OLD | NEW |
| (Empty) |
1 /* This Source Code Form is subject to the terms of the Mozilla Public | |
2 * License, v. 2.0. If a copy of the MPL was not distributed with this | |
3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ | |
4 | |
5 /* | |
6 * RSA key generation, public key op, private key op. | |
7 * | |
8 * $Id: rsa.c,v 1.44 2012/04/25 14:49:43 gerv%gerv.net Exp $ | |
9 */ | |
10 #ifdef FREEBL_NO_DEPEND | |
11 #include "stubs.h" | |
12 #endif | |
13 | |
14 #include "secerr.h" | |
15 | |
16 #include "prclist.h" | |
17 #include "nssilock.h" | |
18 #include "prinit.h" | |
19 #include "blapi.h" | |
20 #include "mpi.h" | |
21 #include "mpprime.h" | |
22 #include "mplogic.h" | |
23 #include "secmpi.h" | |
24 #include "secitem.h" | |
25 #include "blapii.h" | |
26 | |
27 /* | |
28 ** Number of times to attempt to generate a prime (p or q) from a random | |
29 ** seed (the seed changes for each iteration). | |
30 */ | |
31 #define MAX_PRIME_GEN_ATTEMPTS 10 | |
32 /* | |
33 ** Number of times to attempt to generate a key. The primes p and q change | |
34 ** for each attempt. | |
35 */ | |
36 #define MAX_KEY_GEN_ATTEMPTS 10 | |
37 | |
38 /* Blinding Parameters max cache size */ | |
39 #define RSA_BLINDING_PARAMS_MAX_CACHE_SIZE 20 | |
40 | |
41 /* exponent should not be greater than modulus */ | |
42 #define BAD_RSA_KEY_SIZE(modLen, expLen) \ | |
43 ((expLen) > (modLen) || (modLen) > RSA_MAX_MODULUS_BITS/8 || \ | |
44 (expLen) > RSA_MAX_EXPONENT_BITS/8) | |
45 | |
46 struct blindingParamsStr; | |
47 typedef struct blindingParamsStr blindingParams; | |
48 | |
49 struct blindingParamsStr { | |
50 blindingParams *next; | |
51 mp_int f, g; /* blinding parameter */ | |
52 int counter; /* number of remaining uses of (f, g) */ | |
53 }; | |
54 | |
55 /* | |
56 ** RSABlindingParamsStr | |
57 ** | |
58 ** For discussion of Paul Kocher's timing attack against an RSA private key | |
59 ** operation, see http://www.cryptography.com/timingattack/paper.html. The | |
60 ** countermeasure to this attack, known as blinding, is also discussed in | |
61 ** the Handbook of Applied Cryptography, 11.118-11.119. | |
62 */ | |
63 struct RSABlindingParamsStr | |
64 { | |
65 /* Blinding-specific parameters */ | |
66 PRCList link; /* link to list of structs */ | |
67 SECItem modulus; /* list element "key" */ | |
68 blindingParams *free, *bp; /* Blinding parameters queue */ | |
69 blindingParams array[RSA_BLINDING_PARAMS_MAX_CACHE_SIZE]; | |
70 }; | |
71 typedef struct RSABlindingParamsStr RSABlindingParams; | |
72 | |
73 /* | |
74 ** RSABlindingParamsListStr | |
75 ** | |
76 ** List of key-specific blinding params. The arena holds the volatile pool | |
77 ** of memory for each entry and the list itself. The lock is for list | |
78 ** operations, in this case insertions and iterations, as well as control | |
79 ** of the counter for each set of blinding parameters. | |
80 */ | |
81 struct RSABlindingParamsListStr | |
82 { | |
83 PZLock *lock; /* Lock for the list */ | |
84 PRCondVar *cVar; /* Condidtion Variable */ | |
85 int waitCount; /* Number of threads waiting on cVar */ | |
86 PRCList head; /* Pointer to the list */ | |
87 }; | |
88 | |
89 /* | |
90 ** The master blinding params list. | |
91 */ | |
92 static struct RSABlindingParamsListStr blindingParamsList = { 0 }; | |
93 | |
94 /* Number of times to reuse (f, g). Suggested by Paul Kocher */ | |
95 #define RSA_BLINDING_PARAMS_MAX_REUSE 50 | |
96 | |
97 /* Global, allows optional use of blinding. On by default. */ | |
98 /* Cannot be changed at the moment, due to thread-safety issues. */ | |
99 static PRBool nssRSAUseBlinding = PR_TRUE; | |
100 | |
101 static SECStatus | |
102 rsa_build_from_primes(mp_int *p, mp_int *q, | |
103 mp_int *e, PRBool needPublicExponent, | |
104 mp_int *d, PRBool needPrivateExponent, | |
105 RSAPrivateKey *key, unsigned int keySizeInBits) | |
106 { | |
107 mp_int n, phi; | |
108 mp_int psub1, qsub1, tmp; | |
109 mp_err err = MP_OKAY; | |
110 SECStatus rv = SECSuccess; | |
111 MP_DIGITS(&n) = 0; | |
112 MP_DIGITS(&phi) = 0; | |
113 MP_DIGITS(&psub1) = 0; | |
114 MP_DIGITS(&qsub1) = 0; | |
115 MP_DIGITS(&tmp) = 0; | |
116 CHECK_MPI_OK( mp_init(&n) ); | |
117 CHECK_MPI_OK( mp_init(&phi) ); | |
118 CHECK_MPI_OK( mp_init(&psub1) ); | |
119 CHECK_MPI_OK( mp_init(&qsub1) ); | |
120 CHECK_MPI_OK( mp_init(&tmp) ); | |
121 /* 1. Compute n = p*q */ | |
122 CHECK_MPI_OK( mp_mul(p, q, &n) ); | |
123 /* verify that the modulus has the desired number of bits */ | |
124 if ((unsigned)mpl_significant_bits(&n) != keySizeInBits) { | |
125 PORT_SetError(SEC_ERROR_NEED_RANDOM); | |
126 rv = SECFailure; | |
127 goto cleanup; | |
128 } | |
129 | |
130 /* at least one exponent must be given */ | |
131 PORT_Assert(!(needPublicExponent && needPrivateExponent)); | |
132 | |
133 /* 2. Compute phi = (p-1)*(q-1) */ | |
134 CHECK_MPI_OK( mp_sub_d(p, 1, &psub1) ); | |
135 CHECK_MPI_OK( mp_sub_d(q, 1, &qsub1) ); | |
136 if (needPublicExponent || needPrivateExponent) { | |
137 CHECK_MPI_OK( mp_mul(&psub1, &qsub1, &phi) ); | |
138 /* 3. Compute d = e**-1 mod(phi) */ | |
139 /* or e = d**-1 mod(phi) as necessary */ | |
140 if (needPublicExponent) { | |
141 err = mp_invmod(d, &phi, e); | |
142 } else { | |
143 err = mp_invmod(e, &phi, d); | |
144 } | |
145 } else { | |
146 err = MP_OKAY; | |
147 } | |
148 /* Verify that phi(n) and e have no common divisors */ | |
149 if (err != MP_OKAY) { | |
150 if (err == MP_UNDEF) { | |
151 PORT_SetError(SEC_ERROR_NEED_RANDOM); | |
152 err = MP_OKAY; /* to keep PORT_SetError from being called again */ | |
153 rv = SECFailure; | |
154 } | |
155 goto cleanup; | |
156 } | |
157 | |
158 /* 4. Compute exponent1 = d mod (p-1) */ | |
159 CHECK_MPI_OK( mp_mod(d, &psub1, &tmp) ); | |
160 MPINT_TO_SECITEM(&tmp, &key->exponent1, key->arena); | |
161 /* 5. Compute exponent2 = d mod (q-1) */ | |
162 CHECK_MPI_OK( mp_mod(d, &qsub1, &tmp) ); | |
163 MPINT_TO_SECITEM(&tmp, &key->exponent2, key->arena); | |
164 /* 6. Compute coefficient = q**-1 mod p */ | |
165 CHECK_MPI_OK( mp_invmod(q, p, &tmp) ); | |
166 MPINT_TO_SECITEM(&tmp, &key->coefficient, key->arena); | |
167 | |
168 /* copy our calculated results, overwrite what is there */ | |
169 key->modulus.data = NULL; | |
170 MPINT_TO_SECITEM(&n, &key->modulus, key->arena); | |
171 key->privateExponent.data = NULL; | |
172 MPINT_TO_SECITEM(d, &key->privateExponent, key->arena); | |
173 key->publicExponent.data = NULL; | |
174 MPINT_TO_SECITEM(e, &key->publicExponent, key->arena); | |
175 key->prime1.data = NULL; | |
176 MPINT_TO_SECITEM(p, &key->prime1, key->arena); | |
177 key->prime2.data = NULL; | |
178 MPINT_TO_SECITEM(q, &key->prime2, key->arena); | |
179 cleanup: | |
180 mp_clear(&n); | |
181 mp_clear(&phi); | |
182 mp_clear(&psub1); | |
183 mp_clear(&qsub1); | |
184 mp_clear(&tmp); | |
185 if (err) { | |
186 MP_TO_SEC_ERROR(err); | |
187 rv = SECFailure; | |
188 } | |
189 return rv; | |
190 } | |
191 static SECStatus | |
192 generate_prime(mp_int *prime, int primeLen) | |
193 { | |
194 mp_err err = MP_OKAY; | |
195 SECStatus rv = SECSuccess; | |
196 unsigned long counter = 0; | |
197 int piter; | |
198 unsigned char *pb = NULL; | |
