Index: src/arm64/lithium-codegen-arm64.cc |
diff --git a/src/arm64/lithium-codegen-arm64.cc b/src/arm64/lithium-codegen-arm64.cc |
deleted file mode 100644 |
index 530bd521544e05185fa194153d02a9f5339902ca..0000000000000000000000000000000000000000 |
--- a/src/arm64/lithium-codegen-arm64.cc |
+++ /dev/null |
@@ -1,6018 +0,0 @@ |
-// Copyright 2013 the V8 project authors. All rights reserved. |
-// Use of this source code is governed by a BSD-style license that can be |
-// found in the LICENSE file. |
- |
-#include "src/arm64/frames-arm64.h" |
-#include "src/arm64/lithium-codegen-arm64.h" |
-#include "src/arm64/lithium-gap-resolver-arm64.h" |
-#include "src/base/bits.h" |
-#include "src/code-factory.h" |
-#include "src/code-stubs.h" |
-#include "src/hydrogen-osr.h" |
-#include "src/ic/ic.h" |
-#include "src/ic/stub-cache.h" |
-#include "src/profiler/cpu-profiler.h" |
- |
-namespace v8 { |
-namespace internal { |
- |
- |
-class SafepointGenerator final : public CallWrapper { |
- public: |
- SafepointGenerator(LCodeGen* codegen, |
- LPointerMap* pointers, |
- Safepoint::DeoptMode mode) |
- : codegen_(codegen), |
- pointers_(pointers), |
- deopt_mode_(mode) { } |
- virtual ~SafepointGenerator() { } |
- |
- virtual void BeforeCall(int call_size) const { } |
- |
- virtual void AfterCall() const { |
- codegen_->RecordSafepoint(pointers_, deopt_mode_); |
- } |
- |
- private: |
- LCodeGen* codegen_; |
- LPointerMap* pointers_; |
- Safepoint::DeoptMode deopt_mode_; |
-}; |
- |
- |
-#define __ masm()-> |
- |
-// Emit code to branch if the given condition holds. |
-// The code generated here doesn't modify the flags and they must have |
-// been set by some prior instructions. |
-// |
-// The EmitInverted function simply inverts the condition. |
-class BranchOnCondition : public BranchGenerator { |
- public: |
- BranchOnCondition(LCodeGen* codegen, Condition cond) |
- : BranchGenerator(codegen), |
- cond_(cond) { } |
- |
- virtual void Emit(Label* label) const { |
- __ B(cond_, label); |
- } |
- |
- virtual void EmitInverted(Label* label) const { |
- if (cond_ != al) { |
- __ B(NegateCondition(cond_), label); |
- } |
- } |
- |
- private: |
- Condition cond_; |
-}; |
- |
- |
-// Emit code to compare lhs and rhs and branch if the condition holds. |
-// This uses MacroAssembler's CompareAndBranch function so it will handle |
-// converting the comparison to Cbz/Cbnz if the right-hand side is 0. |
-// |
-// EmitInverted still compares the two operands but inverts the condition. |
-class CompareAndBranch : public BranchGenerator { |
- public: |
- CompareAndBranch(LCodeGen* codegen, |
- Condition cond, |
- const Register& lhs, |
- const Operand& rhs) |
- : BranchGenerator(codegen), |
- cond_(cond), |
- lhs_(lhs), |
- rhs_(rhs) { } |
- |
- virtual void Emit(Label* label) const { |
- __ CompareAndBranch(lhs_, rhs_, cond_, label); |
- } |
- |
- virtual void EmitInverted(Label* label) const { |
- __ CompareAndBranch(lhs_, rhs_, NegateCondition(cond_), label); |
- } |
- |
- private: |
- Condition cond_; |
- const Register& lhs_; |
- const Operand& rhs_; |
-}; |
- |
- |
-// Test the input with the given mask and branch if the condition holds. |
-// If the condition is 'eq' or 'ne' this will use MacroAssembler's |
-// TestAndBranchIfAllClear and TestAndBranchIfAnySet so it will handle the |
-// conversion to Tbz/Tbnz when possible. |
-class TestAndBranch : public BranchGenerator { |
- public: |
- TestAndBranch(LCodeGen* codegen, |
- Condition cond, |
- const Register& value, |
- uint64_t mask) |
- : BranchGenerator(codegen), |
- cond_(cond), |
- value_(value), |
- mask_(mask) { } |
- |
- virtual void Emit(Label* label) const { |
- switch (cond_) { |
- case eq: |
- __ TestAndBranchIfAllClear(value_, mask_, label); |
- break; |
- case ne: |
- __ TestAndBranchIfAnySet(value_, mask_, label); |
- break; |
- default: |
- __ Tst(value_, mask_); |
- __ B(cond_, label); |
- } |
- } |
- |
- virtual void EmitInverted(Label* label) const { |
- // The inverse of "all clear" is "any set" and vice versa. |
- switch (cond_) { |
- case eq: |
- __ TestAndBranchIfAnySet(value_, mask_, label); |
- break; |
- case ne: |
- __ TestAndBranchIfAllClear(value_, mask_, label); |
- break; |
- default: |
- __ Tst(value_, mask_); |
- __ B(NegateCondition(cond_), label); |
- } |
- } |
- |
- private: |
- Condition cond_; |
- const Register& value_; |
- uint64_t mask_; |
-}; |
- |
- |
-// Test the input and branch if it is non-zero and not a NaN. |
-class BranchIfNonZeroNumber : public BranchGenerator { |
- public: |
- BranchIfNonZeroNumber(LCodeGen* codegen, const FPRegister& value, |
- const FPRegister& scratch) |
- : BranchGenerator(codegen), value_(value), scratch_(scratch) { } |
- |
- virtual void Emit(Label* label) const { |
- __ Fabs(scratch_, value_); |
- // Compare with 0.0. Because scratch_ is positive, the result can be one of |
- // nZCv (equal), nzCv (greater) or nzCV (unordered). |
- __ Fcmp(scratch_, 0.0); |
- __ B(gt, label); |
- } |
- |
- virtual void EmitInverted(Label* label) const { |
- __ Fabs(scratch_, value_); |
- __ Fcmp(scratch_, 0.0); |
- __ B(le, label); |
- } |
- |
- private: |
- const FPRegister& value_; |
- const FPRegister& scratch_; |
-}; |
- |
- |
-// Test the input and branch if it is a heap number. |
-class BranchIfHeapNumber : public BranchGenerator { |
- public: |
- BranchIfHeapNumber(LCodeGen* codegen, const Register& value) |
- : BranchGenerator(codegen), value_(value) { } |
- |
- virtual void Emit(Label* label) const { |
- __ JumpIfHeapNumber(value_, label); |
- } |
- |
- virtual void EmitInverted(Label* label) const { |
- __ JumpIfNotHeapNumber(value_, label); |
- } |
- |
- private: |
- const Register& value_; |
-}; |
- |
- |
-// Test the input and branch if it is the specified root value. |
-class BranchIfRoot : public BranchGenerator { |
- public: |
- BranchIfRoot(LCodeGen* codegen, const Register& value, |
- Heap::RootListIndex index) |
- : BranchGenerator(codegen), value_(value), index_(index) { } |
- |
- virtual void Emit(Label* label) const { |
- __ JumpIfRoot(value_, index_, label); |
- } |
- |
- virtual void EmitInverted(Label* label) const { |
- __ JumpIfNotRoot(value_, index_, label); |
- } |
- |
- private: |
- const Register& value_; |
- const Heap::RootListIndex index_; |
-}; |
- |
- |
-void LCodeGen::WriteTranslation(LEnvironment* environment, |
- Translation* translation) { |
- if (environment == NULL) return; |
- |
- // The translation includes one command per value in the environment. |
- int translation_size = environment->translation_size(); |
- |
- WriteTranslation(environment->outer(), translation); |
- WriteTranslationFrame(environment, translation); |
- |
- int object_index = 0; |
- int dematerialized_index = 0; |
- for (int i = 0; i < translation_size; ++i) { |
- LOperand* value = environment->values()->at(i); |
- AddToTranslation( |
- environment, translation, value, environment->HasTaggedValueAt(i), |
- environment->HasUint32ValueAt(i), &object_index, &dematerialized_index); |
- } |
-} |
- |
- |
-void LCodeGen::AddToTranslation(LEnvironment* environment, |
- Translation* translation, |
- LOperand* op, |
- bool is_tagged, |
- bool is_uint32, |
- int* object_index_pointer, |
- int* dematerialized_index_pointer) { |
- if (op == LEnvironment::materialization_marker()) { |
- int object_index = (*object_index_pointer)++; |
- if (environment->ObjectIsDuplicateAt(object_index)) { |
- int dupe_of = environment->ObjectDuplicateOfAt(object_index); |
- translation->DuplicateObject(dupe_of); |
- return; |
- } |
- int object_length = environment->ObjectLengthAt(object_index); |
- if (environment->ObjectIsArgumentsAt(object_index)) { |
- translation->BeginArgumentsObject(object_length); |
- } else { |
- translation->BeginCapturedObject(object_length); |
- } |
- int dematerialized_index = *dematerialized_index_pointer; |
- int env_offset = environment->translation_size() + dematerialized_index; |
- *dematerialized_index_pointer += object_length; |
- for (int i = 0; i < object_length; ++i) { |
- LOperand* value = environment->values()->at(env_offset + i); |
- AddToTranslation(environment, |
- translation, |
- value, |
- environment->HasTaggedValueAt(env_offset + i), |
- environment->HasUint32ValueAt(env_offset + i), |
- object_index_pointer, |
- dematerialized_index_pointer); |
- } |
- return; |
- } |
- |
- if (op->IsStackSlot()) { |
- int index = op->index(); |
- if (index >= 0) { |
- index += StandardFrameConstants::kFixedFrameSize / kPointerSize; |
- } |
- if (is_tagged) { |
- translation->StoreStackSlot(index); |
- } else if (is_uint32) { |
- translation->StoreUint32StackSlot(index); |
- } else { |
- translation->StoreInt32StackSlot(index); |
- } |
- } else if (op->IsDoubleStackSlot()) { |
- int index = op->index(); |
- if (index >= 0) { |
- index += StandardFrameConstants::kFixedFrameSize / kPointerSize; |
- } |
- translation->StoreDoubleStackSlot(index); |
- } else if (op->IsRegister()) { |
- Register reg = ToRegister(op); |
- if (is_tagged) { |
- translation->StoreRegister(reg); |
- } else if (is_uint32) { |
- translation->StoreUint32Register(reg); |
- } else { |
- translation->StoreInt32Register(reg); |
- } |
- } else if (op->IsDoubleRegister()) { |
- DoubleRegister reg = ToDoubleRegister(op); |
- translation->StoreDoubleRegister(reg); |
- } else if (op->IsConstantOperand()) { |
- HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op)); |
- int src_index = DefineDeoptimizationLiteral(constant->handle(isolate())); |
- translation->StoreLiteral(src_index); |
- } else { |
- UNREACHABLE(); |
- } |
-} |
- |
- |
-void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment, |
- Safepoint::DeoptMode mode) { |
- environment->set_has_been_used(); |
- if (!environment->HasBeenRegistered()) { |
- int frame_count = 0; |
- int jsframe_count = 0; |
- for (LEnvironment* e = environment; e != NULL; e = e->outer()) { |
- ++frame_count; |
- if (e->frame_type() == JS_FUNCTION) { |
- ++jsframe_count; |
- } |
- } |
- Translation translation(&translations_, frame_count, jsframe_count, zone()); |
- WriteTranslation(environment, &translation); |
- int deoptimization_index = deoptimizations_.length(); |
- int pc_offset = masm()->pc_offset(); |
- environment->Register(deoptimization_index, |
- translation.index(), |
- (mode == Safepoint::kLazyDeopt) ? pc_offset : -1); |
- deoptimizations_.Add(environment, zone()); |
- } |
-} |
- |
- |
-void LCodeGen::CallCode(Handle<Code> code, |
- RelocInfo::Mode mode, |
- LInstruction* instr) { |
- CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT); |
-} |
- |
- |
-void LCodeGen::CallCodeGeneric(Handle<Code> code, |
- RelocInfo::Mode mode, |
- LInstruction* instr, |
- SafepointMode safepoint_mode) { |
- DCHECK(instr != NULL); |
- |
- Assembler::BlockPoolsScope scope(masm_); |
- __ Call(code, mode); |
- RecordSafepointWithLazyDeopt(instr, safepoint_mode); |
- |
- if ((code->kind() == Code::BINARY_OP_IC) || |
- (code->kind() == Code::COMPARE_IC)) { |
- // Signal that we don't inline smi code before these stubs in the |
- // optimizing code generator. |
- InlineSmiCheckInfo::EmitNotInlined(masm()); |
- } |
-} |
- |
- |
-void LCodeGen::DoCallFunction(LCallFunction* instr) { |
- DCHECK(ToRegister(instr->context()).is(cp)); |
- DCHECK(ToRegister(instr->function()).Is(x1)); |
- DCHECK(ToRegister(instr->result()).Is(x0)); |
- |
- int arity = instr->arity(); |
- CallFunctionFlags flags = instr->hydrogen()->function_flags(); |
- if (instr->hydrogen()->HasVectorAndSlot()) { |
- Register slot_register = ToRegister(instr->temp_slot()); |
- Register vector_register = ToRegister(instr->temp_vector()); |
- DCHECK(slot_register.is(x3)); |
- DCHECK(vector_register.is(x2)); |
- |
- AllowDeferredHandleDereference vector_structure_check; |
- Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector(); |
- int index = vector->GetIndex(instr->hydrogen()->slot()); |
- |
- __ Mov(vector_register, vector); |
- __ Mov(slot_register, Operand(Smi::FromInt(index))); |
- |
- CallICState::CallType call_type = |
- (flags & CALL_AS_METHOD) ? CallICState::METHOD : CallICState::FUNCTION; |
- |
- Handle<Code> ic = |
- CodeFactory::CallICInOptimizedCode(isolate(), arity, call_type).code(); |
- CallCode(ic, RelocInfo::CODE_TARGET, instr); |
- } else { |
- CallFunctionStub stub(isolate(), arity, flags); |
- CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
- } |
- RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta()); |
-} |
- |
- |
-void LCodeGen::DoCallNew(LCallNew* instr) { |
- DCHECK(ToRegister(instr->context()).is(cp)); |
- DCHECK(instr->IsMarkedAsCall()); |
- DCHECK(ToRegister(instr->constructor()).is(x1)); |
- |
- __ Mov(x0, instr->arity()); |
- // No cell in x2 for construct type feedback in optimized code. |
- __ LoadRoot(x2, Heap::kUndefinedValueRootIndex); |
- |
- CallConstructStub stub(isolate(), NO_CALL_CONSTRUCTOR_FLAGS); |
- CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); |
- RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta()); |
- |
- DCHECK(ToRegister(instr->result()).is(x0)); |
-} |
- |
- |
-void LCodeGen::DoCallNewArray(LCallNewArray* instr) { |
- DCHECK(instr->IsMarkedAsCall()); |
- DCHECK(ToRegister(instr->context()).is(cp)); |
- DCHECK(ToRegister(instr->constructor()).is(x1)); |
- |
- __ Mov(x0, Operand(instr->arity())); |
- if (instr->arity() == 1) { |
- // We only need the allocation site for the case we have a length argument. |
- // The case may bail out to the runtime, which will determine the correct |
- // elements kind with the site. |
- __ Mov(x2, instr->hydrogen()->site()); |
- } else { |
- __ LoadRoot(x2, Heap::kUndefinedValueRootIndex); |
- } |
- |
- |
- ElementsKind kind = instr->hydrogen()->elements_kind(); |
- AllocationSiteOverrideMode override_mode = |
- (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE) |
- ? DISABLE_ALLOCATION_SITES |
- : DONT_OVERRIDE; |
- |
- if (instr->arity() == 0) { |
- ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode); |
- CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); |
- } else if (instr->arity() == 1) { |
- Label done; |
- if (IsFastPackedElementsKind(kind)) { |
- Label packed_case; |
- |
- // We might need to create a holey array; look at the first argument. |
- __ Peek(x10, 0); |
- __ Cbz(x10, &packed_case); |
- |
- ElementsKind holey_kind = GetHoleyElementsKind(kind); |
- ArraySingleArgumentConstructorStub stub(isolate(), |
- holey_kind, |
- override_mode); |
- CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); |
- __ B(&done); |
- __ Bind(&packed_case); |
- } |
- |
- ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode); |
- CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); |
- __ Bind(&done); |
- } else { |
- ArrayNArgumentsConstructorStub stub(isolate(), kind, override_mode); |
- CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); |
- } |
- RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta()); |
- |
- DCHECK(ToRegister(instr->result()).is(x0)); |
-} |
- |
- |
-void LCodeGen::CallRuntime(const Runtime::Function* function, |
- int num_arguments, |
- LInstruction* instr, |
- SaveFPRegsMode save_doubles) { |
- DCHECK(instr != NULL); |
- |
- __ CallRuntime(function, num_arguments, save_doubles); |
- |
- RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); |
-} |
- |
- |
-void LCodeGen::LoadContextFromDeferred(LOperand* context) { |
- if (context->IsRegister()) { |
- __ Mov(cp, ToRegister(context)); |
- } else if (context->IsStackSlot()) { |
- __ Ldr(cp, ToMemOperand(context, kMustUseFramePointer)); |
- } else if (context->IsConstantOperand()) { |
- HConstant* constant = |
- chunk_->LookupConstant(LConstantOperand::cast(context)); |
- __ LoadHeapObject(cp, |
- Handle<HeapObject>::cast(constant->handle(isolate()))); |
- } else { |
- UNREACHABLE(); |
- } |
-} |
- |
- |
-void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id, |
- int argc, |
- LInstruction* instr, |
- LOperand* context) { |
- LoadContextFromDeferred(context); |
- __ CallRuntimeSaveDoubles(id); |
- RecordSafepointWithRegisters( |
- instr->pointer_map(), argc, Safepoint::kNoLazyDeopt); |
-} |
- |
- |
-void LCodeGen::RecordAndWritePosition(int position) { |
- if (position == RelocInfo::kNoPosition) return; |
- masm()->positions_recorder()->RecordPosition(position); |
- masm()->positions_recorder()->WriteRecordedPositions(); |
-} |
- |
- |
-void LCodeGen::RecordSafepointWithLazyDeopt(LInstruction* instr, |
- SafepointMode safepoint_mode) { |
- if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) { |
- RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt); |
- } else { |
- DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); |
- RecordSafepointWithRegisters( |
- instr->pointer_map(), 0, Safepoint::kLazyDeopt); |
- } |
-} |
- |
- |
-void LCodeGen::RecordSafepoint(LPointerMap* pointers, |
- Safepoint::Kind kind, |
- int arguments, |
- Safepoint::DeoptMode deopt_mode) { |
- DCHECK(expected_safepoint_kind_ == kind); |
- |
- const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands(); |
- Safepoint safepoint = safepoints_.DefineSafepoint( |
- masm(), kind, arguments, deopt_mode); |
- |
- for (int i = 0; i < operands->length(); i++) { |
- LOperand* pointer = operands->at(i); |
- if (pointer->IsStackSlot()) { |
- safepoint.DefinePointerSlot(pointer->index(), zone()); |
- } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) { |
- safepoint.DefinePointerRegister(ToRegister(pointer), zone()); |
- } |
- } |
-} |
- |
-void LCodeGen::RecordSafepoint(LPointerMap* pointers, |
- Safepoint::DeoptMode deopt_mode) { |
- RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode); |
-} |
- |
- |
-void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) { |
- LPointerMap empty_pointers(zone()); |
- RecordSafepoint(&empty_pointers, deopt_mode); |
-} |
- |
- |
-void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers, |
- int arguments, |
- Safepoint::DeoptMode deopt_mode) { |
- RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode); |
-} |
- |
- |
-bool LCodeGen::GenerateCode() { |
- LPhase phase("Z_Code generation", chunk()); |
- DCHECK(is_unused()); |
- status_ = GENERATING; |
- |
- // Open a frame scope to indicate that there is a frame on the stack. The |
- // NONE indicates that the scope shouldn't actually generate code to set up |
- // the frame (that is done in GeneratePrologue). |
- FrameScope frame_scope(masm_, StackFrame::NONE); |
- |
- return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() && |
- GenerateJumpTable() && GenerateSafepointTable(); |
-} |
- |
- |
-void LCodeGen::SaveCallerDoubles() { |
- DCHECK(info()->saves_caller_doubles()); |
- DCHECK(NeedsEagerFrame()); |
- Comment(";;; Save clobbered callee double registers"); |
- BitVector* doubles = chunk()->allocated_double_registers(); |
- BitVector::Iterator iterator(doubles); |
- int count = 0; |
- while (!iterator.Done()) { |
- // TODO(all): Is this supposed to save just the callee-saved doubles? It |
- // looks like it's saving all of them. |
- FPRegister value = FPRegister::from_code(iterator.Current()); |
- __ Poke(value, count * kDoubleSize); |
- iterator.Advance(); |
- count++; |
- } |
-} |
- |
- |
-void LCodeGen::RestoreCallerDoubles() { |
- DCHECK(info()->saves_caller_doubles()); |
- DCHECK(NeedsEagerFrame()); |
- Comment(";;; Restore clobbered callee double registers"); |
- BitVector* doubles = chunk()->allocated_double_registers(); |
- BitVector::Iterator iterator(doubles); |
- int count = 0; |
- while (!iterator.Done()) { |
- // TODO(all): Is this supposed to restore just the callee-saved doubles? It |
- // looks like it's restoring all of them. |
- FPRegister value = FPRegister::from_code(iterator.Current()); |
- __ Peek(value, count * kDoubleSize); |
- iterator.Advance(); |
- count++; |
- } |
-} |
- |
- |
-bool LCodeGen::GeneratePrologue() { |
- DCHECK(is_generating()); |
- |
- if (info()->IsOptimizing()) { |
- ProfileEntryHookStub::MaybeCallEntryHook(masm_); |
- |
-#ifdef DEBUG |
- if (strlen(FLAG_stop_at) > 0 && |
- info()->literal()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) { |
- __ Debug("stop-at", __LINE__, BREAK); |
- } |
-#endif |
- |
- // Sloppy mode functions and builtins need to replace the receiver with the |
- // global proxy when called as functions (without an explicit receiver |
- // object). |
- if (info()->MustReplaceUndefinedReceiverWithGlobalProxy()) { |
- Label ok; |
- int receiver_offset = info_->scope()->num_parameters() * kXRegSize; |
- __ Peek(x10, receiver_offset); |
- __ JumpIfNotRoot(x10, Heap::kUndefinedValueRootIndex, &ok); |
- |
- __ Ldr(x10, GlobalObjectMemOperand()); |
- __ Ldr(x10, FieldMemOperand(x10, GlobalObject::kGlobalProxyOffset)); |
- __ Poke(x10, receiver_offset); |
- |
- __ Bind(&ok); |
- } |
- } |
- |
- DCHECK(__ StackPointer().Is(jssp)); |
- info()->set_prologue_offset(masm_->pc_offset()); |
- if (NeedsEagerFrame()) { |
- if (info()->IsStub()) { |
- __ StubPrologue(); |
- } else { |
- __ Prologue(info()->IsCodePreAgingActive()); |
- } |
- frame_is_built_ = true; |
- } |
- |
- // Reserve space for the stack slots needed by the code. |
- int slots = GetStackSlotCount(); |
- if (slots > 0) { |
- __ Claim(slots, kPointerSize); |
- } |
- |
- if (info()->saves_caller_doubles()) { |
- SaveCallerDoubles(); |
- } |
- return !is_aborted(); |
-} |
- |
- |
-void LCodeGen::DoPrologue(LPrologue* instr) { |
- Comment(";;; Prologue begin"); |
- |
- // Allocate a local context if needed. |
- if (info()->num_heap_slots() > 0) { |
- Comment(";;; Allocate local context"); |
- bool need_write_barrier = true; |
- // Argument to NewContext is the function, which is in x1. |
- int slots = info()->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; |
- Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt; |
- if (info()->scope()->is_script_scope()) { |
- __ Mov(x10, Operand(info()->scope()->GetScopeInfo(info()->isolate()))); |
- __ Push(x1, x10); |
- __ CallRuntime(Runtime::kNewScriptContext, 2); |
- deopt_mode = Safepoint::kLazyDeopt; |
- } else if (slots <= FastNewContextStub::kMaximumSlots) { |
- FastNewContextStub stub(isolate(), slots); |
- __ CallStub(&stub); |
- // Result of FastNewContextStub is always in new space. |
- need_write_barrier = false; |
- } else { |
- __ Push(x1); |
- __ CallRuntime(Runtime::kNewFunctionContext, 1); |
- } |
- RecordSafepoint(deopt_mode); |
- // Context is returned in x0. It replaces the context passed to us. It's |
- // saved in the stack and kept live in cp. |
- __ Mov(cp, x0); |
- __ Str(x0, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
- // Copy any necessary parameters into the context. |
- int num_parameters = scope()->num_parameters(); |
- int first_parameter = scope()->has_this_declaration() ? -1 : 0; |
- for (int i = first_parameter; i < num_parameters; i++) { |
- Variable* var = (i == -1) ? scope()->receiver() : scope()->parameter(i); |
- if (var->IsContextSlot()) { |
- Register value = x0; |
- Register scratch = x3; |
- |
- int parameter_offset = StandardFrameConstants::kCallerSPOffset + |
- (num_parameters - 1 - i) * kPointerSize; |
- // Load parameter from stack. |
- __ Ldr(value, MemOperand(fp, parameter_offset)); |
- // Store it in the context. |
- MemOperand target = ContextMemOperand(cp, var->index()); |
- __ Str(value, target); |
- // Update the write barrier. This clobbers value and scratch. |
- if (need_write_barrier) { |
- __ RecordWriteContextSlot(cp, static_cast<int>(target.offset()), |
- value, scratch, GetLinkRegisterState(), |
- kSaveFPRegs); |
- } else if (FLAG_debug_code) { |
- Label done; |
- __ JumpIfInNewSpace(cp, &done); |
- __ Abort(kExpectedNewSpaceObject); |
- __ bind(&done); |
- } |
- } |
- } |
- Comment(";;; End allocate local context"); |
- } |
- |
- Comment(";;; Prologue end"); |
-} |
- |
- |
-void LCodeGen::GenerateOsrPrologue() { |
- // Generate the OSR entry prologue at the first unknown OSR value, or if there |
- // are none, at the OSR entrypoint instruction. |
- if (osr_pc_offset_ >= 0) return; |
- |
- osr_pc_offset_ = masm()->pc_offset(); |
- |
- // Adjust the frame size, subsuming the unoptimized frame into the |
- // optimized frame. |
- int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots(); |
- DCHECK(slots >= 0); |
- __ Claim(slots); |
-} |
- |
- |
-void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) { |
- if (instr->IsCall()) { |
- EnsureSpaceForLazyDeopt(Deoptimizer::patch_size()); |
- } |
- if (!instr->IsLazyBailout() && !instr->IsGap()) { |
- safepoints_.BumpLastLazySafepointIndex(); |
- } |
-} |
- |
- |
-bool LCodeGen::GenerateDeferredCode() { |
- DCHECK(is_generating()); |
- if (deferred_.length() > 0) { |
- for (int i = 0; !is_aborted() && (i < deferred_.length()); i++) { |
- LDeferredCode* code = deferred_[i]; |
- |
- HValue* value = |
- instructions_->at(code->instruction_index())->hydrogen_value(); |
- RecordAndWritePosition( |
- chunk()->graph()->SourcePositionToScriptPosition(value->position())); |
- |
- Comment(";;; <@%d,#%d> " |
- "-------------------- Deferred %s --------------------", |
- code->instruction_index(), |
- code->instr()->hydrogen_value()->id(), |
- code->instr()->Mnemonic()); |
- |
- __ Bind(code->entry()); |
- |
- if (NeedsDeferredFrame()) { |
- Comment(";;; Build frame"); |
- DCHECK(!frame_is_built_); |
- DCHECK(info()->IsStub()); |
- frame_is_built_ = true; |
- __ Push(lr, fp, cp); |
- __ Mov(fp, Smi::FromInt(StackFrame::STUB)); |
- __ Push(fp); |
- __ Add(fp, __ StackPointer(), |
- StandardFrameConstants::kFixedFrameSizeFromFp); |
- Comment(";;; Deferred code"); |
- } |
- |
- code->Generate(); |
- |
- if (NeedsDeferredFrame()) { |
- Comment(";;; Destroy frame"); |
- DCHECK(frame_is_built_); |
- __ Pop(xzr, cp, fp, lr); |
- frame_is_built_ = false; |
- } |
- |
- __ B(code->exit()); |
- } |
- } |
- |
- // Force constant pool emission at the end of the deferred code to make |
- // sure that no constant pools are emitted after deferred code because |
