Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(144)

Side by Side Diff: src/arm64/lithium-codegen-arm64.cc

Issue 1405363003: Move Hydrogen and Lithium to src/crankshaft/ (Closed) Base URL: https://chromium.googlesource.com/v8/v8.git@master
Patch Set: rebased Created 5 years, 2 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « src/arm64/lithium-codegen-arm64.h ('k') | src/arm64/lithium-gap-resolver-arm64.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/arm64/frames-arm64.h"
6 #include "src/arm64/lithium-codegen-arm64.h"
7 #include "src/arm64/lithium-gap-resolver-arm64.h"
8 #include "src/base/bits.h"
9 #include "src/code-factory.h"
10 #include "src/code-stubs.h"
11 #include "src/hydrogen-osr.h"
12 #include "src/ic/ic.h"
13 #include "src/ic/stub-cache.h"
14 #include "src/profiler/cpu-profiler.h"
15
16 namespace v8 {
17 namespace internal {
18
19
20 class SafepointGenerator final : public CallWrapper {
21 public:
22 SafepointGenerator(LCodeGen* codegen,
23 LPointerMap* pointers,
24 Safepoint::DeoptMode mode)
25 : codegen_(codegen),
26 pointers_(pointers),
27 deopt_mode_(mode) { }
28 virtual ~SafepointGenerator() { }
29
30 virtual void BeforeCall(int call_size) const { }
31
32 virtual void AfterCall() const {
33 codegen_->RecordSafepoint(pointers_, deopt_mode_);
34 }
35
36 private:
37 LCodeGen* codegen_;
38 LPointerMap* pointers_;
39 Safepoint::DeoptMode deopt_mode_;
40 };
41
42
43 #define __ masm()->
44
45 // Emit code to branch if the given condition holds.
46 // The code generated here doesn't modify the flags and they must have
47 // been set by some prior instructions.
48 //
49 // The EmitInverted function simply inverts the condition.
50 class BranchOnCondition : public BranchGenerator {
51 public:
52 BranchOnCondition(LCodeGen* codegen, Condition cond)
53 : BranchGenerator(codegen),
54 cond_(cond) { }
55
56 virtual void Emit(Label* label) const {
57 __ B(cond_, label);
58 }
59
60 virtual void EmitInverted(Label* label) const {
61 if (cond_ != al) {
62 __ B(NegateCondition(cond_), label);
63 }
64 }
65
66 private:
67 Condition cond_;
68 };
69
70
71 // Emit code to compare lhs and rhs and branch if the condition holds.
72 // This uses MacroAssembler's CompareAndBranch function so it will handle
73 // converting the comparison to Cbz/Cbnz if the right-hand side is 0.
74 //
75 // EmitInverted still compares the two operands but inverts the condition.
76 class CompareAndBranch : public BranchGenerator {
77 public:
78 CompareAndBranch(LCodeGen* codegen,
79 Condition cond,
80 const Register& lhs,
81 const Operand& rhs)
82 : BranchGenerator(codegen),
83 cond_(cond),
84 lhs_(lhs),
85 rhs_(rhs) { }
86
87 virtual void Emit(Label* label) const {
88 __ CompareAndBranch(lhs_, rhs_, cond_, label);
89 }
90
91 virtual void EmitInverted(Label* label) const {
92 __ CompareAndBranch(lhs_, rhs_, NegateCondition(cond_), label);
93 }
94
95 private:
96 Condition cond_;
97 const Register& lhs_;
98 const Operand& rhs_;
99 };
100
101
102 // Test the input with the given mask and branch if the condition holds.
103 // If the condition is 'eq' or 'ne' this will use MacroAssembler's
104 // TestAndBranchIfAllClear and TestAndBranchIfAnySet so it will handle the
105 // conversion to Tbz/Tbnz when possible.
106 class TestAndBranch : public BranchGenerator {
107 public:
108 TestAndBranch(LCodeGen* codegen,
109 Condition cond,
110 const Register& value,
111 uint64_t mask)
112 : BranchGenerator(codegen),
113 cond_(cond),
114 value_(value),
115 mask_(mask) { }
116
117 virtual void Emit(Label* label) const {
118 switch (cond_) {
119 case eq:
120 __ TestAndBranchIfAllClear(value_, mask_, label);
121 break;
122 case ne:
123 __ TestAndBranchIfAnySet(value_, mask_, label);
124 break;
125 default:
126 __ Tst(value_, mask_);
127 __ B(cond_, label);
128 }
129 }
130
131 virtual void EmitInverted(Label* label) const {
132 // The inverse of "all clear" is "any set" and vice versa.
133 switch (cond_) {
134 case eq:
135 __ TestAndBranchIfAnySet(value_, mask_, label);
136 break;
137 case ne:
138 __ TestAndBranchIfAllClear(value_, mask_, label);
139 break;
140 default:
141 __ Tst(value_, mask_);
142 __ B(NegateCondition(cond_), label);
143 }
144 }
145
146 private:
147 Condition cond_;
148 const Register& value_;
149 uint64_t mask_;
150 };
151
152
153 // Test the input and branch if it is non-zero and not a NaN.
154 class BranchIfNonZeroNumber : public BranchGenerator {
155 public:
156 BranchIfNonZeroNumber(LCodeGen* codegen, const FPRegister& value,
157 const FPRegister& scratch)
158 : BranchGenerator(codegen), value_(value), scratch_(scratch) { }
159
160 virtual void Emit(Label* label) const {
161 __ Fabs(scratch_, value_);
162 // Compare with 0.0. Because scratch_ is positive, the result can be one of
163 // nZCv (equal), nzCv (greater) or nzCV (unordered).
164 __ Fcmp(scratch_, 0.0);
165 __ B(gt, label);
166 }
167
168 virtual void EmitInverted(Label* label) const {
169 __ Fabs(scratch_, value_);
170 __ Fcmp(scratch_, 0.0);
171 __ B(le, label);
172 }
173
174 private:
175 const FPRegister& value_;
176 const FPRegister& scratch_;
177 };
178
179
180 // Test the input and branch if it is a heap number.
181 class BranchIfHeapNumber : public BranchGenerator {
182 public:
183 BranchIfHeapNumber(LCodeGen* codegen, const Register& value)
184 : BranchGenerator(codegen), value_(value) { }
185
186 virtual void Emit(Label* label) const {
187 __ JumpIfHeapNumber(value_, label);
188 }
189
190 virtual void EmitInverted(Label* label) const {
191 __ JumpIfNotHeapNumber(value_, label);
192 }
193
194 private:
195 const Register& value_;
196 };
197
198
199 // Test the input and branch if it is the specified root value.
200 class BranchIfRoot : public BranchGenerator {
201 public:
202 BranchIfRoot(LCodeGen* codegen, const Register& value,
203 Heap::RootListIndex index)
204 : BranchGenerator(codegen), value_(value), index_(index) { }
205
206 virtual void Emit(Label* label) const {
207 __ JumpIfRoot(value_, index_, label);
208 }
209
210 virtual void EmitInverted(Label* label) const {
211 __ JumpIfNotRoot(value_, index_, label);
212 }
213
214 private:
215 const Register& value_;
216 const Heap::RootListIndex index_;
217 };
218
219
220 void LCodeGen::WriteTranslation(LEnvironment* environment,
221 Translation* translation) {
222 if (environment == NULL) return;
223
224 // The translation includes one command per value in the environment.
225 int translation_size = environment->translation_size();
226
227 WriteTranslation(environment->outer(), translation);
228 WriteTranslationFrame(environment, translation);
229
230 int object_index = 0;
231 int dematerialized_index = 0;
232 for (int i = 0; i < translation_size; ++i) {
233 LOperand* value = environment->values()->at(i);
234 AddToTranslation(
235 environment, translation, value, environment->HasTaggedValueAt(i),
236 environment->HasUint32ValueAt(i), &object_index, &dematerialized_index);
237 }
238 }
239
240
241 void LCodeGen::AddToTranslation(LEnvironment* environment,
242 Translation* translation,
243 LOperand* op,
244 bool is_tagged,
245 bool is_uint32,
246 int* object_index_pointer,
247 int* dematerialized_index_pointer) {
248 if (op == LEnvironment::materialization_marker()) {
249 int object_index = (*object_index_pointer)++;
250 if (environment->ObjectIsDuplicateAt(object_index)) {
251 int dupe_of = environment->ObjectDuplicateOfAt(object_index);
252 translation->DuplicateObject(dupe_of);
253 return;
254 }
255 int object_length = environment->ObjectLengthAt(object_index);
256 if (environment->ObjectIsArgumentsAt(object_index)) {
257 translation->BeginArgumentsObject(object_length);
258 } else {
259 translation->BeginCapturedObject(object_length);
260 }
261 int dematerialized_index = *dematerialized_index_pointer;
262 int env_offset = environment->translation_size() + dematerialized_index;
263 *dematerialized_index_pointer += object_length;
264 for (int i = 0; i < object_length; ++i) {
265 LOperand* value = environment->values()->at(env_offset + i);
266 AddToTranslation(environment,
267 translation,
268 value,
269 environment->HasTaggedValueAt(env_offset + i),
270 environment->HasUint32ValueAt(env_offset + i),
271 object_index_pointer,
272 dematerialized_index_pointer);
273 }
274 return;
275 }
276
277 if (op->IsStackSlot()) {
278 int index = op->index();
279 if (index >= 0) {
280 index += StandardFrameConstants::kFixedFrameSize / kPointerSize;
281 }
282 if (is_tagged) {
283 translation->StoreStackSlot(index);
284 } else if (is_uint32) {
285 translation->StoreUint32StackSlot(index);
286 } else {
287 translation->StoreInt32StackSlot(index);
288 }
289 } else if (op->IsDoubleStackSlot()) {
290 int index = op->index();
291 if (index >= 0) {
292 index += StandardFrameConstants::kFixedFrameSize / kPointerSize;
293 }
294 translation->StoreDoubleStackSlot(index);
295 } else if (op->IsRegister()) {
296 Register reg = ToRegister(op);
297 if (is_tagged) {
298 translation->StoreRegister(reg);
299 } else if (is_uint32) {
300 translation->StoreUint32Register(reg);
301 } else {
302 translation->StoreInt32Register(reg);
303 }
304 } else if (op->IsDoubleRegister()) {
305 DoubleRegister reg = ToDoubleRegister(op);
306 translation->StoreDoubleRegister(reg);
307 } else if (op->IsConstantOperand()) {
308 HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
309 int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
310 translation->StoreLiteral(src_index);
311 } else {
312 UNREACHABLE();
313 }
314 }
315
316
317 void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
318 Safepoint::DeoptMode mode) {
319 environment->set_has_been_used();
320 if (!environment->HasBeenRegistered()) {
321 int frame_count = 0;
322 int jsframe_count = 0;
323 for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
324 ++frame_count;
325 if (e->frame_type() == JS_FUNCTION) {
326 ++jsframe_count;
327 }
328 }
329 Translation translation(&translations_, frame_count, jsframe_count, zone());
330 WriteTranslation(environment, &translation);
331 int deoptimization_index = deoptimizations_.length();
332 int pc_offset = masm()->pc_offset();
333 environment->Register(deoptimization_index,
334 translation.index(),
335 (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
336 deoptimizations_.Add(environment, zone());
337 }
338 }
339
340
341 void LCodeGen::CallCode(Handle<Code> code,
342 RelocInfo::Mode mode,
343 LInstruction* instr) {
344 CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
345 }
346
347
348 void LCodeGen::CallCodeGeneric(Handle<Code> code,
349 RelocInfo::Mode mode,
350 LInstruction* instr,
351 SafepointMode safepoint_mode) {
352 DCHECK(instr != NULL);
353
354 Assembler::BlockPoolsScope scope(masm_);
355 __ Call(code, mode);
356 RecordSafepointWithLazyDeopt(instr, safepoint_mode);
357
358 if ((code->kind() == Code::BINARY_OP_IC) ||
359 (code->kind() == Code::COMPARE_IC)) {
360 // Signal that we don't inline smi code before these stubs in the
361 // optimizing code generator.