199 pb = PORT_Alloc(primeLen); | |
200 if (!pb) { | |
201 PORT_SetError(SEC_ERROR_NO_MEMORY); | |
202 goto cleanup; | |
203 } | |
204 for (piter = 0; piter < MAX_PRIME_GEN_ATTEMPTS; piter++) { | |
205 CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(pb, primeLen) ); | |
206 pb[0] |= 0xC0; /* set two high-order bits */ | |
207 pb[primeLen-1] |= 0x01; /* set low-order bit */ | |
208 CHECK_MPI_OK( mp_read_unsigned_octets(prime, pb, primeLen) ); | |
209 err = mpp_make_prime(prime, primeLen * 8, PR_FALSE, &counter); | |
210 if (err != MP_NO) | |
211 goto cleanup; | |
212 /* keep going while err == MP_NO */ | |
213 } | |
214 cleanup: | |
215 if (pb) | |
216 PORT_ZFree(pb, primeLen); | |
217 if (err) { | |
218 MP_TO_SEC_ERROR(err); | |
219 rv = SECFailure; | |
220 } | |
221 return rv; | |
222 } | |
223 | |
224 /* | |
225 ** Generate and return a new RSA public and private key. | |
226 ** Both keys are encoded in a single RSAPrivateKey structure. | |
227 ** "cx" is the random number generator context | |
228 ** "keySizeInBits" is the size of the key to be generated, in bits. | |
229 ** 512, 1024, etc. | |
230 ** "publicExponent" when not NULL is a pointer to some data that | |
231 ** represents the public exponent to use. The data is a byte | |
232 ** encoded integer, in "big endian" order. | |
233 */ | |
234 RSAPrivateKey * | |
235 RSA_NewKey(int keySizeInBits, SECItem *publicExponent) | |
236 { | |
237 unsigned int primeLen; | |
238 mp_int p, q, e, d; | |
239 int kiter; | |
240 mp_err err = MP_OKAY; | |
241 SECStatus rv = SECSuccess; | |
242 int prerr = 0; | |
243 RSAPrivateKey *key = NULL; | |
244 PRArenaPool *arena = NULL; | |
245 /* Require key size to be a multiple of 16 bits. */ | |
246 if (!publicExponent || keySizeInBits % 16 != 0 || | |
247 BAD_RSA_KEY_SIZE(keySizeInBits/8, publicExponent->len)) { | |
248 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
249 return NULL; | |
250 } | |
251 /* 1. Allocate arena & key */ | |
252 arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE); | |
253 if (!arena) { | |
254 PORT_SetError(SEC_ERROR_NO_MEMORY); | |
255 return NULL; | |
256 } | |
257 key = PORT_ArenaZNew(arena, RSAPrivateKey); | |
258 if (!key) { | |
259 PORT_SetError(SEC_ERROR_NO_MEMORY); | |
260 PORT_FreeArena(arena, PR_TRUE); | |
261 return NULL; | |
262 } | |
263 key->arena = arena; | |
264 /* length of primes p and q (in bytes) */ | |
265 primeLen = keySizeInBits / (2 * BITS_PER_BYTE); | |
266 MP_DIGITS(&p) = 0; | |
267 MP_DIGITS(&q) = 0; | |
268 MP_DIGITS(&e) = 0; | |
269 MP_DIGITS(&d) = 0; | |
270 CHECK_MPI_OK( mp_init(&p) ); | |
271 CHECK_MPI_OK( mp_init(&q) ); | |
272 CHECK_MPI_OK( mp_init(&e) ); | |
273 CHECK_MPI_OK( mp_init(&d) ); | |
274 /* 2. Set the version number (PKCS1 v1.5 says it should be zero) */ | |
275 SECITEM_AllocItem(arena, &key->version, 1); | |
276 key->version.data[0] = 0; | |
277 /* 3. Set the public exponent */ | |
278 SECITEM_TO_MPINT(*publicExponent, &e); | |
279 kiter = 0; | |
280 do { | |
281 prerr = 0; | |
282 PORT_SetError(0); | |
283 CHECK_SEC_OK( generate_prime(&p, primeLen) ); | |
284 CHECK_SEC_OK( generate_prime(&q, primeLen) ); | |
285 /* Assure q < p */ | |
286 if (mp_cmp(&p, &q) < 0) | |
287 mp_exch(&p, &q); | |
288 /* Attempt to use these primes to generate a key */ | |
289 rv = rsa_build_from_primes(&p, &q, | |
290 &e, PR_FALSE, /* needPublicExponent=false */ | |
291 &d, PR_TRUE, /* needPrivateExponent=true */ | |
292 key, keySizeInBits); | |
293 if (rv == SECSuccess) | |
294 break; /* generated two good primes */ | |
295 prerr = PORT_GetError(); | |
296 kiter++; | |
297 /* loop until have primes */ | |
298 } while (prerr == SEC_ERROR_NEED_RANDOM && kiter < MAX_KEY_GEN_ATTEMPTS); | |
299 if (prerr) | |
300 goto cleanup; | |
301 cleanup: | |
302 mp_clear(&p); | |
303 mp_clear(&q); | |
304 mp_clear(&e); | |
305 mp_clear(&d); | |
306 if (err) { | |
307 MP_TO_SEC_ERROR(err); | |
308 rv = SECFailure; | |
309 } | |
310 if (rv && arena) { | |
311 PORT_FreeArena(arena, PR_TRUE); | |
312 key = NULL; | |
313 } | |
314 return key; | |
315 } | |
316 | |
317 mp_err | |
318 rsa_is_prime(mp_int *p) { | |
319 int res; | |
320 | |
321 /* run a Fermat test */ | |
322 res = mpp_fermat(p, 2); | |
323 if (res != MP_OKAY) { | |
324 return res; | |
325 } | |
326 | |
327 /* If that passed, run some Miller-Rabin tests */ | |
328 res = mpp_pprime(p, 2); | |
329 return res; | |
330 } | |
331 | |
332 /* | |
333 * Try to find the two primes based on 2 exponents plus either a prime | |
334 * or a modulus. | |
335 * | |
336 * In: e, d and either p or n (depending on the setting of hasModulus). | |
337 * Out: p,q. | |
338 * | |
339 * Step 1, Since d = e**-1 mod phi, we know that d*e == 1 mod phi, or | |
340 * d*e = 1+k*phi, or d*e-1 = k*phi. since d is less than phi and e is | |
341 * usually less than d, then k must be an integer between e-1 and 1 | |
342 * (probably on the order of e). | |
343 * Step 1a, If we were passed just a prime, we can divide k*phi by that | |
344 * prime-1 and get k*(q-1). This will reduce the size of our division | |
345 * through the rest of the loop. | |
346 * Step 2, Loop through the values k=e-1 to 1 looking for k. k should be on | |
347 * the order or e, and e is typically small. This may take a while for | |
348 * a large random e. We are looking for a k that divides kphi | |
349 * evenly. Once we find a k that divides kphi evenly, we assume it | |
350 * is the true k. It's possible this k is not the 'true' k but has | |
351 * swapped factors of p-1 and/or q-1. Because of this, we | |
352 * tentatively continue Steps 3-6 inside this loop, and may return looking | |
353 * for another k on failure. | |
354 * Step 3, Calculate are tentative phi=kphi/k. Note: real phi is (p-1)*(q-1). | |
355 * Step 4a, if we have a prime, kphi is already k*(q-1), so phi is or tenative | |
356 * q-1. q = phi+1. If k is correct, q should be the right length and | |
357 * prime. | |
358 * Step 4b, It's possible q-1 and k could have swapped factors. We now have a | |
359 * possible solution that meets our criteria. It may not be the only | |
360 * solution, however, so we keep looking. If we find more than one, | |
361 * we will fail since we cannot determine which is the correct | |
362 * solution, and returning the wrong modulus will compromise both | |
363 * moduli. If no other solution is found, we return the unique solution. | |
364 * Step 5a, If we have the modulus (n=pq), then use the following formula to | |
365 * calculate s=(p+q): , phi = (p-1)(q-1) = pq -p-q +1 = n-s+1. so | |
366 * s=n-phi+1. | |
367 * Step 5b, Use n=pq and s=p+q to solve for p and q as follows: | |
368 * since q=s-p, then n=p*(s-p)= sp - p^2, rearranging p^2-s*p+n = 0. | |
369 * from the quadratic equation we have p=1/2*(s+sqrt(s*s-4*n)) and | |
370 * q=1/2*(s-sqrt(s*s-4*n)) if s*s-4*n is a perfect square, we are DONE. | |
371 * If it is not, continue in our look looking for another k. NOTE: the | |
372 * code actually distributes the 1/2 and results in the equations: | |
373 * sqrt = sqrt(s/2*s/2-n), p=s/2+sqrt, q=s/2-sqrt. The algebra saves us | |
374 * and extra divide by 2 and a multiply by 4. | |