- // deferred code generation is the last step which generates code. The two |
- // following steps will only output data used by crakshaft. |
- masm()->CheckConstPool(true, false); |
- |
- return !is_aborted(); |
-} |
- |
- |
-bool LCodeGen::GenerateJumpTable() { |
- Label needs_frame, call_deopt_entry; |
- |
- if (jump_table_.length() > 0) { |
- Comment(";;; -------------------- Jump table --------------------"); |
- Address base = jump_table_[0]->address; |
- |
- UseScratchRegisterScope temps(masm()); |
- Register entry_offset = temps.AcquireX(); |
- |
- int length = jump_table_.length(); |
- for (int i = 0; i < length; i++) { |
- Deoptimizer::JumpTableEntry* table_entry = jump_table_[i]; |
- __ Bind(&table_entry->label); |
- |
- Address entry = table_entry->address; |
- DeoptComment(table_entry->deopt_info); |
- |
- // Second-level deopt table entries are contiguous and small, so instead |
- // of loading the full, absolute address of each one, load the base |
- // address and add an immediate offset. |
- __ Mov(entry_offset, entry - base); |
- |
- if (table_entry->needs_frame) { |
- DCHECK(!info()->saves_caller_doubles()); |
- Comment(";;; call deopt with frame"); |
- // Save lr before Bl, fp will be adjusted in the needs_frame code. |
- __ Push(lr, fp); |
- // Reuse the existing needs_frame code. |
- __ Bl(&needs_frame); |
- } else { |
- // There is nothing special to do, so just continue to the second-level |
- // table. |
- __ Bl(&call_deopt_entry); |
- } |
- info()->LogDeoptCallPosition(masm()->pc_offset(), |
- table_entry->deopt_info.inlining_id); |
- |
- masm()->CheckConstPool(false, false); |
- } |
- |
- if (needs_frame.is_linked()) { |
- // This variant of deopt can only be used with stubs. Since we don't |
- // have a function pointer to install in the stack frame that we're |
- // building, install a special marker there instead. |
- DCHECK(info()->IsStub()); |
- |
- Comment(";;; needs_frame common code"); |
- UseScratchRegisterScope temps(masm()); |
- Register stub_marker = temps.AcquireX(); |
- __ Bind(&needs_frame); |
- __ Mov(stub_marker, Smi::FromInt(StackFrame::STUB)); |
- __ Push(cp, stub_marker); |
- __ Add(fp, __ StackPointer(), 2 * kPointerSize); |
- } |
- |
- // Generate common code for calling the second-level deopt table. |
- __ Bind(&call_deopt_entry); |
- |
- if (info()->saves_caller_doubles()) { |
- DCHECK(info()->IsStub()); |
- RestoreCallerDoubles(); |
- } |
- |
- Register deopt_entry = temps.AcquireX(); |
- __ Mov(deopt_entry, Operand(reinterpret_cast<uint64_t>(base), |
- RelocInfo::RUNTIME_ENTRY)); |
- __ Add(deopt_entry, deopt_entry, entry_offset); |
- __ Br(deopt_entry); |
- } |
- |
- // Force constant pool emission at the end of the deopt jump table to make |
- // sure that no constant pools are emitted after. |
- masm()->CheckConstPool(true, false); |
- |
- // The deoptimization jump table is the last part of the instruction |
- // sequence. Mark the generated code as done unless we bailed out. |
- if (!is_aborted()) status_ = DONE; |
- return !is_aborted(); |
-} |
- |
- |
-bool LCodeGen::GenerateSafepointTable() { |
- DCHECK(is_done()); |
- // We do not know how much data will be emitted for the safepoint table, so |
- // force emission of the veneer pool. |
- masm()->CheckVeneerPool(true, true); |
- safepoints_.Emit(masm(), GetStackSlotCount()); |
- return !is_aborted(); |
-} |
- |
- |
-void LCodeGen::FinishCode(Handle<Code> code) { |
- DCHECK(is_done()); |
- code->set_stack_slots(GetStackSlotCount()); |
- code->set_safepoint_table_offset(safepoints_.GetCodeOffset()); |
- PopulateDeoptimizationData(code); |
-} |
- |
- |
-void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) { |
- int length = deoptimizations_.length(); |
- if (length == 0) return; |
- |
- Handle<DeoptimizationInputData> data = |
- DeoptimizationInputData::New(isolate(), length, TENURED); |
- |
- Handle<ByteArray> translations = |
- translations_.CreateByteArray(isolate()->factory()); |
- data->SetTranslationByteArray(*translations); |
- data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_)); |
- data->SetOptimizationId(Smi::FromInt(info_->optimization_id())); |
- if (info_->IsOptimizing()) { |
- // Reference to shared function info does not change between phases. |
- AllowDeferredHandleDereference allow_handle_dereference; |
- data->SetSharedFunctionInfo(*info_->shared_info()); |
- } else { |
- data->SetSharedFunctionInfo(Smi::FromInt(0)); |
- } |
- data->SetWeakCellCache(Smi::FromInt(0)); |
- |
- Handle<FixedArray> literals = |
- factory()->NewFixedArray(deoptimization_literals_.length(), TENURED); |
- { AllowDeferredHandleDereference copy_handles; |
- for (int i = 0; i < deoptimization_literals_.length(); i++) { |
- literals->set(i, *deoptimization_literals_[i]); |
- } |
- data->SetLiteralArray(*literals); |
- } |
- |
- data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id().ToInt())); |
- data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_)); |
- |
- // Populate the deoptimization entries. |
- for (int i = 0; i < length; i++) { |
- LEnvironment* env = deoptimizations_[i]; |
- data->SetAstId(i, env->ast_id()); |
- data->SetTranslationIndex(i, Smi::FromInt(env->translation_index())); |
- data->SetArgumentsStackHeight(i, |
- Smi::FromInt(env->arguments_stack_height())); |
- data->SetPc(i, Smi::FromInt(env->pc_offset())); |
- } |
- |
- code->set_deoptimization_data(*data); |
-} |
- |
- |
-void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() { |
- DCHECK_EQ(0, deoptimization_literals_.length()); |
- for (auto function : chunk()->inlined_functions()) { |
- DefineDeoptimizationLiteral(function); |
- } |
- inlined_function_count_ = deoptimization_literals_.length(); |
-} |
- |
- |
-void LCodeGen::DeoptimizeBranch( |
- LInstruction* instr, Deoptimizer::DeoptReason deopt_reason, |
- BranchType branch_type, Register reg, int bit, |
- Deoptimizer::BailoutType* override_bailout_type) { |
- LEnvironment* environment = instr->environment(); |
- RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); |
- Deoptimizer::BailoutType bailout_type = |
- info()->IsStub() ? Deoptimizer::LAZY : Deoptimizer::EAGER; |
- |
- if (override_bailout_type != NULL) { |
- bailout_type = *override_bailout_type; |
- } |
- |
- DCHECK(environment->HasBeenRegistered()); |
- int id = environment->deoptimization_index(); |
- Address entry = |
- Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type); |
- |
- if (entry == NULL) { |
- Abort(kBailoutWasNotPrepared); |
- } |
- |
- if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) { |
- Label not_zero; |
- ExternalReference count = ExternalReference::stress_deopt_count(isolate()); |
- |
- __ Push(x0, x1, x2); |
- __ Mrs(x2, NZCV); |
- __ Mov(x0, count); |
- __ Ldr(w1, MemOperand(x0)); |
- __ Subs(x1, x1, 1); |
- __ B(gt, ¬_zero); |
- __ Mov(w1, FLAG_deopt_every_n_times); |
- __ Str(w1, MemOperand(x0)); |
- __ Pop(x2, x1, x0); |
- DCHECK(frame_is_built_); |
- __ Call(entry, RelocInfo::RUNTIME_ENTRY); |
- __ Unreachable(); |
- |
- __ Bind(¬_zero); |
- __ Str(w1, MemOperand(x0)); |
- __ Msr(NZCV, x2); |
- __ Pop(x2, x1, x0); |
- } |
- |
- if (info()->ShouldTrapOnDeopt()) { |
- Label dont_trap; |
- __ B(&dont_trap, InvertBranchType(branch_type), reg, bit); |
- __ Debug("trap_on_deopt", __LINE__, BREAK); |
- __ Bind(&dont_trap); |
- } |
- |
- Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason); |
- |
- DCHECK(info()->IsStub() || frame_is_built_); |
- // Go through jump table if we need to build frame, or restore caller doubles. |
- if (branch_type == always && |
- frame_is_built_ && !info()->saves_caller_doubles()) { |
- DeoptComment(deopt_info); |
- __ Call(entry, RelocInfo::RUNTIME_ENTRY); |
- info()->LogDeoptCallPosition(masm()->pc_offset(), deopt_info.inlining_id); |
- } else { |
- Deoptimizer::JumpTableEntry* table_entry = |
- new (zone()) Deoptimizer::JumpTableEntry( |
- entry, deopt_info, bailout_type, !frame_is_built_); |
- // We often have several deopts to the same entry, reuse the last |
- // jump entry if this is the case. |
- if (FLAG_trace_deopt || isolate()->cpu_profiler()->is_profiling() || |
- jump_table_.is_empty() || |
- !table_entry->IsEquivalentTo(*jump_table_.last())) { |
- jump_table_.Add(table_entry, zone()); |
- } |
- __ B(&jump_table_.last()->label, branch_type, reg, bit); |
- } |
-} |
- |
- |
-void LCodeGen::Deoptimize(LInstruction* instr, |
- Deoptimizer::DeoptReason deopt_reason, |
- Deoptimizer::BailoutType* override_bailout_type) { |
- DeoptimizeBranch(instr, deopt_reason, always, NoReg, -1, |
- override_bailout_type); |
-} |
- |
- |
-void LCodeGen::DeoptimizeIf(Condition cond, LInstruction* instr, |
- Deoptimizer::DeoptReason deopt_reason) { |
- DeoptimizeBranch(instr, deopt_reason, static_cast<BranchType>(cond)); |
-} |
- |
- |
-void LCodeGen::DeoptimizeIfZero(Register rt, LInstruction* instr, |
- Deoptimizer::DeoptReason deopt_reason) { |
- DeoptimizeBranch(instr, deopt_reason, reg_zero, rt); |
-} |
- |
- |
-void LCodeGen::DeoptimizeIfNotZero(Register rt, LInstruction* instr, |
- Deoptimizer::DeoptReason deopt_reason) { |
- DeoptimizeBranch(instr, deopt_reason, reg_not_zero, rt); |
-} |
- |
- |
-void LCodeGen::DeoptimizeIfNegative(Register rt, LInstruction* instr, |
- Deoptimizer::DeoptReason deopt_reason) { |
- int sign_bit = rt.Is64Bits() ? kXSignBit : kWSignBit; |
- DeoptimizeIfBitSet(rt, sign_bit, instr, deopt_reason); |
-} |
- |
- |
-void LCodeGen::DeoptimizeIfSmi(Register rt, LInstruction* instr, |
- Deoptimizer::DeoptReason deopt_reason) { |
- DeoptimizeIfBitClear(rt, MaskToBit(kSmiTagMask), instr, deopt_reason); |
-} |
- |
- |
-void LCodeGen::DeoptimizeIfNotSmi(Register rt, LInstruction* instr, |
- Deoptimizer::DeoptReason deopt_reason) { |
- DeoptimizeIfBitSet(rt, MaskToBit(kSmiTagMask), instr, deopt_reason); |
-} |
- |
- |
-void LCodeGen::DeoptimizeIfRoot(Register rt, Heap::RootListIndex index, |
- LInstruction* instr, |
- Deoptimizer::DeoptReason deopt_reason) { |
- __ CompareRoot(rt, index); |
- DeoptimizeIf(eq, instr, deopt_reason); |
-} |
- |
- |
-void LCodeGen::DeoptimizeIfNotRoot(Register rt, Heap::RootListIndex index, |
- LInstruction* instr, |
- Deoptimizer::DeoptReason deopt_reason) { |
- __ CompareRoot(rt, index); |
- DeoptimizeIf(ne, instr, deopt_reason); |
-} |
- |
- |
-void LCodeGen::DeoptimizeIfMinusZero(DoubleRegister input, LInstruction* instr, |
- Deoptimizer::DeoptReason deopt_reason) { |
- __ TestForMinusZero(input); |
- DeoptimizeIf(vs, instr, deopt_reason); |
-} |
- |
- |
-void LCodeGen::DeoptimizeIfNotHeapNumber(Register object, LInstruction* instr) { |
- __ CompareObjectMap(object, Heap::kHeapNumberMapRootIndex); |
- DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber); |
-} |
- |
- |
-void LCodeGen::DeoptimizeIfBitSet(Register rt, int bit, LInstruction* instr, |
- Deoptimizer::DeoptReason deopt_reason) { |
- DeoptimizeBranch(instr, deopt_reason, reg_bit_set, rt, bit); |
-} |
- |
- |
-void LCodeGen::DeoptimizeIfBitClear(Register rt, int bit, LInstruction* instr, |
- Deoptimizer::DeoptReason deopt_reason) { |
- DeoptimizeBranch(instr, deopt_reason, reg_bit_clear, rt, bit); |
-} |
- |
- |
-void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) { |
- if (info()->ShouldEnsureSpaceForLazyDeopt()) { |
- // Ensure that we have enough space after the previous lazy-bailout |
- // instruction for patching the code here. |
- intptr_t current_pc = masm()->pc_offset(); |
- |
- if (current_pc < (last_lazy_deopt_pc_ + space_needed)) { |
- ptrdiff_t padding_size = last_lazy_deopt_pc_ + space_needed - current_pc; |
- DCHECK((padding_size % kInstructionSize) == 0); |
- InstructionAccurateScope instruction_accurate( |
- masm(), padding_size / kInstructionSize); |
- |
- while (padding_size > 0) { |
- __ nop(); |
- padding_size -= kInstructionSize; |
- } |
- } |
- } |
- last_lazy_deopt_pc_ = masm()->pc_offset(); |
-} |
- |
- |
-Register LCodeGen::ToRegister(LOperand* op) const { |
- // TODO(all): support zero register results, as ToRegister32. |
- DCHECK((op != NULL) && op->IsRegister()); |
- return Register::from_code(op->index()); |
-} |
- |
- |
-Register LCodeGen::ToRegister32(LOperand* op) const { |
- DCHECK(op != NULL); |
- if (op->IsConstantOperand()) { |
- // If this is a constant operand, the result must be the zero register. |
- DCHECK(ToInteger32(LConstantOperand::cast(op)) == 0); |
- return wzr; |
- } else { |
- return ToRegister(op).W(); |
- } |
-} |
- |
- |
-Smi* LCodeGen::ToSmi(LConstantOperand* op) const { |
- HConstant* constant = chunk_->LookupConstant(op); |
- return Smi::FromInt(constant->Integer32Value()); |
-} |
- |
- |
-DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const { |
- DCHECK((op != NULL) && op->IsDoubleRegister()); |
- return DoubleRegister::from_code(op->index()); |
-} |
- |
- |
-Operand LCodeGen::ToOperand(LOperand* op) { |
- DCHECK(op != NULL); |
- if (op->IsConstantOperand()) { |
- LConstantOperand* const_op = LConstantOperand::cast(op); |
- HConstant* constant = chunk()->LookupConstant(const_op); |
- Representation r = chunk_->LookupLiteralRepresentation(const_op); |
- if (r.IsSmi()) { |
- DCHECK(constant->HasSmiValue()); |
- return Operand(Smi::FromInt(constant->Integer32Value())); |
- } else if (r.IsInteger32()) { |
- DCHECK(constant->HasInteger32Value()); |
- return Operand(constant->Integer32Value()); |
- } else if (r.IsDouble()) { |
- Abort(kToOperandUnsupportedDoubleImmediate); |
- } |
- DCHECK(r.IsTagged()); |
- return Operand(constant->handle(isolate())); |
- } else if (op->IsRegister()) { |
- return Operand(ToRegister(op)); |
- } else if (op->IsDoubleRegister()) { |
- Abort(kToOperandIsDoubleRegisterUnimplemented); |
- return Operand(0); |
- } |
- // Stack slots not implemented, use ToMemOperand instead. |
- UNREACHABLE(); |
- return Operand(0); |
-} |
- |
- |
-Operand LCodeGen::ToOperand32(LOperand* op) { |
- DCHECK(op != NULL); |
- if (op->IsRegister()) { |
- return Operand(ToRegister32(op)); |
- } else if (op->IsConstantOperand()) { |
- LConstantOperand* const_op = LConstantOperand::cast(op); |
- HConstant* constant = chunk()->LookupConstant(const_op); |
- Representation r = chunk_->LookupLiteralRepresentation(const_op); |
- if (r.IsInteger32()) { |
- return Operand(constant->Integer32Value()); |
- } else { |
- // Other constants not implemented. |
- Abort(kToOperand32UnsupportedImmediate); |
- } |
- } |
- // Other cases are not implemented. |
- UNREACHABLE(); |
- return Operand(0); |
-} |
- |
- |
-static int64_t ArgumentsOffsetWithoutFrame(int index) { |
- DCHECK(index < 0); |
- return -(index + 1) * kPointerSize; |
-} |
- |
- |
-MemOperand LCodeGen::ToMemOperand(LOperand* op, StackMode stack_mode) const { |
- DCHECK(op != NULL); |
- DCHECK(!op->IsRegister()); |
- DCHECK(!op->IsDoubleRegister()); |
- DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot()); |
- if (NeedsEagerFrame()) { |
- int fp_offset = StackSlotOffset(op->index()); |
- // Loads and stores have a bigger reach in positive offset than negative. |
- // We try to access using jssp (positive offset) first, then fall back to |
- // fp (negative offset) if that fails. |
- // |
- // We can reference a stack slot from jssp only if we know how much we've |
- // put on the stack. We don't know this in the following cases: |
- // - stack_mode != kCanUseStackPointer: this is the case when deferred |
- // code has saved the registers. |
- // - saves_caller_doubles(): some double registers have been pushed, jssp |
- // references the end of the double registers and not the end of the stack |
- // slots. |
- // In both of the cases above, we _could_ add the tracking information |
- // required so that we can use jssp here, but in practice it isn't worth it. |
- if ((stack_mode == kCanUseStackPointer) && |
- !info()->saves_caller_doubles()) { |
- int jssp_offset_to_fp = |
- StandardFrameConstants::kFixedFrameSizeFromFp + |
- (pushed_arguments_ + GetStackSlotCount()) * kPointerSize; |
- int jssp_offset = fp_offset + jssp_offset_to_fp; |
- if (masm()->IsImmLSScaled(jssp_offset, LSDoubleWord)) { |
- return MemOperand(masm()->StackPointer(), jssp_offset); |
- } |
- } |
- return MemOperand(fp, fp_offset); |
- } else { |
- // Retrieve parameter without eager stack-frame relative to the |
- // stack-pointer. |
- return MemOperand(masm()->StackPointer(), |
- ArgumentsOffsetWithoutFrame(op->index())); |
- } |
-} |
- |
- |
-Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const { |
- HConstant* constant = chunk_->LookupConstant(op); |
- DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged()); |
- return constant->handle(isolate()); |
-} |
- |
- |
-template <class LI> |
-Operand LCodeGen::ToShiftedRightOperand32(LOperand* right, LI* shift_info) { |
- if (shift_info->shift() == NO_SHIFT) { |
- return ToOperand32(right); |
- } else { |
- return Operand( |
- ToRegister32(right), |
- shift_info->shift(), |
- JSShiftAmountFromLConstant(shift_info->shift_amount())); |
- } |
-} |
- |
- |
-bool LCodeGen::IsSmi(LConstantOperand* op) const { |
- return chunk_->LookupLiteralRepresentation(op).IsSmi(); |
-} |
- |
- |
-bool LCodeGen::IsInteger32Constant(LConstantOperand* op) const { |
- return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32(); |
-} |
- |
- |
-int32_t LCodeGen::ToInteger32(LConstantOperand* op) const { |
- HConstant* constant = chunk_->LookupConstant(op); |
- return constant->Integer32Value(); |
-} |
- |
- |
-double LCodeGen::ToDouble(LConstantOperand* op) const { |
- HConstant* constant = chunk_->LookupConstant(op); |
- DCHECK(constant->HasDoubleValue()); |
- return constant->DoubleValue(); |
-} |
- |
- |
-Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) { |
- Condition cond = nv; |
- switch (op) { |
- case Token::EQ: |
- case Token::EQ_STRICT: |
- cond = eq; |
- break; |
- case Token::NE: |
- case Token::NE_STRICT: |
- cond = ne; |
- break; |
- case Token::LT: |
- cond = is_unsigned ? lo : lt; |
- break; |
- case Token::GT: |
- cond = is_unsigned ? hi : gt; |
- break; |
- case Token::LTE: |
- cond = is_unsigned ? ls : le; |
- break; |
- case Token::GTE: |
- cond = is_unsigned ? hs : ge; |
- break; |
- case Token::IN: |
- case Token::INSTANCEOF: |
- default: |
- UNREACHABLE(); |
- } |
- return cond; |
-} |
- |
- |
-template<class InstrType> |
-void LCodeGen::EmitBranchGeneric(InstrType instr, |
- const BranchGenerator& branch) { |
- int left_block = instr->TrueDestination(chunk_); |
- int right_block = instr->FalseDestination(chunk_); |
- |
- int next_block = GetNextEmittedBlock(); |
- |
- if (right_block == left_block) { |
- EmitGoto(left_block); |
- } else if (left_block == next_block) { |
- branch.EmitInverted(chunk_->GetAssemblyLabel(right_block)); |
- } else { |
- branch.Emit(chunk_->GetAssemblyLabel(left_block)); |
- if (right_block != next_block) { |
- __ B(chunk_->GetAssemblyLabel(right_block)); |
- } |
- } |
-} |
- |
- |
-template<class InstrType> |
-void LCodeGen::EmitBranch(InstrType instr, Condition condition) { |
- DCHECK((condition != al) && (condition != nv)); |
- BranchOnCondition branch(this, condition); |
- EmitBranchGeneric(instr, branch); |
-} |
- |
- |
-template<class InstrType> |
-void LCodeGen::EmitCompareAndBranch(InstrType instr, |
- Condition condition, |
- const Register& lhs, |
- const Operand& rhs) { |
- DCHECK((condition != al) && (condition != nv)); |
- CompareAndBranch branch(this, condition, lhs, rhs); |
- EmitBranchGeneric(instr, branch); |
-} |
- |
- |
-template<class InstrType> |
-void LCodeGen::EmitTestAndBranch(InstrType instr, |
- Condition condition, |
- const Register& value, |
- uint64_t mask) { |
- DCHECK((condition != al) && (condition != nv)); |
- TestAndBranch branch(this, condition, value, mask); |
- EmitBranchGeneric(instr, branch); |
-} |
- |
- |
-template<class InstrType> |
-void LCodeGen::EmitBranchIfNonZeroNumber(InstrType instr, |
- const FPRegister& value, |
- const FPRegister& scratch) { |
- BranchIfNonZeroNumber branch(this, value, scratch); |
- EmitBranchGeneric(instr, branch); |
-} |
- |
- |
-template<class InstrType> |
-void LCodeGen::EmitBranchIfHeapNumber(InstrType instr, |
- const Register& value) { |
- BranchIfHeapNumber branch(this, value); |
- EmitBranchGeneric(instr, branch); |
-} |
- |
- |
-template<class InstrType> |
-void LCodeGen::EmitBranchIfRoot(InstrType instr, |
- const Register& value, |
- Heap::RootListIndex index) { |
- BranchIfRoot branch(this, value, index); |
- EmitBranchGeneric(instr, branch); |
-} |
- |
- |
-void LCodeGen::DoGap(LGap* gap) { |
- for (int i = LGap::FIRST_INNER_POSITION; |
- i <= LGap::LAST_INNER_POSITION; |
- i++) { |
- LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i); |
- LParallelMove* move = gap->GetParallelMove(inner_pos); |
- if (move != NULL) { |
- resolver_.Resolve(move); |
- } |
- } |
-} |
- |
- |
-void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) { |
- Register arguments = ToRegister(instr->arguments()); |
- Register result = ToRegister(instr->result()); |
- |
- // The pointer to the arguments array come from DoArgumentsElements. |
- // It does not point directly to the arguments and there is an offest of |
- // two words that we must take into account when accessing an argument. |
- // Subtracting the index from length accounts for one, so we add one more. |
- |
- if (instr->length()->IsConstantOperand() && |
- instr->index()->IsConstantOperand()) { |
- int index = ToInteger32(LConstantOperand::cast(instr->index())); |
- int length = ToInteger32(LConstantOperand::cast(instr->length())); |
- int offset = ((length - index) + 1) * kPointerSize; |
- __ Ldr(result, MemOperand(arguments, offset)); |
- } else if (instr->index()->IsConstantOperand()) { |
- Register length = ToRegister32(instr->length()); |
- int index = ToInteger32(LConstantOperand::cast(instr->index())); |
- int loc = index - 1; |
- if (loc != 0) { |
- __ Sub(result.W(), length, loc); |
- __ Ldr(result, MemOperand(arguments, result, UXTW, kPointerSizeLog2)); |
- } else { |
- __ Ldr(result, MemOperand(arguments, length, UXTW, kPointerSizeLog2)); |
- } |
- } else { |
- Register length = ToRegister32(instr->length()); |
- Operand index = ToOperand32(instr->index()); |
- __ Sub(result.W(), length, index); |
- __ Add(result.W(), result.W(), 1); |
- __ Ldr(result, MemOperand(arguments, result, UXTW, kPointerSizeLog2)); |
- } |
-} |
- |
- |
-void LCodeGen::DoAddE(LAddE* instr) { |
- Register result = ToRegister(instr->result()); |
- Register left = ToRegister(instr->left()); |
- Operand right = Operand(x0); // Dummy initialization. |
- if (instr->hydrogen()->external_add_type() == AddOfExternalAndTagged) { |
- right = Operand(ToRegister(instr->right())); |
- } else if (instr->right()->IsConstantOperand()) { |
- right = ToInteger32(LConstantOperand::cast(instr->right())); |
- } else { |
- right = Operand(ToRegister32(instr->right()), SXTW); |
- } |
- |
- DCHECK(!instr->hydrogen()->CheckFlag(HValue::kCanOverflow)); |
- __ Add(result, left, right); |
-} |
- |
- |
-void LCodeGen::DoAddI(LAddI* instr) { |
- bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); |
- Register result = ToRegister32(instr->result()); |
- Register left = ToRegister32(instr->left()); |
- Operand right = ToShiftedRightOperand32(instr->right(), instr); |
- |
- if (can_overflow) { |
- __ Adds(result, left, right); |
- DeoptimizeIf(vs, instr, Deoptimizer::kOverflow); |
- } else { |
- __ Add(result, left, right); |
- } |
-} |
- |
- |
-void LCodeGen::DoAddS(LAddS* instr) { |
- bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); |
- Register result = ToRegister(instr->result()); |
- Register left = ToRegister(instr->left()); |
- Operand right = ToOperand(instr->right()); |
- if (can_overflow) { |
- __ Adds(result, left, right); |
- DeoptimizeIf(vs, instr, Deoptimizer::kOverflow); |
- } else { |
- __ Add(result, left, right); |
- } |
-} |
- |
- |
-void LCodeGen::DoAllocate(LAllocate* instr) { |
- class DeferredAllocate: public LDeferredCode { |
- public: |
- DeferredAllocate(LCodeGen* codegen, LAllocate* instr) |
- : LDeferredCode(codegen), instr_(instr) { } |
- virtual void Generate() { codegen()->DoDeferredAllocate(instr_); } |
- virtual LInstruction* instr() { return instr_; } |
- private: |
- LAllocate* instr_; |
- }; |
- |
- DeferredAllocate* deferred = new(zone()) DeferredAllocate(this, instr); |
- |
- Register result = ToRegister(instr->result()); |
- Register temp1 = ToRegister(instr->temp1()); |
- Register temp2 = ToRegister(instr->temp2()); |
- |
- // Allocate memory for the object. |
- AllocationFlags flags = TAG_OBJECT; |
- if (instr->hydrogen()->MustAllocateDoubleAligned()) { |
- flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT); |
- } |
- |
- if (instr->hydrogen()->IsOldSpaceAllocation()) { |
- DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); |
- flags = static_cast<AllocationFlags>(flags | PRETENURE); |
- } |
- |
- if (instr->size()->IsConstantOperand()) { |
- int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); |
- CHECK(size <= Page::kMaxRegularHeapObjectSize); |
- __ Allocate(size, result, temp1, temp2, deferred->entry(), flags); |
- } else { |
- Register size = ToRegister32(instr->size()); |
- __ Sxtw(size.X(), size); |
- __ Allocate(size.X(), result, temp1, temp2, deferred->entry(), flags); |
- } |
- |
- __ Bind(deferred->exit()); |
- |
- if (instr->hydrogen()->MustPrefillWithFiller()) { |
- Register filler_count = temp1; |
- Register filler = temp2; |
- Register untagged_result = ToRegister(instr->temp3()); |
- |
- if (instr->size()->IsConstantOperand()) { |
- int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); |
- __ Mov(filler_count, size / kPointerSize); |
- } else { |
- __ Lsr(filler_count.W(), ToRegister32(instr->size()), kPointerSizeLog2); |
- } |
- |
- __ Sub(untagged_result, result, kHeapObjectTag); |
- __ Mov(filler, Operand(isolate()->factory()->one_pointer_filler_map())); |
- __ FillFields(untagged_result, filler_count, filler); |
- } else { |
- DCHECK(instr->temp3() == NULL); |
- } |
-} |