362 InlineSmiCheckInfo::EmitNotInlined(masm());
363 }
364 }
365
366
367 void LCodeGen::DoCallFunction(LCallFunction* instr) {
368 DCHECK(ToRegister(instr->context()).is(cp));
369 DCHECK(ToRegister(instr->function()).Is(x1));
370 DCHECK(ToRegister(instr->result()).Is(x0));
371
372 int arity = instr->arity();
373 CallFunctionFlags flags = instr->hydrogen()->function_flags();
374 if (instr->hydrogen()->HasVectorAndSlot()) {
375 Register slot_register = ToRegister(instr->temp_slot());
376 Register vector_register = ToRegister(instr->temp_vector());
377 DCHECK(slot_register.is(x3));
378 DCHECK(vector_register.is(x2));
379
380 AllowDeferredHandleDereference vector_structure_check;
381 Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
382 int index = vector->GetIndex(instr->hydrogen()->slot());
383
384 __ Mov(vector_register, vector);
385 __ Mov(slot_register, Operand(Smi::FromInt(index)));
386
387 CallICState::CallType call_type =
388 (flags & CALL_AS_METHOD) ? CallICState::METHOD : CallICState::FUNCTION;
389
390 Handle<Code> ic =
391 CodeFactory::CallICInOptimizedCode(isolate(), arity, call_type).code();
392 CallCode(ic, RelocInfo::CODE_TARGET, instr);
393 } else {
394 CallFunctionStub stub(isolate(), arity, flags);
395 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
396 }
397 RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta());
398 }
399
400
401 void LCodeGen::DoCallNew(LCallNew* instr) {
402 DCHECK(ToRegister(instr->context()).is(cp));
403 DCHECK(instr->IsMarkedAsCall());
404 DCHECK(ToRegister(instr->constructor()).is(x1));
405
406 __ Mov(x0, instr->arity());
407 // No cell in x2 for construct type feedback in optimized code.
408 __ LoadRoot(x2, Heap::kUndefinedValueRootIndex);
409
410 CallConstructStub stub(isolate(), NO_CALL_CONSTRUCTOR_FLAGS);
411 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
412 RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta());
413
414 DCHECK(ToRegister(instr->result()).is(x0));
415 }
416
417
418 void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
419 DCHECK(instr->IsMarkedAsCall());
420 DCHECK(ToRegister(instr->context()).is(cp));
421 DCHECK(ToRegister(instr->constructor()).is(x1));
422
423 __ Mov(x0, Operand(instr->arity()));
424 if (instr->arity() == 1) {
425 // We only need the allocation site for the case we have a length argument.
426 // The case may bail out to the runtime, which will determine the correct
427 // elements kind with the site.
428 __ Mov(x2, instr->hydrogen()->site());
429 } else {
430 __ LoadRoot(x2, Heap::kUndefinedValueRootIndex);
431 }
432
433
434 ElementsKind kind = instr->hydrogen()->elements_kind();
435 AllocationSiteOverrideMode override_mode =
436 (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
437 ? DISABLE_ALLOCATION_SITES
438 : DONT_OVERRIDE;
439
440 if (instr->arity() == 0) {
441 ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
442 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
443 } else if (instr->arity() == 1) {
444 Label done;
445 if (IsFastPackedElementsKind(kind)) {
446 Label packed_case;
447
448 // We might need to create a holey array; look at the first argument.
449 __ Peek(x10, 0);
450 __ Cbz(x10, &packed_case);
451
452 ElementsKind holey_kind = GetHoleyElementsKind(kind);
453 ArraySingleArgumentConstructorStub stub(isolate(),
454 holey_kind,
455 override_mode);
456 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
457 __ B(&done);
458 __ Bind(&packed_case);
459 }
460
461 ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
462 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
463 __ Bind(&done);
464 } else {
465 ArrayNArgumentsConstructorStub stub(isolate(), kind, override_mode);
466 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
467 }
468 RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta());
469
470 DCHECK(ToRegister(instr->result()).is(x0));
471 }
472
473
474 void LCodeGen::CallRuntime(const Runtime::Function* function,
475 int num_arguments,
476 LInstruction* instr,
477 SaveFPRegsMode save_doubles) {
478 DCHECK(instr != NULL);
479
480 __ CallRuntime(function, num_arguments, save_doubles);
481
482 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
483 }
484
485
486 void LCodeGen::LoadContextFromDeferred(LOperand* context) {
487 if (context->IsRegister()) {
488 __ Mov(cp, ToRegister(context));
489 } else if (context->IsStackSlot()) {
490 __ Ldr(cp, ToMemOperand(context, kMustUseFramePointer));
491 } else if (context->IsConstantOperand()) {
492 HConstant* constant =
493 chunk_->LookupConstant(LConstantOperand::cast(context));
494 __ LoadHeapObject(cp,
495 Handle<HeapObject>::cast(constant->handle(isolate())));
496 } else {
497 UNREACHABLE();
498 }
499 }
500
501
502 void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
503 int argc,
504 LInstruction* instr,
505 LOperand* context) {
506 LoadContextFromDeferred(context);
507 __ CallRuntimeSaveDoubles(id);
508 RecordSafepointWithRegisters(
509 instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
510 }
511
512
513 void LCodeGen::RecordAndWritePosition(int position) {
514 if (position == RelocInfo::kNoPosition) return;
515 masm()->positions_recorder()->RecordPosition(position);
516 masm()->positions_recorder()->WriteRecordedPositions();
517 }
518
519
520 void LCodeGen::RecordSafepointWithLazyDeopt(LInstruction* instr,
521 SafepointMode safepoint_mode) {
522 if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
523 RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
524 } else {
525 DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
526 RecordSafepointWithRegisters(
527 instr->pointer_map(), 0, Safepoint::kLazyDeopt);
528 }
529 }
530
531
532 void LCodeGen::RecordSafepoint(LPointerMap* pointers,
533 Safepoint::Kind kind,
534 int arguments,
535 Safepoint::DeoptMode deopt_mode) {
536 DCHECK(expected_safepoint_kind_ == kind);
537
538 const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
539 Safepoint safepoint = safepoints_.DefineSafepoint(
540 masm(), kind, arguments, deopt_mode);
541
542 for (int i = 0; i < operands->length(); i++) {
543 LOperand* pointer = operands->at(i);
544 if (pointer->IsStackSlot()) {
545 safepoint.DefinePointerSlot(pointer->index(), zone());
546 } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
547 safepoint.DefinePointerRegister(ToRegister(pointer), zone());
548 }
549 }
550 }
551
552 void LCodeGen::RecordSafepoint(LPointerMap* pointers,
553 Safepoint::DeoptMode deopt_mode) {
554 RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
555 }
556
557
558 void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
559 LPointerMap empty_pointers(zone());
560 RecordSafepoint(&empty_pointers, deopt_mode);
561 }
562
563
564 void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
565 int arguments,
566 Safepoint::DeoptMode deopt_mode) {
567 RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
568 }
569
570
571 bool LCodeGen::GenerateCode() {
572 LPhase phase("Z_Code generation", chunk());
573 DCHECK(is_unused());
574 status_ = GENERATING;
575
576 // Open a frame scope to indicate that there is a frame on the stack. The
577 // NONE indicates that the scope shouldn't actually generate code to set up
578 // the frame (that is done in GeneratePrologue).
579 FrameScope frame_scope(masm_, StackFrame::NONE);
580
581 return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() &&
582 GenerateJumpTable() && GenerateSafepointTable();
583 }
584
585
586 void LCodeGen::SaveCallerDoubles() {
587 DCHECK(info()->saves_caller_doubles());
588 DCHECK(NeedsEagerFrame());
589 Comment(";;; Save clobbered callee double registers");
590 BitVector* doubles = chunk()->allocated_double_registers();
591 BitVector::Iterator iterator(doubles);
592 int count = 0;
593 while (!iterator.Done()) {
594 // TODO(all): Is this supposed to save just the callee-saved doubles? It
595 // looks like it's saving all of them.
596 FPRegister value = FPRegister::from_code(iterator.Current());
597 __ Poke(value, count * kDoubleSize);
598 iterator.Advance();
599 count++;
600 }
601 }
602
603
604 void LCodeGen::RestoreCallerDoubles() {
605 DCHECK(info()->saves_caller_doubles());
606 DCHECK(NeedsEagerFrame());
607 Comment(";;; Restore clobbered callee double registers");
608 BitVector* doubles = chunk()->allocated_double_registers();
609 BitVector::Iterator iterator(doubles);
610 int count = 0;
611 while (!iterator.Done()) {
612 // TODO(all): Is this supposed to restore just the callee-saved doubles? It
613 // looks like it's restoring all of them.
614 FPRegister value = FPRegister::from_code(iterator.Current());
615 __ Peek(value, count * kDoubleSize);
616 iterator.Advance();
617 count++;
618 }
619 }
620
621
622 bool LCodeGen::GeneratePrologue() {
623 DCHECK(is_generating());
624
625 if (info()->IsOptimizing()) {
626 ProfileEntryHookStub::MaybeCallEntryHook(masm_);
627
628 #ifdef DEBUG
629 if (strlen(FLAG_stop_at) > 0 &&
630 info()->literal()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
631 __ Debug("stop-at", __LINE__, BREAK);
632 }
633 #endif
634
635 // Sloppy mode functions and builtins need to replace the receiver with the
636 // global proxy when called as functions (without an explicit receiver
637 // object).
638 if (info()->MustReplaceUndefinedReceiverWithGlobalProxy()) {
639 Label ok;
640 int receiver_offset = info_->scope()->num_parameters() * kXRegSize;
641 __ Peek(x10, receiver_offset);
642 __ JumpIfNotRoot(x10, Heap::kUndefinedValueRootIndex, &ok);
643
644 __ Ldr(x10, GlobalObjectMemOperand());
645 __ Ldr(x10, FieldMemOperand(x10, GlobalObject::kGlobalProxyOffset));
646 __ Poke(x10, receiver_offset);
647
648 __ Bind(&ok);
649 }
650 }
651
652 DCHECK(__ StackPointer().Is(jssp));
653 info()->set_prologue_offset(masm_->pc_offset());
654 if (NeedsEagerFrame()) {
655 if (info()->IsStub()) {
656 __ StubPrologue();
657 } else {
658 __ Prologue(info()->IsCodePreAgingActive());
659 }
660 frame_is_built_ = true;
661 }
662
663 // Reserve space for the stack slots needed by the code.
664 int slots = GetStackSlotCount();
665 if (slots > 0) {
666 __ Claim(slots, kPointerSize);
667 }
668
669 if (info()->saves_caller_doubles()) {
670 SaveCallerDoubles();
671 }
672 return !is_aborted();
673 }
674
675
676 void LCodeGen::DoPrologue(LPrologue* instr) {
677 Comment(";;; Prologue begin");
678
679 // Allocate a local context if needed.
680 if (info()->num_heap_slots() > 0) {
681 Comment(";;; Allocate local context");
682 bool need_write_barrier = true;
683 // Argument to NewContext is the function, which is in x1.