375 * | |
376 * This will return p & q. q may be larger than p in the case that p was given | |
377 * and it was the smaller prime. | |
378 */ | |
379 static mp_err | |
380 rsa_get_primes_from_exponents(mp_int *e, mp_int *d, mp_int *p, mp_int *q, | |
381 mp_int *n, PRBool hasModulus, | |
382 unsigned int keySizeInBits) | |
383 { | |
384 mp_int kphi; /* k*phi */ | |
385 mp_int k; /* current guess at 'k' */ | |
386 mp_int phi; /* (p-1)(q-1) */ | |
387 mp_int s; /* p+q/2 (s/2 in the algebra) */ | |
388 mp_int r; /* remainder */ | |
389 mp_int tmp; /* p-1 if p is given, n+1 is modulus is given */ | |
390 mp_int sqrt; /* sqrt(s/2*s/2-n) */ | |
391 mp_err err = MP_OKAY; | |
392 unsigned int order_k; | |
393 | |
394 MP_DIGITS(&kphi) = 0; | |
395 MP_DIGITS(&phi) = 0; | |
396 MP_DIGITS(&s) = 0; | |
397 MP_DIGITS(&k) = 0; | |
398 MP_DIGITS(&r) = 0; | |
399 MP_DIGITS(&tmp) = 0; | |
400 MP_DIGITS(&sqrt) = 0; | |
401 CHECK_MPI_OK( mp_init(&kphi) ); | |
402 CHECK_MPI_OK( mp_init(&phi) ); | |
403 CHECK_MPI_OK( mp_init(&s) ); | |
404 CHECK_MPI_OK( mp_init(&k) ); | |
405 CHECK_MPI_OK( mp_init(&r) ); | |
406 CHECK_MPI_OK( mp_init(&tmp) ); | |
407 CHECK_MPI_OK( mp_init(&sqrt) ); | |
408 | |
409 /* our algorithm looks for a factor k whose maximum size is dependent | |
410 * on the size of our smallest exponent, which had better be the public | |
411 * exponent (if it's the private, the key is vulnerable to a brute force | |
412 * attack). | |
413 * | |
414 * since our factor search is linear, we need to limit the maximum | |
415 * size of the public key. this should not be a problem normally, since | |
416 * public keys are usually small. | |
417 * | |
418 * if we want to handle larger public key sizes, we should have | |
419 * a version which tries to 'completely' factor k*phi (where completely | |
420 * means 'factor into primes, or composites with which are products of | |
421 * large primes). Once we have all the factors, we can sort them out and | |
422 * try different combinations to form our phi. The risk is if (p-1)/2, | |
423 * (q-1)/2, and k are all large primes. In any case if the public key | |
424 * is small (order of 20 some bits), then a linear search for k is | |
425 * manageable. | |
426 */ | |
427 if (mpl_significant_bits(e) > 23) { | |
428 err=MP_RANGE; | |
429 goto cleanup; | |
430 } | |
431 | |
432 /* calculate k*phi = e*d - 1 */ | |
433 CHECK_MPI_OK( mp_mul(e, d, &kphi) ); | |
434 CHECK_MPI_OK( mp_sub_d(&kphi, 1, &kphi) ); | |
435 | |
436 | |
437 /* kphi is (e*d)-1, which is the same as k*(p-1)(q-1) | |
438 * d < (p-1)(q-1), therefor k must be less than e-1 | |
439 * We can narrow down k even more, though. Since p and q are odd and both | |
440 * have their high bit set, then we know that phi must be on order of | |
441 * keySizeBits. | |
442 */ | |
443 order_k = (unsigned)mpl_significant_bits(&kphi) - keySizeInBits; | |
444 | |
445 /* for (k=kinit; order(k) >= order_k; k--) { */ | |
446 /* k=kinit: k can't be bigger than kphi/2^(keySizeInBits -1) */ | |
447 CHECK_MPI_OK( mp_2expt(&k,keySizeInBits-1) ); | |
448 CHECK_MPI_OK( mp_div(&kphi, &k, &k, NULL)); | |
449 if (mp_cmp(&k,e) >= 0) { | |
450 /* also can't be bigger then e-1 */ | |
451 CHECK_MPI_OK( mp_sub_d(e, 1, &k) ); | |
452 } | |
453 | |
454 /* calculate our temp value */ | |
455 /* This saves recalculating this value when the k guess is wrong, which | |
456 * is reasonably frequent. */ | |
457 /* for the modulus case, tmp = n+1 (used to calculate p+q = tmp - phi) */ | |
458 /* for the prime case, tmp = p-1 (used to calculate q-1= phi/tmp) */ | |
459 if (hasModulus) { | |
460 CHECK_MPI_OK( mp_add_d(n, 1, &tmp) ); | |
461 } else { | |
462 CHECK_MPI_OK( mp_sub_d(p, 1, &tmp) ); | |
463 CHECK_MPI_OK(mp_div(&kphi,&tmp,&kphi,&r)); | |
464 if (mp_cmp_z(&r) != 0) { | |
465 /* p-1 doesn't divide kphi, some parameter wasn't correct */ | |
466 err=MP_RANGE; | |
467 goto cleanup; | |
468 } | |
469 mp_zero(q); | |
470 /* kphi is now k*(q-1) */ | |
471 } | |
472 | |
473 /* rest of the for loop */ | |
474 for (; (err == MP_OKAY) && (mpl_significant_bits(&k) >= order_k); | |
475 err = mp_sub_d(&k, 1, &k)) { | |
476 /* looking for k as a factor of kphi */ | |
477 CHECK_MPI_OK(mp_div(&kphi,&k,&phi,&r)); | |
478 if (mp_cmp_z(&r) != 0) { | |
479 /* not a factor, try the next one */ | |
480 continue; | |
481 } | |
482 /* we have a possible phi, see if it works */ | |
483 if (!hasModulus) { | |
484 if ((unsigned)mpl_significant_bits(&phi) != keySizeInBits/2) { | |
485 /* phi is not the right size */ | |
486 continue; | |
487 } | |
488 /* phi should be divisible by 2, since | |
489 * q is odd and phi=(q-1). */ | |
490 if (mpp_divis_d(&phi,2) == MP_NO) { | |
491 /* phi is not divisible by 4 */ | |
492 continue; | |
493 } | |
494 /* we now have a candidate for the second prime */ | |
495 CHECK_MPI_OK(mp_add_d(&phi, 1, &tmp)); | |
496 | |
497 /* check to make sure it is prime */ | |
498 err = rsa_is_prime(&tmp); | |
499 if (err != MP_OKAY) { | |
500 if (err == MP_NO) { | |
501 /* No, then we still have the wrong phi */ | |
502 err = MP_OKAY; | |
503 continue; | |
504 } | |
505 goto cleanup; | |
506 } | |
507 /* | |
508 * It is possible that we have the wrong phi if | |
509 * k_guess*(q_guess-1) = k*(q-1) (k and q-1 have swapped factors). | |
510 * since our q_quess is prime, however. We have found a valid | |
511 * rsa key because: | |
512 * q is the correct order of magnitude. | |
513 * phi = (p-1)(q-1) where p and q are both primes. | |
514 * e*d mod phi = 1. | |
515 * There is no way to know from the info given if this is the | |
516 * original key. We never want to return the wrong key because if | |
517 * two moduli with the same factor is known, then euclid's gcd | |
518 * algorithm can be used to find that factor. Even though the | |
519 * caller didn't pass the original modulus, it doesn't mean the | |
520 * modulus wasn't known or isn't available somewhere. So to be safe | |
521 * if we can't be sure we have the right q, we don't return any. | |
522 * | |
523 * So to make sure we continue looking for other valid q's. If none | |
524 * are found, then we can safely return this one, otherwise we just | |
525 * fail */ | |
526 if (mp_cmp_z(q) != 0) { | |
527 /* this is the second valid q, don't return either, | |
528 * just fail */ | |
529 err = MP_RANGE; | |
530 break; | |
531 } | |
532 /* we only have one q so far, save it and if no others are found, | |
533 * it's safe to return it */ | |
534 CHECK_MPI_OK(mp_copy(&tmp, q)); | |
535 continue; | |
536 } | |
537 /* test our tentative phi */ | |
538 /* phi should be the correct order */ | |
539 if ((unsigned)mpl_significant_bits(&phi) != keySizeInBits) { | |
540 /* phi is not the right size */ | |
541 continue; | |
542 } | |
543 /* phi should be divisible by 4, since | |
544 * p and q are odd and phi=(p-1)(q-1). */ | |
545 if (mpp_divis_d(&phi,4) == MP_NO) { | |
546 /* phi is not divisible by 4 */ | |
547 continue; | |
548 } | |
549 /* n was given, calculate s/2=(p+q)/2 */ | |
550 CHECK_MPI_OK( mp_sub(&tmp, &phi, &s) ); | |
551 CHECK_MPI_OK( mp_div_2(&s, &s) ); | |
552 | |
553 /* calculate sqrt(s/2*s/2-n) */ | |