- |
- |
-void LCodeGen::DoDeferredAllocate(LAllocate* instr) { |
- // TODO(3095996): Get rid of this. For now, we need to make the |
- // result register contain a valid pointer because it is already |
- // contained in the register pointer map. |
- __ Mov(ToRegister(instr->result()), Smi::FromInt(0)); |
- |
- PushSafepointRegistersScope scope(this); |
- // We're in a SafepointRegistersScope so we can use any scratch registers. |
- Register size = x0; |
- if (instr->size()->IsConstantOperand()) { |
- __ Mov(size, ToSmi(LConstantOperand::cast(instr->size()))); |
- } else { |
- __ SmiTag(size, ToRegister32(instr->size()).X()); |
- } |
- int flags = AllocateDoubleAlignFlag::encode( |
- instr->hydrogen()->MustAllocateDoubleAligned()); |
- if (instr->hydrogen()->IsOldSpaceAllocation()) { |
- DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); |
- flags = AllocateTargetSpace::update(flags, OLD_SPACE); |
- } else { |
- flags = AllocateTargetSpace::update(flags, NEW_SPACE); |
- } |
- __ Mov(x10, Smi::FromInt(flags)); |
- __ Push(size, x10); |
- |
- CallRuntimeFromDeferred( |
- Runtime::kAllocateInTargetSpace, 2, instr, instr->context()); |
- __ StoreToSafepointRegisterSlot(x0, ToRegister(instr->result())); |
-} |
- |
- |
-void LCodeGen::DoApplyArguments(LApplyArguments* instr) { |
- Register receiver = ToRegister(instr->receiver()); |
- Register function = ToRegister(instr->function()); |
- Register length = ToRegister32(instr->length()); |
- |
- Register elements = ToRegister(instr->elements()); |
- Register scratch = x5; |
- DCHECK(receiver.Is(x0)); // Used for parameter count. |
- DCHECK(function.Is(x1)); // Required by InvokeFunction. |
- DCHECK(ToRegister(instr->result()).Is(x0)); |
- DCHECK(instr->IsMarkedAsCall()); |
- |
- // Copy the arguments to this function possibly from the |
- // adaptor frame below it. |
- const uint32_t kArgumentsLimit = 1 * KB; |
- __ Cmp(length, kArgumentsLimit); |
- DeoptimizeIf(hi, instr, Deoptimizer::kTooManyArguments); |
- |
- // Push the receiver and use the register to keep the original |
- // number of arguments. |
- __ Push(receiver); |
- Register argc = receiver; |
- receiver = NoReg; |
- __ Sxtw(argc, length); |
- // The arguments are at a one pointer size offset from elements. |
- __ Add(elements, elements, 1 * kPointerSize); |
- |
- // Loop through the arguments pushing them onto the execution |
- // stack. |
- Label invoke, loop; |
- // length is a small non-negative integer, due to the test above. |
- __ Cbz(length, &invoke); |
- __ Bind(&loop); |
- __ Ldr(scratch, MemOperand(elements, length, SXTW, kPointerSizeLog2)); |
- __ Push(scratch); |
- __ Subs(length, length, 1); |
- __ B(ne, &loop); |
- |
- __ Bind(&invoke); |
- DCHECK(instr->HasPointerMap()); |
- LPointerMap* pointers = instr->pointer_map(); |
- SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt); |
- // The number of arguments is stored in argc (receiver) which is x0, as |
- // expected by InvokeFunction. |
- ParameterCount actual(argc); |
- __ InvokeFunction(function, actual, CALL_FUNCTION, safepoint_generator); |
-} |
- |
- |
-void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) { |
- Register result = ToRegister(instr->result()); |
- |
- if (instr->hydrogen()->from_inlined()) { |
- // When we are inside an inlined function, the arguments are the last things |
- // that have been pushed on the stack. Therefore the arguments array can be |
- // accessed directly from jssp. |
- // However in the normal case, it is accessed via fp but there are two words |
- // on the stack between fp and the arguments (the saved lr and fp) and the |
- // LAccessArgumentsAt implementation take that into account. |
- // In the inlined case we need to subtract the size of 2 words to jssp to |
- // get a pointer which will work well with LAccessArgumentsAt. |
- DCHECK(masm()->StackPointer().Is(jssp)); |
- __ Sub(result, jssp, 2 * kPointerSize); |
- } else { |
- DCHECK(instr->temp() != NULL); |
- Register previous_fp = ToRegister(instr->temp()); |
- |
- __ Ldr(previous_fp, |
- MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
- __ Ldr(result, |
- MemOperand(previous_fp, StandardFrameConstants::kContextOffset)); |
- __ Cmp(result, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); |
- __ Csel(result, fp, previous_fp, ne); |
- } |
-} |
- |
- |
-void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) { |
- Register elements = ToRegister(instr->elements()); |
- Register result = ToRegister32(instr->result()); |
- Label done; |
- |
- // If no arguments adaptor frame the number of arguments is fixed. |
- __ Cmp(fp, elements); |
- __ Mov(result, scope()->num_parameters()); |
- __ B(eq, &done); |
- |
- // Arguments adaptor frame present. Get argument length from there. |
- __ Ldr(result.X(), MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
- __ Ldr(result, |
- UntagSmiMemOperand(result.X(), |
- ArgumentsAdaptorFrameConstants::kLengthOffset)); |
- |
- // Argument length is in result register. |
- __ Bind(&done); |
-} |
- |
- |
-void LCodeGen::DoArithmeticD(LArithmeticD* instr) { |
- DoubleRegister left = ToDoubleRegister(instr->left()); |
- DoubleRegister right = ToDoubleRegister(instr->right()); |
- DoubleRegister result = ToDoubleRegister(instr->result()); |
- |
- switch (instr->op()) { |
- case Token::ADD: __ Fadd(result, left, right); break; |
- case Token::SUB: __ Fsub(result, left, right); break; |
- case Token::MUL: __ Fmul(result, left, right); break; |
- case Token::DIV: __ Fdiv(result, left, right); break; |
- case Token::MOD: { |
- // The ECMA-262 remainder operator is the remainder from a truncating |
- // (round-towards-zero) division. Note that this differs from IEEE-754. |
- // |
- // TODO(jbramley): See if it's possible to do this inline, rather than by |
- // calling a helper function. With frintz (to produce the intermediate |
- // quotient) and fmsub (to calculate the remainder without loss of |
- // precision), it should be possible. However, we would need support for |
- // fdiv in round-towards-zero mode, and the ARM64 simulator doesn't |
- // support that yet. |
- DCHECK(left.Is(d0)); |
- DCHECK(right.Is(d1)); |
- __ CallCFunction( |
- ExternalReference::mod_two_doubles_operation(isolate()), |
- 0, 2); |
- DCHECK(result.Is(d0)); |
- break; |
- } |
- default: |
- UNREACHABLE(); |
- break; |
- } |
-} |
- |
- |
-void LCodeGen::DoArithmeticT(LArithmeticT* instr) { |
- DCHECK(ToRegister(instr->context()).is(cp)); |
- DCHECK(ToRegister(instr->left()).is(x1)); |
- DCHECK(ToRegister(instr->right()).is(x0)); |
- DCHECK(ToRegister(instr->result()).is(x0)); |
- |
- Handle<Code> code = |
- CodeFactory::BinaryOpIC(isolate(), instr->op(), instr->strength()).code(); |
- CallCode(code, RelocInfo::CODE_TARGET, instr); |
-} |
- |
- |
-void LCodeGen::DoBitI(LBitI* instr) { |
- Register result = ToRegister32(instr->result()); |
- Register left = ToRegister32(instr->left()); |
- Operand right = ToShiftedRightOperand32(instr->right(), instr); |
- |
- switch (instr->op()) { |
- case Token::BIT_AND: __ And(result, left, right); break; |
- case Token::BIT_OR: __ Orr(result, left, right); break; |
- case Token::BIT_XOR: __ Eor(result, left, right); break; |
- default: |
- UNREACHABLE(); |
- break; |
- } |
-} |
- |
- |
-void LCodeGen::DoBitS(LBitS* instr) { |
- Register result = ToRegister(instr->result()); |
- Register left = ToRegister(instr->left()); |
- Operand right = ToOperand(instr->right()); |
- |
- switch (instr->op()) { |
- case Token::BIT_AND: __ And(result, left, right); break; |
- case Token::BIT_OR: __ Orr(result, left, right); break; |
- case Token::BIT_XOR: __ Eor(result, left, right); break; |
- default: |
- UNREACHABLE(); |
- break; |
- } |
-} |
- |
- |
-void LCodeGen::DoBoundsCheck(LBoundsCheck *instr) { |
- Condition cond = instr->hydrogen()->allow_equality() ? hi : hs; |
- DCHECK(instr->hydrogen()->index()->representation().IsInteger32()); |
- DCHECK(instr->hydrogen()->length()->representation().IsInteger32()); |
- if (instr->index()->IsConstantOperand()) { |
- Operand index = ToOperand32(instr->index()); |
- Register length = ToRegister32(instr->length()); |
- __ Cmp(length, index); |
- cond = CommuteCondition(cond); |
- } else { |
- Register index = ToRegister32(instr->index()); |
- Operand length = ToOperand32(instr->length()); |
- __ Cmp(index, length); |
- } |
- if (FLAG_debug_code && instr->hydrogen()->skip_check()) { |
- __ Assert(NegateCondition(cond), kEliminatedBoundsCheckFailed); |
- } else { |
- DeoptimizeIf(cond, instr, Deoptimizer::kOutOfBounds); |
- } |
-} |
- |
- |
-void LCodeGen::DoBranch(LBranch* instr) { |
- Representation r = instr->hydrogen()->value()->representation(); |
- Label* true_label = instr->TrueLabel(chunk_); |
- Label* false_label = instr->FalseLabel(chunk_); |
- |
- if (r.IsInteger32()) { |
- DCHECK(!info()->IsStub()); |
- EmitCompareAndBranch(instr, ne, ToRegister32(instr->value()), 0); |
- } else if (r.IsSmi()) { |
- DCHECK(!info()->IsStub()); |
- STATIC_ASSERT(kSmiTag == 0); |
- EmitCompareAndBranch(instr, ne, ToRegister(instr->value()), 0); |
- } else if (r.IsDouble()) { |
- DoubleRegister value = ToDoubleRegister(instr->value()); |
- // Test the double value. Zero and NaN are false. |
- EmitBranchIfNonZeroNumber(instr, value, double_scratch()); |
- } else { |
- DCHECK(r.IsTagged()); |
- Register value = ToRegister(instr->value()); |
- HType type = instr->hydrogen()->value()->type(); |
- |
- if (type.IsBoolean()) { |
- DCHECK(!info()->IsStub()); |
- __ CompareRoot(value, Heap::kTrueValueRootIndex); |
- EmitBranch(instr, eq); |
- } else if (type.IsSmi()) { |
- DCHECK(!info()->IsStub()); |
- EmitCompareAndBranch(instr, ne, value, Smi::FromInt(0)); |
- } else if (type.IsJSArray()) { |
- DCHECK(!info()->IsStub()); |
- EmitGoto(instr->TrueDestination(chunk())); |
- } else if (type.IsHeapNumber()) { |
- DCHECK(!info()->IsStub()); |
- __ Ldr(double_scratch(), FieldMemOperand(value, |
- HeapNumber::kValueOffset)); |
- // Test the double value. Zero and NaN are false. |
- EmitBranchIfNonZeroNumber(instr, double_scratch(), double_scratch()); |
- } else if (type.IsString()) { |
- DCHECK(!info()->IsStub()); |
- Register temp = ToRegister(instr->temp1()); |
- __ Ldr(temp, FieldMemOperand(value, String::kLengthOffset)); |
- EmitCompareAndBranch(instr, ne, temp, 0); |
- } else { |
- ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types(); |
- // Avoid deopts in the case where we've never executed this path before. |
- if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic(); |
- |
- if (expected.Contains(ToBooleanStub::UNDEFINED)) { |
- // undefined -> false. |
- __ JumpIfRoot( |
- value, Heap::kUndefinedValueRootIndex, false_label); |
- } |
- |
- if (expected.Contains(ToBooleanStub::BOOLEAN)) { |
- // Boolean -> its value. |
- __ JumpIfRoot( |
- value, Heap::kTrueValueRootIndex, true_label); |
- __ JumpIfRoot( |
- value, Heap::kFalseValueRootIndex, false_label); |
- } |
- |
- if (expected.Contains(ToBooleanStub::NULL_TYPE)) { |
- // 'null' -> false. |
- __ JumpIfRoot( |
- value, Heap::kNullValueRootIndex, false_label); |
- } |
- |
- if (expected.Contains(ToBooleanStub::SMI)) { |
- // Smis: 0 -> false, all other -> true. |
- DCHECK(Smi::FromInt(0) == 0); |
- __ Cbz(value, false_label); |
- __ JumpIfSmi(value, true_label); |
- } else if (expected.NeedsMap()) { |
- // If we need a map later and have a smi, deopt. |
- DeoptimizeIfSmi(value, instr, Deoptimizer::kSmi); |
- } |
- |
- Register map = NoReg; |
- Register scratch = NoReg; |
- |
- if (expected.NeedsMap()) { |
- DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL)); |
- map = ToRegister(instr->temp1()); |
- scratch = ToRegister(instr->temp2()); |
- |
- __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset)); |
- |
- if (expected.CanBeUndetectable()) { |
- // Undetectable -> false. |
- __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset)); |
- __ TestAndBranchIfAnySet( |
- scratch, 1 << Map::kIsUndetectable, false_label); |
- } |
- } |
- |
- if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) { |
- // spec object -> true. |
- __ CompareInstanceType(map, scratch, FIRST_SPEC_OBJECT_TYPE); |
- __ B(ge, true_label); |
- } |
- |
- if (expected.Contains(ToBooleanStub::STRING)) { |
- // String value -> false iff empty. |
- Label not_string; |
- __ CompareInstanceType(map, scratch, FIRST_NONSTRING_TYPE); |
- __ B(ge, ¬_string); |
- __ Ldr(scratch, FieldMemOperand(value, String::kLengthOffset)); |
- __ Cbz(scratch, false_label); |
- __ B(true_label); |
- __ Bind(¬_string); |
- } |
- |
- if (expected.Contains(ToBooleanStub::SYMBOL)) { |
- // Symbol value -> true. |
- __ CompareInstanceType(map, scratch, SYMBOL_TYPE); |
- __ B(eq, true_label); |
- } |
- |
- if (expected.Contains(ToBooleanStub::SIMD_VALUE)) { |
- // SIMD value -> true. |
- __ CompareInstanceType(map, scratch, SIMD128_VALUE_TYPE); |
- __ B(eq, true_label); |
- } |
- |
- if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) { |
- Label not_heap_number; |
- __ JumpIfNotRoot(map, Heap::kHeapNumberMapRootIndex, ¬_heap_number); |
- |
- __ Ldr(double_scratch(), |
- FieldMemOperand(value, HeapNumber::kValueOffset)); |
- __ Fcmp(double_scratch(), 0.0); |
- // If we got a NaN (overflow bit is set), jump to the false branch. |
- __ B(vs, false_label); |
- __ B(eq, false_label); |
- __ B(true_label); |
- __ Bind(¬_heap_number); |
- } |
- |
- if (!expected.IsGeneric()) { |
- // We've seen something for the first time -> deopt. |
- // This can only happen if we are not generic already. |
- Deoptimize(instr, Deoptimizer::kUnexpectedObject); |
- } |
- } |
- } |
-} |
- |
- |
-void LCodeGen::CallKnownFunction(Handle<JSFunction> function, |
- int formal_parameter_count, int arity, |
- LInstruction* instr) { |
- bool dont_adapt_arguments = |
- formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel; |
- bool can_invoke_directly = |
- dont_adapt_arguments || formal_parameter_count == arity; |
- |
- // The function interface relies on the following register assignments. |
- Register function_reg = x1; |
- Register arity_reg = x0; |
- |
- LPointerMap* pointers = instr->pointer_map(); |
- |
- if (FLAG_debug_code) { |
- Label is_not_smi; |
- // Try to confirm that function_reg (x1) is a tagged pointer. |
- __ JumpIfNotSmi(function_reg, &is_not_smi); |
- __ Abort(kExpectedFunctionObject); |
- __ Bind(&is_not_smi); |
- } |
- |
- if (can_invoke_directly) { |
- // Change context. |
- __ Ldr(cp, FieldMemOperand(function_reg, JSFunction::kContextOffset)); |
- |
- // Always initialize x0 to the number of actual arguments. |
- __ Mov(arity_reg, arity); |
- |
- // Invoke function. |
- __ Ldr(x10, FieldMemOperand(function_reg, JSFunction::kCodeEntryOffset)); |
- __ Call(x10); |
- |
- // Set up deoptimization. |
- RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); |
- } else { |
- SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); |
- ParameterCount count(arity); |
- ParameterCount expected(formal_parameter_count); |
- __ InvokeFunction(function_reg, expected, count, CALL_FUNCTION, generator); |
- } |
-} |
- |
- |
-void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) { |
- DCHECK(instr->IsMarkedAsCall()); |
- DCHECK(ToRegister(instr->result()).Is(x0)); |
- |
- if (instr->hydrogen()->IsTailCall()) { |
- if (NeedsEagerFrame()) __ LeaveFrame(StackFrame::INTERNAL); |
- |
- if (instr->target()->IsConstantOperand()) { |
- LConstantOperand* target = LConstantOperand::cast(instr->target()); |
- Handle<Code> code = Handle<Code>::cast(ToHandle(target)); |
- // TODO(all): on ARM we use a call descriptor to specify a storage mode |
- // but on ARM64 we only have one storage mode so it isn't necessary. Check |
- // this understanding is correct. |
- __ Jump(code, RelocInfo::CODE_TARGET); |
- } else { |
- DCHECK(instr->target()->IsRegister()); |
- Register target = ToRegister(instr->target()); |
- __ Add(target, target, Code::kHeaderSize - kHeapObjectTag); |
- __ Br(target); |
- } |
- } else { |
- LPointerMap* pointers = instr->pointer_map(); |
- SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); |
- |
- if (instr->target()->IsConstantOperand()) { |
- LConstantOperand* target = LConstantOperand::cast(instr->target()); |
- Handle<Code> code = Handle<Code>::cast(ToHandle(target)); |
- generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET)); |
- // TODO(all): on ARM we use a call descriptor to specify a storage mode |
- // but on ARM64 we only have one storage mode so it isn't necessary. Check |
- // this understanding is correct. |
- __ Call(code, RelocInfo::CODE_TARGET, TypeFeedbackId::None()); |
- } else { |
- DCHECK(instr->target()->IsRegister()); |
- Register target = ToRegister(instr->target()); |
- generator.BeforeCall(__ CallSize(target)); |
- __ Add(target, target, Code::kHeaderSize - kHeapObjectTag); |
- __ Call(target); |
- } |
- generator.AfterCall(); |
- } |
- |
- RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta()); |
-} |
- |
- |
-void LCodeGen::DoCallJSFunction(LCallJSFunction* instr) { |
- DCHECK(instr->IsMarkedAsCall()); |
- DCHECK(ToRegister(instr->function()).is(x1)); |
- |
- __ Mov(x0, Operand(instr->arity())); |
- |
- // Change context. |
- __ Ldr(cp, FieldMemOperand(x1, JSFunction::kContextOffset)); |
- |
- // Load the code entry address |
- __ Ldr(x10, FieldMemOperand(x1, JSFunction::kCodeEntryOffset)); |
- __ Call(x10); |
- |
- RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); |
- RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta()); |
-} |
- |
- |
-void LCodeGen::DoCallRuntime(LCallRuntime* instr) { |
- CallRuntime(instr->function(), instr->arity(), instr); |
- RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta()); |
-} |
- |
- |
-void LCodeGen::DoCallStub(LCallStub* instr) { |
- DCHECK(ToRegister(instr->context()).is(cp)); |
- DCHECK(ToRegister(instr->result()).is(x0)); |
- switch (instr->hydrogen()->major_key()) { |
- case CodeStub::RegExpExec: { |
- RegExpExecStub stub(isolate()); |
- CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
- break; |
- } |
- case CodeStub::SubString: { |
- SubStringStub stub(isolate()); |
- CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
- break; |
- } |
- default: |
- UNREACHABLE(); |
- } |
- RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta()); |
-} |
- |
- |
-void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) { |
- GenerateOsrPrologue(); |
-} |
- |
- |
-void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) { |
- Register temp = ToRegister(instr->temp()); |
- { |
- PushSafepointRegistersScope scope(this); |
- __ Push(object); |
- __ Mov(cp, 0); |
- __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance); |
- RecordSafepointWithRegisters( |
- instr->pointer_map(), 1, Safepoint::kNoLazyDeopt); |
- __ StoreToSafepointRegisterSlot(x0, temp); |
- } |
- DeoptimizeIfSmi(temp, instr, Deoptimizer::kInstanceMigrationFailed); |
-} |
- |
- |
-void LCodeGen::DoCheckMaps(LCheckMaps* instr) { |
- class DeferredCheckMaps: public LDeferredCode { |
- public: |
- DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object) |
- : LDeferredCode(codegen), instr_(instr), object_(object) { |
- SetExit(check_maps()); |
- } |
- virtual void Generate() { |
- codegen()->DoDeferredInstanceMigration(instr_, object_); |
- } |
- Label* check_maps() { return &check_maps_; } |
- virtual LInstruction* instr() { return instr_; } |
- private: |
- LCheckMaps* instr_; |
- Label check_maps_; |
- Register object_; |
- }; |
- |
- if (instr->hydrogen()->IsStabilityCheck()) { |
- const UniqueSet<Map>* maps = instr->hydrogen()->maps(); |
- for (int i = 0; i < maps->size(); ++i) { |
- AddStabilityDependency(maps->at(i).handle()); |
- } |
- return; |
- } |
- |
- Register object = ToRegister(instr->value()); |
- Register map_reg = ToRegister(instr->temp()); |
- |
- __ Ldr(map_reg, FieldMemOperand(object, HeapObject::kMapOffset)); |
- |
- DeferredCheckMaps* deferred = NULL; |
- if (instr->hydrogen()->HasMigrationTarget()) { |
- deferred = new(zone()) DeferredCheckMaps(this, instr, object); |
- __ Bind(deferred->check_maps()); |
- } |
- |
- const UniqueSet<Map>* maps = instr->hydrogen()->maps(); |
- Label success; |
- for (int i = 0; i < maps->size() - 1; i++) { |
- Handle<Map> map = maps->at(i).handle(); |
- __ CompareMap(map_reg, map); |
- __ B(eq, &success); |
- } |
- Handle<Map> map = maps->at(maps->size() - 1).handle(); |
- __ CompareMap(map_reg, map); |
- |
- // We didn't match a map. |
- if (instr->hydrogen()->HasMigrationTarget()) { |
- __ B(ne, deferred->entry()); |
- } else { |
- DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap); |
- } |
- |
- __ Bind(&success); |
-} |
- |
- |
-void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) { |
- if (!instr->hydrogen()->value()->type().IsHeapObject()) { |
- DeoptimizeIfSmi(ToRegister(instr->value()), instr, Deoptimizer::kSmi); |
- } |
-} |
- |
- |
-void LCodeGen::DoCheckSmi(LCheckSmi* instr) { |
- Register value = ToRegister(instr->value()); |
- DCHECK(!instr->result() || ToRegister(instr->result()).Is(value)); |
- DeoptimizeIfNotSmi(value, instr, Deoptimizer::kNotASmi); |
-} |
- |
- |
-void LCodeGen::DoCheckArrayBufferNotNeutered( |
- LCheckArrayBufferNotNeutered* instr) { |
- UseScratchRegisterScope temps(masm()); |
- Register view = ToRegister(instr->view()); |
- Register scratch = temps.AcquireX(); |
- |
- __ Ldr(scratch, FieldMemOperand(view, JSArrayBufferView::kBufferOffset)); |
- __ Ldr(scratch, FieldMemOperand(scratch, JSArrayBuffer::kBitFieldOffset)); |
- __ Tst(scratch, Operand(1 << JSArrayBuffer::WasNeutered::kShift)); |
- DeoptimizeIf(ne, instr, Deoptimizer::kOutOfBounds); |
-} |
- |
- |
-void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) { |
- Register input = ToRegister(instr->value()); |
- Register scratch = ToRegister(instr->temp()); |
- |
- __ Ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); |
- __ Ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); |
- |
- if (instr->hydrogen()->is_interval_check()) { |
- InstanceType first, last; |
- instr->hydrogen()->GetCheckInterval(&first, &last); |
- |
- __ Cmp(scratch, first); |
- if (first == last) { |
- // If there is only one type in the interval check for equality. |
- DeoptimizeIf(ne, instr, Deoptimizer::kWrongInstanceType); |
- } else if (last == LAST_TYPE) { |
- // We don't need to compare with the higher bound of the interval. |
- DeoptimizeIf(lo, instr, Deoptimizer::kWrongInstanceType); |
- } else { |
- // If we are below the lower bound, set the C flag and clear the Z flag |
- // to force a deopt. |
- __ Ccmp(scratch, last, CFlag, hs); |
- DeoptimizeIf(hi, instr, Deoptimizer::kWrongInstanceType); |
- } |
- } else { |
- uint8_t mask; |
- uint8_t tag; |
- instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag); |
- |
- if (base::bits::IsPowerOfTwo32(mask)) { |
- DCHECK((tag == 0) || (tag == mask)); |
- if (tag == 0) { |
- DeoptimizeIfBitSet(scratch, MaskToBit(mask), instr, |
- Deoptimizer::kWrongInstanceType); |
- } else { |
- DeoptimizeIfBitClear(scratch, MaskToBit(mask), instr, |
- Deoptimizer::kWrongInstanceType); |
- } |
- } else { |
- if (tag == 0) { |
- __ Tst(scratch, mask); |
- } else { |
- __ And(scratch, scratch, mask); |
- __ Cmp(scratch, tag); |
- } |
- DeoptimizeIf(ne, instr, Deoptimizer::kWrongInstanceType); |
- } |
- } |
-} |
- |
- |
-void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) { |
- DoubleRegister input = ToDoubleRegister(instr->unclamped()); |
- Register result = ToRegister32(instr->result()); |
- __ ClampDoubleToUint8(result, input, double_scratch()); |
-} |
- |
- |
-void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) { |
- Register input = ToRegister32(instr->unclamped()); |
- Register result = ToRegister32(instr->result()); |
- __ ClampInt32ToUint8(result, input); |
-} |
- |
- |
-void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) { |
- Register input = ToRegister(instr->unclamped()); |
- Register result = ToRegister32(instr->result()); |
- Label done; |
- |
- // Both smi and heap number cases are handled. |
- Label is_not_smi; |
- __ JumpIfNotSmi(input, &is_not_smi); |
- __ SmiUntag(result.X(), input); |
- __ ClampInt32ToUint8(result); |
- __ B(&done); |
- |
- __ Bind(&is_not_smi); |
- |
- // Check for heap number. |
- Label is_heap_number; |
- __ JumpIfHeapNumber(input, &is_heap_number); |
- |
- // Check for undefined. Undefined is coverted to zero for clamping conversion. |
- DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr, |
- Deoptimizer::kNotAHeapNumberUndefined); |
- __ Mov(result, 0); |
- __ B(&done); |
- |
- // Heap number case. |
- __ Bind(&is_heap_number); |
- DoubleRegister dbl_scratch = double_scratch(); |
- DoubleRegister dbl_scratch2 = ToDoubleRegister(instr->temp1()); |
- __ Ldr(dbl_scratch, FieldMemOperand(input, HeapNumber::kValueOffset)); |
- __ ClampDoubleToUint8(result, dbl_scratch, dbl_scratch2); |
- |
- __ Bind(&done); |
-} |
- |
- |
-void LCodeGen::DoDoubleBits(LDoubleBits* instr) { |
- DoubleRegister value_reg = ToDoubleRegister(instr->value()); |
- Register result_reg = ToRegister(instr->result()); |
- if (instr->hydrogen()->bits() == HDoubleBits::HIGH) { |
- __ Fmov(result_reg, value_reg); |
- __ Lsr(result_reg, result_reg, 32); |
- } else { |
- __ Fmov(result_reg.W(), value_reg.S()); |
- } |
-} |
- |
- |
-void LCodeGen::DoConstructDouble(LConstructDouble* instr) { |
- Register hi_reg = ToRegister(instr->hi()); |
- Register lo_reg = ToRegister(instr->lo()); |
- DoubleRegister result_reg = ToDoubleRegister(instr->result()); |
- |
- // Insert the least significant 32 bits of hi_reg into the most significant |
- // 32 bits of lo_reg, and move to a floating point register. |
- __ Bfi(lo_reg, hi_reg, 32, 32); |
- __ Fmov(result_reg, lo_reg); |
-} |
- |
- |
-void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) { |
- Handle<String> class_name = instr->hydrogen()->class_name(); |
- Label* true_label = instr->TrueLabel(chunk_); |