684 int slots = info()->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
685 Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt;
686 if (info()->scope()->is_script_scope()) {
687 __ Mov(x10, Operand(info()->scope()->GetScopeInfo(info()->isolate())));
688 __ Push(x1, x10);
689 __ CallRuntime(Runtime::kNewScriptContext, 2);
690 deopt_mode = Safepoint::kLazyDeopt;
691 } else if (slots <= FastNewContextStub::kMaximumSlots) {
692 FastNewContextStub stub(isolate(), slots);
693 __ CallStub(&stub);
694 // Result of FastNewContextStub is always in new space.
695 need_write_barrier = false;
696 } else {
697 __ Push(x1);
698 __ CallRuntime(Runtime::kNewFunctionContext, 1);
699 }
700 RecordSafepoint(deopt_mode);
701 // Context is returned in x0. It replaces the context passed to us. It's
702 // saved in the stack and kept live in cp.
703 __ Mov(cp, x0);
704 __ Str(x0, MemOperand(fp, StandardFrameConstants::kContextOffset));
705 // Copy any necessary parameters into the context.
706 int num_parameters = scope()->num_parameters();
707 int first_parameter = scope()->has_this_declaration() ? -1 : 0;
708 for (int i = first_parameter; i < num_parameters; i++) {
709 Variable* var = (i == -1) ? scope()->receiver() : scope()->parameter(i);
710 if (var->IsContextSlot()) {
711 Register value = x0;
712 Register scratch = x3;
713
714 int parameter_offset = StandardFrameConstants::kCallerSPOffset +
715 (num_parameters - 1 - i) * kPointerSize;
716 // Load parameter from stack.
717 __ Ldr(value, MemOperand(fp, parameter_offset));
718 // Store it in the context.
719 MemOperand target = ContextMemOperand(cp, var->index());
720 __ Str(value, target);
721 // Update the write barrier. This clobbers value and scratch.
722 if (need_write_barrier) {
723 __ RecordWriteContextSlot(cp, static_cast<int>(target.offset()),
724 value, scratch, GetLinkRegisterState(),
725 kSaveFPRegs);
726 } else if (FLAG_debug_code) {
727 Label done;
728 __ JumpIfInNewSpace(cp, &done);
729 __ Abort(kExpectedNewSpaceObject);
730 __ bind(&done);
731 }
732 }
733 }
734 Comment(";;; End allocate local context");
735 }
736
737 Comment(";;; Prologue end");
738 }
739
740
741 void LCodeGen::GenerateOsrPrologue() {
742 // Generate the OSR entry prologue at the first unknown OSR value, or if there
743 // are none, at the OSR entrypoint instruction.
744 if (osr_pc_offset_ >= 0) return;
745
746 osr_pc_offset_ = masm()->pc_offset();
747
748 // Adjust the frame size, subsuming the unoptimized frame into the
749 // optimized frame.
750 int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
751 DCHECK(slots >= 0);
752 __ Claim(slots);
753 }
754
755
756 void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
757 if (instr->IsCall()) {
758 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
759 }
760 if (!instr->IsLazyBailout() && !instr->IsGap()) {
761 safepoints_.BumpLastLazySafepointIndex();
762 }
763 }
764
765
766 bool LCodeGen::GenerateDeferredCode() {
767 DCHECK(is_generating());
768 if (deferred_.length() > 0) {
769 for (int i = 0; !is_aborted() && (i < deferred_.length()); i++) {
770 LDeferredCode* code = deferred_[i];
771
772 HValue* value =
773 instructions_->at(code->instruction_index())->hydrogen_value();
774 RecordAndWritePosition(
775 chunk()->graph()->SourcePositionToScriptPosition(value->position()));
776
777 Comment(";;; <@%d,#%d> "
778 "-------------------- Deferred %s --------------------",
779 code->instruction_index(),
780 code->instr()->hydrogen_value()->id(),
781 code->instr()->Mnemonic());
782
783 __ Bind(code->entry());
784
785 if (NeedsDeferredFrame()) {
786 Comment(";;; Build frame");
787 DCHECK(!frame_is_built_);
788 DCHECK(info()->IsStub());
789 frame_is_built_ = true;
790 __ Push(lr, fp, cp);
791 __ Mov(fp, Smi::FromInt(StackFrame::STUB));
792 __ Push(fp);
793 __ Add(fp, __ StackPointer(),
794 StandardFrameConstants::kFixedFrameSizeFromFp);
795 Comment(";;; Deferred code");
796 }
797
798 code->Generate();
799
800 if (NeedsDeferredFrame()) {
801 Comment(";;; Destroy frame");
802 DCHECK(frame_is_built_);
803 __ Pop(xzr, cp, fp, lr);
804 frame_is_built_ = false;
805 }
806
807 __ B(code->exit());
808 }
809 }
810
811 // Force constant pool emission at the end of the deferred code to make
812 // sure that no constant pools are emitted after deferred code because
813 // deferred code generation is the last step which generates code. The two
814 // following steps will only output data used by crakshaft.
815 masm()->CheckConstPool(true, false);
816
817 return !is_aborted();
818 }
819
820
821 bool LCodeGen::GenerateJumpTable() {
822 Label needs_frame, call_deopt_entry;
823
824 if (jump_table_.length() > 0) {
825 Comment(";;; -------------------- Jump table --------------------");
826 Address base = jump_table_[0]->address;
827
828 UseScratchRegisterScope temps(masm());
829 Register entry_offset = temps.AcquireX();
830
831 int length = jump_table_.length();
832 for (int i = 0; i < length; i++) {
833 Deoptimizer::JumpTableEntry* table_entry = jump_table_[i];
834 __ Bind(&table_entry->label);
835
836 Address entry = table_entry->address;
837 DeoptComment(table_entry->deopt_info);
838
839 // Second-level deopt table entries are contiguous and small, so instead
840 // of loading the full, absolute address of each one, load the base
841 // address and add an immediate offset.
842 __ Mov(entry_offset, entry - base);
843
844 if (table_entry->needs_frame) {
845 DCHECK(!info()->saves_caller_doubles());
846 Comment(";;; call deopt with frame");
847 // Save lr before Bl, fp will be adjusted in the needs_frame code.
848 __ Push(lr, fp);
849 // Reuse the existing needs_frame code.
850 __ Bl(&needs_frame);
851 } else {
852 // There is nothing special to do, so just continue to the second-level
853 // table.
854 __ Bl(&call_deopt_entry);
855 }
856 info()->LogDeoptCallPosition(masm()->pc_offset(),
857 table_entry->deopt_info.inlining_id);
858
859 masm()->CheckConstPool(false, false);
860 }
861
862 if (needs_frame.is_linked()) {
863 // This variant of deopt can only be used with stubs. Since we don't
864 // have a function pointer to install in the stack frame that we're
865 // building, install a special marker there instead.
866 DCHECK(info()->IsStub());
867
868 Comment(";;; needs_frame common code");
869 UseScratchRegisterScope temps(masm());
870 Register stub_marker = temps.AcquireX();
871 __ Bind(&needs_frame);
872 __ Mov(stub_marker, Smi::FromInt(StackFrame::STUB));
873 __ Push(cp, stub_marker);
874 __ Add(fp, __ StackPointer(), 2 * kPointerSize);
875 }
876
877 // Generate common code for calling the second-level deopt table.
878 __ Bind(&call_deopt_entry);
879
880 if (info()->saves_caller_doubles()) {
881 DCHECK(info()->IsStub());
882 RestoreCallerDoubles();
883 }
884
885 Register deopt_entry = temps.AcquireX();
886 __ Mov(deopt_entry, Operand(reinterpret_cast<uint64_t>(base),
887 RelocInfo::RUNTIME_ENTRY));
888 __ Add(deopt_entry, deopt_entry, entry_offset);
889 __ Br(deopt_entry);
890 }
891
892 // Force constant pool emission at the end of the deopt jump table to make
893 // sure that no constant pools are emitted after.
894 masm()->CheckConstPool(true, false);
895
896 // The deoptimization jump table is the last part of the instruction
897 // sequence. Mark the generated code as done unless we bailed out.
898 if (!is_aborted()) status_ = DONE;
899 return !is_aborted();
900 }
901
902
903 bool LCodeGen::GenerateSafepointTable() {
904 DCHECK(is_done());
905 // We do not know how much data will be emitted for the safepoint table, so
906 // force emission of the veneer pool.
907 masm()->CheckVeneerPool(true, true);
908 safepoints_.Emit(masm(), GetStackSlotCount());
909 return !is_aborted();
910 }
911
912
913 void LCodeGen::FinishCode(Handle<Code> code) {
914 DCHECK(is_done());
915 code->set_stack_slots(GetStackSlotCount());
916 code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
917 PopulateDeoptimizationData(code);
918 }
919
920
921 void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) {
922 int length = deoptimizations_.length();
923 if (length == 0) return;
924
925 Handle<DeoptimizationInputData> data =
926 DeoptimizationInputData::New(isolate(), length, TENURED);
927
928 Handle<ByteArray> translations =
929 translations_.CreateByteArray(isolate()->factory());
930 data->SetTranslationByteArray(*translations);
931 data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_));
932 data->SetOptimizationId(Smi::FromInt(info_->optimization_id()));
933 if (info_->IsOptimizing()) {
934 // Reference to shared function info does not change between phases.
935 AllowDeferredHandleDereference allow_handle_dereference;
936 data->SetSharedFunctionInfo(*info_->shared_info());
937 } else {
938 data->SetSharedFunctionInfo(Smi::FromInt(0));
939 }
940 data->SetWeakCellCache(Smi::FromInt(0));
941
942 Handle<FixedArray> literals =
943 factory()->NewFixedArray(deoptimization_literals_.length(), TENURED);
944 { AllowDeferredHandleDereference copy_handles;
945 for (int i = 0; i < deoptimization_literals_.length(); i++) {
946 literals->set(i, *deoptimization_literals_[i]);
947 }
948 data->SetLiteralArray(*literals);
949 }
950
951 data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id().ToInt()));
952 data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
953
954 // Populate the deoptimization entries.