554 CHECK_MPI_OK(mp_sqr(&s,&sqrt)); | |
555 CHECK_MPI_OK(mp_sub(&sqrt,n,&r)); /* r as a tmp */ | |
556 CHECK_MPI_OK(mp_sqrt(&r,&sqrt)); | |
557 /* make sure it's a perfect square */ | |
558 /* r is our original value we took the square root of */ | |
559 /* q is the square of our tentative square root. They should be equal*/ | |
560 CHECK_MPI_OK(mp_sqr(&sqrt,q)); /* q as a tmp */ | |
561 if (mp_cmp(&r,q) != 0) { | |
562 /* sigh according to the doc, mp_sqrt could return sqrt-1 */ | |
563 CHECK_MPI_OK(mp_add_d(&sqrt,1,&sqrt)); | |
564 CHECK_MPI_OK(mp_sqr(&sqrt,q)); | |
565 if (mp_cmp(&r,q) != 0) { | |
566 /* s*s-n not a perfect square, this phi isn't valid, find
* another.*/ | |
567 continue; | |
568 } | |
569 } | |
570 | |
571 /* NOTE: In this case we know we have the one and only answer. | |
572 * "Why?", you ask. Because: | |
573 * 1) n is a composite of two large primes (or it wasn't a | |
574 * valid RSA modulus). | |
575 * 2) If we know any number such that x^2-n is a perfect square | |
576 * and x is not (n+1)/2, then we can calculate 2 non-trivial | |
577 * factors of n. | |
578 * 3) Since we know that n has only 2 non-trivial prime factors, | |
579 * we know the two factors we have are the only possible factors. | |
580 */ | |
581 | |
582 /* Now we are home free to calculate p and q */ | |
583 /* p = s/2 + sqrt, q= s/2 - sqrt */ | |
584 CHECK_MPI_OK(mp_add(&s,&sqrt,p)); | |
585 CHECK_MPI_OK(mp_sub(&s,&sqrt,q)); | |
586 break; | |
587 } | |
588 if ((unsigned)mpl_significant_bits(&k) < order_k) { | |
589 if (hasModulus || (mp_cmp_z(q) == 0)) { | |
590 /* If we get here, something was wrong with the parameters we | |
591 * were given */ | |
592 err = MP_RANGE; | |
593 } | |
594 } | |
595 cleanup: | |
596 mp_clear(&kphi); | |
597 mp_clear(&phi); | |
598 mp_clear(&s); | |
599 mp_clear(&k); | |
600 mp_clear(&r); | |
601 mp_clear(&tmp); | |
602 mp_clear(&sqrt); | |
603 return err; | |
604 } | |
605 | |
606 /* | |
607 * take a private key with only a few elements and fill out the missing pieces. | |
608 * | |
609 * All the entries will be overwritten with data allocated out of the arena | |
610 * If no arena is supplied, one will be created. | |
611 * | |
612 * The following fields must be supplied in order for this function | |
613 * to succeed: | |
614 * one of either publicExponent or privateExponent | |
615 * two more of the following 5 parameters. | |
616 * modulus (n) | |
617 * prime1 (p) | |
618 * prime2 (q) | |
619 * publicExponent (e) | |
620 * privateExponent (d) | |
621 * | |
622 * NOTE: if only the publicExponent, privateExponent, and one prime is given, | |
623 * then there may be more than one RSA key that matches that combination. | |
624 * | |
625 * All parameters will be replaced in the key structure with new parameters | |
626 * Allocated out of the arena. There is no attempt to free the old structures. | |
627 * Prime1 will always be greater than prime2 (even if the caller supplies the | |
628 * smaller prime as prime1 or the larger prime as prime2). The parameters are | |
629 * not overwritten on failure. | |
630 * | |
631 * How it works: | |
632 * We can generate all the parameters from: | |
633 * one of the exponents, plus the two primes. (rsa_build_key_from_primes)
* | |
634 * If we are given one of the exponents and both primes, we are done. | |
635 * If we are given one of the exponents, the modulus and one prime, we | |
636 * caclulate the second prime by dividing the modulus by the given | |
637 * prime, giving us and exponent and 2 primes. | |
638 * If we are given 2 exponents and either the modulus or one of the primes | |
639 * we calculate k*phi = d*e-1, where k is an integer less than d which | |
640 * divides d*e-1. We find factor k so we can isolate phi. | |
641 * phi = (p-1)(q-1) | |
642 * If one of the primes are given, we can use phi to find the other prime | |
643 * as follows: q = (phi/(p-1)) + 1. We now have 2 primes and an | |
644 * exponent. (NOTE: if more then one prime meets this condition, the | |
645 * operation will fail. See comments elsewhere in this file about this). | |
646 * If the modulus is given, then we can calculate the sum of the primes | |
647 * as follows: s := (p+q), phi = (p-1)(q-1) = pq -p - q +1, pq = n -> | |
648 * phi = n - s + 1, s = n - phi +1. Now that we have s = p+q and n=pq, | |
649 * we can solve our 2 equations and 2 unknowns as follows: q=s-p -> | |
650 * n=p*(s-p)= sp -p^2 -> p^2-sp+n = 0. Using the quadratic to solve for | |
651 * p, p=1/2*(s+ sqrt(s*s-4*n)) [q=1/2*(s-sqrt(s*s-4*n)]. We again have | |
652 * 2 primes and an exponent. | |
653 * | |
654 */ | |
655 SECStatus | |
656 RSA_PopulatePrivateKey(RSAPrivateKey *key) | |
657 { | |
658 PRArenaPool *arena = NULL; | |
659 PRBool needPublicExponent = PR_TRUE; | |
660 PRBool needPrivateExponent = PR_TRUE; | |
661 PRBool hasModulus = PR_FALSE; | |
662 unsigned int keySizeInBits = 0; | |
663 int prime_count = 0; | |
664 /* standard RSA nominclature */ | |
665 mp_int p, q, e, d, n; | |
666 /* remainder */ | |
667 mp_int r; | |
668 mp_err err = 0; | |
669 SECStatus rv = SECFailure; | |
670 | |
671 MP_DIGITS(&p) = 0; | |
672 MP_DIGITS(&q) = 0; | |
673 MP_DIGITS(&e) = 0; | |
674 MP_DIGITS(&d) = 0; | |
675 MP_DIGITS(&n) = 0; | |
676 MP_DIGITS(&r) = 0; | |
677 CHECK_MPI_OK( mp_init(&p) ); | |
678 CHECK_MPI_OK( mp_init(&q) ); | |
679 CHECK_MPI_OK( mp_init(&e) ); | |
680 CHECK_MPI_OK( mp_init(&d) ); | |
681 CHECK_MPI_OK( mp_init(&n) ); | |
682 CHECK_MPI_OK( mp_init(&r) ); | |
683 | |
684 /* if the key didn't already have an arena, create one. */ | |
685 if (key->arena == NULL) { | |
686 arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE); | |
687 if (!arena) { | |
688 goto cleanup; | |
689 } | |
690 key->arena = arena; | |
691 } | |
692 | |
693 /* load up the known exponents */ | |
694 if (key->publicExponent.data) { | |
695 SECITEM_TO_MPINT(key->publicExponent, &e); | |
696 needPublicExponent = PR_FALSE; | |
697 } | |
698 if (key->privateExponent.data) { | |
699 SECITEM_TO_MPINT(key->privateExponent, &d); | |
700 needPrivateExponent = PR_FALSE; | |
701 } | |
702 if (needPrivateExponent && needPublicExponent) { | |
703 /* Not enough information, we need at least one exponent */ | |
704 err = MP_BADARG; | |
705 goto cleanup; | |
706 } | |
707 | |
708 /* load up the known primes. If only one prime is given, it will be | |
709 * assigned 'p'. Once we have both primes, well make sure p is the larger. | |
710 * The value prime_count tells us howe many we have acquired. | |
711 */ | |
712 if (key->prime1.data) { | |
713 int primeLen = key->prime1.len; | |
714 if (key->prime1.data[0] == 0) { | |
715 primeLen--; | |
716 } | |
717 keySizeInBits = primeLen * 2 * BITS_PER_BYTE; | |
718 SECITEM_TO_MPINT(key->prime1, &p); | |
719 prime_count++; | |
720 } | |
721 if (key->prime2.data) { | |
722 int primeLen = key->prime2.len; | |
723 if (key->prime2.data[0] == 0) { | |
724 primeLen--; | |
725 } | |
726 keySizeInBits = primeLen * 2 * BITS_PER_BYTE; | |
727 SECITEM_TO_MPINT(key->prime2, prime_count ? &q : &p); | |
728 prime_count++; | |
729 } | |
730 /* load up the modulus */ | |
731 if (key->modulus.data) { | |