- Label* false_label = instr->FalseLabel(chunk_); |
- Register input = ToRegister(instr->value()); |
- Register scratch1 = ToRegister(instr->temp1()); |
- Register scratch2 = ToRegister(instr->temp2()); |
- |
- __ JumpIfSmi(input, false_label); |
- |
- Register map = scratch2; |
- if (String::Equals(isolate()->factory()->Function_string(), class_name)) { |
- // Assuming the following assertions, we can use the same compares to test |
- // for both being a function type and being in the object type range. |
- STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); |
- STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE == |
- FIRST_SPEC_OBJECT_TYPE + 1); |
- STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == |
- LAST_SPEC_OBJECT_TYPE - 1); |
- STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); |
- |
- // We expect CompareObjectType to load the object instance type in scratch1. |
- __ CompareObjectType(input, map, scratch1, FIRST_SPEC_OBJECT_TYPE); |
- __ B(lt, false_label); |
- __ B(eq, true_label); |
- __ Cmp(scratch1, LAST_SPEC_OBJECT_TYPE); |
- __ B(eq, true_label); |
- } else { |
- __ IsObjectJSObjectType(input, map, scratch1, false_label); |
- } |
- |
- // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range. |
- // Check if the constructor in the map is a function. |
- { |
- UseScratchRegisterScope temps(masm()); |
- Register instance_type = temps.AcquireX(); |
- __ GetMapConstructor(scratch1, map, scratch2, instance_type); |
- __ Cmp(instance_type, JS_FUNCTION_TYPE); |
- } |
- // Objects with a non-function constructor have class 'Object'. |
- if (String::Equals(class_name, isolate()->factory()->Object_string())) { |
- __ B(ne, true_label); |
- } else { |
- __ B(ne, false_label); |
- } |
- |
- // The constructor function is in scratch1. Get its instance class name. |
- __ Ldr(scratch1, |
- FieldMemOperand(scratch1, JSFunction::kSharedFunctionInfoOffset)); |
- __ Ldr(scratch1, |
- FieldMemOperand(scratch1, |
- SharedFunctionInfo::kInstanceClassNameOffset)); |
- |
- // The class name we are testing against is internalized since it's a literal. |
- // The name in the constructor is internalized because of the way the context |
- // is booted. This routine isn't expected to work for random API-created |
- // classes and it doesn't have to because you can't access it with natives |
- // syntax. Since both sides are internalized it is sufficient to use an |
- // identity comparison. |
- EmitCompareAndBranch(instr, eq, scratch1, Operand(class_name)); |
-} |
- |
- |
-void LCodeGen::DoCmpHoleAndBranchD(LCmpHoleAndBranchD* instr) { |
- DCHECK(instr->hydrogen()->representation().IsDouble()); |
- FPRegister object = ToDoubleRegister(instr->object()); |
- Register temp = ToRegister(instr->temp()); |
- |
- // If we don't have a NaN, we don't have the hole, so branch now to avoid the |
- // (relatively expensive) hole-NaN check. |
- __ Fcmp(object, object); |
- __ B(vc, instr->FalseLabel(chunk_)); |
- |
- // We have a NaN, but is it the hole? |
- __ Fmov(temp, object); |
- EmitCompareAndBranch(instr, eq, temp, kHoleNanInt64); |
-} |
- |
- |
-void LCodeGen::DoCmpHoleAndBranchT(LCmpHoleAndBranchT* instr) { |
- DCHECK(instr->hydrogen()->representation().IsTagged()); |
- Register object = ToRegister(instr->object()); |
- |
- EmitBranchIfRoot(instr, object, Heap::kTheHoleValueRootIndex); |
-} |
- |
- |
-void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) { |
- Register value = ToRegister(instr->value()); |
- Register map = ToRegister(instr->temp()); |
- |
- __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset)); |
- EmitCompareAndBranch(instr, eq, map, Operand(instr->map())); |
-} |
- |
- |
-void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) { |
- Representation rep = instr->hydrogen()->value()->representation(); |
- DCHECK(!rep.IsInteger32()); |
- Register scratch = ToRegister(instr->temp()); |
- |
- if (rep.IsDouble()) { |
- __ JumpIfMinusZero(ToDoubleRegister(instr->value()), |
- instr->TrueLabel(chunk())); |
- } else { |
- Register value = ToRegister(instr->value()); |
- __ JumpIfNotHeapNumber(value, instr->FalseLabel(chunk()), DO_SMI_CHECK); |
- __ Ldr(scratch, FieldMemOperand(value, HeapNumber::kValueOffset)); |
- __ JumpIfMinusZero(scratch, instr->TrueLabel(chunk())); |
- } |
- EmitGoto(instr->FalseDestination(chunk())); |
-} |
- |
- |
-void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) { |
- LOperand* left = instr->left(); |
- LOperand* right = instr->right(); |
- bool is_unsigned = |
- instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) || |
- instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32); |
- Condition cond = TokenToCondition(instr->op(), is_unsigned); |
- |
- if (left->IsConstantOperand() && right->IsConstantOperand()) { |
- // We can statically evaluate the comparison. |
- double left_val = ToDouble(LConstantOperand::cast(left)); |
- double right_val = ToDouble(LConstantOperand::cast(right)); |
- int next_block = EvalComparison(instr->op(), left_val, right_val) ? |
- instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_); |
- EmitGoto(next_block); |
- } else { |
- if (instr->is_double()) { |
- __ Fcmp(ToDoubleRegister(left), ToDoubleRegister(right)); |
- |
- // If a NaN is involved, i.e. the result is unordered (V set), |
- // jump to false block label. |
- __ B(vs, instr->FalseLabel(chunk_)); |
- EmitBranch(instr, cond); |
- } else { |
- if (instr->hydrogen_value()->representation().IsInteger32()) { |
- if (right->IsConstantOperand()) { |
- EmitCompareAndBranch(instr, cond, ToRegister32(left), |
- ToOperand32(right)); |
- } else { |
- // Commute the operands and the condition. |
- EmitCompareAndBranch(instr, CommuteCondition(cond), |
- ToRegister32(right), ToOperand32(left)); |
- } |
- } else { |
- DCHECK(instr->hydrogen_value()->representation().IsSmi()); |
- if (right->IsConstantOperand()) { |
- int32_t value = ToInteger32(LConstantOperand::cast(right)); |
- EmitCompareAndBranch(instr, |
- cond, |
- ToRegister(left), |
- Operand(Smi::FromInt(value))); |
- } else if (left->IsConstantOperand()) { |
- // Commute the operands and the condition. |
- int32_t value = ToInteger32(LConstantOperand::cast(left)); |
- EmitCompareAndBranch(instr, |
- CommuteCondition(cond), |
- ToRegister(right), |
- Operand(Smi::FromInt(value))); |
- } else { |
- EmitCompareAndBranch(instr, |
- cond, |
- ToRegister(left), |
- ToRegister(right)); |
- } |
- } |
- } |
- } |
-} |
- |
- |
-void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) { |
- Register left = ToRegister(instr->left()); |
- Register right = ToRegister(instr->right()); |
- EmitCompareAndBranch(instr, eq, left, right); |
-} |
- |
- |
-void LCodeGen::DoCmpT(LCmpT* instr) { |
- DCHECK(ToRegister(instr->context()).is(cp)); |
- Token::Value op = instr->op(); |
- Condition cond = TokenToCondition(op, false); |
- |
- DCHECK(ToRegister(instr->left()).Is(x1)); |
- DCHECK(ToRegister(instr->right()).Is(x0)); |
- Handle<Code> ic = |
- CodeFactory::CompareIC(isolate(), op, instr->strength()).code(); |
- CallCode(ic, RelocInfo::CODE_TARGET, instr); |
- // Signal that we don't inline smi code before this stub. |
- InlineSmiCheckInfo::EmitNotInlined(masm()); |
- |
- // Return true or false depending on CompareIC result. |
- // This instruction is marked as call. We can clobber any register. |
- DCHECK(instr->IsMarkedAsCall()); |
- __ LoadTrueFalseRoots(x1, x2); |
- __ Cmp(x0, 0); |
- __ Csel(ToRegister(instr->result()), x1, x2, cond); |
-} |
- |
- |
-void LCodeGen::DoConstantD(LConstantD* instr) { |
- DCHECK(instr->result()->IsDoubleRegister()); |
- DoubleRegister result = ToDoubleRegister(instr->result()); |
- if (instr->value() == 0) { |
- if (copysign(1.0, instr->value()) == 1.0) { |
- __ Fmov(result, fp_zero); |
- } else { |
- __ Fneg(result, fp_zero); |
- } |
- } else { |
- __ Fmov(result, instr->value()); |
- } |
-} |
- |
- |
-void LCodeGen::DoConstantE(LConstantE* instr) { |
- __ Mov(ToRegister(instr->result()), Operand(instr->value())); |
-} |
- |
- |
-void LCodeGen::DoConstantI(LConstantI* instr) { |
- DCHECK(is_int32(instr->value())); |
- // Cast the value here to ensure that the value isn't sign extended by the |
- // implicit Operand constructor. |
- __ Mov(ToRegister32(instr->result()), static_cast<uint32_t>(instr->value())); |
-} |
- |
- |
-void LCodeGen::DoConstantS(LConstantS* instr) { |
- __ Mov(ToRegister(instr->result()), Operand(instr->value())); |
-} |
- |
- |
-void LCodeGen::DoConstantT(LConstantT* instr) { |
- Handle<Object> object = instr->value(isolate()); |
- AllowDeferredHandleDereference smi_check; |
- __ LoadObject(ToRegister(instr->result()), object); |
-} |
- |
- |
-void LCodeGen::DoContext(LContext* instr) { |
- // If there is a non-return use, the context must be moved to a register. |
- Register result = ToRegister(instr->result()); |
- if (info()->IsOptimizing()) { |
- __ Ldr(result, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
- } else { |
- // If there is no frame, the context must be in cp. |
- DCHECK(result.is(cp)); |
- } |
-} |
- |
- |
-void LCodeGen::DoCheckValue(LCheckValue* instr) { |
- Register reg = ToRegister(instr->value()); |
- Handle<HeapObject> object = instr->hydrogen()->object().handle(); |
- AllowDeferredHandleDereference smi_check; |
- if (isolate()->heap()->InNewSpace(*object)) { |
- UseScratchRegisterScope temps(masm()); |
- Register temp = temps.AcquireX(); |
- Handle<Cell> cell = isolate()->factory()->NewCell(object); |
- __ Mov(temp, Operand(cell)); |
- __ Ldr(temp, FieldMemOperand(temp, Cell::kValueOffset)); |
- __ Cmp(reg, temp); |
- } else { |
- __ Cmp(reg, Operand(object)); |
- } |
- DeoptimizeIf(ne, instr, Deoptimizer::kValueMismatch); |
-} |
- |
- |
-void LCodeGen::DoLazyBailout(LLazyBailout* instr) { |
- last_lazy_deopt_pc_ = masm()->pc_offset(); |
- DCHECK(instr->HasEnvironment()); |
- LEnvironment* env = instr->environment(); |
- RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); |
- safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); |
-} |
- |
- |
-void LCodeGen::DoDateField(LDateField* instr) { |
- Register object = ToRegister(instr->date()); |
- Register result = ToRegister(instr->result()); |
- Register temp1 = x10; |
- Register temp2 = x11; |
- Smi* index = instr->index(); |
- |
- DCHECK(object.is(result) && object.Is(x0)); |
- DCHECK(instr->IsMarkedAsCall()); |
- |
- if (index->value() == 0) { |
- __ Ldr(result, FieldMemOperand(object, JSDate::kValueOffset)); |
- } else { |
- Label runtime, done; |
- if (index->value() < JSDate::kFirstUncachedField) { |
- ExternalReference stamp = ExternalReference::date_cache_stamp(isolate()); |
- __ Mov(temp1, Operand(stamp)); |
- __ Ldr(temp1, MemOperand(temp1)); |
- __ Ldr(temp2, FieldMemOperand(object, JSDate::kCacheStampOffset)); |
- __ Cmp(temp1, temp2); |
- __ B(ne, &runtime); |
- __ Ldr(result, FieldMemOperand(object, JSDate::kValueOffset + |
- kPointerSize * index->value())); |
- __ B(&done); |
- } |
- |
- __ Bind(&runtime); |
- __ Mov(x1, Operand(index)); |
- __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2); |
- __ Bind(&done); |
- } |
-} |
- |
- |
-void LCodeGen::DoDeoptimize(LDeoptimize* instr) { |
- Deoptimizer::BailoutType type = instr->hydrogen()->type(); |
- // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the |
- // needed return address), even though the implementation of LAZY and EAGER is |
- // now identical. When LAZY is eventually completely folded into EAGER, remove |
- // the special case below. |
- if (info()->IsStub() && (type == Deoptimizer::EAGER)) { |
- type = Deoptimizer::LAZY; |
- } |
- |
- Deoptimize(instr, instr->hydrogen()->reason(), &type); |
-} |
- |
- |
-void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) { |
- Register dividend = ToRegister32(instr->dividend()); |
- int32_t divisor = instr->divisor(); |
- Register result = ToRegister32(instr->result()); |
- DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor))); |
- DCHECK(!result.is(dividend)); |
- |
- // Check for (0 / -x) that will produce negative zero. |
- HDiv* hdiv = instr->hydrogen(); |
- if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { |
- DeoptimizeIfZero(dividend, instr, Deoptimizer::kDivisionByZero); |
- } |
- // Check for (kMinInt / -1). |
- if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) { |
- // Test dividend for kMinInt by subtracting one (cmp) and checking for |
- // overflow. |
- __ Cmp(dividend, 1); |
- DeoptimizeIf(vs, instr, Deoptimizer::kOverflow); |
- } |
- // Deoptimize if remainder will not be 0. |
- if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) && |
- divisor != 1 && divisor != -1) { |
- int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1); |
- __ Tst(dividend, mask); |
- DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecision); |
- } |
- |
- if (divisor == -1) { // Nice shortcut, not needed for correctness. |
- __ Neg(result, dividend); |
- return; |
- } |
- int32_t shift = WhichPowerOf2Abs(divisor); |
- if (shift == 0) { |
- __ Mov(result, dividend); |
- } else if (shift == 1) { |
- __ Add(result, dividend, Operand(dividend, LSR, 31)); |
- } else { |
- __ Mov(result, Operand(dividend, ASR, 31)); |
- __ Add(result, dividend, Operand(result, LSR, 32 - shift)); |
- } |
- if (shift > 0) __ Mov(result, Operand(result, ASR, shift)); |
- if (divisor < 0) __ Neg(result, result); |
-} |
- |
- |
-void LCodeGen::DoDivByConstI(LDivByConstI* instr) { |
- Register dividend = ToRegister32(instr->dividend()); |
- int32_t divisor = instr->divisor(); |
- Register result = ToRegister32(instr->result()); |
- DCHECK(!AreAliased(dividend, result)); |
- |
- if (divisor == 0) { |
- Deoptimize(instr, Deoptimizer::kDivisionByZero); |
- return; |
- } |
- |
- // Check for (0 / -x) that will produce negative zero. |
- HDiv* hdiv = instr->hydrogen(); |
- if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { |
- DeoptimizeIfZero(dividend, instr, Deoptimizer::kMinusZero); |
- } |
- |
- __ TruncatingDiv(result, dividend, Abs(divisor)); |
- if (divisor < 0) __ Neg(result, result); |
- |
- if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) { |
- Register temp = ToRegister32(instr->temp()); |
- DCHECK(!AreAliased(dividend, result, temp)); |
- __ Sxtw(dividend.X(), dividend); |
- __ Mov(temp, divisor); |
- __ Smsubl(temp.X(), result, temp, dividend.X()); |
- DeoptimizeIfNotZero(temp, instr, Deoptimizer::kLostPrecision); |
- } |
-} |
- |
- |
-// TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI. |
-void LCodeGen::DoDivI(LDivI* instr) { |
- HBinaryOperation* hdiv = instr->hydrogen(); |
- Register dividend = ToRegister32(instr->dividend()); |
- Register divisor = ToRegister32(instr->divisor()); |
- Register result = ToRegister32(instr->result()); |
- |
- // Issue the division first, and then check for any deopt cases whilst the |
- // result is computed. |
- __ Sdiv(result, dividend, divisor); |
- |
- if (hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) { |
- DCHECK(!instr->temp()); |
- return; |
- } |
- |
- // Check for x / 0. |
- if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) { |
- DeoptimizeIfZero(divisor, instr, Deoptimizer::kDivisionByZero); |
- } |
- |
- // Check for (0 / -x) as that will produce negative zero. |
- if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) { |
- __ Cmp(divisor, 0); |
- |
- // If the divisor < 0 (mi), compare the dividend, and deopt if it is |
- // zero, ie. zero dividend with negative divisor deopts. |
- // If the divisor >= 0 (pl, the opposite of mi) set the flags to |
- // condition ne, so we don't deopt, ie. positive divisor doesn't deopt. |
- __ Ccmp(dividend, 0, NoFlag, mi); |
- DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero); |
- } |
- |
- // Check for (kMinInt / -1). |
- if (hdiv->CheckFlag(HValue::kCanOverflow)) { |
- // Test dividend for kMinInt by subtracting one (cmp) and checking for |
- // overflow. |
- __ Cmp(dividend, 1); |
- // If overflow is set, ie. dividend = kMinInt, compare the divisor with |
- // -1. If overflow is clear, set the flags for condition ne, as the |
- // dividend isn't -1, and thus we shouldn't deopt. |
- __ Ccmp(divisor, -1, NoFlag, vs); |
- DeoptimizeIf(eq, instr, Deoptimizer::kOverflow); |
- } |
- |
- // Compute remainder and deopt if it's not zero. |
- Register remainder = ToRegister32(instr->temp()); |
- __ Msub(remainder, result, divisor, dividend); |
- DeoptimizeIfNotZero(remainder, instr, Deoptimizer::kLostPrecision); |
-} |
- |
- |
-void LCodeGen::DoDoubleToIntOrSmi(LDoubleToIntOrSmi* instr) { |
- DoubleRegister input = ToDoubleRegister(instr->value()); |
- Register result = ToRegister32(instr->result()); |
- |
- if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { |
- DeoptimizeIfMinusZero(input, instr, Deoptimizer::kMinusZero); |
- } |
- |
- __ TryRepresentDoubleAsInt32(result, input, double_scratch()); |
- DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN); |
- |
- if (instr->tag_result()) { |
- __ SmiTag(result.X()); |
- } |
-} |
- |
- |
-void LCodeGen::DoDrop(LDrop* instr) { |
- __ Drop(instr->count()); |
- |
- RecordPushedArgumentsDelta(instr->hydrogen_value()->argument_delta()); |
-} |
- |
- |
-void LCodeGen::DoDummy(LDummy* instr) { |
- // Nothing to see here, move on! |
-} |
- |
- |
-void LCodeGen::DoDummyUse(LDummyUse* instr) { |
- // Nothing to see here, move on! |
-} |
- |
- |
-void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) { |
- Register map = ToRegister(instr->map()); |
- Register result = ToRegister(instr->result()); |
- Label load_cache, done; |
- |
- __ EnumLengthUntagged(result, map); |
- __ Cbnz(result, &load_cache); |
- |
- __ Mov(result, Operand(isolate()->factory()->empty_fixed_array())); |
- __ B(&done); |
- |
- __ Bind(&load_cache); |
- __ LoadInstanceDescriptors(map, result); |
- __ Ldr(result, FieldMemOperand(result, DescriptorArray::kEnumCacheOffset)); |
- __ Ldr(result, FieldMemOperand(result, FixedArray::SizeFor(instr->idx()))); |
- DeoptimizeIfZero(result, instr, Deoptimizer::kNoCache); |
- |
- __ Bind(&done); |
-} |
- |
- |
-void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) { |
- Register object = ToRegister(instr->object()); |
- Register null_value = x5; |
- |
- DCHECK(instr->IsMarkedAsCall()); |
- DCHECK(object.Is(x0)); |
- |
- DeoptimizeIfSmi(object, instr, Deoptimizer::kSmi); |
- |
- STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE); |
- __ CompareObjectType(object, x1, x1, LAST_JS_PROXY_TYPE); |
- DeoptimizeIf(le, instr, Deoptimizer::kNotAJavaScriptObject); |
- |
- Label use_cache, call_runtime; |
- __ LoadRoot(null_value, Heap::kNullValueRootIndex); |
- __ CheckEnumCache(object, null_value, x1, x2, x3, x4, &call_runtime); |
- |
- __ Ldr(object, FieldMemOperand(object, HeapObject::kMapOffset)); |
- __ B(&use_cache); |
- |
- // Get the set of properties to enumerate. |
- __ Bind(&call_runtime); |
- __ Push(object); |
- CallRuntime(Runtime::kGetPropertyNamesFast, 1, instr); |
- |
- __ Ldr(x1, FieldMemOperand(object, HeapObject::kMapOffset)); |
- DeoptimizeIfNotRoot(x1, Heap::kMetaMapRootIndex, instr, |
- Deoptimizer::kWrongMap); |
- |
- __ Bind(&use_cache); |
-} |
- |
- |
-void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) { |
- Register input = ToRegister(instr->value()); |
- Register result = ToRegister(instr->result()); |
- |
- __ AssertString(input); |
- |
- // Assert that we can use a W register load to get the hash. |
- DCHECK((String::kHashShift + String::kArrayIndexValueBits) < kWRegSizeInBits); |
- __ Ldr(result.W(), FieldMemOperand(input, String::kHashFieldOffset)); |
- __ IndexFromHash(result, result); |
-} |
- |
- |
-void LCodeGen::EmitGoto(int block) { |
- // Do not emit jump if we are emitting a goto to the next block. |
- if (!IsNextEmittedBlock(block)) { |
- __ B(chunk_->GetAssemblyLabel(LookupDestination(block))); |
- } |
-} |
- |
- |
-void LCodeGen::DoGoto(LGoto* instr) { |
- EmitGoto(instr->block_id()); |
-} |
- |
- |
-void LCodeGen::DoHasCachedArrayIndexAndBranch( |
- LHasCachedArrayIndexAndBranch* instr) { |
- Register input = ToRegister(instr->value()); |
- Register temp = ToRegister32(instr->temp()); |
- |
- // Assert that the cache status bits fit in a W register. |
- DCHECK(is_uint32(String::kContainsCachedArrayIndexMask)); |
- __ Ldr(temp, FieldMemOperand(input, String::kHashFieldOffset)); |
- __ Tst(temp, String::kContainsCachedArrayIndexMask); |
- EmitBranch(instr, eq); |
-} |
- |
- |
-// HHasInstanceTypeAndBranch instruction is built with an interval of type |
-// to test but is only used in very restricted ways. The only possible kinds |
-// of intervals are: |
-// - [ FIRST_TYPE, instr->to() ] |
-// - [ instr->form(), LAST_TYPE ] |
-// - instr->from() == instr->to() |
-// |
-// These kinds of intervals can be check with only one compare instruction |
-// providing the correct value and test condition are used. |
-// |
-// TestType() will return the value to use in the compare instruction and |
-// BranchCondition() will return the condition to use depending on the kind |
-// of interval actually specified in the instruction. |
-static InstanceType TestType(HHasInstanceTypeAndBranch* instr) { |
- InstanceType from = instr->from(); |
- InstanceType to = instr->to(); |
- if (from == FIRST_TYPE) return to; |
- DCHECK((from == to) || (to == LAST_TYPE)); |
- return from; |
-} |
- |
- |
-// See comment above TestType function for what this function does. |
-static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) { |
- InstanceType from = instr->from(); |
- InstanceType to = instr->to(); |
- if (from == to) return eq; |
- if (to == LAST_TYPE) return hs; |
- if (from == FIRST_TYPE) return ls; |
- UNREACHABLE(); |
- return eq; |
-} |
- |
- |
-void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) { |
- Register input = ToRegister(instr->value()); |
- Register scratch = ToRegister(instr->temp()); |
- |
- if (!instr->hydrogen()->value()->type().IsHeapObject()) { |
- __ JumpIfSmi(input, instr->FalseLabel(chunk_)); |
- } |
- __ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen())); |
- EmitBranch(instr, BranchCondition(instr->hydrogen())); |
-} |
- |
- |
-void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) { |
- Register result = ToRegister(instr->result()); |
- Register base = ToRegister(instr->base_object()); |
- if (instr->offset()->IsConstantOperand()) { |
- __ Add(result, base, ToOperand32(instr->offset())); |
- } else { |
- __ Add(result, base, Operand(ToRegister32(instr->offset()), SXTW)); |
- } |
-} |
- |
- |
-void LCodeGen::DoInstanceOf(LInstanceOf* instr) { |
- DCHECK(ToRegister(instr->context()).is(cp)); |
- DCHECK(ToRegister(instr->left()).is(InstanceOfDescriptor::LeftRegister())); |
- DCHECK(ToRegister(instr->right()).is(InstanceOfDescriptor::RightRegister())); |
- DCHECK(ToRegister(instr->result()).is(x0)); |
- InstanceOfStub stub(isolate()); |
- CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
-} |
- |
- |
-void LCodeGen::DoHasInPrototypeChainAndBranch( |
- LHasInPrototypeChainAndBranch* instr) { |
- Register const object = ToRegister(instr->object()); |
- Register const object_map = ToRegister(instr->scratch()); |
- Register const object_prototype = object_map; |
- Register const prototype = ToRegister(instr->prototype()); |
- |
- // The {object} must be a spec object. It's sufficient to know that {object} |
- // is not a smi, since all other non-spec objects have {null} prototypes and |
- // will be ruled out below. |
- if (instr->hydrogen()->ObjectNeedsSmiCheck()) { |
- __ JumpIfSmi(object, instr->FalseLabel(chunk_)); |
- } |
- |
- // Loop through the {object}s prototype chain looking for the {prototype}. |
- __ Ldr(object_map, FieldMemOperand(object, HeapObject::kMapOffset)); |
- Label loop; |
- __ Bind(&loop); |
- __ Ldr(object_prototype, FieldMemOperand(object_map, Map::kPrototypeOffset)); |
- __ Cmp(object_prototype, prototype); |
- __ B(eq, instr->TrueLabel(chunk_)); |
- __ CompareRoot(object_prototype, Heap::kNullValueRootIndex); |
- __ B(eq, instr->FalseLabel(chunk_)); |
- __ Ldr(object_map, FieldMemOperand(object_prototype, HeapObject::kMapOffset)); |
- __ B(&loop); |
-} |
- |
- |
-void LCodeGen::DoInstructionGap(LInstructionGap* instr) { |
- DoGap(instr); |
-} |
- |
- |
-void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) { |
- Register value = ToRegister32(instr->value()); |
- DoubleRegister result = ToDoubleRegister(instr->result()); |
- __ Scvtf(result, value); |
-} |
- |
- |
-void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) { |
- DCHECK(ToRegister(instr->context()).is(cp)); |
- // The function is required to be in x1. |
- DCHECK(ToRegister(instr->function()).is(x1)); |
- DCHECK(instr->HasPointerMap()); |
- |
- Handle<JSFunction> known_function = instr->hydrogen()->known_function(); |
- if (known_function.is_null()) { |
- LPointerMap* pointers = instr->pointer_map(); |
- SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); |
- ParameterCount count(instr->arity()); |
- __ InvokeFunction(x1, count, CALL_FUNCTION, generator); |
- } else { |
- CallKnownFunction(known_function, |
- instr->hydrogen()->formal_parameter_count(), |
- instr->arity(), instr); |
- } |
- RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta()); |
-} |
- |
- |
-void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) { |
- Register temp1 = ToRegister(instr->temp1()); |
- Register temp2 = ToRegister(instr->temp2()); |
- |
- // Get the frame pointer for the calling frame. |
- __ Ldr(temp1, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
- |
- // Skip the arguments adaptor frame if it exists. |
- Label check_frame_marker; |
- __ Ldr(temp2, MemOperand(temp1, StandardFrameConstants::kContextOffset)); |
- __ Cmp(temp2, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); |
- __ B(ne, &check_frame_marker); |
- __ Ldr(temp1, MemOperand(temp1, StandardFrameConstants::kCallerFPOffset)); |
- |
- // Check the marker in the calling frame. |
- __ Bind(&check_frame_marker); |