955 for (int i = 0; i < length; i++) {
956 LEnvironment* env = deoptimizations_[i];
957 data->SetAstId(i, env->ast_id());
958 data->SetTranslationIndex(i, Smi::FromInt(env->translation_index()));
959 data->SetArgumentsStackHeight(i,
960 Smi::FromInt(env->arguments_stack_height()));
961 data->SetPc(i, Smi::FromInt(env->pc_offset()));
962 }
963
964 code->set_deoptimization_data(*data);
965 }
966
967
968 void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() {
969 DCHECK_EQ(0, deoptimization_literals_.length());
970 for (auto function : chunk()->inlined_functions()) {
971 DefineDeoptimizationLiteral(function);
972 }
973 inlined_function_count_ = deoptimization_literals_.length();
974 }
975
976
977 void LCodeGen::DeoptimizeBranch(
978 LInstruction* instr, Deoptimizer::DeoptReason deopt_reason,
979 BranchType branch_type, Register reg, int bit,
980 Deoptimizer::BailoutType* override_bailout_type) {
981 LEnvironment* environment = instr->environment();
982 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
983 Deoptimizer::BailoutType bailout_type =
984 info()->IsStub() ? Deoptimizer::LAZY : Deoptimizer::EAGER;
985
986 if (override_bailout_type != NULL) {
987 bailout_type = *override_bailout_type;
988 }
989
990 DCHECK(environment->HasBeenRegistered());
991 int id = environment->deoptimization_index();
992 Address entry =
993 Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
994
995 if (entry == NULL) {
996 Abort(kBailoutWasNotPrepared);
997 }
998
999 if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) {
1000 Label not_zero;
1001 ExternalReference count = ExternalReference::stress_deopt_count(isolate());
1002
1003 __ Push(x0, x1, x2);
1004 __ Mrs(x2, NZCV);
1005 __ Mov(x0, count);
1006 __ Ldr(w1, MemOperand(x0));
1007 __ Subs(x1, x1, 1);
1008 __ B(gt, &not_zero);
1009 __ Mov(w1, FLAG_deopt_every_n_times);
1010 __ Str(w1, MemOperand(x0));
1011 __ Pop(x2, x1, x0);
1012 DCHECK(frame_is_built_);
1013 __ Call(entry, RelocInfo::RUNTIME_ENTRY);
1014 __ Unreachable();
1015
1016 __ Bind(&not_zero);
1017 __ Str(w1, MemOperand(x0));
1018 __ Msr(NZCV, x2);
1019 __ Pop(x2, x1, x0);
1020 }
1021
1022 if (info()->ShouldTrapOnDeopt()) {
1023 Label dont_trap;
1024 __ B(&dont_trap, InvertBranchType(branch_type), reg, bit);
1025 __ Debug("trap_on_deopt", __LINE__, BREAK);
1026 __ Bind(&dont_trap);
1027 }
1028
1029 Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason);
1030
1031 DCHECK(info()->IsStub() || frame_is_built_);
1032 // Go through jump table if we need to build frame, or restore caller doubles.
1033 if (branch_type == always &&
1034 frame_is_built_ && !info()->saves_caller_doubles()) {
1035 DeoptComment(deopt_info);
1036 __ Call(entry, RelocInfo::RUNTIME_ENTRY);
1037 info()->LogDeoptCallPosition(masm()->pc_offset(), deopt_info.inlining_id);
1038 } else {
1039 Deoptimizer::JumpTableEntry* table_entry =
1040 new (zone()) Deoptimizer::JumpTableEntry(
1041 entry, deopt_info, bailout_type, !frame_is_built_);
1042 // We often have several deopts to the same entry, reuse the last
1043 // jump entry if this is the case.
1044 if (FLAG_trace_deopt || isolate()->cpu_profiler()->is_profiling() ||
1045 jump_table_.is_empty() ||
1046 !table_entry->IsEquivalentTo(*jump_table_.last())) {
1047 jump_table_.Add(table_entry, zone());
1048 }
1049 __ B(&jump_table_.last()->label, branch_type, reg, bit);
1050 }
1051 }
1052
1053
1054 void LCodeGen::Deoptimize(LInstruction* instr,
1055 Deoptimizer::DeoptReason deopt_reason,
1056 Deoptimizer::BailoutType* override_bailout_type) {
1057 DeoptimizeBranch(instr, deopt_reason, always, NoReg, -1,
1058 override_bailout_type);
1059 }
1060
1061
1062 void LCodeGen::DeoptimizeIf(Condition cond, LInstruction* instr,
1063 Deoptimizer::DeoptReason deopt_reason) {
1064 DeoptimizeBranch(instr, deopt_reason, static_cast<BranchType>(cond));
1065 }
1066
1067
1068 void LCodeGen::DeoptimizeIfZero(Register rt, LInstruction* instr,
1069 Deoptimizer::DeoptReason deopt_reason) {
1070 DeoptimizeBranch(instr, deopt_reason, reg_zero, rt);
1071 }
1072
1073
1074 void LCodeGen::DeoptimizeIfNotZero(Register rt, LInstruction* instr,
1075 Deoptimizer::DeoptReason deopt_reason) {
1076 DeoptimizeBranch(instr, deopt_reason, reg_not_zero, rt);
1077 }
1078
1079
1080 void LCodeGen::DeoptimizeIfNegative(Register rt, LInstruction* instr,
1081 Deoptimizer::DeoptReason deopt_reason) {
1082 int sign_bit = rt.Is64Bits() ? kXSignBit : kWSignBit;
1083 DeoptimizeIfBitSet(rt, sign_bit, instr, deopt_reason);
1084 }
1085
1086
1087 void LCodeGen::DeoptimizeIfSmi(Register rt, LInstruction* instr,
1088 Deoptimizer::DeoptReason deopt_reason) {
1089 DeoptimizeIfBitClear(rt, MaskToBit(kSmiTagMask), instr, deopt_reason);
1090 }
1091
1092
1093 void LCodeGen::DeoptimizeIfNotSmi(Register rt, LInstruction* instr,
1094 Deoptimizer::DeoptReason deopt_reason) {
1095 DeoptimizeIfBitSet(rt, MaskToBit(kSmiTagMask), instr, deopt_reason);
1096 }
1097
1098
1099 void LCodeGen::DeoptimizeIfRoot(Register rt, Heap::RootListIndex index,
1100 LInstruction* instr,
1101 Deoptimizer::DeoptReason deopt_reason) {
1102 __ CompareRoot(rt, index);
1103 DeoptimizeIf(eq, instr, deopt_reason);
1104 }
1105
1106
1107 void LCodeGen::DeoptimizeIfNotRoot(Register rt, Heap::RootListIndex index,
1108 LInstruction* instr,
1109 Deoptimizer::DeoptReason deopt_reason) {
1110 __ CompareRoot(rt, index);
1111 DeoptimizeIf(ne, instr, deopt_reason);
1112 }
1113
1114
1115 void LCodeGen::DeoptimizeIfMinusZero(DoubleRegister input, LInstruction* instr,
1116 Deoptimizer::DeoptReason deopt_reason) {
1117 __ TestForMinusZero(input);
1118 DeoptimizeIf(vs, instr, deopt_reason);
1119 }
1120
1121
1122 void LCodeGen::DeoptimizeIfNotHeapNumber(Register object, LInstruction* instr) {
1123 __ CompareObjectMap(object, Heap::kHeapNumberMapRootIndex);
1124 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber);
1125 }
1126
1127
1128 void LCodeGen::DeoptimizeIfBitSet(Register rt, int bit, LInstruction* instr,
1129 Deoptimizer::DeoptReason deopt_reason) {
1130 DeoptimizeBranch(instr, deopt_reason, reg_bit_set, rt, bit);
1131 }
1132
1133
1134 void LCodeGen::DeoptimizeIfBitClear(Register rt, int bit, LInstruction* instr,
1135 Deoptimizer::DeoptReason deopt_reason) {
1136 DeoptimizeBranch(instr, deopt_reason, reg_bit_clear, rt, bit);
1137 }
1138
1139
1140 void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
1141 if (info()->ShouldEnsureSpaceForLazyDeopt()) {
1142 // Ensure that we have enough space after the previous lazy-bailout
1143 // instruction for patching the code here.
1144 intptr_t current_pc = masm()->pc_offset();
1145
1146 if (current_pc < (last_lazy_deopt_pc_ + space_needed)) {
1147 ptrdiff_t padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
1148 DCHECK((padding_size % kInstructionSize) == 0);
1149 InstructionAccurateScope instruction_accurate(
1150 masm(), padding_size / kInstructionSize);
1151
1152 while (padding_size > 0) {
1153 __ nop();
1154 padding_size -= kInstructionSize;
1155 }
1156 }
1157 }
1158 last_lazy_deopt_pc_ = masm()->pc_offset();
1159 }
1160
1161
1162 Register LCodeGen::ToRegister(LOperand* op) const {
1163 // TODO(all): support zero register results, as ToRegister32.
1164 DCHECK((op != NULL) && op->IsRegister());
1165 return Register::from_code(op->index());
1166 }
1167
1168
1169 Register LCodeGen::ToRegister32(LOperand* op) const {
1170 DCHECK(op != NULL);
1171 if (op->IsConstantOperand()) {
1172 // If this is a constant operand, the result must be the zero register.
1173 DCHECK(ToInteger32(LConstantOperand::cast(op)) == 0);
1174 return wzr;
1175 } else {
1176 return ToRegister(op).W();
1177 }
1178 }
1179
1180
1181 Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
1182 HConstant* constant = chunk_->LookupConstant(op);
1183 return Smi::FromInt(constant->Integer32Value());
1184 }
1185
1186
1187 DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
1188 DCHECK((op != NULL) && op->IsDoubleRegister());
1189 return DoubleRegister::from_code(op->index());
1190 }
1191
1192
1193 Operand LCodeGen::ToOperand(LOperand* op) {
1194 DCHECK(op != NULL);
1195 if (op->IsConstantOperand()) {
1196 LConstantOperand* const_op = LConstantOperand::cast(op);
1197 HConstant* constant = chunk()->LookupConstant(const_op);
1198 Representation r = chunk_->LookupLiteralRepresentation(const_op);
1199 if (r.IsSmi()) {
1200 DCHECK(constant->HasSmiValue());
1201 return Operand(Smi::FromInt(constant->Integer32Value()));
1202 } else if (r.IsInteger32()) {
1203 DCHECK(constant->HasInteger32Value());
1204 return Operand(constant->Integer32Value());
1205 } else if (r.IsDouble()) {
1206 Abort(kToOperandUnsupportedDoubleImmediate);
1207 }
1208 DCHECK(r.IsTagged());
1209 return Operand(constant->handle(isolate()));
1210 } else if (op->IsRegister()) {
1211 return Operand(ToRegister(op));
1212 } else if (op->IsDoubleRegister()) {
1213 Abort(kToOperandIsDoubleRegisterUnimplemented);
1214 return Operand(0);
1215 }
1216 // Stack slots not implemented, use ToMemOperand instead.
1217 UNREACHABLE();
1218 return Operand(0);
1219 }
1220
1221
1222 Operand LCodeGen::ToOperand32(LOperand* op) {
1223 DCHECK(op != NULL);
1224 if (op->IsRegister()) {
1225 return Operand(ToRegister32(op));
1226 } else if (op->IsConstantOperand()) {
1227 LConstantOperand* const_op = LConstantOperand::cast(op);
1228 HConstant* constant = chunk()->LookupConstant(const_op);
1229 Representation r = chunk_->LookupLiteralRepresentation(const_op);
1230 if (r.IsInteger32()) {
1231 return Operand(constant->Integer32Value());
1232 } else {
1233 // Other constants not implemented.
1234 Abort(kToOperand32UnsupportedImmediate);
1235 }
1236 }
1237 // Other cases are not implemented.
1238 UNREACHABLE();
1239 return Operand(0);
1240 }
1241
1242
1243 static int64_t ArgumentsOffsetWithoutFrame(int index) {
1244 DCHECK(index < 0);
1245 return -(index + 1) * kPointerSize;
1246 }
1247
1248
1249 MemOperand LCodeGen::ToMemOperand(LOperand* op, StackMode stack_mode) const {
1250 DCHECK(op != NULL);
1251 DCHECK(!op->IsRegister());
1252 DCHECK(!op->IsDoubleRegister());
1253 DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
1254 if (NeedsEagerFrame()) {
1255 int fp_offset = StackSlotOffset(op->index());
1256 // Loads and stores have a bigger reach in positive offset than negative.
1257 // We try to access using jssp (positive offset) first, then fall back to
1258 // fp (negative offset) if that fails.
1259 //
1260 // We can reference a stack slot from jssp only if we know how much we've
1261 // put on the stack. We don't know this in the following cases:
1262 // - stack_mode != kCanUseStackPointer: this is the case when deferred
1263 // code has saved the registers.