732 int modLen = key->modulus.len; | |
733 if (key->modulus.data[0] == 0) { | |
734 modLen--; | |
735 } | |
736 keySizeInBits = modLen * BITS_PER_BYTE; | |
737 SECITEM_TO_MPINT(key->modulus, &n); | |
738 hasModulus = PR_TRUE; | |
739 } | |
740 /* if we have the modulus and one prime, calculate the second. */ | |
741 if ((prime_count == 1) && (hasModulus)) { | |
742 mp_div(&n,&p,&q,&r); | |
743 if (mp_cmp_z(&r) != 0) { | |
744 /* p is not a factor or n, fail */ | |
745 err = MP_BADARG; | |
746 goto cleanup; | |
747 } | |
748 prime_count++; | |
749 } | |
750 | |
751 /* If we didn't have enough primes try to calculate the primes from | |
752 * the exponents */ | |
753 if (prime_count < 2) { | |
754 /* if we don't have at least 2 primes at this point, then we need both | |
755 * exponents and one prime or a modulus*/ | |
756 if (!needPublicExponent && !needPrivateExponent && | |
757 ((prime_count > 0) || hasModulus)) { | |
758 CHECK_MPI_OK(rsa_get_primes_from_exponents(&e,&d,&p,&q, | |
759 &n,hasModulus,keySizeInBits)); | |
760 } else { | |
761 /* not enough given parameters to get both primes */ | |
762 err = MP_BADARG; | |
763 goto cleanup; | |
764 } | |
765 } | |
766 | |
767 /* force p to the the larger prime */ | |
768 if (mp_cmp(&p, &q) < 0) | |
769 mp_exch(&p, &q); | |
770 | |
771 /* we now have our 2 primes and at least one exponent, we can fill | |
772 * in the key */ | |
773 rv = rsa_build_from_primes(&p, &q, | |
774 &e, needPublicExponent, | |
775 &d, needPrivateExponent, | |
776 key, keySizeInBits); | |
777 cleanup: | |
778 mp_clear(&p); | |
779 mp_clear(&q); | |
780 mp_clear(&e); | |
781 mp_clear(&d); | |
782 mp_clear(&n); | |
783 mp_clear(&r); | |
784 if (err) { | |
785 MP_TO_SEC_ERROR(err); | |
786 rv = SECFailure; | |
787 } | |
788 if (rv && arena) { | |
789 PORT_FreeArena(arena, PR_TRUE); | |
790 key->arena = NULL; | |
791 } | |
792 return rv; | |
793 } | |
794 | |
795 static unsigned int | |
796 rsa_modulusLen(SECItem *modulus) | |
797 { | |
798 unsigned char byteZero = modulus->data[0]; | |
799 unsigned int modLen = modulus->len - !byteZero; | |
800 return modLen; | |
801 } | |
802 | |
803 /* | |
804 ** Perform a raw public-key operation | |
805 ** Length of input and output buffers are equal to key's modulus len. | |
806 */ | |
807 SECStatus | |
808 RSA_PublicKeyOp(RSAPublicKey *key, | |
809 unsigned char *output, | |
810 const unsigned char *input) | |
811 { | |
812 unsigned int modLen, expLen, offset; | |
813 mp_int n, e, m, c; | |
814 mp_err err = MP_OKAY; | |
815 SECStatus rv = SECSuccess; | |
816 if (!key || !output || !input) { | |
817 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
818 return SECFailure; | |
819 } | |
820 MP_DIGITS(&n) = 0; | |
821 MP_DIGITS(&e) = 0; | |
822 MP_DIGITS(&m) = 0; | |
823 MP_DIGITS(&c) = 0; | |
824 CHECK_MPI_OK( mp_init(&n) ); | |
825 CHECK_MPI_OK( mp_init(&e) ); | |
826 CHECK_MPI_OK( mp_init(&m) ); | |
827 CHECK_MPI_OK( mp_init(&c) ); | |
828 modLen = rsa_modulusLen(&key->modulus); | |
829 expLen = rsa_modulusLen(&key->publicExponent); | |
830 /* 1. Obtain public key (n, e) */ | |
831 if (BAD_RSA_KEY_SIZE(modLen, expLen)) { | |
832 PORT_SetError(SEC_ERROR_INVALID_KEY); | |
833 rv = SECFailure; | |
834 goto cleanup; | |
835 } | |
836 SECITEM_TO_MPINT(key->modulus, &n); | |
837 SECITEM_TO_MPINT(key->publicExponent, &e); | |
838 if (e.used > n.used) { | |
839 /* exponent should not be greater than modulus */ | |
840 PORT_SetError(SEC_ERROR_INVALID_KEY); | |
841 rv = SECFailure; | |
842 goto cleanup; | |
843 } | |
844 /* 2. check input out of range (needs to be in range [0..n-1]) */ | |
845 offset = (key->modulus.data[0] == 0) ? 1 : 0; /* may be leading 0 */ | |
846 if (memcmp(input, key->modulus.data + offset, modLen) >= 0) { | |
847 PORT_SetError(SEC_ERROR_INPUT_LEN); | |
848 rv = SECFailure; | |
849 goto cleanup; | |
850 } | |
851 /* 2 bis. Represent message as integer in range [0..n-1] */ | |
852 CHECK_MPI_OK( mp_read_unsigned_octets(&m, input, modLen) ); | |
853 /* 3. Compute c = m**e mod n */ | |
854 #ifdef USE_MPI_EXPT_D | |
855 /* XXX see which is faster */ | |
856 if (MP_USED(&e) == 1) { | |
857 CHECK_MPI_OK( mp_exptmod_d(&m, MP_DIGIT(&e, 0), &n, &c) ); | |
858 } else | |
859 #endif | |
860 CHECK_MPI_OK( mp_exptmod(&m, &e, &n, &c) ); | |
861 /* 4. result c is ciphertext */ | |
862 err = mp_to_fixlen_octets(&c, output, modLen); | |
863 if (err >= 0) err = MP_OKAY; | |
864 cleanup: | |
865 mp_clear(&n); | |
866 mp_clear(&e); | |
867 mp_clear(&m); | |
868 mp_clear(&c); | |
869 if (err) { | |
870 MP_TO_SEC_ERROR(err); | |
871 rv = SECFailure; | |
872 } | |
873 return rv; | |
874 } | |
875 | |
876 /* | |
877 ** RSA Private key operation (no CRT). | |
878 */ | |
879 static SECStatus | |
880 rsa_PrivateKeyOpNoCRT(RSAPrivateKey *key, mp_int *m, mp_int *c, mp_int *n, | |
881 unsigned int modLen) | |
882 { | |
883 mp_int d; | |
884 mp_err err = MP_OKAY; | |
885 SECStatus rv = SECSuccess; | |
886 MP_DIGITS(&d) = 0; | |
887 CHECK_MPI_OK( mp_init(&d) ); | |
888 SECITEM_TO_MPINT(key->privateExponent, &d); | |
889 /* 1. m = c**d mod n */ | |
890 CHECK_MPI_OK( mp_exptmod(c, &d, n, m) ); | |
891 cleanup: | |
892 mp_clear(&d); | |
893 if (err) { | |
894 MP_TO_SEC_ERROR(err); | |
895 rv = SECFailure; | |
896 } | |
897 return rv; | |
898 } | |
899 | |
900 /* | |
901 ** RSA Private key operation using CRT. | |
902 */ | |
903 static SECStatus | |
904 rsa_PrivateKeyOpCRTNoCheck(RSAPrivateKey *key, mp_int *m, mp_int *c) | |
905 { | |
906 mp_int p, q, d_p, d_q, qInv; | |
907 mp_int m1, m2, h, ctmp; | |
908 mp_err err = MP_OKAY; | |
909 SECStatus rv = SECSuccess; | |
910 MP_DIGITS(&p) = 0; | |
911 MP_DIGITS(&q) = 0; | |
912 MP_DIGITS(&d_p) = 0; | |
913 MP_DIGITS(&d_q) = 0; | |
914 MP_DIGITS(&qInv) = 0; | |
915 MP_DIGITS(&m1) = 0; | |
916 MP_DIGITS(&m2) = 0; | |
917 MP_DIGITS(&h) = 0; | |
918 MP_DIGITS(&ctmp) = 0; | |
919 CHECK_MPI_OK( mp_init(&p) ); | |
920 CHECK_MPI_OK( mp_init(&q) ); | |
921 CHECK_MPI_OK( mp_init(&d_p) ); | |
922 CHECK_MPI_OK( mp_init(&d_q) ); | |
923 CHECK_MPI_OK( mp_init(&qInv) ); | |
924 CHECK_MPI_OK( mp_init(&m1) ); | |
925 CHECK_MPI_OK( mp_init(&m2) ); | |
926 CHECK_MPI_OK( mp_init(&h) ); | |
927 CHECK_MPI_OK( mp_init(&ctmp) ); | |
928 /* copy private key parameters into mp integers */ | |
929 SECITEM_TO_MPINT(key->prime1, &p); /* p */ | |
930 SECITEM_TO_MPINT(key->prime2, &q); /* q */ | |
931 SECITEM_TO_MPINT(key->exponent1, &d_p); /* d_p = d mod (p-1) */ | |
932 SECITEM_TO_MPINT(key->exponent2, &d_q); /* d_q = d mod (q-1) */ | |
933 SECITEM_TO_MPINT(key->coefficient, &qInv); /* qInv = q**-1 mod p */ | |
934 /* 1. m1 = c**d_p mod p */ | |
935 CHECK_MPI_OK( mp_mod(c, &p, &ctmp) ); | |
936 CHECK_MPI_OK( mp_exptmod(&ctmp, &d_p, &p, &m1) ); | |
937 /* 2. m2 = c**d_q mod q */ | |
938 CHECK_MPI_OK( mp_mod(c, &q, &ctmp) ); | |
939 CHECK_MPI_OK( mp_exptmod(&ctmp, &d_q, &q, &m2) ); | |
940 /* 3. h = (m1 - m2) * qInv mod p */ | |
941 CHECK_MPI_OK( mp_submod(&m1, &m2, &p, &h) ); | |
942 CHECK_MPI_OK( mp_mulmod(&h, &qInv, &p, &h) ); | |
943 /* 4. m = m2 + h * q */ | |
944 CHECK_MPI_OK( mp_mul(&h, &q, m) ); | |
945 CHECK_MPI_OK( mp_add(m, &m2, m) ); | |
946 cleanup: | |
947 mp_clear(&p); | |