- __ Ldr(temp1, MemOperand(temp1, StandardFrameConstants::kMarkerOffset)); |
- |
- EmitCompareAndBranch( |
- instr, eq, temp1, Operand(Smi::FromInt(StackFrame::CONSTRUCT))); |
-} |
- |
- |
-Condition LCodeGen::EmitIsString(Register input, |
- Register temp1, |
- Label* is_not_string, |
- SmiCheck check_needed = INLINE_SMI_CHECK) { |
- if (check_needed == INLINE_SMI_CHECK) { |
- __ JumpIfSmi(input, is_not_string); |
- } |
- __ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE); |
- |
- return lt; |
-} |
- |
- |
-void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) { |
- Register val = ToRegister(instr->value()); |
- Register scratch = ToRegister(instr->temp()); |
- |
- SmiCheck check_needed = |
- instr->hydrogen()->value()->type().IsHeapObject() |
- ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; |
- Condition true_cond = |
- EmitIsString(val, scratch, instr->FalseLabel(chunk_), check_needed); |
- |
- EmitBranch(instr, true_cond); |
-} |
- |
- |
-void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) { |
- Register value = ToRegister(instr->value()); |
- STATIC_ASSERT(kSmiTag == 0); |
- EmitTestAndBranch(instr, eq, value, kSmiTagMask); |
-} |
- |
- |
-void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) { |
- Register input = ToRegister(instr->value()); |
- Register temp = ToRegister(instr->temp()); |
- |
- if (!instr->hydrogen()->value()->type().IsHeapObject()) { |
- __ JumpIfSmi(input, instr->FalseLabel(chunk_)); |
- } |
- __ Ldr(temp, FieldMemOperand(input, HeapObject::kMapOffset)); |
- __ Ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset)); |
- |
- EmitTestAndBranch(instr, ne, temp, 1 << Map::kIsUndetectable); |
-} |
- |
- |
-static const char* LabelType(LLabel* label) { |
- if (label->is_loop_header()) return " (loop header)"; |
- if (label->is_osr_entry()) return " (OSR entry)"; |
- return ""; |
-} |
- |
- |
-void LCodeGen::DoLabel(LLabel* label) { |
- Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------", |
- current_instruction_, |
- label->hydrogen_value()->id(), |
- label->block_id(), |
- LabelType(label)); |
- |
- // Inherit pushed_arguments_ from the predecessor's argument count. |
- if (label->block()->HasPredecessor()) { |
- pushed_arguments_ = label->block()->predecessors()->at(0)->argument_count(); |
-#ifdef DEBUG |
- for (auto p : *label->block()->predecessors()) { |
- DCHECK_EQ(p->argument_count(), pushed_arguments_); |
- } |
-#endif |
- } |
- |
- __ Bind(label->label()); |
- current_block_ = label->block_id(); |
- DoGap(label); |
-} |
- |
- |
-void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) { |
- Register context = ToRegister(instr->context()); |
- Register result = ToRegister(instr->result()); |
- __ Ldr(result, ContextMemOperand(context, instr->slot_index())); |
- if (instr->hydrogen()->RequiresHoleCheck()) { |
- if (instr->hydrogen()->DeoptimizesOnHole()) { |
- DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr, |
- Deoptimizer::kHole); |
- } else { |
- Label not_the_hole; |
- __ JumpIfNotRoot(result, Heap::kTheHoleValueRootIndex, ¬_the_hole); |
- __ LoadRoot(result, Heap::kUndefinedValueRootIndex); |
- __ Bind(¬_the_hole); |
- } |
- } |
-} |
- |
- |
-void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) { |
- Register function = ToRegister(instr->function()); |
- Register result = ToRegister(instr->result()); |
- Register temp = ToRegister(instr->temp()); |
- |
- // Get the prototype or initial map from the function. |
- __ Ldr(result, FieldMemOperand(function, |
- JSFunction::kPrototypeOrInitialMapOffset)); |
- |
- // Check that the function has a prototype or an initial map. |
- DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr, |
- Deoptimizer::kHole); |
- |
- // If the function does not have an initial map, we're done. |
- Label done; |
- __ CompareObjectType(result, temp, temp, MAP_TYPE); |
- __ B(ne, &done); |
- |
- // Get the prototype from the initial map. |
- __ Ldr(result, FieldMemOperand(result, Map::kPrototypeOffset)); |
- |
- // All done. |
- __ Bind(&done); |
-} |
- |
- |
-template <class T> |
-void LCodeGen::EmitVectorLoadICRegisters(T* instr) { |
- Register vector_register = ToRegister(instr->temp_vector()); |
- Register slot_register = LoadWithVectorDescriptor::SlotRegister(); |
- DCHECK(vector_register.is(LoadWithVectorDescriptor::VectorRegister())); |
- DCHECK(slot_register.is(x0)); |
- |
- AllowDeferredHandleDereference vector_structure_check; |
- Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector(); |
- __ Mov(vector_register, vector); |
- // No need to allocate this register. |
- FeedbackVectorSlot slot = instr->hydrogen()->slot(); |
- int index = vector->GetIndex(slot); |
- __ Mov(slot_register, Smi::FromInt(index)); |
-} |
- |
- |
-template <class T> |
-void LCodeGen::EmitVectorStoreICRegisters(T* instr) { |
- Register vector_register = ToRegister(instr->temp_vector()); |
- Register slot_register = ToRegister(instr->temp_slot()); |
- |
- AllowDeferredHandleDereference vector_structure_check; |
- Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector(); |
- __ Mov(vector_register, vector); |
- FeedbackVectorSlot slot = instr->hydrogen()->slot(); |
- int index = vector->GetIndex(slot); |
- __ Mov(slot_register, Smi::FromInt(index)); |
-} |
- |
- |
-void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) { |
- DCHECK(ToRegister(instr->context()).is(cp)); |
- DCHECK(ToRegister(instr->global_object()) |
- .is(LoadDescriptor::ReceiverRegister())); |
- DCHECK(ToRegister(instr->result()).Is(x0)); |
- __ Mov(LoadDescriptor::NameRegister(), Operand(instr->name())); |
- EmitVectorLoadICRegisters<LLoadGlobalGeneric>(instr); |
- Handle<Code> ic = |
- CodeFactory::LoadICInOptimizedCode(isolate(), instr->typeof_mode(), |
- SLOPPY, PREMONOMORPHIC).code(); |
- CallCode(ic, RelocInfo::CODE_TARGET, instr); |
-} |
- |
- |
-void LCodeGen::DoLoadGlobalViaContext(LLoadGlobalViaContext* instr) { |
- DCHECK(ToRegister(instr->context()).is(cp)); |
- DCHECK(ToRegister(instr->result()).is(x0)); |
- |
- int const slot = instr->slot_index(); |
- int const depth = instr->depth(); |
- if (depth <= LoadGlobalViaContextStub::kMaximumDepth) { |
- __ Mov(LoadGlobalViaContextDescriptor::SlotRegister(), Operand(slot)); |
- Handle<Code> stub = |
- CodeFactory::LoadGlobalViaContext(isolate(), depth).code(); |
- CallCode(stub, RelocInfo::CODE_TARGET, instr); |
- } else { |
- __ Push(Smi::FromInt(slot)); |
- __ CallRuntime(Runtime::kLoadGlobalViaContext, 1); |
- } |
-} |
- |
- |
-MemOperand LCodeGen::PrepareKeyedExternalArrayOperand( |
- Register key, |
- Register base, |
- Register scratch, |
- bool key_is_smi, |
- bool key_is_constant, |
- int constant_key, |
- ElementsKind elements_kind, |
- int base_offset) { |
- int element_size_shift = ElementsKindToShiftSize(elements_kind); |
- |
- if (key_is_constant) { |
- int key_offset = constant_key << element_size_shift; |
- return MemOperand(base, key_offset + base_offset); |
- } |
- |
- if (key_is_smi) { |
- __ Add(scratch, base, Operand::UntagSmiAndScale(key, element_size_shift)); |
- return MemOperand(scratch, base_offset); |
- } |
- |
- if (base_offset == 0) { |
- return MemOperand(base, key, SXTW, element_size_shift); |
- } |
- |
- DCHECK(!AreAliased(scratch, key)); |
- __ Add(scratch, base, base_offset); |
- return MemOperand(scratch, key, SXTW, element_size_shift); |
-} |
- |
- |
-void LCodeGen::DoLoadKeyedExternal(LLoadKeyedExternal* instr) { |
- Register ext_ptr = ToRegister(instr->elements()); |
- Register scratch; |
- ElementsKind elements_kind = instr->elements_kind(); |
- |
- bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi(); |
- bool key_is_constant = instr->key()->IsConstantOperand(); |
- Register key = no_reg; |
- int constant_key = 0; |
- if (key_is_constant) { |
- DCHECK(instr->temp() == NULL); |
- constant_key = ToInteger32(LConstantOperand::cast(instr->key())); |
- if (constant_key & 0xf0000000) { |
- Abort(kArrayIndexConstantValueTooBig); |
- } |
- } else { |
- scratch = ToRegister(instr->temp()); |
- key = ToRegister(instr->key()); |
- } |
- |
- MemOperand mem_op = |
- PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi, |
- key_is_constant, constant_key, |
- elements_kind, |
- instr->base_offset()); |
- |
- if (elements_kind == FLOAT32_ELEMENTS) { |
- DoubleRegister result = ToDoubleRegister(instr->result()); |
- __ Ldr(result.S(), mem_op); |
- __ Fcvt(result, result.S()); |
- } else if (elements_kind == FLOAT64_ELEMENTS) { |
- DoubleRegister result = ToDoubleRegister(instr->result()); |
- __ Ldr(result, mem_op); |
- } else { |
- Register result = ToRegister(instr->result()); |
- |
- switch (elements_kind) { |
- case INT8_ELEMENTS: |
- __ Ldrsb(result, mem_op); |
- break; |
- case UINT8_ELEMENTS: |
- case UINT8_CLAMPED_ELEMENTS: |
- __ Ldrb(result, mem_op); |
- break; |
- case INT16_ELEMENTS: |
- __ Ldrsh(result, mem_op); |
- break; |
- case UINT16_ELEMENTS: |
- __ Ldrh(result, mem_op); |
- break; |
- case INT32_ELEMENTS: |
- __ Ldrsw(result, mem_op); |
- break; |
- case UINT32_ELEMENTS: |
- __ Ldr(result.W(), mem_op); |
- if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) { |
- // Deopt if value > 0x80000000. |
- __ Tst(result, 0xFFFFFFFF80000000); |
- DeoptimizeIf(ne, instr, Deoptimizer::kNegativeValue); |
- } |
- break; |
- case FLOAT32_ELEMENTS: |
- case FLOAT64_ELEMENTS: |
- case FAST_HOLEY_DOUBLE_ELEMENTS: |
- case FAST_HOLEY_ELEMENTS: |
- case FAST_HOLEY_SMI_ELEMENTS: |
- case FAST_DOUBLE_ELEMENTS: |
- case FAST_ELEMENTS: |
- case FAST_SMI_ELEMENTS: |
- case DICTIONARY_ELEMENTS: |
- case FAST_SLOPPY_ARGUMENTS_ELEMENTS: |
- case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: |
- UNREACHABLE(); |
- break; |
- } |
- } |
-} |
- |
- |
-MemOperand LCodeGen::PrepareKeyedArrayOperand(Register base, |
- Register elements, |
- Register key, |
- bool key_is_tagged, |
- ElementsKind elements_kind, |
- Representation representation, |
- int base_offset) { |
- STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits); |
- STATIC_ASSERT(kSmiTag == 0); |
- int element_size_shift = ElementsKindToShiftSize(elements_kind); |
- |
- // Even though the HLoad/StoreKeyed instructions force the input |
- // representation for the key to be an integer, the input gets replaced during |
- // bounds check elimination with the index argument to the bounds check, which |
- // can be tagged, so that case must be handled here, too. |
- if (key_is_tagged) { |
- __ Add(base, elements, Operand::UntagSmiAndScale(key, element_size_shift)); |
- if (representation.IsInteger32()) { |
- DCHECK(elements_kind == FAST_SMI_ELEMENTS); |
- // Read or write only the smi payload in the case of fast smi arrays. |
- return UntagSmiMemOperand(base, base_offset); |
- } else { |
- return MemOperand(base, base_offset); |
- } |
- } else { |
- // Sign extend key because it could be a 32-bit negative value or contain |
- // garbage in the top 32-bits. The address computation happens in 64-bit. |
- DCHECK((element_size_shift >= 0) && (element_size_shift <= 4)); |
- if (representation.IsInteger32()) { |
- DCHECK(elements_kind == FAST_SMI_ELEMENTS); |
- // Read or write only the smi payload in the case of fast smi arrays. |
- __ Add(base, elements, Operand(key, SXTW, element_size_shift)); |
- return UntagSmiMemOperand(base, base_offset); |
- } else { |
- __ Add(base, elements, base_offset); |
- return MemOperand(base, key, SXTW, element_size_shift); |
- } |
- } |
-} |
- |
- |
-void LCodeGen::DoLoadKeyedFixedDouble(LLoadKeyedFixedDouble* instr) { |
- Register elements = ToRegister(instr->elements()); |
- DoubleRegister result = ToDoubleRegister(instr->result()); |
- MemOperand mem_op; |
- |
- if (instr->key()->IsConstantOperand()) { |
- DCHECK(instr->hydrogen()->RequiresHoleCheck() || |
- (instr->temp() == NULL)); |
- |
- int constant_key = ToInteger32(LConstantOperand::cast(instr->key())); |
- if (constant_key & 0xf0000000) { |
- Abort(kArrayIndexConstantValueTooBig); |
- } |
- int offset = instr->base_offset() + constant_key * kDoubleSize; |
- mem_op = MemOperand(elements, offset); |
- } else { |
- Register load_base = ToRegister(instr->temp()); |
- Register key = ToRegister(instr->key()); |
- bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi(); |
- mem_op = PrepareKeyedArrayOperand(load_base, elements, key, key_is_tagged, |
- instr->hydrogen()->elements_kind(), |
- instr->hydrogen()->representation(), |
- instr->base_offset()); |
- } |
- |
- __ Ldr(result, mem_op); |
- |
- if (instr->hydrogen()->RequiresHoleCheck()) { |
- Register scratch = ToRegister(instr->temp()); |
- __ Fmov(scratch, result); |
- __ Eor(scratch, scratch, kHoleNanInt64); |
- DeoptimizeIfZero(scratch, instr, Deoptimizer::kHole); |
- } |
-} |
- |
- |
-void LCodeGen::DoLoadKeyedFixed(LLoadKeyedFixed* instr) { |
- Register elements = ToRegister(instr->elements()); |
- Register result = ToRegister(instr->result()); |
- MemOperand mem_op; |
- |
- Representation representation = instr->hydrogen()->representation(); |
- if (instr->key()->IsConstantOperand()) { |
- DCHECK(instr->temp() == NULL); |
- LConstantOperand* const_operand = LConstantOperand::cast(instr->key()); |
- int offset = instr->base_offset() + |
- ToInteger32(const_operand) * kPointerSize; |
- if (representation.IsInteger32()) { |
- DCHECK(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS); |
- STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits); |
- STATIC_ASSERT(kSmiTag == 0); |
- mem_op = UntagSmiMemOperand(elements, offset); |
- } else { |
- mem_op = MemOperand(elements, offset); |
- } |
- } else { |
- Register load_base = ToRegister(instr->temp()); |
- Register key = ToRegister(instr->key()); |
- bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi(); |
- |
- mem_op = PrepareKeyedArrayOperand(load_base, elements, key, key_is_tagged, |
- instr->hydrogen()->elements_kind(), |
- representation, instr->base_offset()); |
- } |
- |
- __ Load(result, mem_op, representation); |
- |
- if (instr->hydrogen()->RequiresHoleCheck()) { |
- if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) { |
- DeoptimizeIfNotSmi(result, instr, Deoptimizer::kNotASmi); |
- } else { |
- DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr, |
- Deoptimizer::kHole); |
- } |
- } else if (instr->hydrogen()->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) { |
- DCHECK(instr->hydrogen()->elements_kind() == FAST_HOLEY_ELEMENTS); |
- Label done; |
- __ CompareRoot(result, Heap::kTheHoleValueRootIndex); |
- __ B(ne, &done); |
- if (info()->IsStub()) { |
- // A stub can safely convert the hole to undefined only if the array |
- // protector cell contains (Smi) Isolate::kArrayProtectorValid. Otherwise |
- // it needs to bail out. |
- __ LoadRoot(result, Heap::kArrayProtectorRootIndex); |
- __ Ldr(result, FieldMemOperand(result, Cell::kValueOffset)); |
- __ Cmp(result, Operand(Smi::FromInt(Isolate::kArrayProtectorValid))); |
- DeoptimizeIf(ne, instr, Deoptimizer::kHole); |
- } |
- __ LoadRoot(result, Heap::kUndefinedValueRootIndex); |
- __ Bind(&done); |
- } |
-} |
- |
- |
-void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) { |
- DCHECK(ToRegister(instr->context()).is(cp)); |
- DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister())); |
- DCHECK(ToRegister(instr->key()).is(LoadDescriptor::NameRegister())); |
- |
- if (instr->hydrogen()->HasVectorAndSlot()) { |
- EmitVectorLoadICRegisters<LLoadKeyedGeneric>(instr); |
- } |
- |
- Handle<Code> ic = CodeFactory::KeyedLoadICInOptimizedCode( |
- isolate(), instr->hydrogen()->language_mode(), |
- instr->hydrogen()->initialization_state()).code(); |
- CallCode(ic, RelocInfo::CODE_TARGET, instr); |
- |
- DCHECK(ToRegister(instr->result()).Is(x0)); |
-} |
- |
- |
-void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) { |
- HObjectAccess access = instr->hydrogen()->access(); |
- int offset = access.offset(); |
- Register object = ToRegister(instr->object()); |
- |
- if (access.IsExternalMemory()) { |
- Register result = ToRegister(instr->result()); |
- __ Load(result, MemOperand(object, offset), access.representation()); |
- return; |
- } |
- |
- if (instr->hydrogen()->representation().IsDouble()) { |
- DCHECK(access.IsInobject()); |
- FPRegister result = ToDoubleRegister(instr->result()); |
- __ Ldr(result, FieldMemOperand(object, offset)); |
- return; |
- } |
- |
- Register result = ToRegister(instr->result()); |
- Register source; |
- if (access.IsInobject()) { |
- source = object; |
- } else { |
- // Load the properties array, using result as a scratch register. |
- __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); |
- source = result; |
- } |
- |
- if (access.representation().IsSmi() && |
- instr->hydrogen()->representation().IsInteger32()) { |
- // Read int value directly from upper half of the smi. |
- STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits); |
- STATIC_ASSERT(kSmiTag == 0); |
- __ Load(result, UntagSmiFieldMemOperand(source, offset), |
- Representation::Integer32()); |
- } else { |
- __ Load(result, FieldMemOperand(source, offset), access.representation()); |
- } |
-} |
- |
- |
-void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) { |
- DCHECK(ToRegister(instr->context()).is(cp)); |
- // LoadIC expects name and receiver in registers. |
- DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister())); |
- __ Mov(LoadDescriptor::NameRegister(), Operand(instr->name())); |
- EmitVectorLoadICRegisters<LLoadNamedGeneric>(instr); |
- Handle<Code> ic = |
- CodeFactory::LoadICInOptimizedCode( |
- isolate(), NOT_INSIDE_TYPEOF, instr->hydrogen()->language_mode(), |
- instr->hydrogen()->initialization_state()).code(); |
- CallCode(ic, RelocInfo::CODE_TARGET, instr); |
- |
- DCHECK(ToRegister(instr->result()).is(x0)); |
-} |
- |
- |
-void LCodeGen::DoLoadRoot(LLoadRoot* instr) { |
- Register result = ToRegister(instr->result()); |
- __ LoadRoot(result, instr->index()); |
-} |
- |
- |
-void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) { |
- Register result = ToRegister(instr->result()); |
- Register map = ToRegister(instr->value()); |
- __ EnumLengthSmi(result, map); |
-} |
- |
- |
-void LCodeGen::DoMathAbs(LMathAbs* instr) { |
- Representation r = instr->hydrogen()->value()->representation(); |
- if (r.IsDouble()) { |
- DoubleRegister input = ToDoubleRegister(instr->value()); |
- DoubleRegister result = ToDoubleRegister(instr->result()); |
- __ Fabs(result, input); |
- } else if (r.IsSmi() || r.IsInteger32()) { |
- Register input = r.IsSmi() ? ToRegister(instr->value()) |
- : ToRegister32(instr->value()); |
- Register result = r.IsSmi() ? ToRegister(instr->result()) |
- : ToRegister32(instr->result()); |
- __ Abs(result, input); |
- DeoptimizeIf(vs, instr, Deoptimizer::kOverflow); |
- } |
-} |
- |
- |
-void LCodeGen::DoDeferredMathAbsTagged(LMathAbsTagged* instr, |
- Label* exit, |
- Label* allocation_entry) { |
- // Handle the tricky cases of MathAbsTagged: |
- // - HeapNumber inputs. |
- // - Negative inputs produce a positive result, so a new HeapNumber is |
- // allocated to hold it. |
- // - Positive inputs are returned as-is, since there is no need to allocate |
- // a new HeapNumber for the result. |
- // - The (smi) input -0x80000000, produces +0x80000000, which does not fit |
- // a smi. In this case, the inline code sets the result and jumps directly |
- // to the allocation_entry label. |
- DCHECK(instr->context() != NULL); |
- DCHECK(ToRegister(instr->context()).is(cp)); |
- Register input = ToRegister(instr->value()); |
- Register temp1 = ToRegister(instr->temp1()); |
- Register temp2 = ToRegister(instr->temp2()); |
- Register result_bits = ToRegister(instr->temp3()); |
- Register result = ToRegister(instr->result()); |
- |
- Label runtime_allocation; |
- |
- // Deoptimize if the input is not a HeapNumber. |
- DeoptimizeIfNotHeapNumber(input, instr); |
- |
- // If the argument is positive, we can return it as-is, without any need to |
- // allocate a new HeapNumber for the result. We have to do this in integer |
- // registers (rather than with fabs) because we need to be able to distinguish |
- // the two zeroes. |
- __ Ldr(result_bits, FieldMemOperand(input, HeapNumber::kValueOffset)); |
- __ Mov(result, input); |
- __ Tbz(result_bits, kXSignBit, exit); |
- |
- // Calculate abs(input) by clearing the sign bit. |
- __ Bic(result_bits, result_bits, kXSignMask); |
- |
- // Allocate a new HeapNumber to hold the result. |
- // result_bits The bit representation of the (double) result. |
- __ Bind(allocation_entry); |
- __ AllocateHeapNumber(result, &runtime_allocation, temp1, temp2); |
- // The inline (non-deferred) code will store result_bits into result. |
- __ B(exit); |
- |
- __ Bind(&runtime_allocation); |
- if (FLAG_debug_code) { |
- // Because result is in the pointer map, we need to make sure it has a valid |
- // tagged value before we call the runtime. We speculatively set it to the |
- // input (for abs(+x)) or to a smi (for abs(-SMI_MIN)), so it should already |
- // be valid. |
- Label result_ok; |
- Register input = ToRegister(instr->value()); |
- __ JumpIfSmi(result, &result_ok); |
- __ Cmp(input, result); |
- __ Assert(eq, kUnexpectedValue); |
- __ Bind(&result_ok); |
- } |
- |
- { PushSafepointRegistersScope scope(this); |
- CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr, |
- instr->context()); |
- __ StoreToSafepointRegisterSlot(x0, result); |
- } |
- // The inline (non-deferred) code will store result_bits into result. |
-} |
- |
- |
-void LCodeGen::DoMathAbsTagged(LMathAbsTagged* instr) { |
- // Class for deferred case. |
- class DeferredMathAbsTagged: public LDeferredCode { |
- public: |
- DeferredMathAbsTagged(LCodeGen* codegen, LMathAbsTagged* instr) |
- : LDeferredCode(codegen), instr_(instr) { } |
- virtual void Generate() { |
- codegen()->DoDeferredMathAbsTagged(instr_, exit(), |
- allocation_entry()); |
- } |
- virtual LInstruction* instr() { return instr_; } |
- Label* allocation_entry() { return &allocation; } |
- private: |
- LMathAbsTagged* instr_; |
- Label allocation; |
- }; |
- |
- // TODO(jbramley): The early-exit mechanism would skip the new frame handling |
- // in GenerateDeferredCode. Tidy this up. |
- DCHECK(!NeedsDeferredFrame()); |
- |
- DeferredMathAbsTagged* deferred = |
- new(zone()) DeferredMathAbsTagged(this, instr); |
- |
- DCHECK(instr->hydrogen()->value()->representation().IsTagged() || |
- instr->hydrogen()->value()->representation().IsSmi()); |
- Register input = ToRegister(instr->value()); |
- Register result_bits = ToRegister(instr->temp3()); |
- Register result = ToRegister(instr->result()); |
- Label done; |
- |
- // Handle smis inline. |
- // We can treat smis as 64-bit integers, since the (low-order) tag bits will |
- // never get set by the negation. This is therefore the same as the Integer32 |
- // case in DoMathAbs, except that it operates on 64-bit values. |
- STATIC_ASSERT((kSmiValueSize == 32) && (kSmiShift == 32) && (kSmiTag == 0)); |
- |
- __ JumpIfNotSmi(input, deferred->entry()); |
- |
- __ Abs(result, input, NULL, &done); |
- |
- // The result is the magnitude (abs) of the smallest value a smi can |
- // represent, encoded as a double. |
- __ Mov(result_bits, double_to_rawbits(0x80000000)); |
- __ B(deferred->allocation_entry()); |
- |
- __ Bind(deferred->exit()); |
- __ Str(result_bits, FieldMemOperand(result, HeapNumber::kValueOffset)); |
- |
- __ Bind(&done); |
-} |
- |
- |
-void LCodeGen::DoMathExp(LMathExp* instr) { |
- DoubleRegister input = ToDoubleRegister(instr->value()); |
- DoubleRegister result = ToDoubleRegister(instr->result()); |
- DoubleRegister double_temp1 = ToDoubleRegister(instr->double_temp1()); |
- DoubleRegister double_temp2 = double_scratch(); |
- Register temp1 = ToRegister(instr->temp1()); |
- Register temp2 = ToRegister(instr->temp2()); |
- Register temp3 = ToRegister(instr->temp3()); |
- |
- MathExpGenerator::EmitMathExp(masm(), input, result, |
- double_temp1, double_temp2, |
- temp1, temp2, temp3); |
-} |
- |
- |
-void LCodeGen::DoMathFloorD(LMathFloorD* instr) { |
- DoubleRegister input = ToDoubleRegister(instr->value()); |
- DoubleRegister result = ToDoubleRegister(instr->result()); |
- |
- __ Frintm(result, input); |
-} |
- |
- |
-void LCodeGen::DoMathFloorI(LMathFloorI* instr) { |
- DoubleRegister input = ToDoubleRegister(instr->value()); |
- Register result = ToRegister(instr->result()); |
- |
- if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { |
- DeoptimizeIfMinusZero(input, instr, Deoptimizer::kMinusZero); |
- } |
- |
- __ Fcvtms(result, input); |
- |
- // Check that the result fits into a 32-bit integer. |
- // - The result did not overflow. |
- __ Cmp(result, Operand(result, SXTW)); |
- // - The input was not NaN. |
- __ Fccmp(input, input, NoFlag, eq); |
- DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN); |
-} |
- |
- |
-void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) { |
- Register dividend = ToRegister32(instr->dividend()); |
- Register result = ToRegister32(instr->result()); |
- int32_t divisor = instr->divisor(); |
- |
- // If the divisor is 1, return the dividend. |
- if (divisor == 1) { |
- __ Mov(result, dividend, kDiscardForSameWReg); |
- return; |
- } |
- |
- // If the divisor is positive, things are easy: There can be no deopts and we |
- // can simply do an arithmetic right shift. |
- int32_t shift = WhichPowerOf2Abs(divisor); |
- if (divisor > 1) { |
- __ Mov(result, Operand(dividend, ASR, shift)); |
- return; |
- } |
- |
- // If the divisor is negative, we have to negate and handle edge cases. |
- __ Negs(result, dividend); |
- if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { |
- DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero); |
- } |
- |
- // Dividing by -1 is basically negation, unless we overflow. |
- if (divisor == -1) { |
- if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) { |
- DeoptimizeIf(vs, instr, Deoptimizer::kOverflow); |
- } |
- return; |
- } |
- |
- // If the negation could not overflow, simply shifting is OK. |