1264 // - saves_caller_doubles(): some double registers have been pushed, jssp
1265 // references the end of the double registers and not the end of the stack
1266 // slots.
1267 // In both of the cases above, we _could_ add the tracking information
1268 // required so that we can use jssp here, but in practice it isn't worth it.
1269 if ((stack_mode == kCanUseStackPointer) &&
1270 !info()->saves_caller_doubles()) {
1271 int jssp_offset_to_fp =
1272 StandardFrameConstants::kFixedFrameSizeFromFp +
1273 (pushed_arguments_ + GetStackSlotCount()) * kPointerSize;
1274 int jssp_offset = fp_offset + jssp_offset_to_fp;
1275 if (masm()->IsImmLSScaled(jssp_offset, LSDoubleWord)) {
1276 return MemOperand(masm()->StackPointer(), jssp_offset);
1277 }
1278 }
1279 return MemOperand(fp, fp_offset);
1280 } else {
1281 // Retrieve parameter without eager stack-frame relative to the
1282 // stack-pointer.
1283 return MemOperand(masm()->StackPointer(),
1284 ArgumentsOffsetWithoutFrame(op->index()));
1285 }
1286 }
1287
1288
1289 Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
1290 HConstant* constant = chunk_->LookupConstant(op);
1291 DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
1292 return constant->handle(isolate());
1293 }
1294
1295
1296 template <class LI>
1297 Operand LCodeGen::ToShiftedRightOperand32(LOperand* right, LI* shift_info) {
1298 if (shift_info->shift() == NO_SHIFT) {
1299 return ToOperand32(right);
1300 } else {
1301 return Operand(
1302 ToRegister32(right),
1303 shift_info->shift(),
1304 JSShiftAmountFromLConstant(shift_info->shift_amount()));
1305 }
1306 }
1307
1308
1309 bool LCodeGen::IsSmi(LConstantOperand* op) const {
1310 return chunk_->LookupLiteralRepresentation(op).IsSmi();
1311 }
1312
1313
1314 bool LCodeGen::IsInteger32Constant(LConstantOperand* op) const {
1315 return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
1316 }
1317
1318
1319 int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
1320 HConstant* constant = chunk_->LookupConstant(op);
1321 return constant->Integer32Value();
1322 }
1323
1324
1325 double LCodeGen::ToDouble(LConstantOperand* op) const {
1326 HConstant* constant = chunk_->LookupConstant(op);
1327 DCHECK(constant->HasDoubleValue());
1328 return constant->DoubleValue();
1329 }
1330
1331
1332 Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
1333 Condition cond = nv;
1334 switch (op) {
1335 case Token::EQ:
1336 case Token::EQ_STRICT:
1337 cond = eq;
1338 break;
1339 case Token::NE:
1340 case Token::NE_STRICT:
1341 cond = ne;
1342 break;
1343 case Token::LT:
1344 cond = is_unsigned ? lo : lt;
1345 break;
1346 case Token::GT:
1347 cond = is_unsigned ? hi : gt;
1348 break;
1349 case Token::LTE:
1350 cond = is_unsigned ? ls : le;
1351 break;
1352 case Token::GTE:
1353 cond = is_unsigned ? hs : ge;
1354 break;
1355 case Token::IN:
1356 case Token::INSTANCEOF:
1357 default:
1358 UNREACHABLE();
1359 }
1360 return cond;
1361 }
1362
1363
1364 template<class InstrType>
1365 void LCodeGen::EmitBranchGeneric(InstrType instr,
1366 const BranchGenerator& branch) {
1367 int left_block = instr->TrueDestination(chunk_);
1368 int right_block = instr->FalseDestination(chunk_);
1369
1370 int next_block = GetNextEmittedBlock();
1371
1372 if (right_block == left_block) {
1373 EmitGoto(left_block);
1374 } else if (left_block == next_block) {
1375 branch.EmitInverted(chunk_->GetAssemblyLabel(right_block));
1376 } else {
1377 branch.Emit(chunk_->GetAssemblyLabel(left_block));
1378 if (right_block != next_block) {
1379 __ B(chunk_->GetAssemblyLabel(right_block));
1380 }
1381 }
1382 }
1383
1384
1385 template<class InstrType>
1386 void LCodeGen::EmitBranch(InstrType instr, Condition condition) {
1387 DCHECK((condition != al) && (condition != nv));
1388 BranchOnCondition branch(this, condition);
1389 EmitBranchGeneric(instr, branch);
1390 }
1391
1392
1393 template<class InstrType>
1394 void LCodeGen::EmitCompareAndBranch(InstrType instr,
1395 Condition condition,
1396 const Register& lhs,
1397 const Operand& rhs) {
1398 DCHECK((condition != al) && (condition != nv));
1399 CompareAndBranch branch(this, condition, lhs, rhs);
1400 EmitBranchGeneric(instr, branch);
1401 }
1402
1403
1404 template<class InstrType>
1405 void LCodeGen::EmitTestAndBranch(InstrType instr,
1406 Condition condition,
1407 const Register& value,
1408 uint64_t mask) {
1409 DCHECK((condition != al) && (condition != nv));
1410 TestAndBranch branch(this, condition, value, mask);
1411 EmitBranchGeneric(instr, branch);
1412 }
1413
1414
1415 template<class InstrType>
1416 void LCodeGen::EmitBranchIfNonZeroNumber(InstrType instr,
1417 const FPRegister& value,
1418 const FPRegister& scratch) {
1419 BranchIfNonZeroNumber branch(this, value, scratch);
1420 EmitBranchGeneric(instr, branch);
1421 }
1422
1423
1424 template<class InstrType>
1425 void LCodeGen::EmitBranchIfHeapNumber(InstrType instr,
1426 const Register& value) {
1427 BranchIfHeapNumber branch(this, value);
1428 EmitBranchGeneric(instr, branch);
1429 }
1430
1431
1432 template<class InstrType>
1433 void LCodeGen::EmitBranchIfRoot(InstrType instr,
1434 const Register& value,
1435 Heap::RootListIndex index) {
1436 BranchIfRoot branch(this, value, index);
1437 EmitBranchGeneric(instr, branch);
1438 }
1439
1440
1441 void LCodeGen::DoGap(LGap* gap) {
1442 for (int i = LGap::FIRST_INNER_POSITION;
1443 i <= LGap::LAST_INNER_POSITION;
1444 i++) {
1445 LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
1446 LParallelMove* move = gap->GetParallelMove(inner_pos);
1447 if (move != NULL) {
1448 resolver_.Resolve(move);
1449 }
1450 }
1451 }
1452
1453
1454 void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
1455 Register arguments = ToRegister(instr->arguments());
1456 Register result = ToRegister(instr->result());
1457
1458 // The pointer to the arguments array come from DoArgumentsElements.
1459 // It does not point directly to the arguments and there is an offest of
1460 // two words that we must take into account when accessing an argument.
1461 // Subtracting the index from length accounts for one, so we add one more.
1462
1463 if (instr->length()->IsConstantOperand() &&
1464 instr->index()->IsConstantOperand()) {
1465 int index = ToInteger32(LConstantOperand::cast(instr->index()));
1466 int length = ToInteger32(LConstantOperand::cast(instr->length()));
1467 int offset = ((length - index) + 1) * kPointerSize;
1468 __ Ldr(result, MemOperand(arguments, offset));
1469 } else if (instr->index()->IsConstantOperand()) {
1470 Register length = ToRegister32(instr->length());
1471 int index = ToInteger32(LConstantOperand::cast(instr->index()));
1472 int loc = index - 1;
1473 if (loc != 0) {
1474 __ Sub(result.W(), length, loc);
1475 __ Ldr(result, MemOperand(arguments, result, UXTW, kPointerSizeLog2));
1476 } else {
1477 __ Ldr(result, MemOperand(arguments, length, UXTW, kPointerSizeLog2));
1478 }
1479 } else {
1480 Register length = ToRegister32(instr->length());
1481 Operand index = ToOperand32(instr->index());
1482 __ Sub(result.W(), length, index);
1483 __ Add(result.W(), result.W(), 1);
1484 __ Ldr(result, MemOperand(arguments, result, UXTW, kPointerSizeLog2));
1485 }
1486 }
1487
1488
1489 void LCodeGen::DoAddE(LAddE* instr) {
1490 Register result = ToRegister(instr->result());
1491 Register left = ToRegister(instr->left());
1492 Operand right = Operand(x0); // Dummy initialization.
1493 if (instr->hydrogen()->external_add_type() == AddOfExternalAndTagged) {
1494 right = Operand(ToRegister(instr->right()));
1495 } else if (instr->right()->IsConstantOperand()) {
1496 right = ToInteger32(LConstantOperand::cast(instr->right()));
1497 } else {
1498 right = Operand(ToRegister32(instr->right()), SXTW);
1499 }
1500
1501 DCHECK(!instr->hydrogen()->CheckFlag(HValue::kCanOverflow));
1502 __ Add(result, left, right);
1503 }
1504
1505
1506 void LCodeGen::DoAddI(LAddI* instr) {
1507 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1508 Register result = ToRegister32(instr->result());
1509 Register left = ToRegister32(instr->left());
1510 Operand right = ToShiftedRightOperand32(instr->right(), instr);
1511
1512 if (can_overflow) {
1513 __ Adds(result, left, right);
1514 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
1515 } else {
1516 __ Add(result, left, right);
1517 }
1518 }
1519
1520
1521 void LCodeGen::DoAddS(LAddS* instr) {
1522 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1523 Register result = ToRegister(instr->result());
1524 Register left = ToRegister(instr->left());
1525 Operand right = ToOperand(instr->right());
1526 if (can_overflow) {
1527 __ Adds(result, left, right);
1528 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
1529 } else {
1530 __ Add(result, left, right);
1531 }
1532 }
1533
1534
1535 void LCodeGen::DoAllocate(LAllocate* instr) {
1536 class DeferredAllocate: public LDeferredCode {
1537 public:
1538 DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
1539 : LDeferredCode(codegen), instr_(instr) { }
1540 virtual void Generate() { codegen()->DoDeferredAllocate(instr_); }
1541 virtual LInstruction* instr() { return instr_; }
1542 private:
1543 LAllocate* instr_;
1544 };
1545
1546 DeferredAllocate* deferred = new(zone()) DeferredAllocate(this, instr);
1547
1548 Register result = ToRegister(instr->result());
1549 Register temp1 = ToRegister(instr->temp1());
1550 Register temp2 = ToRegister(instr->temp2());
1551
1552 // Allocate memory for the object.
1553 AllocationFlags flags = TAG_OBJECT;
1554 if (instr->hydrogen()->MustAllocateDoubleAligned()) {
1555 flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
1556 }
1557
1558 if (instr->hydrogen()->IsOldSpaceAllocation()) {
1559 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
1560 flags = static_cast<AllocationFlags>(flags | PRETENURE);
1561 }
1562
1563 if (instr->size()->IsConstantOperand()) {
1564 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
1565 CHECK(size <= Page::kMaxRegularHeapObjectSize);
1566 __ Allocate(size, result, temp1, temp2, deferred->entry(), flags);
1567 } else {
1568 Register size = ToRegister32(instr->size());
1569 __ Sxtw(size.X(), size);
1570 __ Allocate(size.X(), result, temp1, temp2, deferred->entry(), flags);
1571 }
1572
1573 __ Bind(deferred->exit());
1574
1575 if (instr->hydrogen()->MustPrefillWithFiller()) {
1576 Register filler_count = temp1;
1577 Register filler = temp2;
1578 Register untagged_result = ToRegister(instr->temp3());
1579
1580 if (instr->size()->IsConstantOperand()) {
1581 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
1582 __ Mov(filler_count, size / kPointerSize);
1583 } else {
1584 __ Lsr(filler_count.W(), ToRegister32(instr->size()), kPointerSizeLog2);
1585 }
1586
1587 __ Sub(untagged_result, result, kHeapObjectTag);
1588 __ Mov(filler, Operand(isolate()->factory()->one_pointer_filler_map()));
1589 __ FillFields(untagged_result, filler_count, filler);
1590 } else {
1591 DCHECK(instr->temp3() == NULL);
1592 }
1593 }
1594
1595
1596 void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
1597 // TODO(3095996): Get rid of this. For now, we need to make the
1598 // result register contain a valid pointer because it is already
1599 // contained in the register pointer map.
