value(PRArenaPool *arena, mp_int *mpval, SECItem *buffer) |
-{ |
- int len; |
- mp_err err = MP_OKAY; |
- memset(buffer->data, 0, buffer->len); |
- len = mp_unsigned_octet_size(mpval); |
- if (len <= 0) return SECFailure; |
- if ((unsigned int)len <= buffer->len) { |
- /* The new value is no longer than the old buffer, so use it */ |
- err = mp_to_unsigned_octets(mpval, buffer->data, len); |
- if (err >= 0) err = MP_OKAY; |
- buffer->len = len; |
- } else if (arena) { |
- /* The new value is longer, but working within an arena */ |
- (void)SECITEM_AllocItem(arena, buffer, len); |
- err = mp_to_unsigned_octets(mpval, buffer->data, len); |
- if (err >= 0) err = MP_OKAY; |
- } else { |
- /* The new value is longer, no arena, can't handle this key */ |
- return SECFailure; |
- } |
- return (err == MP_OKAY) ? SECSuccess : SECFailure; |
-} |
- |
-SECStatus |
-RSA_PrivateKeyCheck(RSAPrivateKey *key) |
-{ |
- mp_int p, q, n, psub1, qsub1, e, d, d_p, d_q, qInv, res; |
- mp_err err = MP_OKAY; |
- SECStatus rv = SECSuccess; |
- MP_DIGITS(&p) = 0; |
- MP_DIGITS(&q) = 0; |
- MP_DIGITS(&n) = 0; |
- MP_DIGITS(&psub1)= 0; |
- MP_DIGITS(&qsub1)= 0; |
- MP_DIGITS(&e) = 0; |
- MP_DIGITS(&d) = 0; |
- MP_DIGITS(&d_p) = 0; |
- MP_DIGITS(&d_q) = 0; |
- MP_DIGITS(&qInv) = 0; |
- MP_DIGITS(&res) = 0; |
- CHECK_MPI_OK( mp_init(&p) ); |
- CHECK_MPI_OK( mp_init(&q) ); |
- CHECK_MPI_OK( mp_init(&n) ); |
- CHECK_MPI_OK( mp_init(&psub1)); |
- CHECK_MPI_OK( mp_init(&qsub1)); |
- CHECK_MPI_OK( mp_init(&e) ); |
- CHECK_MPI_OK( mp_init(&d) ); |
- CHECK_MPI_OK( mp_init(&d_p) ); |
- CHECK_MPI_OK( mp_init(&d_q) ); |
- CHECK_MPI_OK( mp_init(&qInv) ); |
- CHECK_MPI_OK( mp_init(&res) ); |
- SECITEM_TO_MPINT(key->modulus, &n); |
- SECITEM_TO_MPINT(key->prime1, &p); |
- SECITEM_TO_MPINT(key->prime2, &q); |
- SECITEM_TO_MPINT(key->publicExponent, &e); |
- SECITEM_TO_MPINT(key->privateExponent, &d); |
- SECITEM_TO_MPINT(key->exponent1, &d_p); |
- SECITEM_TO_MPINT(key->exponent2, &d_q); |
- SECITEM_TO_MPINT(key->coefficient, &qInv); |
- /* p > q */ |
- if (mp_cmp(&p, &q) <= 0) { |
- /* mind the p's and q's (and d_p's and d_q's) */ |
- SECItem tmp; |
- mp_exch(&p, &q); |
- mp_exch(&d_p,&d_q); |
- tmp = key->prime1; |
- key->prime1 = key->prime2; |
- key->prime2 = tmp; |
- tmp = key->exponent1; |
- key->exponent1 = key->exponent2; |
- key->exponent2 = tmp; |
- } |
-#define VERIFY_MPI_EQUAL(m1, m2) \ |
- if (mp_cmp(m1, m2) != 0) { \ |
- rv = SECFailure; \ |
- goto cleanup; \ |
- } |
-#define VERIFY_MPI_EQUAL_1(m) \ |
- if (mp_cmp_d(m, 1) != 0) { \ |
- rv = SECFailure; \ |
- goto cleanup; \ |
- } |
- /* |
- * The following errors cannot be recovered from. |
- */ |
- /* n == p * q */ |
- CHECK_MPI_OK( mp_mul(&p, &q, &res) ); |
- VERIFY_MPI_EQUAL(&res, &n); |
- /* gcd(e, p-1) == 1 */ |
- CHECK_MPI_OK( mp_sub_d(&p, 1, &psub1) ); |
- CHECK_MPI_OK( mp_gcd(&e, &psub1, &res) ); |
- VERIFY_MPI_EQUAL_1(&res); |
- /* gcd(e, q-1) == 1 */ |
- CHECK_MPI_OK( mp_sub_d(&q, 1, &qsub1) ); |
- CHECK_MPI_OK( mp_gcd(&e, &qsub1, &res) ); |
- VERIFY_MPI_EQUAL_1(&res); |
- /* d*e == 1 mod p-1 */ |