948 mp_clear(&q); | |
949 mp_clear(&d_p); | |
950 mp_clear(&d_q); | |
951 mp_clear(&qInv); | |
952 mp_clear(&m1); | |
953 mp_clear(&m2); | |
954 mp_clear(&h); | |
955 mp_clear(&ctmp); | |
956 if (err) { | |
957 MP_TO_SEC_ERROR(err); | |
958 rv = SECFailure; | |
959 } | |
960 return rv; | |
961 } | |
962 | |
963 /* | |
964 ** An attack against RSA CRT was described by Boneh, DeMillo, and Lipton in: | |
965 ** "On the Importance of Eliminating Errors in Cryptographic Computations", | |
966 ** http://theory.stanford.edu/~dabo/papers/faults.ps.gz | |
967 ** | |
968 ** As a defense against the attack, carry out the private key operation, | |
969 ** followed up with a public key operation to invert the result. | |
970 ** Verify that result against the input. | |
971 */ | |
972 static SECStatus | |
973 rsa_PrivateKeyOpCRTCheckedPubKey(RSAPrivateKey *key, mp_int *m, mp_int *c) | |
974 { | |
975 mp_int n, e, v; | |
976 mp_err err = MP_OKAY; | |
977 SECStatus rv = SECSuccess; | |
978 MP_DIGITS(&n) = 0; | |
979 MP_DIGITS(&e) = 0; | |
980 MP_DIGITS(&v) = 0; | |
981 CHECK_MPI_OK( mp_init(&n) ); | |
982 CHECK_MPI_OK( mp_init(&e) ); | |
983 CHECK_MPI_OK( mp_init(&v) ); | |
984 CHECK_SEC_OK( rsa_PrivateKeyOpCRTNoCheck(key, m, c) ); | |
985 SECITEM_TO_MPINT(key->modulus, &n); | |
986 SECITEM_TO_MPINT(key->publicExponent, &e); | |
987 /* Perform a public key operation v = m ** e mod n */ | |
988 CHECK_MPI_OK( mp_exptmod(m, &e, &n, &v) ); | |
989 if (mp_cmp(&v, c) != 0) { | |
990 rv = SECFailure; | |
991 } | |
992 cleanup: | |
993 mp_clear(&n); | |
994 mp_clear(&e); | |
995 mp_clear(&v); | |
996 if (err) { | |
997 MP_TO_SEC_ERROR(err); | |
998 rv = SECFailure; | |
999 } | |
1000 return rv; | |
1001 } | |
1002 | |
1003 static PRCallOnceType coBPInit = { 0, 0, 0 }; | |
1004 static PRStatus | |
1005 init_blinding_params_list(void) | |
1006 { | |
1007 blindingParamsList.lock = PZ_NewLock(nssILockOther); | |
1008 if (!blindingParamsList.lock) { | |
1009 PORT_SetError(SEC_ERROR_NO_MEMORY); | |
1010 return PR_FAILURE; | |
1011 } | |
1012 blindingParamsList.cVar = PR_NewCondVar( blindingParamsList.lock ); | |
1013 if (!blindingParamsList.cVar) { | |
1014 PORT_SetError(SEC_ERROR_NO_MEMORY); | |
1015 return PR_FAILURE; | |
1016 } | |
1017 blindingParamsList.waitCount = 0; | |
1018 PR_INIT_CLIST(&blindingParamsList.head); | |
1019 return PR_SUCCESS; | |
1020 } | |
1021 | |
1022 static SECStatus | |
1023 generate_blinding_params(RSAPrivateKey *key, mp_int* f, mp_int* g, mp_int *n, | |
1024 unsigned int modLen) | |
1025 { | |
1026 SECStatus rv = SECSuccess; | |
1027 mp_int e, k; | |
1028 mp_err err = MP_OKAY; | |
1029 unsigned char *kb = NULL; | |
1030 | |
1031 MP_DIGITS(&e) = 0; | |
1032 MP_DIGITS(&k) = 0; | |
1033 CHECK_MPI_OK( mp_init(&e) ); | |
1034 CHECK_MPI_OK( mp_init(&k) ); | |
1035 SECITEM_TO_MPINT(key->publicExponent, &e); | |
1036 /* generate random k < n */ | |
1037 kb = PORT_Alloc(modLen); | |
1038 if (!kb) { | |
1039 PORT_SetError(SEC_ERROR_NO_MEMORY); | |
1040 goto cleanup; | |
1041 } | |
1042 CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(kb, modLen) ); | |
1043 CHECK_MPI_OK( mp_read_unsigned_octets(&k, kb, modLen) ); | |
1044 /* k < n */ | |
1045 CHECK_MPI_OK( mp_mod(&k, n, &k) ); | |
1046 /* f = k**e mod n */ | |
1047 CHECK_MPI_OK( mp_exptmod(&k, &e, n, f) ); | |
1048 /* g = k**-1 mod n */ | |
1049 CHECK_MPI_OK( mp_invmod(&k, n, g) ); | |
1050 cleanup: | |
1051 if (kb) | |
1052 PORT_ZFree(kb, modLen); | |
1053 mp_clear(&k); | |
1054 mp_clear(&e); | |
1055 if (err) { | |
1056 MP_TO_SEC_ERROR(err); | |
1057 rv = SECFailure; | |
1058 } | |
1059 return rv; | |
1060 } | |
1061 | |
1062 static SECStatus | |
1063 init_blinding_params(RSABlindingParams *rsabp, RSAPrivateKey *key, | |
1064 mp_int *n, unsigned int modLen) | |
1065 { | |
1066 blindingParams * bp = rsabp->array; | |
1067 int i = 0; | |
1068 | |
1069 /* Initialize the list pointer for the element */ | |
1070 PR_INIT_CLIST(&rsabp->link); | |
1071 for (i = 0; i < RSA_BLINDING_PARAMS_MAX_CACHE_SIZE; ++i, ++bp) { | |
1072 bp->next = bp + 1; | |
1073 MP_DIGITS(&bp->f) = 0; | |
1074 MP_DIGITS(&bp->g) = 0; | |
1075 bp->counter = 0; | |
1076 } | |
1077 /* The last bp->next value was initialized with out | |
1078 * of rsabp->array pointer and must be set to NULL | |
1079 */ | |
1080 rsabp->array[RSA_BLINDING_PARAMS_MAX_CACHE_SIZE - 1].next = NULL; | |
1081 | |
1082 bp = rsabp->array; | |
1083 rsabp->bp = NULL; | |
1084 rsabp->free = bp; | |
1085 | |
1086 /* List elements are keyed using the modulus */ | |
1087 SECITEM_CopyItem(NULL, &rsabp->modulus, &key->modulus); | |
1088 | |
1089 return SECSuccess; | |
1090 } | |
1091 | |
1092 static SECStatus | |
1093 get_blinding_params(RSAPrivateKey *key, mp_int *n, unsigned int modLen, | |
1094 mp_int *f, mp_int *g) | |
1095 { | |
1096 RSABlindingParams *rsabp = NULL; | |
1097 blindingParams *bpUnlinked = NULL; | |
1098 blindingParams *bp, *prevbp = NULL; | |
1099 PRCList *el; | |
1100 SECStatus rv = SECSuccess; | |
1101 mp_err err = MP_OKAY; | |
1102 int cmp = -1; | |
1103 PRBool holdingLock = PR_FALSE; | |
1104 | |
1105 do { | |
1106 if (blindingParamsList.lock == NULL) { | |
1107 PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); | |
1108 return SECFailure; | |
1109 } | |
1110 /* Acquire the list lock */ | |
1111 PZ_Lock(blindingParamsList.lock); | |
1112 holdingLock = PR_TRUE; | |
1113 | |
1114 /* Walk the list looking for the private key */ | |
1115 for (el = PR_NEXT_LINK(&blindingParamsList.head); | |
1116 el != &blindingParamsList.head; | |
1117 el = PR_NEXT_LINK(el)) { | |
1118 rsabp = (RSABlindingParams *)el; | |
1119 cmp = SECITEM_CompareItem(&rsabp->modulus, &key->modulus); | |
1120 if (cmp >= 0) { | |
1121 /* The key is found or not in the list. */ | |
1122 break; | |
1123 } | |
1124 } | |
1125 | |
1126 if (cmp) { | |
1127 /* At this point, the key is not in the list. el should point to | |
1128 ** the list element before which this key should be inserted. | |
1129 */ | |
1130 rsabp = PORT_ZNew(RSABlindingParams); | |
1131 if (!rsabp) { | |
1132 PORT_SetError(SEC_ERROR_NO_MEMORY); | |
1133 goto cleanup; | |
1134 } | |
1135 | |
1136 rv = init_blinding_params(rsabp, key, n, modLen); | |
1137 if (rv != SECSuccess) { | |
1138 PORT_ZFree(rsabp, sizeof(RSABlindingParams)); | |
1139 goto cleanup; | |
1140 } | |
1141 | |
1142 /* Insert the new element into the list | |
1143 ** If inserting in the middle of the list, el points to the link | |
1144 ** to insert before. Otherwise, the link needs to be appended to | |
1145 ** the end of the list, which is the same as inserting before the | |
1146 ** head (since el would have looped back to the head). | |
1147 */ | |
1148 PR_INSERT_BEFORE(&rsabp->link, el); | |
1149 } | |
1150 | |
1151 /* We've found (or created) the RSAblindingParams struct for this key. | |
1152 * Now, search its list of ready blinding params for a usable one. | |
1153 */ | |
1154 while (0 != (bp = rsabp->bp)) { | |
1155 if (--(bp->counter) > 0) { | |
1156 /* Found a match and there are still remaining uses left */ | |
1157 /* Return the parameters */ | |
1158 CHECK_MPI_OK( mp_copy(&bp->f, f) ); | |