- if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) { |
- __ Mov(result, Operand(dividend, ASR, shift)); |
- return; |
- } |
- |
- __ Asr(result, result, shift); |
- __ Csel(result, result, kMinInt / divisor, vc); |
-} |
- |
- |
-void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) { |
- Register dividend = ToRegister32(instr->dividend()); |
- int32_t divisor = instr->divisor(); |
- Register result = ToRegister32(instr->result()); |
- DCHECK(!AreAliased(dividend, result)); |
- |
- if (divisor == 0) { |
- Deoptimize(instr, Deoptimizer::kDivisionByZero); |
- return; |
- } |
- |
- // Check for (0 / -x) that will produce negative zero. |
- HMathFloorOfDiv* hdiv = instr->hydrogen(); |
- if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { |
- DeoptimizeIfZero(dividend, instr, Deoptimizer::kMinusZero); |
- } |
- |
- // Easy case: We need no dynamic check for the dividend and the flooring |
- // division is the same as the truncating division. |
- if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) || |
- (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) { |
- __ TruncatingDiv(result, dividend, Abs(divisor)); |
- if (divisor < 0) __ Neg(result, result); |
- return; |
- } |
- |
- // In the general case we may need to adjust before and after the truncating |
- // division to get a flooring division. |
- Register temp = ToRegister32(instr->temp()); |
- DCHECK(!AreAliased(temp, dividend, result)); |
- Label needs_adjustment, done; |
- __ Cmp(dividend, 0); |
- __ B(divisor > 0 ? lt : gt, &needs_adjustment); |
- __ TruncatingDiv(result, dividend, Abs(divisor)); |
- if (divisor < 0) __ Neg(result, result); |
- __ B(&done); |
- __ Bind(&needs_adjustment); |
- __ Add(temp, dividend, Operand(divisor > 0 ? 1 : -1)); |
- __ TruncatingDiv(result, temp, Abs(divisor)); |
- if (divisor < 0) __ Neg(result, result); |
- __ Sub(result, result, Operand(1)); |
- __ Bind(&done); |
-} |
- |
- |
-// TODO(svenpanne) Refactor this to avoid code duplication with DoDivI. |
-void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) { |
- Register dividend = ToRegister32(instr->dividend()); |
- Register divisor = ToRegister32(instr->divisor()); |
- Register remainder = ToRegister32(instr->temp()); |
- Register result = ToRegister32(instr->result()); |
- |
- // This can't cause an exception on ARM, so we can speculatively |
- // execute it already now. |
- __ Sdiv(result, dividend, divisor); |
- |
- // Check for x / 0. |
- DeoptimizeIfZero(divisor, instr, Deoptimizer::kDivisionByZero); |
- |
- // Check for (kMinInt / -1). |
- if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { |
- // The V flag will be set iff dividend == kMinInt. |
- __ Cmp(dividend, 1); |
- __ Ccmp(divisor, -1, NoFlag, vs); |
- DeoptimizeIf(eq, instr, Deoptimizer::kOverflow); |
- } |
- |
- // Check for (0 / -x) that will produce negative zero. |
- if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { |
- __ Cmp(divisor, 0); |
- __ Ccmp(dividend, 0, ZFlag, mi); |
- // "divisor" can't be null because the code would have already been |
- // deoptimized. The Z flag is set only if (divisor < 0) and (dividend == 0). |
- // In this case we need to deoptimize to produce a -0. |
- DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero); |
- } |
- |
- Label done; |
- // If both operands have the same sign then we are done. |
- __ Eor(remainder, dividend, divisor); |
- __ Tbz(remainder, kWSignBit, &done); |
- |
- // Check if the result needs to be corrected. |
- __ Msub(remainder, result, divisor, dividend); |
- __ Cbz(remainder, &done); |
- __ Sub(result, result, 1); |
- |
- __ Bind(&done); |
-} |
- |
- |
-void LCodeGen::DoMathLog(LMathLog* instr) { |
- DCHECK(instr->IsMarkedAsCall()); |
- DCHECK(ToDoubleRegister(instr->value()).is(d0)); |
- __ CallCFunction(ExternalReference::math_log_double_function(isolate()), |
- 0, 1); |
- DCHECK(ToDoubleRegister(instr->result()).Is(d0)); |
-} |
- |
- |
-void LCodeGen::DoMathClz32(LMathClz32* instr) { |
- Register input = ToRegister32(instr->value()); |
- Register result = ToRegister32(instr->result()); |
- __ Clz(result, input); |
-} |
- |
- |
-void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) { |
- DoubleRegister input = ToDoubleRegister(instr->value()); |
- DoubleRegister result = ToDoubleRegister(instr->result()); |
- Label done; |
- |
- // Math.pow(x, 0.5) differs from fsqrt(x) in the following cases: |
- // Math.pow(-Infinity, 0.5) == +Infinity |
- // Math.pow(-0.0, 0.5) == +0.0 |
- |
- // Catch -infinity inputs first. |
- // TODO(jbramley): A constant infinity register would be helpful here. |
- __ Fmov(double_scratch(), kFP64NegativeInfinity); |
- __ Fcmp(double_scratch(), input); |
- __ Fabs(result, input); |
- __ B(&done, eq); |
- |
- // Add +0.0 to convert -0.0 to +0.0. |
- __ Fadd(double_scratch(), input, fp_zero); |
- __ Fsqrt(result, double_scratch()); |
- |
- __ Bind(&done); |
-} |
- |
- |
-void LCodeGen::DoPower(LPower* instr) { |
- Representation exponent_type = instr->hydrogen()->right()->representation(); |
- // Having marked this as a call, we can use any registers. |
- // Just make sure that the input/output registers are the expected ones. |
- Register tagged_exponent = MathPowTaggedDescriptor::exponent(); |
- Register integer_exponent = MathPowIntegerDescriptor::exponent(); |
- DCHECK(!instr->right()->IsDoubleRegister() || |
- ToDoubleRegister(instr->right()).is(d1)); |
- DCHECK(exponent_type.IsInteger32() || !instr->right()->IsRegister() || |
- ToRegister(instr->right()).is(tagged_exponent)); |
- DCHECK(!exponent_type.IsInteger32() || |
- ToRegister(instr->right()).is(integer_exponent)); |
- DCHECK(ToDoubleRegister(instr->left()).is(d0)); |
- DCHECK(ToDoubleRegister(instr->result()).is(d0)); |
- |
- if (exponent_type.IsSmi()) { |
- MathPowStub stub(isolate(), MathPowStub::TAGGED); |
- __ CallStub(&stub); |
- } else if (exponent_type.IsTagged()) { |
- Label no_deopt; |
- __ JumpIfSmi(tagged_exponent, &no_deopt); |
- DeoptimizeIfNotHeapNumber(tagged_exponent, instr); |
- __ Bind(&no_deopt); |
- MathPowStub stub(isolate(), MathPowStub::TAGGED); |
- __ CallStub(&stub); |
- } else if (exponent_type.IsInteger32()) { |
- // Ensure integer exponent has no garbage in top 32-bits, as MathPowStub |
- // supports large integer exponents. |
- __ Sxtw(integer_exponent, integer_exponent); |
- MathPowStub stub(isolate(), MathPowStub::INTEGER); |
- __ CallStub(&stub); |
- } else { |
- DCHECK(exponent_type.IsDouble()); |
- MathPowStub stub(isolate(), MathPowStub::DOUBLE); |
- __ CallStub(&stub); |
- } |
-} |
- |
- |
-void LCodeGen::DoMathRoundD(LMathRoundD* instr) { |
- DoubleRegister input = ToDoubleRegister(instr->value()); |
- DoubleRegister result = ToDoubleRegister(instr->result()); |
- DoubleRegister scratch_d = double_scratch(); |
- |
- DCHECK(!AreAliased(input, result, scratch_d)); |
- |
- Label done; |
- |
- __ Frinta(result, input); |
- __ Fcmp(input, 0.0); |
- __ Fccmp(result, input, ZFlag, lt); |
- // The result is correct if the input was in [-0, +infinity], or was a |
- // negative integral value. |
- __ B(eq, &done); |
- |
- // Here the input is negative, non integral, with an exponent lower than 52. |
- // We do not have to worry about the 0.49999999999999994 (0x3fdfffffffffffff) |
- // case. So we can safely add 0.5. |
- __ Fmov(scratch_d, 0.5); |
- __ Fadd(result, input, scratch_d); |
- __ Frintm(result, result); |
- // The range [-0.5, -0.0[ yielded +0.0. Force the sign to negative. |
- __ Fabs(result, result); |
- __ Fneg(result, result); |
- |
- __ Bind(&done); |
-} |
- |
- |
-void LCodeGen::DoMathRoundI(LMathRoundI* instr) { |
- DoubleRegister input = ToDoubleRegister(instr->value()); |
- DoubleRegister temp = ToDoubleRegister(instr->temp1()); |
- DoubleRegister dot_five = double_scratch(); |
- Register result = ToRegister(instr->result()); |
- Label done; |
- |
- // Math.round() rounds to the nearest integer, with ties going towards |
- // +infinity. This does not match any IEEE-754 rounding mode. |
- // - Infinities and NaNs are propagated unchanged, but cause deopts because |
- // they can't be represented as integers. |
- // - The sign of the result is the same as the sign of the input. This means |
- // that -0.0 rounds to itself, and values -0.5 <= input < 0 also produce a |
- // result of -0.0. |
- |
- // Add 0.5 and round towards -infinity. |
- __ Fmov(dot_five, 0.5); |
- __ Fadd(temp, input, dot_five); |
- __ Fcvtms(result, temp); |
- |
- // The result is correct if: |
- // result is not 0, as the input could be NaN or [-0.5, -0.0]. |
- // result is not 1, as 0.499...94 will wrongly map to 1. |
- // result fits in 32 bits. |
- __ Cmp(result, Operand(result.W(), SXTW)); |
- __ Ccmp(result, 1, ZFlag, eq); |
- __ B(hi, &done); |
- |
- // At this point, we have to handle possible inputs of NaN or numbers in the |
- // range [-0.5, 1.5[, or numbers larger than 32 bits. |
- |
- // Deoptimize if the result > 1, as it must be larger than 32 bits. |
- __ Cmp(result, 1); |
- DeoptimizeIf(hi, instr, Deoptimizer::kOverflow); |
- |
- // Deoptimize for negative inputs, which at this point are only numbers in |
- // the range [-0.5, -0.0] |
- if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { |
- __ Fmov(result, input); |
- DeoptimizeIfNegative(result, instr, Deoptimizer::kMinusZero); |
- } |
- |
- // Deoptimize if the input was NaN. |
- __ Fcmp(input, dot_five); |
- DeoptimizeIf(vs, instr, Deoptimizer::kNaN); |
- |
- // Now, the only unhandled inputs are in the range [0.0, 1.5[ (or [-0.5, 1.5[ |
- // if we didn't generate a -0.0 bailout). If input >= 0.5 then return 1, |
- // else 0; we avoid dealing with 0.499...94 directly. |
- __ Cset(result, ge); |
- __ Bind(&done); |
-} |
- |
- |
-void LCodeGen::DoMathFround(LMathFround* instr) { |
- DoubleRegister input = ToDoubleRegister(instr->value()); |
- DoubleRegister result = ToDoubleRegister(instr->result()); |
- __ Fcvt(result.S(), input); |
- __ Fcvt(result, result.S()); |
-} |
- |
- |
-void LCodeGen::DoMathSqrt(LMathSqrt* instr) { |
- DoubleRegister input = ToDoubleRegister(instr->value()); |
- DoubleRegister result = ToDoubleRegister(instr->result()); |
- __ Fsqrt(result, input); |
-} |
- |
- |
-void LCodeGen::DoMathMinMax(LMathMinMax* instr) { |
- HMathMinMax::Operation op = instr->hydrogen()->operation(); |
- if (instr->hydrogen()->representation().IsInteger32()) { |
- Register result = ToRegister32(instr->result()); |
- Register left = ToRegister32(instr->left()); |
- Operand right = ToOperand32(instr->right()); |
- |
- __ Cmp(left, right); |
- __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le); |
- } else if (instr->hydrogen()->representation().IsSmi()) { |
- Register result = ToRegister(instr->result()); |
- Register left = ToRegister(instr->left()); |
- Operand right = ToOperand(instr->right()); |
- |
- __ Cmp(left, right); |
- __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le); |
- } else { |
- DCHECK(instr->hydrogen()->representation().IsDouble()); |
- DoubleRegister result = ToDoubleRegister(instr->result()); |
- DoubleRegister left = ToDoubleRegister(instr->left()); |
- DoubleRegister right = ToDoubleRegister(instr->right()); |
- |
- if (op == HMathMinMax::kMathMax) { |
- __ Fmax(result, left, right); |
- } else { |
- DCHECK(op == HMathMinMax::kMathMin); |
- __ Fmin(result, left, right); |
- } |
- } |
-} |
- |
- |
-void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) { |
- Register dividend = ToRegister32(instr->dividend()); |
- int32_t divisor = instr->divisor(); |
- DCHECK(dividend.is(ToRegister32(instr->result()))); |
- |
- // Theoretically, a variation of the branch-free code for integer division by |
- // a power of 2 (calculating the remainder via an additional multiplication |
- // (which gets simplified to an 'and') and subtraction) should be faster, and |
- // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to |
- // indicate that positive dividends are heavily favored, so the branching |
- // version performs better. |
- HMod* hmod = instr->hydrogen(); |
- int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1); |
- Label dividend_is_not_negative, done; |
- if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) { |
- __ Tbz(dividend, kWSignBit, ÷nd_is_not_negative); |
- // Note that this is correct even for kMinInt operands. |
- __ Neg(dividend, dividend); |
- __ And(dividend, dividend, mask); |
- __ Negs(dividend, dividend); |
- if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { |
- DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero); |
- } |
- __ B(&done); |
- } |
- |
- __ bind(÷nd_is_not_negative); |
- __ And(dividend, dividend, mask); |
- __ bind(&done); |
-} |
- |
- |
-void LCodeGen::DoModByConstI(LModByConstI* instr) { |
- Register dividend = ToRegister32(instr->dividend()); |
- int32_t divisor = instr->divisor(); |
- Register result = ToRegister32(instr->result()); |
- Register temp = ToRegister32(instr->temp()); |
- DCHECK(!AreAliased(dividend, result, temp)); |
- |
- if (divisor == 0) { |
- Deoptimize(instr, Deoptimizer::kDivisionByZero); |
- return; |
- } |
- |
- __ TruncatingDiv(result, dividend, Abs(divisor)); |
- __ Sxtw(dividend.X(), dividend); |
- __ Mov(temp, Abs(divisor)); |
- __ Smsubl(result.X(), result, temp, dividend.X()); |
- |
- // Check for negative zero. |
- HMod* hmod = instr->hydrogen(); |
- if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { |
- Label remainder_not_zero; |
- __ Cbnz(result, &remainder_not_zero); |
- DeoptimizeIfNegative(dividend, instr, Deoptimizer::kMinusZero); |
- __ bind(&remainder_not_zero); |
- } |
-} |
- |
- |
-void LCodeGen::DoModI(LModI* instr) { |
- Register dividend = ToRegister32(instr->left()); |
- Register divisor = ToRegister32(instr->right()); |
- Register result = ToRegister32(instr->result()); |
- |
- Label done; |
- // modulo = dividend - quotient * divisor |
- __ Sdiv(result, dividend, divisor); |
- if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) { |
- DeoptimizeIfZero(divisor, instr, Deoptimizer::kDivisionByZero); |
- } |
- __ Msub(result, result, divisor, dividend); |
- if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { |
- __ Cbnz(result, &done); |
- DeoptimizeIfNegative(dividend, instr, Deoptimizer::kMinusZero); |
- } |
- __ Bind(&done); |
-} |
- |
- |
-void LCodeGen::DoMulConstIS(LMulConstIS* instr) { |
- DCHECK(instr->hydrogen()->representation().IsSmiOrInteger32()); |
- bool is_smi = instr->hydrogen()->representation().IsSmi(); |
- Register result = |
- is_smi ? ToRegister(instr->result()) : ToRegister32(instr->result()); |
- Register left = |
- is_smi ? ToRegister(instr->left()) : ToRegister32(instr->left()); |
- int32_t right = ToInteger32(instr->right()); |
- DCHECK((right > -kMaxInt) && (right < kMaxInt)); |
- |
- bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); |
- bool bailout_on_minus_zero = |
- instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero); |
- |
- if (bailout_on_minus_zero) { |
- if (right < 0) { |
- // The result is -0 if right is negative and left is zero. |
- DeoptimizeIfZero(left, instr, Deoptimizer::kMinusZero); |
- } else if (right == 0) { |
- // The result is -0 if the right is zero and the left is negative. |
- DeoptimizeIfNegative(left, instr, Deoptimizer::kMinusZero); |
- } |
- } |
- |
- switch (right) { |
- // Cases which can detect overflow. |
- case -1: |
- if (can_overflow) { |
- // Only 0x80000000 can overflow here. |
- __ Negs(result, left); |
- DeoptimizeIf(vs, instr, Deoptimizer::kOverflow); |
- } else { |
- __ Neg(result, left); |
- } |
- break; |
- case 0: |
- // This case can never overflow. |
- __ Mov(result, 0); |
- break; |
- case 1: |
- // This case can never overflow. |
- __ Mov(result, left, kDiscardForSameWReg); |
- break; |
- case 2: |
- if (can_overflow) { |
- __ Adds(result, left, left); |
- DeoptimizeIf(vs, instr, Deoptimizer::kOverflow); |
- } else { |
- __ Add(result, left, left); |
- } |
- break; |
- |
- default: |
- // Multiplication by constant powers of two (and some related values) |
- // can be done efficiently with shifted operands. |
- int32_t right_abs = Abs(right); |
- |
- if (base::bits::IsPowerOfTwo32(right_abs)) { |
- int right_log2 = WhichPowerOf2(right_abs); |
- |
- if (can_overflow) { |
- Register scratch = result; |
- DCHECK(!AreAliased(scratch, left)); |
- __ Cls(scratch, left); |
- __ Cmp(scratch, right_log2); |
- DeoptimizeIf(lt, instr, Deoptimizer::kOverflow); |
- } |
- |
- if (right >= 0) { |
- // result = left << log2(right) |
- __ Lsl(result, left, right_log2); |
- } else { |
- // result = -left << log2(-right) |
- if (can_overflow) { |
- __ Negs(result, Operand(left, LSL, right_log2)); |
- DeoptimizeIf(vs, instr, Deoptimizer::kOverflow); |
- } else { |
- __ Neg(result, Operand(left, LSL, right_log2)); |
- } |
- } |
- return; |
- } |
- |
- |
- // For the following cases, we could perform a conservative overflow check |
- // with CLS as above. However the few cycles saved are likely not worth |
- // the risk of deoptimizing more often than required. |
- DCHECK(!can_overflow); |
- |
- if (right >= 0) { |
- if (base::bits::IsPowerOfTwo32(right - 1)) { |
- // result = left + left << log2(right - 1) |
- __ Add(result, left, Operand(left, LSL, WhichPowerOf2(right - 1))); |
- } else if (base::bits::IsPowerOfTwo32(right + 1)) { |
- // result = -left + left << log2(right + 1) |
- __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(right + 1))); |
- __ Neg(result, result); |
- } else { |
- UNREACHABLE(); |
- } |
- } else { |
- if (base::bits::IsPowerOfTwo32(-right + 1)) { |
- // result = left - left << log2(-right + 1) |
- __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(-right + 1))); |
- } else if (base::bits::IsPowerOfTwo32(-right - 1)) { |
- // result = -left - left << log2(-right - 1) |
- __ Add(result, left, Operand(left, LSL, WhichPowerOf2(-right - 1))); |
- __ Neg(result, result); |
- } else { |
- UNREACHABLE(); |
- } |
- } |
- } |
-} |
- |
- |
-void LCodeGen::DoMulI(LMulI* instr) { |
- Register result = ToRegister32(instr->result()); |
- Register left = ToRegister32(instr->left()); |
- Register right = ToRegister32(instr->right()); |
- |
- bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); |
- bool bailout_on_minus_zero = |
- instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero); |
- |
- if (bailout_on_minus_zero && !left.Is(right)) { |
- // If one operand is zero and the other is negative, the result is -0. |
- // - Set Z (eq) if either left or right, or both, are 0. |
- __ Cmp(left, 0); |
- __ Ccmp(right, 0, ZFlag, ne); |
- // - If so (eq), set N (mi) if left + right is negative. |
- // - Otherwise, clear N. |
- __ Ccmn(left, right, NoFlag, eq); |
- DeoptimizeIf(mi, instr, Deoptimizer::kMinusZero); |
- } |
- |
- if (can_overflow) { |
- __ Smull(result.X(), left, right); |
- __ Cmp(result.X(), Operand(result, SXTW)); |
- DeoptimizeIf(ne, instr, Deoptimizer::kOverflow); |
- } else { |
- __ Mul(result, left, right); |
- } |
-} |
- |
- |
-void LCodeGen::DoMulS(LMulS* instr) { |
- Register result = ToRegister(instr->result()); |
- Register left = ToRegister(instr->left()); |
- Register right = ToRegister(instr->right()); |
- |
- bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); |
- bool bailout_on_minus_zero = |
- instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero); |
- |
- if (bailout_on_minus_zero && !left.Is(right)) { |
- // If one operand is zero and the other is negative, the result is -0. |
- // - Set Z (eq) if either left or right, or both, are 0. |
- __ Cmp(left, 0); |
- __ Ccmp(right, 0, ZFlag, ne); |
- // - If so (eq), set N (mi) if left + right is negative. |
- // - Otherwise, clear N. |
- __ Ccmn(left, right, NoFlag, eq); |
- DeoptimizeIf(mi, instr, Deoptimizer::kMinusZero); |
- } |
- |
- STATIC_ASSERT((kSmiShift == 32) && (kSmiTag == 0)); |
- if (can_overflow) { |
- __ Smulh(result, left, right); |
- __ Cmp(result, Operand(result.W(), SXTW)); |
- __ SmiTag(result); |
- DeoptimizeIf(ne, instr, Deoptimizer::kOverflow); |
- } else { |
- if (AreAliased(result, left, right)) { |
- // All three registers are the same: half untag the input and then |
- // multiply, giving a tagged result. |
- STATIC_ASSERT((kSmiShift % 2) == 0); |
- __ Asr(result, left, kSmiShift / 2); |
- __ Mul(result, result, result); |
- } else if (result.Is(left) && !left.Is(right)) { |
- // Registers result and left alias, right is distinct: untag left into |
- // result, and then multiply by right, giving a tagged result. |
- __ SmiUntag(result, left); |
- __ Mul(result, result, right); |
- } else { |
- DCHECK(!left.Is(result)); |
- // Registers result and right alias, left is distinct, or all registers |
- // are distinct: untag right into result, and then multiply by left, |
- // giving a tagged result. |
- __ SmiUntag(result, right); |
- __ Mul(result, left, result); |
- } |
- } |
-} |
- |
- |
-void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) { |
- // TODO(3095996): Get rid of this. For now, we need to make the |
- // result register contain a valid pointer because it is already |
- // contained in the register pointer map. |
- Register result = ToRegister(instr->result()); |
- __ Mov(result, 0); |
- |
- PushSafepointRegistersScope scope(this); |
- // NumberTagU and NumberTagD use the context from the frame, rather than |
- // the environment's HContext or HInlinedContext value. |
- // They only call Runtime::kAllocateHeapNumber. |
- // The corresponding HChange instructions are added in a phase that does |
- // not have easy access to the local context. |
- __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
- __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber); |
- RecordSafepointWithRegisters( |
- instr->pointer_map(), 0, Safepoint::kNoLazyDeopt); |
- __ StoreToSafepointRegisterSlot(x0, result); |
-} |
- |
- |
-void LCodeGen::DoNumberTagD(LNumberTagD* instr) { |
- class DeferredNumberTagD: public LDeferredCode { |
- public: |
- DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr) |
- : LDeferredCode(codegen), instr_(instr) { } |
- virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); } |
- virtual LInstruction* instr() { return instr_; } |
- private: |
- LNumberTagD* instr_; |
- }; |
- |
- DoubleRegister input = ToDoubleRegister(instr->value()); |
- Register result = ToRegister(instr->result()); |
- Register temp1 = ToRegister(instr->temp1()); |
- Register temp2 = ToRegister(instr->temp2()); |
- |
- DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr); |
- if (FLAG_inline_new) { |
- __ AllocateHeapNumber(result, deferred->entry(), temp1, temp2); |
- } else { |
- __ B(deferred->entry()); |
- } |
- |
- __ Bind(deferred->exit()); |
- __ Str(input, FieldMemOperand(result, HeapNumber::kValueOffset)); |
-} |
- |
- |
-void LCodeGen::DoDeferredNumberTagU(LInstruction* instr, |
- LOperand* value, |
- LOperand* temp1, |
- LOperand* temp2) { |
- Label slow, convert_and_store; |
- Register src = ToRegister32(value); |
- Register dst = ToRegister(instr->result()); |
- Register scratch1 = ToRegister(temp1); |
- |
- if (FLAG_inline_new) { |
- Register scratch2 = ToRegister(temp2); |
- __ AllocateHeapNumber(dst, &slow, scratch1, scratch2); |
- __ B(&convert_and_store); |
- } |
- |
- // Slow case: call the runtime system to do the number allocation. |
- __ Bind(&slow); |
- // TODO(3095996): Put a valid pointer value in the stack slot where the result |
- // register is stored, as this register is in the pointer map, but contains an |
- // integer value. |
- __ Mov(dst, 0); |
- { |
- // Preserve the value of all registers. |
- PushSafepointRegistersScope scope(this); |
- |
- // NumberTagU and NumberTagD use the context from the frame, rather than |
- // the environment's HContext or HInlinedContext value. |
- // They only call Runtime::kAllocateHeapNumber. |
- // The corresponding HChange instructions are added in a phase that does |
- // not have easy access to the local context. |
- __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
- __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber); |
- RecordSafepointWithRegisters( |
- instr->pointer_map(), 0, Safepoint::kNoLazyDeopt); |
- __ StoreToSafepointRegisterSlot(x0, dst); |
- } |
- |
- // Convert number to floating point and store in the newly allocated heap |
- // number. |
- __ Bind(&convert_and_store); |
- DoubleRegister dbl_scratch = double_scratch(); |
- __ Ucvtf(dbl_scratch, src); |
- __ Str(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset)); |
-} |
- |
- |
-void LCodeGen::DoNumberTagU(LNumberTagU* instr) { |
- class DeferredNumberTagU: public LDeferredCode { |
- public: |
- DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr) |
- : LDeferredCode(codegen), instr_(instr) { } |
- virtual void Generate() { |
- codegen()->DoDeferredNumberTagU(instr_, |
- instr_->value(), |
- instr_->temp1(), |
- instr_->temp2()); |
- } |
- virtual LInstruction* instr() { return instr_; } |
- private: |
- LNumberTagU* instr_; |
- }; |
- |
- Register value = ToRegister32(instr->value()); |
- Register result = ToRegister(instr->result()); |
- |
- DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr); |
- __ Cmp(value, Smi::kMaxValue); |
- __ B(hi, deferred->entry()); |
- __ SmiTag(result, value.X()); |
- __ Bind(deferred->exit()); |
-} |
- |
- |
-void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) { |
- Register input = ToRegister(instr->value()); |
- Register scratch = ToRegister(instr->temp()); |
- DoubleRegister result = ToDoubleRegister(instr->result()); |
- bool can_convert_undefined_to_nan = |
- instr->hydrogen()->can_convert_undefined_to_nan(); |
- |
- Label done, load_smi; |
- |
- // Work out what untag mode we're working with. |
- HValue* value = instr->hydrogen()->value(); |
- NumberUntagDMode mode = value->representation().IsSmi() |
- ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED; |
- |
- if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) { |