- CHECK_MPI_OK( mp_mulmod(&d, &e, &psub1, &res) ); |
- VERIFY_MPI_EQUAL_1(&res); |
- /* d*e == 1 mod q-1 */ |
- CHECK_MPI_OK( mp_mulmod(&d, &e, &qsub1, &res) ); |
- VERIFY_MPI_EQUAL_1(&res); |
- /* |
- * The following errors can be recovered from. |
- */ |
- /* d_p == d mod p-1 */ |
- CHECK_MPI_OK( mp_mod(&d, &psub1, &res) ); |
- if (mp_cmp(&d_p, &res) != 0) { |
- /* swap in the correct value */ |
- CHECK_SEC_OK( swap_in_key_value(key->arena, &res, &key->exponent1) ); |
- } |
- /* d_q == d mod q-1 */ |
- CHECK_MPI_OK( mp_mod(&d, &qsub1, &res) ); |
- if (mp_cmp(&d_q, &res) != 0) { |
- /* swap in the correct value */ |
- CHECK_SEC_OK( swap_in_key_value(key->arena, &res, &key->exponent2) ); |
- } |
- /* q * q**-1 == 1 mod p */ |
- CHECK_MPI_OK( mp_mulmod(&q, &qInv, &p, &res) ); |
- if (mp_cmp_d(&res, 1) != 0) { |
- /* compute the correct value */ |
- CHECK_MPI_OK( mp_invmod(&q, &p, &qInv) ); |
- CHECK_SEC_OK( swap_in_key_value(key->arena, &qInv, &key->coefficient) ); |
- } |
-cleanup: |
- mp_clear(&n); |
- mp_clear(&p); |
- mp_clear(&q); |
- mp_clear(&psub1); |
- mp_clear(&qsub1); |
- mp_clear(&e); |
- mp_clear(&d); |
- mp_clear(&d_p); |
- mp_clear(&d_q); |
- mp_clear(&qInv); |
- mp_clear(&res); |
- if (err) { |
- MP_TO_SEC_ERROR(err); |
- rv = SECFailure; |
- } |
- return rv; |
-} |
- |
-static SECStatus RSA_Init(void) |
-{ |
- if (PR_CallOnce(&coBPInit, init_blinding_params_list) != PR_SUCCESS) { |
- PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); |
- return SECFailure; |
- } |
- return SECSuccess; |
-} |
- |
-SECStatus BL_Init(void) |
-{ |
- return RSA_Init(); |
-} |
- |
-/* cleanup at shutdown */ |
-void RSA_Cleanup(void) |
-{ |
- blindingParams * bp = NULL; |
- if (!coBPInit.initialized) |
- return; |
- |
- while (!PR_CLIST_IS_EMPTY(&blindingParamsList.head)) { |
- RSABlindingParams *rsabp = |
- (RSABlindingParams *)PR_LIST_HEAD(&blindingParamsList.head); |
- PR_REMOVE_LINK(&rsabp->link); |
- /* clear parameters cache */ |
- while (rsabp->bp != NULL) { |
- bp = rsabp->bp; |
- rsabp->bp = rsabp->bp->next; |
- mp_clear( &bp->f ); |
- mp_clear( &bp->g ); |
- } |
- SECITEM_FreeItem(&rsabp->modulus,PR_FALSE); |
- PORT_Free(rsabp); |
- } |
- |
- if (blindingParamsList.cVar) { |
- PR_DestroyCondVar(blindingParamsList.cVar); |
- blindingParamsList.cVar = NULL; |
- } |
- |
- if (blindingParamsList.lock) { |
- SKIP_AFTER_FORK(PZ_DestroyLock(blindingParamsList.lock)); |
- blindingParamsList.lock = NULL; |
- } |
- |
- coBPInit.initialized = 0; |
- coBPInit.inProgress = 0; |
- coBPInit.status = 0; |
-} |
- |
-/* |
- * need a central place for this function to free up all the memory that |
- * free_bl may have allocated along the way. Currently only RSA does this, |
- * so I've put it here for now. |
- */ |
-void BL_Cleanup(void) |
-{ |
- RSA_Cleanup(); |
-} |
- |
-#ifdef NSS_STATIC |
-void |
-BL_Unload(void) |
-{ |
-} |
-#endif |
- |
-PRBool bl_parentForkedAfterC_Initialize; |
- |
-/* |
- * Set fork flag so it can be tested in SKIP_AFTER_FORK on relevant platforms. |
- */ |
-void BL_SetForkState(PRBool forked) |
-{ |
- bl_parentForkedAfterC_Initialize = forked; |
-} |
- |