1600 __ Mov(ToRegister(instr->result()), Smi::FromInt(0));
1601
1602 PushSafepointRegistersScope scope(this);
1603 // We're in a SafepointRegistersScope so we can use any scratch registers.
1604 Register size = x0;
1605 if (instr->size()->IsConstantOperand()) {
1606 __ Mov(size, ToSmi(LConstantOperand::cast(instr->size())));
1607 } else {
1608 __ SmiTag(size, ToRegister32(instr->size()).X());
1609 }
1610 int flags = AllocateDoubleAlignFlag::encode(
1611 instr->hydrogen()->MustAllocateDoubleAligned());
1612 if (instr->hydrogen()->IsOldSpaceAllocation()) {
1613 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
1614 flags = AllocateTargetSpace::update(flags, OLD_SPACE);
1615 } else {
1616 flags = AllocateTargetSpace::update(flags, NEW_SPACE);
1617 }
1618 __ Mov(x10, Smi::FromInt(flags));
1619 __ Push(size, x10);
1620
1621 CallRuntimeFromDeferred(
1622 Runtime::kAllocateInTargetSpace, 2, instr, instr->context());
1623 __ StoreToSafepointRegisterSlot(x0, ToRegister(instr->result()));
1624 }
1625
1626
1627 void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
1628 Register receiver = ToRegister(instr->receiver());
1629 Register function = ToRegister(instr->function());
1630 Register length = ToRegister32(instr->length());
1631
1632 Register elements = ToRegister(instr->elements());
1633 Register scratch = x5;
1634 DCHECK(receiver.Is(x0)); // Used for parameter count.
1635 DCHECK(function.Is(x1)); // Required by InvokeFunction.
1636 DCHECK(ToRegister(instr->result()).Is(x0));
1637 DCHECK(instr->IsMarkedAsCall());
1638
1639 // Copy the arguments to this function possibly from the
1640 // adaptor frame below it.
1641 const uint32_t kArgumentsLimit = 1 * KB;
1642 __ Cmp(length, kArgumentsLimit);
1643 DeoptimizeIf(hi, instr, Deoptimizer::kTooManyArguments);
1644
1645 // Push the receiver and use the register to keep the original
1646 // number of arguments.
1647 __ Push(receiver);
1648 Register argc = receiver;
1649 receiver = NoReg;
1650 __ Sxtw(argc, length);
1651 // The arguments are at a one pointer size offset from elements.
1652 __ Add(elements, elements, 1 * kPointerSize);
1653
1654 // Loop through the arguments pushing them onto the execution
1655 // stack.
1656 Label invoke, loop;
1657 // length is a small non-negative integer, due to the test above.
1658 __ Cbz(length, &invoke);
1659 __ Bind(&loop);
1660 __ Ldr(scratch, MemOperand(elements, length, SXTW, kPointerSizeLog2));
1661 __ Push(scratch);
1662 __ Subs(length, length, 1);
1663 __ B(ne, &loop);
1664
1665 __ Bind(&invoke);
1666 DCHECK(instr->HasPointerMap());
1667 LPointerMap* pointers = instr->pointer_map();
1668 SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt);
1669 // The number of arguments is stored in argc (receiver) which is x0, as
1670 // expected by InvokeFunction.
1671 ParameterCount actual(argc);
1672 __ InvokeFunction(function, actual, CALL_FUNCTION, safepoint_generator);
1673 }
1674
1675
1676 void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
1677 Register result = ToRegister(instr->result());
1678
1679 if (instr->hydrogen()->from_inlined()) {
1680 // When we are inside an inlined function, the arguments are the last things
1681 // that have been pushed on the stack. Therefore the arguments array can be
1682 // accessed directly from jssp.
1683 // However in the normal case, it is accessed via fp but there are two words
1684 // on the stack between fp and the arguments (the saved lr and fp) and the
1685 // LAccessArgumentsAt implementation take that into account.
1686 // In the inlined case we need to subtract the size of 2 words to jssp to
1687 // get a pointer which will work well with LAccessArgumentsAt.
1688 DCHECK(masm()->StackPointer().Is(jssp));
1689 __ Sub(result, jssp, 2 * kPointerSize);
1690 } else {
1691 DCHECK(instr->temp() != NULL);
1692 Register previous_fp = ToRegister(instr->temp());
1693
1694 __ Ldr(previous_fp,
1695 MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1696 __ Ldr(result,
1697 MemOperand(previous_fp, StandardFrameConstants::kContextOffset));
1698 __ Cmp(result, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
1699 __ Csel(result, fp, previous_fp, ne);
1700 }
1701 }
1702
1703
1704 void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
1705 Register elements = ToRegister(instr->elements());
1706 Register result = ToRegister32(instr->result());
1707 Label done;
1708
1709 // If no arguments adaptor frame the number of arguments is fixed.
1710 __ Cmp(fp, elements);
1711 __ Mov(result, scope()->num_parameters());
1712 __ B(eq, &done);
1713
1714 // Arguments adaptor frame present. Get argument length from there.
1715 __ Ldr(result.X(), MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1716 __ Ldr(result,
1717 UntagSmiMemOperand(result.X(),
1718 ArgumentsAdaptorFrameConstants::kLengthOffset));
1719
1720 // Argument length is in result register.
1721 __ Bind(&done);
1722 }
1723
1724
1725 void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
1726 DoubleRegister left = ToDoubleRegister(instr->left());
1727 DoubleRegister right = ToDoubleRegister(instr->right());
1728 DoubleRegister result = ToDoubleRegister(instr->result());
1729
1730 switch (instr->op()) {
1731 case Token::ADD: __ Fadd(result, left, right); break;
1732 case Token::SUB: __ Fsub(result, left, right); break;
1733 case Token::MUL: __ Fmul(result, left, right); break;
1734 case Token::DIV: __ Fdiv(result, left, right); break;
1735 case Token::MOD: {
1736 // The ECMA-262 remainder operator is the remainder from a truncating
1737 // (round-towards-zero) division. Note that this differs from IEEE-754.
1738 //
1739 // TODO(jbramley): See if it's possible to do this inline, rather than by
1740 // calling a helper function. With frintz (to produce the intermediate
1741 // quotient) and fmsub (to calculate the remainder without loss of
1742 // precision), it should be possible. However, we would need support for
1743 // fdiv in round-towards-zero mode, and the ARM64 simulator doesn't
1744 // support that yet.
1745 DCHECK(left.Is(d0));
1746 DCHECK(right.Is(d1));
1747 __ CallCFunction(
1748 ExternalReference::mod_two_doubles_operation(isolate()),
1749 0, 2);
1750 DCHECK(result.Is(d0));
1751 break;
1752 }
1753 default:
1754 UNREACHABLE();
1755 break;
1756 }
1757 }
1758
1759
1760 void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
1761 DCHECK(ToRegister(instr->context()).is(cp));
1762 DCHECK(ToRegister(instr->left()).is(x1));
1763 DCHECK(ToRegister(instr->right()).is(x0));
1764 DCHECK(ToRegister(instr->result()).is(x0));
1765
1766 Handle<Code> code =
1767 CodeFactory::BinaryOpIC(isolate(), instr->op(), instr->strength()).code();
1768 CallCode(code, RelocInfo::CODE_TARGET, instr);
1769 }
1770
1771
1772 void LCodeGen::DoBitI(LBitI* instr) {
1773 Register result = ToRegister32(instr->result());
1774 Register left = ToRegister32(instr->left());
1775 Operand right = ToShiftedRightOperand32(instr->right(), instr);
1776
1777 switch (instr->op()) {
1778 case Token::BIT_AND: __ And(result, left, right); break;
1779 case Token::BIT_OR: __ Orr(result, left, right); break;
1780 case Token::BIT_XOR: __ Eor(result, left, right); break;
1781 default:
1782 UNREACHABLE();
1783 break;
1784 }
1785 }
1786
1787
1788 void LCodeGen::DoBitS(LBitS* instr) {
1789 Register result = ToRegister(instr->result());
1790 Register left = ToRegister(instr->left());
1791 Operand right = ToOperand(instr->right());
1792
1793 switch (instr->op()) {
1794 case Token::BIT_AND: __ And(result, left, right); break;
1795 case Token::BIT_OR: __ Orr(result, left, right); break;
1796 case Token::BIT_XOR: __ Eor(result, left, right); break;
1797 default:
1798 UNREACHABLE();
1799 break;
1800 }
1801 }
1802
1803
1804 void LCodeGen::DoBoundsCheck(LBoundsCheck *instr) {
1805 Condition cond = instr->hydrogen()->allow_equality() ? hi : hs;
1806 DCHECK(instr->hydrogen()->index()->representation().IsInteger32());
1807 DCHECK(instr->hydrogen()->length()->representation().IsInteger32());
1808 if (instr->index()->IsConstantOperand()) {
1809 Operand index = ToOperand32(instr->index());
1810 Register length = ToRegister32(instr->length());
1811 __ Cmp(length, index);
1812 cond = CommuteCondition(cond);
1813 } else {
1814 Register index = ToRegister32(instr->index());
1815 Operand length = ToOperand32(instr->length());
1816 __ Cmp(index, length);
1817 }
1818 if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
1819 __ Assert(NegateCondition(cond), kEliminatedBoundsCheckFailed);
1820 } else {
1821 DeoptimizeIf(cond, instr, Deoptimizer::kOutOfBounds);
1822 }
1823 }
1824
1825
1826 void LCodeGen::DoBranch(LBranch* instr) {
1827 Representation r = instr->hydrogen()->value()->representation();
1828 Label* true_label = instr->TrueLabel(chunk_);
1829 Label* false_label = instr->FalseLabel(chunk_);
1830
1831 if (r.IsInteger32()) {
1832 DCHECK(!info()->IsStub());
1833 EmitCompareAndBranch(instr, ne, ToRegister32(instr->value()), 0);
1834 } else if (r.IsSmi()) {
1835 DCHECK(!info()->IsStub());
1836 STATIC_ASSERT(kSmiTag == 0);
1837 EmitCompareAndBranch(instr, ne, ToRegister(instr->value()), 0);
1838 } else if (r.IsDouble()) {
1839 DoubleRegister value = ToDoubleRegister(instr->value());
1840 // Test the double value. Zero and NaN are false.