1159 CHECK_MPI_OK( mp_copy(&bp->g, g) ); | |
1160 | |
1161 PZ_Unlock(blindingParamsList.lock); | |
1162 return SECSuccess; | |
1163 } | |
1164 /* exhausted this one, give its values to caller, and | |
1165 * then retire it. | |
1166 */ | |
1167 mp_exch(&bp->f, f); | |
1168 mp_exch(&bp->g, g); | |
1169 mp_clear( &bp->f ); | |
1170 mp_clear( &bp->g ); | |
1171 bp->counter = 0; | |
1172 /* Move to free list */ | |
1173 rsabp->bp = bp->next; | |
1174 bp->next = rsabp->free; | |
1175 rsabp->free = bp; | |
1176 /* In case there're threads waiting for new blinding | |
1177 * value - notify 1 thread the value is ready | |
1178 */ | |
1179 if (blindingParamsList.waitCount > 0) { | |
1180 PR_NotifyCondVar( blindingParamsList.cVar ); | |
1181 blindingParamsList.waitCount--; | |
1182 } | |
1183 PZ_Unlock(blindingParamsList.lock); | |
1184 return SECSuccess; | |
1185 } | |
1186 /* We did not find a usable set of blinding params. Can we make one? */ | |
1187 /* Find a free bp struct. */ | |
1188 prevbp = NULL; | |
1189 if ((bp = rsabp->free) != NULL) { | |
1190 /* unlink this bp */ | |
1191 rsabp->free = bp->next; | |
1192 bp->next = NULL; | |
1193 bpUnlinked = bp; /* In case we fail */ | |
1194 | |
1195 PZ_Unlock(blindingParamsList.lock); | |
1196 holdingLock = PR_FALSE; | |
1197 /* generate blinding parameter values for the current thread */ | |
1198 CHECK_SEC_OK( generate_blinding_params(key, f, g, n, modLen ) ); | |
1199 | |
1200 /* put the blinding parameter values into cache */ | |
1201 CHECK_MPI_OK( mp_init( &bp->f) ); | |
1202 CHECK_MPI_OK( mp_init( &bp->g) ); | |
1203 CHECK_MPI_OK( mp_copy( f, &bp->f) ); | |
1204 CHECK_MPI_OK( mp_copy( g, &bp->g) ); | |
1205 | |
1206 /* Put this at head of queue of usable params. */ | |
1207 PZ_Lock(blindingParamsList.lock); | |
1208 holdingLock = PR_TRUE; | |
1209 /* initialize RSABlindingParamsStr */ | |
1210 bp->counter = RSA_BLINDING_PARAMS_MAX_REUSE; | |
1211 bp->next = rsabp->bp; | |
1212 rsabp->bp = bp; | |
1213 bpUnlinked = NULL; | |
1214 /* In case there're threads waiting for new blinding value | |
1215 * just notify them the value is ready | |
1216 */ | |
1217 if (blindingParamsList.waitCount > 0) { | |
1218 PR_NotifyAllCondVar( blindingParamsList.cVar ); | |
1219 blindingParamsList.waitCount = 0; | |
1220 } | |
1221 PZ_Unlock(blindingParamsList.lock); | |
1222 return SECSuccess; | |
1223 } | |
1224 /* Here, there are no usable blinding parameters available, | |
1225 * and no free bp blocks, presumably because they're all | |
1226 * actively having parameters generated for them. | |
1227 * So, we need to wait here and not eat up CPU until some | |
1228 * change happens. | |
1229 */ | |
1230 blindingParamsList.waitCount++; | |
1231 PR_WaitCondVar( blindingParamsList.cVar, PR_INTERVAL_NO_TIMEOUT ); | |
1232 PZ_Unlock(blindingParamsList.lock); | |
1233 holdingLock = PR_FALSE; | |
1234 } while (1); | |
1235 | |
1236 cleanup: | |
1237 /* It is possible to reach this after the lock is already released. */ | |
1238 if (bpUnlinked) { | |
1239 if (!holdingLock) { | |
1240 PZ_Lock(blindingParamsList.lock); | |
1241 holdingLock = PR_TRUE; | |
1242 } | |
1243 bp = bpUnlinked; | |
1244 mp_clear( &bp->f ); | |
1245 mp_clear( &bp->g ); | |
1246 bp->counter = 0; | |
1247 /* Must put the unlinked bp back on the free list */ | |
1248 bp->next = rsabp->free; | |
1249 rsabp->free = bp; | |
1250 } | |
1251 if (holdingLock) { | |
1252 PZ_Unlock(blindingParamsList.lock); | |
1253 holdingLock = PR_FALSE; | |
1254 } | |
1255 if (err) { | |
1256 MP_TO_SEC_ERROR(err); | |
1257 } | |
1258 return SECFailure; | |
1259 } | |
1260 | |
1261 /* | |
1262 ** Perform a raw private-key operation | |
1263 ** Length of input and output buffers are equal to key's modulus len. | |
1264 */ | |
1265 static SECStatus | |
1266 rsa_PrivateKeyOp(RSAPrivateKey *key, | |
1267 unsigned char *output, | |
1268 const unsigned char *input, | |
1269 PRBool check) | |
1270 { | |
1271 unsigned int modLen; | |
1272 unsigned int offset; | |
1273 SECStatus rv = SECSuccess; | |
1274 mp_err err; | |
1275 mp_int n, c, m; | |
1276 mp_int f, g; | |
1277 if (!key || !output || !input) { | |
1278 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
1279 return SECFailure; | |
1280 } | |
1281 /* check input out of range (needs to be in range [0..n-1]) */ | |
1282 modLen = rsa_modulusLen(&key->modulus); | |
1283 offset = (key->modulus.data[0] == 0) ? 1 : 0; /* may be leading 0 */ | |
1284 if (memcmp(input, key->modulus.data + offset, modLen) >= 0) { | |
1285 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
1286 return SECFailure; | |
1287 } | |
1288 MP_DIGITS(&n) = 0; | |
1289 MP_DIGITS(&c) = 0; | |
1290 MP_DIGITS(&m) = 0; | |
1291 MP_DIGITS(&f) = 0; | |
1292 MP_DIGITS(&g) = 0; | |
1293 CHECK_MPI_OK( mp_init(&n) ); | |
1294 CHECK_MPI_OK( mp_init(&c) ); | |
1295 CHECK_MPI_OK( mp_init(&m) ); | |
1296 CHECK_MPI_OK( mp_init(&f) ); | |
1297 CHECK_MPI_OK( mp_init(&g) ); | |
1298 SECITEM_TO_MPINT(key->modulus, &n); | |
1299 OCTETS_TO_MPINT(input, &c, modLen); | |
1300 /* If blinding, compute pre-image of ciphertext by multiplying by | |
1301 ** blinding factor | |
1302 */ | |
1303 if (nssRSAUseBlinding) { | |
1304 CHECK_SEC_OK( get_blinding_params(key, &n, modLen, &f, &g) ); | |
1305 /* c' = c*f mod n */ | |
1306 CHECK_MPI_OK( mp_mulmod(&c, &f, &n, &c) ); | |
1307 } | |
1308 /* Do the private key operation m = c**d mod n */ | |
1309 if ( key->prime1.len == 0 || | |
1310 key->prime2.len == 0 || | |
1311 key->exponent1.len == 0 || | |
1312 key->exponent2.len == 0 || | |
1313 key->coefficient.len == 0) { | |
1314 CHECK_SEC_OK( rsa_PrivateKeyOpNoCRT(key, &m, &c, &n, modLen) ); | |
1315 } else if (check) { | |
1316 CHECK_SEC_OK( rsa_PrivateKeyOpCRTCheckedPubKey(key, &m, &c) ); | |
1317 } else { | |
1318 CHECK_SEC_OK( rsa_PrivateKeyOpCRTNoCheck(key, &m, &c) ); | |
1319 } | |
1320 /* If blinding, compute post-image of plaintext by multiplying by | |
1321 ** blinding factor | |
1322 */ | |
1323 if (nssRSAUseBlinding) { | |
1324 /* m = m'*g mod n */ | |
1325 CHECK_MPI_OK( mp_mulmod(&m, &g, &n, &m) ); | |
1326 } | |
1327 err = mp_to_fixlen_octets(&m, output, modLen); | |
1328 if (err >= 0) err = MP_OKAY; | |
1329 cleanup: | |
1330 mp_clear(&n); | |
1331 mp_clear(&c); | |
1332 mp_clear(&m); | |
1333 mp_clear(&f); | |
1334 mp_clear(&g); | |
1335 if (err) { | |
1336 MP_TO_SEC_ERROR(err); | |
1337 rv = SECFailure; | |
1338 } | |
1339 return rv; | |
1340 } | |
1341 | |
1342 SECStatus | |
1343 RSA_PrivateKeyOp(RSAPrivateKey *key, | |
1344 unsigned char *output, | |
1345 const unsigned char *input) | |
1346 { | |
1347 return rsa_PrivateKeyOp(key, output, input, PR_FALSE); | |
1348 } | |
1349 | |
1350 SECStatus | |
1351 RSA_PrivateKeyOpDoubleChecked(RSAPrivateKey *key, | |
1352 unsigned char *output, | |
1353 const unsigned char *input) | |
1354 { | |
1355 return rsa_PrivateKeyOp(key, output, input, PR_TRUE); | |
1356 } | |
1357 | |
1358 static SECStatus | |
1359 swap_in_key_value(PRArenaPool *arena, mp_int *mpval, SECItem *buffer) | |
1360 { | |
1361 int len; | |
1362 mp_err err = MP_OKAY; | |
1363 memset(buffer->data, 0, buffer->len); | |
1364 len = mp_unsigned_octet_size(mpval); | |