- __ JumpIfSmi(input, &load_smi); |
- |
- Label convert_undefined; |
- |
- // Heap number map check. |
- if (can_convert_undefined_to_nan) { |
- __ JumpIfNotHeapNumber(input, &convert_undefined); |
- } else { |
- DeoptimizeIfNotHeapNumber(input, instr); |
- } |
- |
- // Load heap number. |
- __ Ldr(result, FieldMemOperand(input, HeapNumber::kValueOffset)); |
- if (instr->hydrogen()->deoptimize_on_minus_zero()) { |
- DeoptimizeIfMinusZero(result, instr, Deoptimizer::kMinusZero); |
- } |
- __ B(&done); |
- |
- if (can_convert_undefined_to_nan) { |
- __ Bind(&convert_undefined); |
- DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr, |
- Deoptimizer::kNotAHeapNumberUndefined); |
- |
- __ LoadRoot(scratch, Heap::kNanValueRootIndex); |
- __ Ldr(result, FieldMemOperand(scratch, HeapNumber::kValueOffset)); |
- __ B(&done); |
- } |
- |
- } else { |
- DCHECK(mode == NUMBER_CANDIDATE_IS_SMI); |
- // Fall through to load_smi. |
- } |
- |
- // Smi to double register conversion. |
- __ Bind(&load_smi); |
- __ SmiUntagToDouble(result, input); |
- |
- __ Bind(&done); |
-} |
- |
- |
-void LCodeGen::DoOsrEntry(LOsrEntry* instr) { |
- // This is a pseudo-instruction that ensures that the environment here is |
- // properly registered for deoptimization and records the assembler's PC |
- // offset. |
- LEnvironment* environment = instr->environment(); |
- |
- // If the environment were already registered, we would have no way of |
- // backpatching it with the spill slot operands. |
- DCHECK(!environment->HasBeenRegistered()); |
- RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); |
- |
- GenerateOsrPrologue(); |
-} |
- |
- |
-void LCodeGen::DoParameter(LParameter* instr) { |
- // Nothing to do. |
-} |
- |
- |
-void LCodeGen::DoPreparePushArguments(LPreparePushArguments* instr) { |
- __ PushPreamble(instr->argc(), kPointerSize); |
-} |
- |
- |
-void LCodeGen::DoPushArguments(LPushArguments* instr) { |
- MacroAssembler::PushPopQueue args(masm()); |
- |
- for (int i = 0; i < instr->ArgumentCount(); ++i) { |
- LOperand* arg = instr->argument(i); |
- if (arg->IsDoubleRegister() || arg->IsDoubleStackSlot()) { |
- Abort(kDoPushArgumentNotImplementedForDoubleType); |
- return; |
- } |
- args.Queue(ToRegister(arg)); |
- } |
- |
- // The preamble was done by LPreparePushArguments. |
- args.PushQueued(MacroAssembler::PushPopQueue::SKIP_PREAMBLE); |
- |
- RecordPushedArgumentsDelta(instr->ArgumentCount()); |
-} |
- |
- |
-void LCodeGen::DoReturn(LReturn* instr) { |
- if (FLAG_trace && info()->IsOptimizing()) { |
- // Push the return value on the stack as the parameter. |
- // Runtime::TraceExit returns its parameter in x0. We're leaving the code |
- // managed by the register allocator and tearing down the frame, it's |
- // safe to write to the context register. |
- __ Push(x0); |
- __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
- __ CallRuntime(Runtime::kTraceExit, 1); |
- } |
- |
- if (info()->saves_caller_doubles()) { |
- RestoreCallerDoubles(); |
- } |
- |
- if (NeedsEagerFrame()) { |
- Register stack_pointer = masm()->StackPointer(); |
- __ Mov(stack_pointer, fp); |
- __ Pop(fp, lr); |
- } |
- |
- if (instr->has_constant_parameter_count()) { |
- int parameter_count = ToInteger32(instr->constant_parameter_count()); |
- __ Drop(parameter_count + 1); |
- } else { |
- DCHECK(info()->IsStub()); // Functions would need to drop one more value. |
- Register parameter_count = ToRegister(instr->parameter_count()); |
- __ DropBySMI(parameter_count); |
- } |
- __ Ret(); |
-} |
- |
- |
-MemOperand LCodeGen::BuildSeqStringOperand(Register string, |
- Register temp, |
- LOperand* index, |
- String::Encoding encoding) { |
- if (index->IsConstantOperand()) { |
- int offset = ToInteger32(LConstantOperand::cast(index)); |
- if (encoding == String::TWO_BYTE_ENCODING) { |
- offset *= kUC16Size; |
- } |
- STATIC_ASSERT(kCharSize == 1); |
- return FieldMemOperand(string, SeqString::kHeaderSize + offset); |
- } |
- |
- __ Add(temp, string, SeqString::kHeaderSize - kHeapObjectTag); |
- if (encoding == String::ONE_BYTE_ENCODING) { |
- return MemOperand(temp, ToRegister32(index), SXTW); |
- } else { |
- STATIC_ASSERT(kUC16Size == 2); |
- return MemOperand(temp, ToRegister32(index), SXTW, 1); |
- } |
-} |
- |
- |
-void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) { |
- String::Encoding encoding = instr->hydrogen()->encoding(); |
- Register string = ToRegister(instr->string()); |
- Register result = ToRegister(instr->result()); |
- Register temp = ToRegister(instr->temp()); |
- |
- if (FLAG_debug_code) { |
- // Even though this lithium instruction comes with a temp register, we |
- // can't use it here because we want to use "AtStart" constraints on the |
- // inputs and the debug code here needs a scratch register. |
- UseScratchRegisterScope temps(masm()); |
- Register dbg_temp = temps.AcquireX(); |
- |
- __ Ldr(dbg_temp, FieldMemOperand(string, HeapObject::kMapOffset)); |
- __ Ldrb(dbg_temp, FieldMemOperand(dbg_temp, Map::kInstanceTypeOffset)); |
- |
- __ And(dbg_temp, dbg_temp, |
- Operand(kStringRepresentationMask | kStringEncodingMask)); |
- static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; |
- static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; |
- __ Cmp(dbg_temp, Operand(encoding == String::ONE_BYTE_ENCODING |
- ? one_byte_seq_type : two_byte_seq_type)); |
- __ Check(eq, kUnexpectedStringType); |
- } |
- |
- MemOperand operand = |
- BuildSeqStringOperand(string, temp, instr->index(), encoding); |
- if (encoding == String::ONE_BYTE_ENCODING) { |
- __ Ldrb(result, operand); |
- } else { |
- __ Ldrh(result, operand); |
- } |
-} |
- |
- |
-void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) { |
- String::Encoding encoding = instr->hydrogen()->encoding(); |
- Register string = ToRegister(instr->string()); |
- Register value = ToRegister(instr->value()); |
- Register temp = ToRegister(instr->temp()); |
- |
- if (FLAG_debug_code) { |
- DCHECK(ToRegister(instr->context()).is(cp)); |
- Register index = ToRegister(instr->index()); |
- static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; |
- static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; |
- int encoding_mask = |
- instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING |
- ? one_byte_seq_type : two_byte_seq_type; |
- __ EmitSeqStringSetCharCheck(string, index, kIndexIsInteger32, temp, |
- encoding_mask); |
- } |
- MemOperand operand = |
- BuildSeqStringOperand(string, temp, instr->index(), encoding); |
- if (encoding == String::ONE_BYTE_ENCODING) { |
- __ Strb(value, operand); |
- } else { |
- __ Strh(value, operand); |
- } |
-} |
- |
- |
-void LCodeGen::DoSmiTag(LSmiTag* instr) { |
- HChange* hchange = instr->hydrogen(); |
- Register input = ToRegister(instr->value()); |
- Register output = ToRegister(instr->result()); |
- if (hchange->CheckFlag(HValue::kCanOverflow) && |
- hchange->value()->CheckFlag(HValue::kUint32)) { |
- DeoptimizeIfNegative(input.W(), instr, Deoptimizer::kOverflow); |
- } |
- __ SmiTag(output, input); |
-} |
- |
- |
-void LCodeGen::DoSmiUntag(LSmiUntag* instr) { |
- Register input = ToRegister(instr->value()); |
- Register result = ToRegister(instr->result()); |
- Label done, untag; |
- |
- if (instr->needs_check()) { |
- DeoptimizeIfNotSmi(input, instr, Deoptimizer::kNotASmi); |
- } |
- |
- __ Bind(&untag); |
- __ SmiUntag(result, input); |
- __ Bind(&done); |
-} |
- |
- |
-void LCodeGen::DoShiftI(LShiftI* instr) { |
- LOperand* right_op = instr->right(); |
- Register left = ToRegister32(instr->left()); |
- Register result = ToRegister32(instr->result()); |
- |
- if (right_op->IsRegister()) { |
- Register right = ToRegister32(instr->right()); |
- switch (instr->op()) { |
- case Token::ROR: __ Ror(result, left, right); break; |
- case Token::SAR: __ Asr(result, left, right); break; |
- case Token::SHL: __ Lsl(result, left, right); break; |
- case Token::SHR: |
- __ Lsr(result, left, right); |
- if (instr->can_deopt()) { |
- // If `left >>> right` >= 0x80000000, the result is not representable |
- // in a signed 32-bit smi. |
- DeoptimizeIfNegative(result, instr, Deoptimizer::kNegativeValue); |
- } |
- break; |
- default: UNREACHABLE(); |
- } |
- } else { |
- DCHECK(right_op->IsConstantOperand()); |
- int shift_count = JSShiftAmountFromLConstant(right_op); |
- if (shift_count == 0) { |
- if ((instr->op() == Token::SHR) && instr->can_deopt()) { |
- DeoptimizeIfNegative(left, instr, Deoptimizer::kNegativeValue); |
- } |
- __ Mov(result, left, kDiscardForSameWReg); |
- } else { |
- switch (instr->op()) { |
- case Token::ROR: __ Ror(result, left, shift_count); break; |
- case Token::SAR: __ Asr(result, left, shift_count); break; |
- case Token::SHL: __ Lsl(result, left, shift_count); break; |
- case Token::SHR: __ Lsr(result, left, shift_count); break; |
- default: UNREACHABLE(); |
- } |
- } |
- } |
-} |
- |
- |
-void LCodeGen::DoShiftS(LShiftS* instr) { |
- LOperand* right_op = instr->right(); |
- Register left = ToRegister(instr->left()); |
- Register result = ToRegister(instr->result()); |
- |
- if (right_op->IsRegister()) { |
- Register right = ToRegister(instr->right()); |
- |
- // JavaScript shifts only look at the bottom 5 bits of the 'right' operand. |
- // Since we're handling smis in X registers, we have to extract these bits |
- // explicitly. |
- __ Ubfx(result, right, kSmiShift, 5); |
- |
- switch (instr->op()) { |
- case Token::ROR: { |
- // This is the only case that needs a scratch register. To keep things |
- // simple for the other cases, borrow a MacroAssembler scratch register. |
- UseScratchRegisterScope temps(masm()); |
- Register temp = temps.AcquireW(); |
- __ SmiUntag(temp, left); |
- __ Ror(result.W(), temp.W(), result.W()); |
- __ SmiTag(result); |
- break; |
- } |
- case Token::SAR: |
- __ Asr(result, left, result); |
- __ Bic(result, result, kSmiShiftMask); |
- break; |
- case Token::SHL: |
- __ Lsl(result, left, result); |
- break; |
- case Token::SHR: |
- __ Lsr(result, left, result); |
- __ Bic(result, result, kSmiShiftMask); |
- if (instr->can_deopt()) { |
- // If `left >>> right` >= 0x80000000, the result is not representable |
- // in a signed 32-bit smi. |
- DeoptimizeIfNegative(result, instr, Deoptimizer::kNegativeValue); |
- } |
- break; |
- default: UNREACHABLE(); |
- } |
- } else { |
- DCHECK(right_op->IsConstantOperand()); |
- int shift_count = JSShiftAmountFromLConstant(right_op); |
- if (shift_count == 0) { |
- if ((instr->op() == Token::SHR) && instr->can_deopt()) { |
- DeoptimizeIfNegative(left, instr, Deoptimizer::kNegativeValue); |
- } |
- __ Mov(result, left); |
- } else { |
- switch (instr->op()) { |
- case Token::ROR: |
- __ SmiUntag(result, left); |
- __ Ror(result.W(), result.W(), shift_count); |
- __ SmiTag(result); |
- break; |
- case Token::SAR: |
- __ Asr(result, left, shift_count); |
- __ Bic(result, result, kSmiShiftMask); |
- break; |
- case Token::SHL: |
- __ Lsl(result, left, shift_count); |
- break; |
- case Token::SHR: |
- __ Lsr(result, left, shift_count); |
- __ Bic(result, result, kSmiShiftMask); |
- break; |
- default: UNREACHABLE(); |
- } |
- } |
- } |
-} |
- |
- |
-void LCodeGen::DoDebugBreak(LDebugBreak* instr) { |
- __ Debug("LDebugBreak", 0, BREAK); |
-} |
- |
- |
-void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) { |
- DCHECK(ToRegister(instr->context()).is(cp)); |
- Register scratch1 = x5; |
- Register scratch2 = x6; |
- DCHECK(instr->IsMarkedAsCall()); |
- |
- // TODO(all): if Mov could handle object in new space then it could be used |
- // here. |
- __ LoadHeapObject(scratch1, instr->hydrogen()->pairs()); |
- __ Mov(scratch2, Smi::FromInt(instr->hydrogen()->flags())); |
- __ Push(scratch1, scratch2); |
- CallRuntime(Runtime::kDeclareGlobals, 2, instr); |
-} |
- |
- |
-void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) { |
- PushSafepointRegistersScope scope(this); |
- LoadContextFromDeferred(instr->context()); |
- __ CallRuntimeSaveDoubles(Runtime::kStackGuard); |
- RecordSafepointWithLazyDeopt( |
- instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); |
- DCHECK(instr->HasEnvironment()); |
- LEnvironment* env = instr->environment(); |
- safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); |
-} |
- |
- |
-void LCodeGen::DoStackCheck(LStackCheck* instr) { |
- class DeferredStackCheck: public LDeferredCode { |
- public: |
- DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr) |
- : LDeferredCode(codegen), instr_(instr) { } |
- virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); } |
- virtual LInstruction* instr() { return instr_; } |
- private: |
- LStackCheck* instr_; |
- }; |
- |
- DCHECK(instr->HasEnvironment()); |
- LEnvironment* env = instr->environment(); |
- // There is no LLazyBailout instruction for stack-checks. We have to |
- // prepare for lazy deoptimization explicitly here. |
- if (instr->hydrogen()->is_function_entry()) { |
- // Perform stack overflow check. |
- Label done; |
- __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex); |
- __ B(hs, &done); |
- |
- PredictableCodeSizeScope predictable(masm_, |
- Assembler::kCallSizeWithRelocation); |
- DCHECK(instr->context()->IsRegister()); |
- DCHECK(ToRegister(instr->context()).is(cp)); |
- CallCode(isolate()->builtins()->StackCheck(), |
- RelocInfo::CODE_TARGET, |
- instr); |
- __ Bind(&done); |
- } else { |
- DCHECK(instr->hydrogen()->is_backwards_branch()); |
- // Perform stack overflow check if this goto needs it before jumping. |
- DeferredStackCheck* deferred_stack_check = |
- new(zone()) DeferredStackCheck(this, instr); |
- __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex); |
- __ B(lo, deferred_stack_check->entry()); |
- |
- EnsureSpaceForLazyDeopt(Deoptimizer::patch_size()); |
- __ Bind(instr->done_label()); |
- deferred_stack_check->SetExit(instr->done_label()); |
- RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); |
- // Don't record a deoptimization index for the safepoint here. |
- // This will be done explicitly when emitting call and the safepoint in |
- // the deferred code. |
- } |
-} |
- |
- |
-void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) { |
- Register function = ToRegister(instr->function()); |
- Register code_object = ToRegister(instr->code_object()); |
- Register temp = ToRegister(instr->temp()); |
- __ Add(temp, code_object, Code::kHeaderSize - kHeapObjectTag); |
- __ Str(temp, FieldMemOperand(function, JSFunction::kCodeEntryOffset)); |
-} |
- |
- |
-void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) { |
- Register context = ToRegister(instr->context()); |
- Register value = ToRegister(instr->value()); |
- Register scratch = ToRegister(instr->temp()); |
- MemOperand target = ContextMemOperand(context, instr->slot_index()); |
- |
- Label skip_assignment; |
- |
- if (instr->hydrogen()->RequiresHoleCheck()) { |
- __ Ldr(scratch, target); |
- if (instr->hydrogen()->DeoptimizesOnHole()) { |
- DeoptimizeIfRoot(scratch, Heap::kTheHoleValueRootIndex, instr, |
- Deoptimizer::kHole); |
- } else { |
- __ JumpIfNotRoot(scratch, Heap::kTheHoleValueRootIndex, &skip_assignment); |
- } |
- } |
- |
- __ Str(value, target); |
- if (instr->hydrogen()->NeedsWriteBarrier()) { |
- SmiCheck check_needed = |
- instr->hydrogen()->value()->type().IsHeapObject() |
- ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; |
- __ RecordWriteContextSlot(context, static_cast<int>(target.offset()), value, |
- scratch, GetLinkRegisterState(), kSaveFPRegs, |
- EMIT_REMEMBERED_SET, check_needed); |
- } |
- __ Bind(&skip_assignment); |
-} |
- |
- |
-void LCodeGen::DoStoreKeyedExternal(LStoreKeyedExternal* instr) { |
- Register ext_ptr = ToRegister(instr->elements()); |
- Register key = no_reg; |
- Register scratch; |
- ElementsKind elements_kind = instr->elements_kind(); |
- |
- bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi(); |
- bool key_is_constant = instr->key()->IsConstantOperand(); |
- int constant_key = 0; |
- if (key_is_constant) { |
- DCHECK(instr->temp() == NULL); |
- constant_key = ToInteger32(LConstantOperand::cast(instr->key())); |
- if (constant_key & 0xf0000000) { |
- Abort(kArrayIndexConstantValueTooBig); |
- } |
- } else { |
- key = ToRegister(instr->key()); |
- scratch = ToRegister(instr->temp()); |
- } |
- |
- MemOperand dst = |
- PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi, |
- key_is_constant, constant_key, |
- elements_kind, |
- instr->base_offset()); |
- |
- if (elements_kind == FLOAT32_ELEMENTS) { |
- DoubleRegister value = ToDoubleRegister(instr->value()); |
- DoubleRegister dbl_scratch = double_scratch(); |
- __ Fcvt(dbl_scratch.S(), value); |
- __ Str(dbl_scratch.S(), dst); |
- } else if (elements_kind == FLOAT64_ELEMENTS) { |
- DoubleRegister value = ToDoubleRegister(instr->value()); |
- __ Str(value, dst); |
- } else { |
- Register value = ToRegister(instr->value()); |
- |
- switch (elements_kind) { |
- case UINT8_ELEMENTS: |
- case UINT8_CLAMPED_ELEMENTS: |
- case INT8_ELEMENTS: |
- __ Strb(value, dst); |
- break; |
- case INT16_ELEMENTS: |
- case UINT16_ELEMENTS: |
- __ Strh(value, dst); |
- break; |
- case INT32_ELEMENTS: |
- case UINT32_ELEMENTS: |
- __ Str(value.W(), dst); |
- break; |
- case FLOAT32_ELEMENTS: |
- case FLOAT64_ELEMENTS: |
- case FAST_DOUBLE_ELEMENTS: |
- case FAST_ELEMENTS: |
- case FAST_SMI_ELEMENTS: |
- case FAST_HOLEY_DOUBLE_ELEMENTS: |
- case FAST_HOLEY_ELEMENTS: |
- case FAST_HOLEY_SMI_ELEMENTS: |
- case DICTIONARY_ELEMENTS: |
- case FAST_SLOPPY_ARGUMENTS_ELEMENTS: |
- case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: |
- UNREACHABLE(); |
- break; |
- } |
- } |
-} |
- |
- |
-void LCodeGen::DoStoreKeyedFixedDouble(LStoreKeyedFixedDouble* instr) { |
- Register elements = ToRegister(instr->elements()); |
- DoubleRegister value = ToDoubleRegister(instr->value()); |
- MemOperand mem_op; |
- |
- if (instr->key()->IsConstantOperand()) { |
- int constant_key = ToInteger32(LConstantOperand::cast(instr->key())); |
- if (constant_key & 0xf0000000) { |
- Abort(kArrayIndexConstantValueTooBig); |
- } |
- int offset = instr->base_offset() + constant_key * kDoubleSize; |
- mem_op = MemOperand(elements, offset); |
- } else { |
- Register store_base = ToRegister(instr->temp()); |
- Register key = ToRegister(instr->key()); |
- bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi(); |
- mem_op = PrepareKeyedArrayOperand(store_base, elements, key, key_is_tagged, |
- instr->hydrogen()->elements_kind(), |
- instr->hydrogen()->representation(), |
- instr->base_offset()); |
- } |
- |
- if (instr->NeedsCanonicalization()) { |
- __ CanonicalizeNaN(double_scratch(), value); |
- __ Str(double_scratch(), mem_op); |
- } else { |
- __ Str(value, mem_op); |
- } |
-} |
- |
- |
-void LCodeGen::DoStoreKeyedFixed(LStoreKeyedFixed* instr) { |
- Register value = ToRegister(instr->value()); |
- Register elements = ToRegister(instr->elements()); |
- Register scratch = no_reg; |
- Register store_base = no_reg; |
- Register key = no_reg; |
- MemOperand mem_op; |
- |
- if (!instr->key()->IsConstantOperand() || |
- instr->hydrogen()->NeedsWriteBarrier()) { |
- scratch = ToRegister(instr->temp()); |
- } |
- |
- Representation representation = instr->hydrogen()->value()->representation(); |
- if (instr->key()->IsConstantOperand()) { |
- LConstantOperand* const_operand = LConstantOperand::cast(instr->key()); |
- int offset = instr->base_offset() + |
- ToInteger32(const_operand) * kPointerSize; |
- store_base = elements; |
- if (representation.IsInteger32()) { |
- DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY); |
- DCHECK(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS); |
- STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits); |
- STATIC_ASSERT(kSmiTag == 0); |
- mem_op = UntagSmiMemOperand(store_base, offset); |
- } else { |
- mem_op = MemOperand(store_base, offset); |
- } |
- } else { |
- store_base = scratch; |
- key = ToRegister(instr->key()); |
- bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi(); |
- |
- mem_op = PrepareKeyedArrayOperand(store_base, elements, key, key_is_tagged, |
- instr->hydrogen()->elements_kind(), |
- representation, instr->base_offset()); |
- } |
- |
- __ Store(value, mem_op, representation); |
- |
- if (instr->hydrogen()->NeedsWriteBarrier()) { |
- DCHECK(representation.IsTagged()); |
- // This assignment may cause element_addr to alias store_base. |
- Register element_addr = scratch; |
- SmiCheck check_needed = |
- instr->hydrogen()->value()->type().IsHeapObject() |
- ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; |
- // Compute address of modified element and store it into key register. |
- __ Add(element_addr, mem_op.base(), mem_op.OffsetAsOperand()); |
- __ RecordWrite(elements, element_addr, value, GetLinkRegisterState(), |
- kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed, |
- instr->hydrogen()->PointersToHereCheckForValue()); |
- } |
-} |
- |
- |
-void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) { |
- DCHECK(ToRegister(instr->context()).is(cp)); |
- DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister())); |
- DCHECK(ToRegister(instr->key()).is(StoreDescriptor::NameRegister())); |
- DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister())); |
- |
- if (instr->hydrogen()->HasVectorAndSlot()) { |
- EmitVectorStoreICRegisters<LStoreKeyedGeneric>(instr); |
- } |
- |
- Handle<Code> ic = CodeFactory::KeyedStoreICInOptimizedCode( |
- isolate(), instr->language_mode(), |
- instr->hydrogen()->initialization_state()).code(); |
- CallCode(ic, RelocInfo::CODE_TARGET, instr); |
-} |
- |
- |
-void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) { |
- class DeferredMaybeGrowElements final : public LDeferredCode { |
- public: |
- DeferredMaybeGrowElements(LCodeGen* codegen, LMaybeGrowElements* instr) |
- : LDeferredCode(codegen), instr_(instr) {} |
- void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); } |
- LInstruction* instr() override { return instr_; } |
- |
- private: |
- LMaybeGrowElements* instr_; |
- }; |
- |
- Register result = x0; |
- DeferredMaybeGrowElements* deferred = |
- new (zone()) DeferredMaybeGrowElements(this, instr); |
- LOperand* key = instr->key(); |
- LOperand* current_capacity = instr->current_capacity(); |
- |
- DCHECK(instr->hydrogen()->key()->representation().IsInteger32()); |
- DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32()); |
- DCHECK(key->IsConstantOperand() || key->IsRegister()); |
- DCHECK(current_capacity->IsConstantOperand() || |
- current_capacity->IsRegister()); |
- |
- if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) { |
- int32_t constant_key = ToInteger32(LConstantOperand::cast(key)); |
- int32_t constant_capacity = |
- ToInteger32(LConstantOperand::cast(current_capacity)); |
- if (constant_key >= constant_capacity) { |
- // Deferred case. |
- __ B(deferred->entry()); |
- } |
- } else if (key->IsConstantOperand()) { |
- int32_t constant_key = ToInteger32(LConstantOperand::cast(key)); |
- __ Cmp(ToRegister(current_capacity), Operand(constant_key)); |
- __ B(le, deferred->entry()); |
- } else if (current_capacity->IsConstantOperand()) { |
- int32_t constant_capacity = |
- ToInteger32(LConstantOperand::cast(current_capacity)); |
- __ Cmp(ToRegister(key), Operand(constant_capacity)); |
- __ B(ge, deferred->entry()); |
- } else { |
- __ Cmp(ToRegister(key), ToRegister(current_capacity)); |
- __ B(ge, deferred->entry()); |
- } |
- |
- __ Mov(result, ToRegister(instr->elements())); |
- |
- __ Bind(deferred->exit()); |
-} |
- |
- |
-void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) { |
- // TODO(3095996): Get rid of this. For now, we need to make the |
- // result register contain a valid pointer because it is already |
- // contained in the register pointer map. |
- Register result = x0; |
- __ Mov(result, 0); |
- |
- // We have to call a stub. |
- { |
- PushSafepointRegistersScope scope(this); |
- __ Move(result, ToRegister(instr->object())); |
- |
- LOperand* key = instr->key(); |
- if (key->IsConstantOperand()) { |
- __ Mov(x3, Operand(ToSmi(LConstantOperand::cast(key)))); |
- } else { |
- __ Mov(x3, ToRegister(key)); |
- __ SmiTag(x3); |
- } |
- |
- GrowArrayElementsStub stub(isolate(), instr->hydrogen()->is_js_array(), |
- instr->hydrogen()->kind()); |
- __ CallStub(&stub); |
- RecordSafepointWithLazyDeopt( |
- instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); |
- __ StoreToSafepointRegisterSlot(result, result); |
- } |
- |
- // Deopt on smi, which means the elements array changed to dictionary mode. |
- DeoptimizeIfSmi(result, instr, Deoptimizer::kSmi); |
-} |
- |
- |
-void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) { |
- Representation representation = instr->representation(); |
- |
- Register object = ToRegister(instr->object()); |
- HObjectAccess access = instr->hydrogen()->access(); |
- int offset = access.offset(); |
- |
- if (access.IsExternalMemory()) { |
- DCHECK(!instr->hydrogen()->has_transition()); |
- DCHECK(!instr->hydrogen()->NeedsWriteBarrier()); |
- Register value = ToRegister(instr->value()); |
- __ Store(value, MemOperand(object, offset), representation); |
- return; |
- } |
- |
- __ AssertNotSmi(object); |
- |
- if (!FLAG_unbox_double_fields && representation.IsDouble()) { |
- DCHECK(access.IsInobject()); |
- DCHECK(!instr->hydrogen()->has_transition()); |
- DCHECK(!instr->hydrogen()->NeedsWriteBarrier()); |
- FPRegister value = ToDoubleRegister(instr->value()); |
- __ Str(value, FieldMemOperand(object, offset)); |
- return; |
- } |
- |
- DCHECK(!representation.IsSmi() || |
- !instr->value()->IsConstantOperand() || |
- IsInteger32Constant(LConstantOperand::cast(instr->value()))); |
- |
- if (instr->hydrogen()->has_transition()) { |
- Handle<Map> transition = instr->hydrogen()->transition_map(); |
- AddDeprecationDependency(transition); |
- // Store the new map value. |
- Register new_map_value = ToRegister(instr->temp0()); |
- __ Mov(new_map_value, Operand(transition)); |