1841 EmitBranchIfNonZeroNumber(instr, value, double_scratch());
1842 } else {
1843 DCHECK(r.IsTagged());
1844 Register value = ToRegister(instr->value());
1845 HType type = instr->hydrogen()->value()->type();
1846
1847 if (type.IsBoolean()) {
1848 DCHECK(!info()->IsStub());
1849 __ CompareRoot(value, Heap::kTrueValueRootIndex);
1850 EmitBranch(instr, eq);
1851 } else if (type.IsSmi()) {
1852 DCHECK(!info()->IsStub());
1853 EmitCompareAndBranch(instr, ne, value, Smi::FromInt(0));
1854 } else if (type.IsJSArray()) {
1855 DCHECK(!info()->IsStub());
1856 EmitGoto(instr->TrueDestination(chunk()));
1857 } else if (type.IsHeapNumber()) {
1858 DCHECK(!info()->IsStub());
1859 __ Ldr(double_scratch(), FieldMemOperand(value,
1860 HeapNumber::kValueOffset));
1861 // Test the double value. Zero and NaN are false.
1862 EmitBranchIfNonZeroNumber(instr, double_scratch(), double_scratch());
1863 } else if (type.IsString()) {
1864 DCHECK(!info()->IsStub());
1865 Register temp = ToRegister(instr->temp1());
1866 __ Ldr(temp, FieldMemOperand(value, String::kLengthOffset));
1867 EmitCompareAndBranch(instr, ne, temp, 0);
1868 } else {
1869 ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
1870 // Avoid deopts in the case where we've never executed this path before.
1871 if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic();
1872
1873 if (expected.Contains(ToBooleanStub::UNDEFINED)) {
1874 // undefined -> false.
1875 __ JumpIfRoot(
1876 value, Heap::kUndefinedValueRootIndex, false_label);
1877 }
1878
1879 if (expected.Contains(ToBooleanStub::BOOLEAN)) {
1880 // Boolean -> its value.
1881 __ JumpIfRoot(
1882 value, Heap::kTrueValueRootIndex, true_label);
1883 __ JumpIfRoot(
1884 value, Heap::kFalseValueRootIndex, false_label);
1885 }
1886
1887 if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
1888 // 'null' -> false.
1889 __ JumpIfRoot(
1890 value, Heap::kNullValueRootIndex, false_label);
1891 }
1892
1893 if (expected.Contains(ToBooleanStub::SMI)) {
1894 // Smis: 0 -> false, all other -> true.
1895 DCHECK(Smi::FromInt(0) == 0);
1896 __ Cbz(value, false_label);
1897 __ JumpIfSmi(value, true_label);
1898 } else if (expected.NeedsMap()) {
1899 // If we need a map later and have a smi, deopt.
1900 DeoptimizeIfSmi(value, instr, Deoptimizer::kSmi);
1901 }
1902
1903 Register map = NoReg;
1904 Register scratch = NoReg;
1905
1906 if (expected.NeedsMap()) {
1907 DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));
1908 map = ToRegister(instr->temp1());
1909 scratch = ToRegister(instr->temp2());
1910
1911 __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
1912
1913 if (expected.CanBeUndetectable()) {
1914 // Undetectable -> false.
1915 __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
1916 __ TestAndBranchIfAnySet(
1917 scratch, 1 << Map::kIsUndetectable, false_label);
1918 }
1919 }
1920
1921 if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
1922 // spec object -> true.
1923 __ CompareInstanceType(map, scratch, FIRST_SPEC_OBJECT_TYPE);
1924 __ B(ge, true_label);
1925 }
1926
1927 if (expected.Contains(ToBooleanStub::STRING)) {
1928 // String value -> false iff empty.
1929 Label not_string;
1930 __ CompareInstanceType(map, scratch, FIRST_NONSTRING_TYPE);
1931 __ B(ge, &not_string);
1932 __ Ldr(scratch, FieldMemOperand(value, String::kLengthOffset));
1933 __ Cbz(scratch, false_label);
1934 __ B(true_label);
1935 __ Bind(&not_string);
1936 }
1937
1938 if (expected.Contains(ToBooleanStub::SYMBOL)) {
1939 // Symbol value -> true.
1940 __ CompareInstanceType(map, scratch, SYMBOL_TYPE);
1941 __ B(eq, true_label);
1942 }
1943
1944 if (expected.Contains(ToBooleanStub::SIMD_VALUE)) {
1945 // SIMD value -> true.
1946 __ CompareInstanceType(map, scratch, SIMD128_VALUE_TYPE);
1947 __ B(eq, true_label);
1948 }
1949
1950 if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
1951 Label not_heap_number;
1952 __ JumpIfNotRoot(map, Heap::kHeapNumberMapRootIndex, &not_heap_number);
1953
1954 __ Ldr(double_scratch(),
1955 FieldMemOperand(value, HeapNumber::kValueOffset));
1956 __ Fcmp(double_scratch(), 0.0);
1957 // If we got a NaN (overflow bit is set), jump to the false branch.
1958 __ B(vs, false_label);
1959 __ B(eq, false_label);
1960 __ B(true_label);
1961 __ Bind(&not_heap_number);
1962 }
1963
1964 if (!expected.IsGeneric()) {
1965 // We've seen something for the first time -> deopt.
1966 // This can only happen if we are not generic already.
1967 Deoptimize(instr, Deoptimizer::kUnexpectedObject);
1968 }
1969 }
1970 }
1971 }
1972
1973
1974 void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
1975 int formal_parameter_count, int arity,
1976 LInstruction* instr) {
1977 bool dont_adapt_arguments =
1978 formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
1979 bool can_invoke_directly =
1980 dont_adapt_arguments || formal_parameter_count == arity;
1981
1982 // The function interface relies on the following register assignments.
1983 Register function_reg = x1;
1984 Register arity_reg = x0;
1985
1986 LPointerMap* pointers = instr->pointer_map();
1987
1988 if (FLAG_debug_code) {
1989 Label is_not_smi;
1990 // Try to confirm that function_reg (x1) is a tagged pointer.
1991 __ JumpIfNotSmi(function_reg, &is_not_smi);
1992 __ Abort(kExpectedFunctionObject);
1993 __ Bind(&is_not_smi);
1994 }
1995
1996 if (can_invoke_directly) {
1997 // Change context.
1998 __ Ldr(cp, FieldMemOperand(function_reg, JSFunction::kContextOffset));
1999
2000 // Always initialize x0 to the number of actual arguments.
2001 __ Mov(arity_reg, arity);
2002
2003 // Invoke function.
2004 __ Ldr(x10, FieldMemOperand(function_reg, JSFunction::kCodeEntryOffset));
2005 __ Call(x10);
2006
2007 // Set up deoptimization.
2008 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
2009 } else {
2010 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
2011 ParameterCount count(arity);
2012 ParameterCount expected(formal_parameter_count);
2013 __ InvokeFunction(function_reg, expected, count, CALL_FUNCTION, generator);
2014 }
2015 }
2016
2017
2018 void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
2019 DCHECK(instr->IsMarkedAsCall());
2020 DCHECK(ToRegister(instr->result()).Is(x0));
2021
2022 if (instr->hydrogen()->IsTailCall()) {
2023 if (NeedsEagerFrame()) __ LeaveFrame(StackFrame::INTERNAL);
2024
2025 if (instr->target()->IsConstantOperand()) {
2026 LConstantOperand* target = LConstantOperand::cast(instr->target());
2027 Handle<Code> code = Handle<Code>::cast(ToHandle(target));
2028 // TODO(all): on ARM we use a call descriptor to specify a storage mode
2029 // but on ARM64 we only have one storage mode so it isn't necessary. Check
2030 // this understanding is correct.
2031 __ Jump(code, RelocInfo::CODE_TARGET);
2032 } else {
2033 DCHECK(instr->target()->IsRegister());
2034 Register target = ToRegister(instr->target());
2035 __ Add(target, target, Code::kHeaderSize - kHeapObjectTag);
2036 __ Br(target);
2037 }
2038 } else {
2039 LPointerMap* pointers = instr->pointer_map();
2040 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
2041
2042 if (instr->target()->IsConstantOperand()) {
2043 LConstantOperand* target = LConstantOperand::cast(instr->target());
2044 Handle<Code> code = Handle<Code>::cast(ToHandle(target));
2045 generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
2046 // TODO(all): on ARM we use a call descriptor to specify a storage mode
2047 // but on ARM64 we only have one storage mode so it isn't necessary. Check
2048 // this understanding is correct.
2049 __ Call(code, RelocInfo::CODE_TARGET, TypeFeedbackId::None());
2050 } else {
2051 DCHECK(instr->target()->IsRegister());
2052 Register target = ToRegister(instr->target());
2053 generator.BeforeCall(__ CallSize(target));
2054 __ Add(target, target, Code::kHeaderSize - kHeapObjectTag);
2055 __ Call(target);
2056 }
2057 generator.AfterCall();
2058 }
2059
2060 RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta());
2061 }
2062
2063
2064 void LCodeGen::DoCallJSFunction(LCallJSFunction* instr) {
2065 DCHECK(instr->IsMarkedAsCall());
2066 DCHECK(ToRegister(instr->function()).is(x1));
2067
2068 __ Mov(x0, Operand(instr->arity()));
2069
2070 // Change context.
2071 __ Ldr(cp, FieldMemOperand(x1, JSFunction::kContextOffset));
2072
2073 // Load the code entry address
2074 __ Ldr(x10, FieldMemOperand(x1, JSFunction::kCodeEntryOffset));
2075 __ Call(x10);
2076
2077 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
2078 RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta());
2079 }
2080
2081
2082 void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
2083 CallRuntime(instr->function(), instr->arity(), instr);
2084 RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta());
2085 }
2086
2087
2088 void LCodeGen::DoCallStub(LCallStub* instr) {
2089 DCHECK(ToRegister(instr->context()).is(cp));
2090 DCHECK(ToRegister(instr->result()).is(x0));
2091 switch (instr->hydrogen()->major_key()) {
2092 case CodeStub::RegExpExec: {
2093 RegExpExecStub stub(isolate());
2094 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2095 break;
2096 }
2097 case CodeStub::SubString: {
2098 SubStringStub stub(isolate());
2099 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2100 break;
2101 }
2102 default:
2103 UNREACHABLE();
2104 }
2105 RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta());
2106 }
2107
2108
2109 void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
2110 GenerateOsrPrologue();
2111 }
2112
2113
2114 void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
2115 Register temp = ToRegister(instr->temp());
2116 {
2117 PushSafepointRegistersScope scope(this);
2118 __ Push(object);
2119 __ Mov(cp, 0);
2120 __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
2121 RecordSafepointWithRegisters(
2122 instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
2123 __ StoreToSafepointRegisterSlot(x0, temp);
2124 }
2125 DeoptimizeIfSmi(temp, instr, Deoptimizer::kInstanceMigrationFailed);
2126 }
2127
2128
2129 void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
2130 class DeferredCheckMaps: public LDeferredCode {
2131 public:
2132 DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
2133 : LDeferredCode(codegen), instr_(instr), object_(object) {
2134 SetExit(check_maps());
2135 }
2136 virtual void Generate() {
2137 codegen()->DoDeferredInstanceMigration(instr_, object_);
2138 }
2139 Label* check_maps() { return &check_maps_; }
2140 virtual LInstruction* instr() { return instr_; }
2141 private:
2142 LCheckMaps* instr_;
2143 Label check_maps_;
2144 Register object_;
2145 };
2146
2147 if (instr->hydrogen()->IsStabilityCheck()) {
2148 const UniqueSet<Map>* maps = instr->hydrogen()->maps();
2149 for (int i = 0; i < maps->size(); ++i) {
2150 AddStabilityDependency(maps->at(i).handle());
2151 }
2152 return;
2153 }
2154
2155 Register object = ToRegister(instr->value());
2156 Register map_reg = ToRegister(instr->temp());
2157
2158 __ Ldr(map_reg, FieldMemOperand(object, HeapObject::kMapOffset));
2159
2160 DeferredCheckMaps* deferred = NULL;
2161 if (instr->hydrogen()->HasMigrationTarget()) {
2162 deferred = new(zone()) DeferredCheckMaps(this, instr, object);
2163 __ Bind(deferred->check_maps());
2164 }
2165
2166 const UniqueSet<Map>* maps = instr->hydrogen()->maps();
2167 Label success;
2168 for (int i = 0; i < maps->size() - 1; i++) {
2169 Handle<Map> map = maps->at(i).handle();
2170 __ CompareMap(map_reg, map);
2171 __ B(eq, &success);
2172 }
2173 Handle<Map> map = maps->at(maps->size() - 1).handle();
2174 __ CompareMap(map_reg, map);
2175
2176 // We didn't match a map.