1365 if (len <= 0) return SECFailure; | |
1366 if ((unsigned int)len <= buffer->len) { | |
1367 /* The new value is no longer than the old buffer, so use it */ | |
1368 err = mp_to_unsigned_octets(mpval, buffer->data, len); | |
1369 if (err >= 0) err = MP_OKAY; | |
1370 buffer->len = len; | |
1371 } else if (arena) { | |
1372 /* The new value is longer, but working within an arena */ | |
1373 (void)SECITEM_AllocItem(arena, buffer, len); | |
1374 err = mp_to_unsigned_octets(mpval, buffer->data, len); | |
1375 if (err >= 0) err = MP_OKAY; | |
1376 } else { | |
1377 /* The new value is longer, no arena, can't handle this key */ | |
1378 return SECFailure; | |
1379 } | |
1380 return (err == MP_OKAY) ? SECSuccess : SECFailure; | |
1381 } | |
1382 | |
1383 SECStatus | |
1384 RSA_PrivateKeyCheck(RSAPrivateKey *key) | |
1385 { | |
1386 mp_int p, q, n, psub1, qsub1, e, d, d_p, d_q, qInv, res; | |
1387 mp_err err = MP_OKAY; | |
1388 SECStatus rv = SECSuccess; | |
1389 MP_DIGITS(&p) = 0; | |
1390 MP_DIGITS(&q) = 0; | |
1391 MP_DIGITS(&n) = 0; | |
1392 MP_DIGITS(&psub1)= 0; | |
1393 MP_DIGITS(&qsub1)= 0; | |
1394 MP_DIGITS(&e) = 0; | |
1395 MP_DIGITS(&d) = 0; | |
1396 MP_DIGITS(&d_p) = 0; | |
1397 MP_DIGITS(&d_q) = 0; | |
1398 MP_DIGITS(&qInv) = 0; | |
1399 MP_DIGITS(&res) = 0; | |
1400 CHECK_MPI_OK( mp_init(&p) ); | |
1401 CHECK_MPI_OK( mp_init(&q) ); | |
1402 CHECK_MPI_OK( mp_init(&n) ); | |
1403 CHECK_MPI_OK( mp_init(&psub1)); | |
1404 CHECK_MPI_OK( mp_init(&qsub1)); | |
1405 CHECK_MPI_OK( mp_init(&e) ); | |
1406 CHECK_MPI_OK( mp_init(&d) ); | |
1407 CHECK_MPI_OK( mp_init(&d_p) ); | |
1408 CHECK_MPI_OK( mp_init(&d_q) ); | |
1409 CHECK_MPI_OK( mp_init(&qInv) ); | |
1410 CHECK_MPI_OK( mp_init(&res) ); | |
1411 SECITEM_TO_MPINT(key->modulus, &n); | |
1412 SECITEM_TO_MPINT(key->prime1, &p); | |
1413 SECITEM_TO_MPINT(key->prime2, &q); | |
1414 SECITEM_TO_MPINT(key->publicExponent, &e); | |
1415 SECITEM_TO_MPINT(key->privateExponent, &d); | |
1416 SECITEM_TO_MPINT(key->exponent1, &d_p); | |
1417 SECITEM_TO_MPINT(key->exponent2, &d_q); | |
1418 SECITEM_TO_MPINT(key->coefficient, &qInv); | |
1419 /* p > q */ | |
1420 if (mp_cmp(&p, &q) <= 0) { | |
1421 /* mind the p's and q's (and d_p's and d_q's) */ | |
1422 SECItem tmp; | |
1423 mp_exch(&p, &q); | |
1424 mp_exch(&d_p,&d_q); | |
1425 tmp = key->prime1; | |
1426 key->prime1 = key->prime2; | |
1427 key->prime2 = tmp; | |
1428 tmp = key->exponent1; | |
1429 key->exponent1 = key->exponent2; | |
1430 key->exponent2 = tmp; | |
1431 } | |
1432 #define VERIFY_MPI_EQUAL(m1, m2) \ | |
1433 if (mp_cmp(m1, m2) != 0) { \ | |
1434 rv = SECFailure; \ | |
1435 goto cleanup; \ | |
1436 } | |
1437 #define VERIFY_MPI_EQUAL_1(m) \ | |
1438 if (mp_cmp_d(m, 1) != 0) { \ | |
1439 rv = SECFailure; \ | |
1440 goto cleanup; \ | |
1441 } | |
1442 /* | |
1443 * The following errors cannot be recovered from. | |
1444 */ | |
1445 /* n == p * q */ | |
1446 CHECK_MPI_OK( mp_mul(&p, &q, &res) ); | |
1447 VERIFY_MPI_EQUAL(&res, &n); | |
1448 /* gcd(e, p-1) == 1 */ | |
1449 CHECK_MPI_OK( mp_sub_d(&p, 1, &psub1) ); | |
1450 CHECK_MPI_OK( mp_gcd(&e, &psub1, &res) ); | |
1451 VERIFY_MPI_EQUAL_1(&res); | |
1452 /* gcd(e, q-1) == 1 */ | |
1453 CHECK_MPI_OK( mp_sub_d(&q, 1, &qsub1) ); | |
1454 CHECK_MPI_OK( mp_gcd(&e, &qsub1, &res) ); | |
1455 VERIFY_MPI_EQUAL_1(&res); | |
1456 /* d*e == 1 mod p-1 */ | |
1457 CHECK_MPI_OK( mp_mulmod(&d, &e, &psub1, &res) ); | |
1458 VERIFY_MPI_EQUAL_1(&res); | |
1459 /* d*e == 1 mod q-1 */ | |
1460 CHECK_MPI_OK( mp_mulmod(&d, &e, &qsub1, &res) ); | |
1461 VERIFY_MPI_EQUAL_1(&res); | |
1462 /* | |
1463 * The following errors can be recovered from. | |
1464 */ | |
1465 /* d_p == d mod p-1 */ | |
1466 CHECK_MPI_OK( mp_mod(&d, &psub1, &res) ); | |
1467 if (mp_cmp(&d_p, &res) != 0) { | |
1468 /* swap in the correct value */ | |
1469 CHECK_SEC_OK( swap_in_key_value(key->arena, &res, &key->exponent1) ); | |
1470 } | |
1471 /* d_q == d mod q-1 */ | |
1472 CHECK_MPI_OK( mp_mod(&d, &qsub1, &res) ); | |
1473 if (mp_cmp(&d_q, &res) != 0) { | |
1474 /* swap in the correct value */ | |
1475 CHECK_SEC_OK( swap_in_key_value(key->arena, &res, &key->exponent2) ); | |
1476 } | |
1477 /* q * q**-1 == 1 mod p */ | |
1478 CHECK_MPI_OK( mp_mulmod(&q, &qInv, &p, &res) ); | |
1479 if (mp_cmp_d(&res, 1) != 0) { | |
1480 /* compute the correct value */ | |
1481 CHECK_MPI_OK( mp_invmod(&q, &p, &qInv) ); | |
1482 CHECK_SEC_OK( swap_in_key_value(key->arena, &qInv, &key->coefficient) ); | |
1483 } | |
1484 cleanup: | |
1485 mp_clear(&n); | |
1486 mp_clear(&p); | |
1487 mp_clear(&q); | |
1488 mp_clear(&psub1); | |
1489 mp_clear(&qsub1); | |
1490 mp_clear(&e); | |
1491 mp_clear(&d); | |
1492 mp_clear(&d_p); | |
1493 mp_clear(&d_q); | |
1494 mp_clear(&qInv); | |
1495 mp_clear(&res); | |
1496 if (err) { | |
1497 MP_TO_SEC_ERROR(err); | |
1498 rv = SECFailure; | |
1499 } | |
1500 return rv; | |
1501 } | |
1502 | |
1503 static SECStatus RSA_Init(void) | |
1504 { | |
1505 if (PR_CallOnce(&coBPInit, init_blinding_params_list) != PR_SUCCESS) { | |
1506 PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); | |
1507 return SECFailure; | |
1508 } | |
1509 return SECSuccess; | |
1510 } | |
1511 | |
1512 SECStatus BL_Init(void) | |
1513 { | |
1514 return RSA_Init(); | |
1515 } | |
1516 | |
1517 /* cleanup at shutdown */ | |
1518 void RSA_Cleanup(void) | |
1519 { | |
1520 blindingParams * bp = NULL; | |
1521 if (!coBPInit.initialized) | |
1522 return; | |
1523 | |
1524 while (!PR_CLIST_IS_EMPTY(&blindingParamsList.head)) { | |
1525 RSABlindingParams *rsabp = | |
1526 (RSABlindingParams *)PR_LIST_HEAD(&blindingParamsList.head); | |
1527 PR_REMOVE_LINK(&rsabp->link); | |
1528 /* clear parameters cache */ | |
1529 while (rsabp->bp != NULL) { | |
1530 bp = rsabp->bp; | |
1531 rsabp->bp = rsabp->bp->next; | |
1532 mp_clear( &bp->f ); | |
1533 mp_clear( &bp->g ); | |
1534 } | |
1535 SECITEM_FreeItem(&rsabp->modulus,PR_FALSE); | |
1536 PORT_Free(rsabp); | |
1537 } | |
1538 | |
1539 if (blindingParamsList.cVar) { | |
1540 PR_DestroyCondVar(blindingParamsList.cVar); | |
1541 blindingParamsList.cVar = NULL; | |
1542 } | |
1543 | |
1544 if (blindingParamsList.lock) { | |
1545 SKIP_AFTER_FORK(PZ_DestroyLock(blindingParamsList.lock)); | |
1546 blindingParamsList.lock = NULL; | |
1547 } | |
1548 | |
1549 coBPInit.initialized = 0; | |
1550 coBPInit.inProgress = 0; | |
1551 coBPInit.status = 0; | |
1552 } | |
1553 | |
1554 /* | |
1555 * need a central place for this function to free up all the memory that | |
1556 * free_bl may have allocated along the way. Currently only RSA does this, | |
1557 * so I've put it here for now. | |
1558 */ | |
1559 void BL_Cleanup(void) | |
1560 { | |
1561 RSA_Cleanup(); | |
1562 } | |
1563 | |
1564 #ifdef NSS_STATIC | |
1565 void | |
1566 BL_Unload(void) | |
1567 { | |
1568 } | |
1569 #endif | |
1570 | |
1571 PRBool bl_parentForkedAfterC_Initialize; | |
1572 | |
1573 /* | |
1574 * Set fork flag so it can be tested in SKIP_AFTER_FORK on relevant platforms. | |
1575 */ | |
1576 void BL_SetForkState(PRBool forked) | |
1577 { | |
1578 bl_parentForkedAfterC_Initialize = forked; | |
1579 } | |
1580 | |
OLD | NEW |