- __ Str(new_map_value, FieldMemOperand(object, HeapObject::kMapOffset)); |
- if (instr->hydrogen()->NeedsWriteBarrierForMap()) { |
- // Update the write barrier for the map field. |
- __ RecordWriteForMap(object, |
- new_map_value, |
- ToRegister(instr->temp1()), |
- GetLinkRegisterState(), |
- kSaveFPRegs); |
- } |
- } |
- |
- // Do the store. |
- Register destination; |
- if (access.IsInobject()) { |
- destination = object; |
- } else { |
- Register temp0 = ToRegister(instr->temp0()); |
- __ Ldr(temp0, FieldMemOperand(object, JSObject::kPropertiesOffset)); |
- destination = temp0; |
- } |
- |
- if (FLAG_unbox_double_fields && representation.IsDouble()) { |
- DCHECK(access.IsInobject()); |
- FPRegister value = ToDoubleRegister(instr->value()); |
- __ Str(value, FieldMemOperand(object, offset)); |
- } else if (representation.IsSmi() && |
- instr->hydrogen()->value()->representation().IsInteger32()) { |
- DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY); |
-#ifdef DEBUG |
- Register temp0 = ToRegister(instr->temp0()); |
- __ Ldr(temp0, FieldMemOperand(destination, offset)); |
- __ AssertSmi(temp0); |
- // If destination aliased temp0, restore it to the address calculated |
- // earlier. |
- if (destination.Is(temp0)) { |
- DCHECK(!access.IsInobject()); |
- __ Ldr(destination, FieldMemOperand(object, JSObject::kPropertiesOffset)); |
- } |
-#endif |
- STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits); |
- STATIC_ASSERT(kSmiTag == 0); |
- Register value = ToRegister(instr->value()); |
- __ Store(value, UntagSmiFieldMemOperand(destination, offset), |
- Representation::Integer32()); |
- } else { |
- Register value = ToRegister(instr->value()); |
- __ Store(value, FieldMemOperand(destination, offset), representation); |
- } |
- if (instr->hydrogen()->NeedsWriteBarrier()) { |
- Register value = ToRegister(instr->value()); |
- __ RecordWriteField(destination, |
- offset, |
- value, // Clobbered. |
- ToRegister(instr->temp1()), // Clobbered. |
- GetLinkRegisterState(), |
- kSaveFPRegs, |
- EMIT_REMEMBERED_SET, |
- instr->hydrogen()->SmiCheckForWriteBarrier(), |
- instr->hydrogen()->PointersToHereCheckForValue()); |
- } |
-} |
- |
- |
-void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) { |
- DCHECK(ToRegister(instr->context()).is(cp)); |
- DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister())); |
- DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister())); |
- |
- if (instr->hydrogen()->HasVectorAndSlot()) { |
- EmitVectorStoreICRegisters<LStoreNamedGeneric>(instr); |
- } |
- |
- __ Mov(StoreDescriptor::NameRegister(), Operand(instr->name())); |
- Handle<Code> ic = CodeFactory::StoreICInOptimizedCode( |
- isolate(), instr->language_mode(), |
- instr->hydrogen()->initialization_state()).code(); |
- CallCode(ic, RelocInfo::CODE_TARGET, instr); |
-} |
- |
- |
-void LCodeGen::DoStoreGlobalViaContext(LStoreGlobalViaContext* instr) { |
- DCHECK(ToRegister(instr->context()).is(cp)); |
- DCHECK(ToRegister(instr->value()) |
- .is(StoreGlobalViaContextDescriptor::ValueRegister())); |
- |
- int const slot = instr->slot_index(); |
- int const depth = instr->depth(); |
- if (depth <= StoreGlobalViaContextStub::kMaximumDepth) { |
- __ Mov(StoreGlobalViaContextDescriptor::SlotRegister(), Operand(slot)); |
- Handle<Code> stub = CodeFactory::StoreGlobalViaContext( |
- isolate(), depth, instr->language_mode()) |
- .code(); |
- CallCode(stub, RelocInfo::CODE_TARGET, instr); |
- } else { |
- __ Push(Smi::FromInt(slot)); |
- __ Push(StoreGlobalViaContextDescriptor::ValueRegister()); |
- __ CallRuntime(is_strict(instr->language_mode()) |
- ? Runtime::kStoreGlobalViaContext_Strict |
- : Runtime::kStoreGlobalViaContext_Sloppy, |
- 2); |
- } |
-} |
- |
- |
-void LCodeGen::DoStringAdd(LStringAdd* instr) { |
- DCHECK(ToRegister(instr->context()).is(cp)); |
- DCHECK(ToRegister(instr->left()).Is(x1)); |
- DCHECK(ToRegister(instr->right()).Is(x0)); |
- StringAddStub stub(isolate(), |
- instr->hydrogen()->flags(), |
- instr->hydrogen()->pretenure_flag()); |
- CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
-} |
- |
- |
-void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) { |
- class DeferredStringCharCodeAt: public LDeferredCode { |
- public: |
- DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr) |
- : LDeferredCode(codegen), instr_(instr) { } |
- virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); } |
- virtual LInstruction* instr() { return instr_; } |
- private: |
- LStringCharCodeAt* instr_; |
- }; |
- |
- DeferredStringCharCodeAt* deferred = |
- new(zone()) DeferredStringCharCodeAt(this, instr); |
- |
- StringCharLoadGenerator::Generate(masm(), |
- ToRegister(instr->string()), |
- ToRegister32(instr->index()), |
- ToRegister(instr->result()), |
- deferred->entry()); |
- __ Bind(deferred->exit()); |
-} |
- |
- |
-void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) { |
- Register string = ToRegister(instr->string()); |
- Register result = ToRegister(instr->result()); |
- |
- // TODO(3095996): Get rid of this. For now, we need to make the |
- // result register contain a valid pointer because it is already |
- // contained in the register pointer map. |
- __ Mov(result, 0); |
- |
- PushSafepointRegistersScope scope(this); |
- __ Push(string); |
- // Push the index as a smi. This is safe because of the checks in |
- // DoStringCharCodeAt above. |
- Register index = ToRegister(instr->index()); |
- __ SmiTagAndPush(index); |
- |
- CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, instr, |
- instr->context()); |
- __ AssertSmi(x0); |
- __ SmiUntag(x0); |
- __ StoreToSafepointRegisterSlot(x0, result); |
-} |
- |
- |
-void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) { |
- class DeferredStringCharFromCode: public LDeferredCode { |
- public: |
- DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr) |
- : LDeferredCode(codegen), instr_(instr) { } |
- virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); } |
- virtual LInstruction* instr() { return instr_; } |
- private: |
- LStringCharFromCode* instr_; |
- }; |
- |
- DeferredStringCharFromCode* deferred = |
- new(zone()) DeferredStringCharFromCode(this, instr); |
- |
- DCHECK(instr->hydrogen()->value()->representation().IsInteger32()); |
- Register char_code = ToRegister32(instr->char_code()); |
- Register result = ToRegister(instr->result()); |
- |
- __ Cmp(char_code, String::kMaxOneByteCharCode); |
- __ B(hi, deferred->entry()); |
- __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex); |
- __ Add(result, result, FixedArray::kHeaderSize - kHeapObjectTag); |
- __ Ldr(result, MemOperand(result, char_code, SXTW, kPointerSizeLog2)); |
- __ CompareRoot(result, Heap::kUndefinedValueRootIndex); |
- __ B(eq, deferred->entry()); |
- __ Bind(deferred->exit()); |
-} |
- |
- |
-void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) { |
- Register char_code = ToRegister(instr->char_code()); |
- Register result = ToRegister(instr->result()); |
- |
- // TODO(3095996): Get rid of this. For now, we need to make the |
- // result register contain a valid pointer because it is already |
- // contained in the register pointer map. |
- __ Mov(result, 0); |
- |
- PushSafepointRegistersScope scope(this); |
- __ SmiTagAndPush(char_code); |
- CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr, instr->context()); |
- __ StoreToSafepointRegisterSlot(x0, result); |
-} |
- |
- |
-void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) { |
- DCHECK(ToRegister(instr->context()).is(cp)); |
- DCHECK(ToRegister(instr->left()).is(x1)); |
- DCHECK(ToRegister(instr->right()).is(x0)); |
- |
- Handle<Code> code = CodeFactory::StringCompare(isolate()).code(); |
- CallCode(code, RelocInfo::CODE_TARGET, instr); |
- |
- EmitCompareAndBranch(instr, TokenToCondition(instr->op(), false), x0, 0); |
-} |
- |
- |
-void LCodeGen::DoSubI(LSubI* instr) { |
- bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); |
- Register result = ToRegister32(instr->result()); |
- Register left = ToRegister32(instr->left()); |
- Operand right = ToShiftedRightOperand32(instr->right(), instr); |
- |
- if (can_overflow) { |
- __ Subs(result, left, right); |
- DeoptimizeIf(vs, instr, Deoptimizer::kOverflow); |
- } else { |
- __ Sub(result, left, right); |
- } |
-} |
- |
- |
-void LCodeGen::DoSubS(LSubS* instr) { |
- bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); |
- Register result = ToRegister(instr->result()); |
- Register left = ToRegister(instr->left()); |
- Operand right = ToOperand(instr->right()); |
- if (can_overflow) { |
- __ Subs(result, left, right); |
- DeoptimizeIf(vs, instr, Deoptimizer::kOverflow); |
- } else { |
- __ Sub(result, left, right); |
- } |
-} |
- |
- |
-void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr, |
- LOperand* value, |
- LOperand* temp1, |
- LOperand* temp2) { |
- Register input = ToRegister(value); |
- Register scratch1 = ToRegister(temp1); |
- DoubleRegister dbl_scratch1 = double_scratch(); |
- |
- Label done; |
- |
- if (instr->truncating()) { |
- Register output = ToRegister(instr->result()); |
- Label check_bools; |
- |
- // If it's not a heap number, jump to undefined check. |
- __ JumpIfNotHeapNumber(input, &check_bools); |
- |
- // A heap number: load value and convert to int32 using truncating function. |
- __ TruncateHeapNumberToI(output, input); |
- __ B(&done); |
- |
- __ Bind(&check_bools); |
- |
- Register true_root = output; |
- Register false_root = scratch1; |
- __ LoadTrueFalseRoots(true_root, false_root); |
- __ Cmp(input, true_root); |
- __ Cset(output, eq); |
- __ Ccmp(input, false_root, ZFlag, ne); |
- __ B(eq, &done); |
- |
- // Output contains zero, undefined is converted to zero for truncating |
- // conversions. |
- DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr, |
- Deoptimizer::kNotAHeapNumberUndefinedBoolean); |
- } else { |
- Register output = ToRegister32(instr->result()); |
- DoubleRegister dbl_scratch2 = ToDoubleRegister(temp2); |
- |
- DeoptimizeIfNotHeapNumber(input, instr); |
- |
- // A heap number: load value and convert to int32 using non-truncating |
- // function. If the result is out of range, branch to deoptimize. |
- __ Ldr(dbl_scratch1, FieldMemOperand(input, HeapNumber::kValueOffset)); |
- __ TryRepresentDoubleAsInt32(output, dbl_scratch1, dbl_scratch2); |
- DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN); |
- |
- if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { |
- __ Cmp(output, 0); |
- __ B(ne, &done); |
- __ Fmov(scratch1, dbl_scratch1); |
- DeoptimizeIfNegative(scratch1, instr, Deoptimizer::kMinusZero); |
- } |
- } |
- __ Bind(&done); |
-} |
- |
- |
-void LCodeGen::DoTaggedToI(LTaggedToI* instr) { |
- class DeferredTaggedToI: public LDeferredCode { |
- public: |
- DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr) |
- : LDeferredCode(codegen), instr_(instr) { } |
- virtual void Generate() { |
- codegen()->DoDeferredTaggedToI(instr_, instr_->value(), instr_->temp1(), |
- instr_->temp2()); |
- } |
- |
- virtual LInstruction* instr() { return instr_; } |
- private: |
- LTaggedToI* instr_; |
- }; |
- |
- Register input = ToRegister(instr->value()); |
- Register output = ToRegister(instr->result()); |
- |
- if (instr->hydrogen()->value()->representation().IsSmi()) { |
- __ SmiUntag(output, input); |
- } else { |
- DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr); |
- |
- __ JumpIfNotSmi(input, deferred->entry()); |
- __ SmiUntag(output, input); |
- __ Bind(deferred->exit()); |
- } |
-} |
- |
- |
-void LCodeGen::DoThisFunction(LThisFunction* instr) { |
- Register result = ToRegister(instr->result()); |
- __ Ldr(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); |
-} |
- |
- |
-void LCodeGen::DoToFastProperties(LToFastProperties* instr) { |
- DCHECK(ToRegister(instr->value()).Is(x0)); |
- DCHECK(ToRegister(instr->result()).Is(x0)); |
- __ Push(x0); |
- CallRuntime(Runtime::kToFastProperties, 1, instr); |
-} |
- |
- |
-void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) { |
- DCHECK(ToRegister(instr->context()).is(cp)); |
- Label materialized; |
- // Registers will be used as follows: |
- // x7 = literals array. |
- // x1 = regexp literal. |
- // x0 = regexp literal clone. |
- // x10-x12 are used as temporaries. |
- int literal_offset = |
- LiteralsArray::OffsetOfLiteralAt(instr->hydrogen()->literal_index()); |
- __ LoadObject(x7, instr->hydrogen()->literals()); |
- __ Ldr(x1, FieldMemOperand(x7, literal_offset)); |
- __ JumpIfNotRoot(x1, Heap::kUndefinedValueRootIndex, &materialized); |
- |
- // Create regexp literal using runtime function |
- // Result will be in x0. |
- __ Mov(x12, Operand(Smi::FromInt(instr->hydrogen()->literal_index()))); |
- __ Mov(x11, Operand(instr->hydrogen()->pattern())); |
- __ Mov(x10, Operand(instr->hydrogen()->flags())); |
- __ Push(x7, x12, x11, x10); |
- CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr); |
- __ Mov(x1, x0); |
- |
- __ Bind(&materialized); |
- int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize; |
- Label allocated, runtime_allocate; |
- |
- __ Allocate(size, x0, x10, x11, &runtime_allocate, TAG_OBJECT); |
- __ B(&allocated); |
- |
- __ Bind(&runtime_allocate); |
- __ Mov(x0, Smi::FromInt(size)); |
- __ Push(x1, x0); |
- CallRuntime(Runtime::kAllocateInNewSpace, 1, instr); |
- __ Pop(x1); |
- |
- __ Bind(&allocated); |
- // Copy the content into the newly allocated memory. |
- __ CopyFields(x0, x1, CPURegList(x10, x11, x12), size / kPointerSize); |
-} |
- |
- |
-void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) { |
- Register object = ToRegister(instr->object()); |
- |
- Handle<Map> from_map = instr->original_map(); |
- Handle<Map> to_map = instr->transitioned_map(); |
- ElementsKind from_kind = instr->from_kind(); |
- ElementsKind to_kind = instr->to_kind(); |
- |
- Label not_applicable; |
- |
- if (IsSimpleMapChangeTransition(from_kind, to_kind)) { |
- Register temp1 = ToRegister(instr->temp1()); |
- Register new_map = ToRegister(instr->temp2()); |
- __ CheckMap(object, temp1, from_map, ¬_applicable, DONT_DO_SMI_CHECK); |
- __ Mov(new_map, Operand(to_map)); |
- __ Str(new_map, FieldMemOperand(object, HeapObject::kMapOffset)); |
- // Write barrier. |
- __ RecordWriteForMap(object, new_map, temp1, GetLinkRegisterState(), |
- kDontSaveFPRegs); |
- } else { |
- { |
- UseScratchRegisterScope temps(masm()); |
- // Use the temp register only in a restricted scope - the codegen checks |
- // that we do not use any register across a call. |
- __ CheckMap(object, temps.AcquireX(), from_map, ¬_applicable, |
- DONT_DO_SMI_CHECK); |
- } |
- DCHECK(object.is(x0)); |
- DCHECK(ToRegister(instr->context()).is(cp)); |
- PushSafepointRegistersScope scope(this); |
- __ Mov(x1, Operand(to_map)); |
- bool is_js_array = from_map->instance_type() == JS_ARRAY_TYPE; |
- TransitionElementsKindStub stub(isolate(), from_kind, to_kind, is_js_array); |
- __ CallStub(&stub); |
- RecordSafepointWithRegisters( |
- instr->pointer_map(), 0, Safepoint::kLazyDeopt); |
- } |
- __ Bind(¬_applicable); |
-} |
- |
- |
-void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) { |
- Register object = ToRegister(instr->object()); |
- Register temp1 = ToRegister(instr->temp1()); |
- Register temp2 = ToRegister(instr->temp2()); |
- |
- Label no_memento_found; |
- __ TestJSArrayForAllocationMemento(object, temp1, temp2, &no_memento_found); |
- DeoptimizeIf(eq, instr, Deoptimizer::kMementoFound); |
- __ Bind(&no_memento_found); |
-} |
- |
- |
-void LCodeGen::DoTruncateDoubleToIntOrSmi(LTruncateDoubleToIntOrSmi* instr) { |
- DoubleRegister input = ToDoubleRegister(instr->value()); |
- Register result = ToRegister(instr->result()); |
- __ TruncateDoubleToI(result, input); |
- if (instr->tag_result()) { |
- __ SmiTag(result, result); |
- } |
-} |
- |
- |
-void LCodeGen::DoTypeof(LTypeof* instr) { |
- DCHECK(ToRegister(instr->value()).is(x3)); |
- DCHECK(ToRegister(instr->result()).is(x0)); |
- Label end, do_call; |
- Register value_register = ToRegister(instr->value()); |
- __ JumpIfNotSmi(value_register, &do_call); |
- __ Mov(x0, Immediate(isolate()->factory()->number_string())); |
- __ B(&end); |
- __ Bind(&do_call); |
- TypeofStub stub(isolate()); |
- CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
- __ Bind(&end); |
-} |
- |
- |
-void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) { |
- Handle<String> type_name = instr->type_literal(); |
- Label* true_label = instr->TrueLabel(chunk_); |
- Label* false_label = instr->FalseLabel(chunk_); |
- Register value = ToRegister(instr->value()); |
- |
- Factory* factory = isolate()->factory(); |
- if (String::Equals(type_name, factory->number_string())) { |
- __ JumpIfSmi(value, true_label); |
- |
- int true_block = instr->TrueDestination(chunk_); |
- int false_block = instr->FalseDestination(chunk_); |
- int next_block = GetNextEmittedBlock(); |
- |
- if (true_block == false_block) { |
- EmitGoto(true_block); |
- } else if (true_block == next_block) { |
- __ JumpIfNotHeapNumber(value, chunk_->GetAssemblyLabel(false_block)); |
- } else { |
- __ JumpIfHeapNumber(value, chunk_->GetAssemblyLabel(true_block)); |
- if (false_block != next_block) { |
- __ B(chunk_->GetAssemblyLabel(false_block)); |
- } |
- } |
- |
- } else if (String::Equals(type_name, factory->string_string())) { |
- DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL)); |
- Register map = ToRegister(instr->temp1()); |
- Register scratch = ToRegister(instr->temp2()); |
- |
- __ JumpIfSmi(value, false_label); |
- __ CompareObjectType(value, map, scratch, FIRST_NONSTRING_TYPE); |
- EmitBranch(instr, lt); |
- |
- } else if (String::Equals(type_name, factory->symbol_string())) { |
- DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL)); |
- Register map = ToRegister(instr->temp1()); |
- Register scratch = ToRegister(instr->temp2()); |
- |
- __ JumpIfSmi(value, false_label); |
- __ CompareObjectType(value, map, scratch, SYMBOL_TYPE); |
- EmitBranch(instr, eq); |
- |
- } else if (String::Equals(type_name, factory->boolean_string())) { |
- __ JumpIfRoot(value, Heap::kTrueValueRootIndex, true_label); |
- __ CompareRoot(value, Heap::kFalseValueRootIndex); |
- EmitBranch(instr, eq); |
- |
- } else if (String::Equals(type_name, factory->undefined_string())) { |
- DCHECK(instr->temp1() != NULL); |
- Register scratch = ToRegister(instr->temp1()); |
- |
- __ JumpIfRoot(value, Heap::kUndefinedValueRootIndex, true_label); |
- __ JumpIfSmi(value, false_label); |
- // Check for undetectable objects and jump to the true branch in this case. |
- __ Ldr(scratch, FieldMemOperand(value, HeapObject::kMapOffset)); |
- __ Ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset)); |
- EmitTestAndBranch(instr, ne, scratch, 1 << Map::kIsUndetectable); |
- |
- } else if (String::Equals(type_name, factory->function_string())) { |
- DCHECK(instr->temp1() != NULL); |
- Register scratch = ToRegister(instr->temp1()); |
- |
- __ JumpIfSmi(value, false_label); |
- __ Ldr(scratch, FieldMemOperand(value, HeapObject::kMapOffset)); |
- __ Ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset)); |
- __ And(scratch, scratch, |
- (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)); |
- EmitCompareAndBranch(instr, eq, scratch, 1 << Map::kIsCallable); |
- |
- } else if (String::Equals(type_name, factory->object_string())) { |
- DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL)); |
- Register map = ToRegister(instr->temp1()); |
- Register scratch = ToRegister(instr->temp2()); |
- |
- __ JumpIfSmi(value, false_label); |
- __ JumpIfRoot(value, Heap::kNullValueRootIndex, true_label); |
- STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); |
- __ JumpIfObjectType(value, map, scratch, FIRST_SPEC_OBJECT_TYPE, |
- false_label, lt); |
- // Check for callable or undetectable objects => false. |
- __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset)); |
- EmitTestAndBranch(instr, eq, scratch, |
- (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)); |
- |
-// clang-format off |
-#define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \ |
- } else if (String::Equals(type_name, factory->type##_string())) { \ |
- DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL)); \ |
- Register map = ToRegister(instr->temp1()); \ |
- \ |
- __ JumpIfSmi(value, false_label); \ |
- __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset)); \ |
- __ CompareRoot(map, Heap::k##Type##MapRootIndex); \ |
- EmitBranch(instr, eq); |
- SIMD128_TYPES(SIMD128_TYPE) |
-#undef SIMD128_TYPE |
- // clang-format on |
- |
- } else { |
- __ B(false_label); |
- } |
-} |
- |
- |
-void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) { |
- __ Ucvtf(ToDoubleRegister(instr->result()), ToRegister32(instr->value())); |
-} |
- |
- |
-void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) { |
- Register object = ToRegister(instr->value()); |
- Register map = ToRegister(instr->map()); |
- Register temp = ToRegister(instr->temp()); |
- __ Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset)); |
- __ Cmp(map, temp); |
- DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap); |
-} |
- |
- |
-void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) { |
- Register receiver = ToRegister(instr->receiver()); |
- Register function = ToRegister(instr->function()); |
- Register result = ToRegister(instr->result()); |
- |
- // If the receiver is null or undefined, we have to pass the global object as |
- // a receiver to normal functions. Values have to be passed unchanged to |
- // builtins and strict-mode functions. |
- Label global_object, done, copy_receiver; |
- |
- if (!instr->hydrogen()->known_function()) { |
- __ Ldr(result, FieldMemOperand(function, |
- JSFunction::kSharedFunctionInfoOffset)); |
- |
- // CompilerHints is an int32 field. See objects.h. |
- __ Ldr(result.W(), |
- FieldMemOperand(result, SharedFunctionInfo::kCompilerHintsOffset)); |
- |
- // Do not transform the receiver to object for strict mode functions. |
- __ Tbnz(result, SharedFunctionInfo::kStrictModeFunction, ©_receiver); |
- |
- // Do not transform the receiver to object for builtins. |
- __ Tbnz(result, SharedFunctionInfo::kNative, ©_receiver); |
- } |
- |
- // Normal function. Replace undefined or null with global receiver. |
- __ JumpIfRoot(receiver, Heap::kNullValueRootIndex, &global_object); |
- __ JumpIfRoot(receiver, Heap::kUndefinedValueRootIndex, &global_object); |
- |
- // Deoptimize if the receiver is not a JS object. |
- DeoptimizeIfSmi(receiver, instr, Deoptimizer::kSmi); |
- __ CompareObjectType(receiver, result, result, FIRST_SPEC_OBJECT_TYPE); |
- __ B(ge, ©_receiver); |
- Deoptimize(instr, Deoptimizer::kNotAJavaScriptObject); |
- |
- __ Bind(&global_object); |
- __ Ldr(result, FieldMemOperand(function, JSFunction::kContextOffset)); |
- __ Ldr(result, ContextMemOperand(result, Context::GLOBAL_OBJECT_INDEX)); |
- __ Ldr(result, FieldMemOperand(result, GlobalObject::kGlobalProxyOffset)); |
- __ B(&done); |
- |
- __ Bind(©_receiver); |
- __ Mov(result, receiver); |
- __ Bind(&done); |
-} |
- |
- |
-void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr, |
- Register result, |
- Register object, |
- Register index) { |
- PushSafepointRegistersScope scope(this); |
- __ Push(object); |
- __ Push(index); |
- __ Mov(cp, 0); |
- __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble); |
- RecordSafepointWithRegisters( |
- instr->pointer_map(), 2, Safepoint::kNoLazyDeopt); |
- __ StoreToSafepointRegisterSlot(x0, result); |
-} |
- |
- |
-void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) { |
- class DeferredLoadMutableDouble final : public LDeferredCode { |
- public: |
- DeferredLoadMutableDouble(LCodeGen* codegen, |
- LLoadFieldByIndex* instr, |
- Register result, |
- Register object, |
- Register index) |
- : LDeferredCode(codegen), |
- instr_(instr), |
- result_(result), |
- object_(object), |
- index_(index) { |
- } |
- void Generate() override { |
- codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_); |
- } |
- LInstruction* instr() override { return instr_; } |
- |
- private: |
- LLoadFieldByIndex* instr_; |
- Register result_; |
- Register object_; |
- Register index_; |
- }; |
- Register object = ToRegister(instr->object()); |
- Register index = ToRegister(instr->index()); |
- Register result = ToRegister(instr->result()); |
- |
- __ AssertSmi(index); |
- |
- DeferredLoadMutableDouble* deferred; |
- deferred = new(zone()) DeferredLoadMutableDouble( |
- this, instr, result, object, index); |
- |
- Label out_of_object, done; |
- |
- __ TestAndBranchIfAnySet( |
- index, reinterpret_cast<uint64_t>(Smi::FromInt(1)), deferred->entry()); |
- __ Mov(index, Operand(index, ASR, 1)); |
- |
- __ Cmp(index, Smi::FromInt(0)); |
- __ B(lt, &out_of_object); |
- |
- STATIC_ASSERT(kPointerSizeLog2 > kSmiTagSize); |
- __ Add(result, object, Operand::UntagSmiAndScale(index, kPointerSizeLog2)); |
- __ Ldr(result, FieldMemOperand(result, JSObject::kHeaderSize)); |
- |
- __ B(&done); |
- |
- __ Bind(&out_of_object); |
- __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); |
- // Index is equal to negated out of object property index plus 1. |
- __ Sub(result, result, Operand::UntagSmiAndScale(index, kPointerSizeLog2)); |
- __ Ldr(result, FieldMemOperand(result, |
- FixedArray::kHeaderSize - kPointerSize)); |
- __ Bind(deferred->exit()); |
- __ Bind(&done); |
-} |
- |
- |
-void LCodeGen::DoStoreFrameContext(LStoreFrameContext* instr) { |
- Register context = ToRegister(instr->context()); |
- __ Str(context, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
-} |
- |
- |
-void LCodeGen::DoAllocateBlockContext(LAllocateBlockContext* instr) { |
- Handle<ScopeInfo> scope_info = instr->scope_info(); |
- __ Push(scope_info); |
- __ Push(ToRegister(instr->function())); |
- CallRuntime(Runtime::kPushBlockContext, 2, instr); |
- RecordSafepoint(Safepoint::kNoLazyDeopt); |
-} |
- |
- |
-} // namespace internal |
-} // namespace v8 |