2177 if (instr->hydrogen()->HasMigrationTarget()) {
2178 __ B(ne, deferred->entry());
2179 } else {
2180 DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap);
2181 }
2182
2183 __ Bind(&success);
2184 }
2185
2186
2187 void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
2188 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2189 DeoptimizeIfSmi(ToRegister(instr->value()), instr, Deoptimizer::kSmi);
2190 }
2191 }
2192
2193
2194 void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
2195 Register value = ToRegister(instr->value());
2196 DCHECK(!instr->result() || ToRegister(instr->result()).Is(value));
2197 DeoptimizeIfNotSmi(value, instr, Deoptimizer::kNotASmi);
2198 }
2199
2200
2201 void LCodeGen::DoCheckArrayBufferNotNeutered(
2202 LCheckArrayBufferNotNeutered* instr) {
2203 UseScratchRegisterScope temps(masm());
2204 Register view = ToRegister(instr->view());
2205 Register scratch = temps.AcquireX();
2206
2207 __ Ldr(scratch, FieldMemOperand(view, JSArrayBufferView::kBufferOffset));
2208 __ Ldr(scratch, FieldMemOperand(scratch, JSArrayBuffer::kBitFieldOffset));
2209 __ Tst(scratch, Operand(1 << JSArrayBuffer::WasNeutered::kShift));
2210 DeoptimizeIf(ne, instr, Deoptimizer::kOutOfBounds);
2211 }
2212
2213
2214 void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
2215 Register input = ToRegister(instr->value());
2216 Register scratch = ToRegister(instr->temp());
2217
2218 __ Ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
2219 __ Ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
2220
2221 if (instr->hydrogen()->is_interval_check()) {
2222 InstanceType first, last;
2223 instr->hydrogen()->GetCheckInterval(&first, &last);
2224
2225 __ Cmp(scratch, first);
2226 if (first == last) {
2227 // If there is only one type in the interval check for equality.
2228 DeoptimizeIf(ne, instr, Deoptimizer::kWrongInstanceType);
2229 } else if (last == LAST_TYPE) {
2230 // We don't need to compare with the higher bound of the interval.
2231 DeoptimizeIf(lo, instr, Deoptimizer::kWrongInstanceType);
2232 } else {
2233 // If we are below the lower bound, set the C flag and clear the Z flag
2234 // to force a deopt.
2235 __ Ccmp(scratch, last, CFlag, hs);
2236 DeoptimizeIf(hi, instr, Deoptimizer::kWrongInstanceType);
2237 }
2238 } else {
2239 uint8_t mask;
2240 uint8_t tag;
2241 instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
2242
2243 if (base::bits::IsPowerOfTwo32(mask)) {
2244 DCHECK((tag == 0) || (tag == mask));
2245 if (tag == 0) {
2246 DeoptimizeIfBitSet(scratch, MaskToBit(mask), instr,
2247 Deoptimizer::kWrongInstanceType);
2248 } else {
2249 DeoptimizeIfBitClear(scratch, MaskToBit(mask), instr,
2250 Deoptimizer::kWrongInstanceType);
2251 }
2252 } else {
2253 if (tag == 0) {
2254 __ Tst(scratch, mask);
2255 } else {
2256 __ And(scratch, scratch, mask);
2257 __ Cmp(scratch, tag);
2258 }
2259 DeoptimizeIf(ne, instr, Deoptimizer::kWrongInstanceType);
2260 }
2261 }
2262 }
2263
2264
2265 void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
2266 DoubleRegister input = ToDoubleRegister(instr->unclamped());
2267 Register result = ToRegister32(instr->result());
2268 __ ClampDoubleToUint8(result, input, double_scratch());
2269 }
2270
2271
2272 void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
2273 Register input = ToRegister32(instr->unclamped());
2274 Register result = ToRegister32(instr->result());
2275 __ ClampInt32ToUint8(result, input);
2276 }
2277
2278
2279 void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
2280 Register input = ToRegister(instr->unclamped());
2281 Register result = ToRegister32(instr->result());
2282 Label done;
2283
2284 // Both smi and heap number cases are handled.
2285 Label is_not_smi;
2286 __ JumpIfNotSmi(input, &is_not_smi);
2287 __ SmiUntag(result.X(), input);
2288 __ ClampInt32ToUint8(result);
2289 __ B(&done);
2290
2291 __ Bind(&is_not_smi);
2292
2293 // Check for heap number.
2294 Label is_heap_number;
2295 __ JumpIfHeapNumber(input, &is_heap_number);
2296
2297 // Check for undefined. Undefined is coverted to zero for clamping conversion.
2298 DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr,
2299 Deoptimizer::kNotAHeapNumberUndefined);
2300 __ Mov(result, 0);
2301 __ B(&done);
2302
2303 // Heap number case.
2304 __ Bind(&is_heap_number);
2305 DoubleRegister dbl_scratch = double_scratch();
2306 DoubleRegister dbl_scratch2 = ToDoubleRegister(instr->temp1());
2307 __ Ldr(dbl_scratch, FieldMemOperand(input, HeapNumber::kValueOffset));
2308 __ ClampDoubleToUint8(result, dbl_scratch, dbl_scratch2);
2309
2310 __ Bind(&done);
2311 }
2312
2313
2314 void LCodeGen::DoDoubleBits(LDoubleBits* instr) {
2315 DoubleRegister value_reg = ToDoubleRegister(instr->value());
2316 Register result_reg = ToRegister(instr->result());
2317 if (instr->hydrogen()->bits() == HDoubleBits::HIGH) {
2318 __ Fmov(result_reg, value_reg);
2319 __ Lsr(result_reg, result_reg, 32);
2320 } else {
2321 __ Fmov(result_reg.W(), value_reg.S());
2322 }
2323 }
2324
2325
2326 void LCodeGen::DoConstructDouble(LConstructDouble* instr) {
2327 Register hi_reg = ToRegister(instr->hi());
2328 Register lo_reg = ToRegister(instr->lo());
2329 DoubleRegister result_reg = ToDoubleRegister(instr->result());
2330
2331 // Insert the least significant 32 bits of hi_reg into the most significant
2332 // 32 bits of lo_reg, and move to a floating point register.
2333 __ Bfi(lo_reg, hi_reg, 32, 32);
2334 __ Fmov(result_reg, lo_reg);
2335 }
2336
2337
2338 void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
2339 Handle<String> class_name = instr->hydrogen()->class_name();
2340 Label* true_label = instr->TrueLabel(chunk_);
2341 Label* false_label = instr->FalseLabel(chunk_);
2342 Register input = ToRegister(instr->value());
2343 Register scratch1 = ToRegister(instr->temp1());
2344 Register scratch2 = ToRegister(instr->temp2());
2345
2346 __ JumpIfSmi(input, false_label);
2347
2348 Register map = scratch2;
2349 if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
2350 // Assuming the following assertions, we can use the same compares to test
2351 // for both being a function type and being in the object type range.
2352 STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
2353 STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
2354 FIRST_SPEC_OBJECT_TYPE + 1);
2355 STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
2356 LAST_SPEC_OBJECT_TYPE - 1);
2357 STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
2358
2359 // We expect CompareObjectType to load the object instance type in scratch1.
2360 __ CompareObjectType(input, map, scratch1, FIRST_SPEC_OBJECT_TYPE);
2361 __ B(lt, false_label);
2362 __ B(eq, true_label);
2363 __ Cmp(scratch1, LAST_SPEC_OBJECT_TYPE);
2364 __ B(eq, true_label);
2365 } else {
2366 __ IsObjectJSObjectType(input, map, scratch1, false_label);
2367 }
2368
2369 // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range.
2370 // Check if the constructor in the map is a function.
2371 {
2372 UseScratchRegisterScope temps(masm());
2373 Register instance_type = temps.AcquireX();
2374 __ GetMapConstructor(scratch1, map, scratch2, instance_type);
2375 __ Cmp(instance_type, JS_FUNCTION_TYPE);
2376 }
2377 // Objects with a non-function constructor have class 'Object'.
2378 if (String::Equals(class_name, isolate()->factory()->Object_string())) {
2379 __ B(ne, true_label);
2380 } else {
2381 __ B(ne, false_label);
2382 }
2383
2384 // The constructor function is in scratch1. Get its instance class name.
2385 __ Ldr(scratch1,
2386 FieldMemOperand(scratch1, JSFunction::kSharedFunctionInfoOffset));
2387 __ Ldr(scratch1,
2388 FieldMemOperand(scratch1,
2389 SharedFunctionInfo::kInstanceClassNameOffset));
2390
2391 // The class name we are testing against is internalized since it's a literal.
2392 // The name in the constructor is internalized because of the way the context
2393 // is booted. This routine isn't expected to work for random API-created
2394 // classes and it doesn't have to because you can't access it with natives
2395 // syntax. Since both sides are internalized it is sufficient to use an
2396 // identity comparison.
2397 EmitCompareAndBranch(instr, eq, scratch1, Operand(class_name));
2398 }
2399
2400
2401 void LCodeGen::DoCmpHoleAndBranchD(LCmpHoleAndBranchD* instr) {
2402 DCHECK(instr->hydrogen()->representation().IsDouble());
2403 FPRegister object = ToDoubleRegister(instr->object());
2404 Register temp = ToRegister(instr->temp());
2405
2406 // If we don't have a NaN, we don't have the hole, so branch now to avoid the
2407 // (relatively expensive) hole-NaN check.
2408 __ Fcmp(object, object);
2409 __ B(vc, instr->FalseLabel(chunk_));
2410
2411 // We have a NaN, but is it the hole?
2412 __ Fmov(temp, object);
2413 EmitCompareAndBranch(instr, eq, temp, kHoleNanInt64);
2414 }
2415
2416
2417 void LCodeGen::DoCmpHoleAndBranchT(LCmpHoleAndBranchT* instr) {
2418 DCHECK(instr->hydrogen()->representation().IsTagged());
2419 Register object = ToRegister(instr->object());
2420
2421 EmitBranchIfRoot(instr, object, Heap::kTheHoleValueRootIndex);
2422 }
2423
2424
2425 void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
2426 Register value = ToRegister(instr->value());
2427 Register map = ToRegister(instr->temp());
2428
2429 __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
2430 EmitCompareAndBranch(instr, eq, map, Operand(instr->map()));
2431 }
2432
2433
2434 void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) {
2435 Representation rep = instr->hydrogen()->value()->representation();
2436 DCHECK(!rep.IsInteger32());
2437 Register scratch = ToRegister(instr->temp());
2438
2439 if (rep.IsDouble()) {
2440 __ JumpIfMinusZero(ToDoubleRegister(instr->value()),
2441 instr->TrueLabel(chunk()));
2442 } else {
2443 Register value = ToRegister(instr->value());
2444 __ JumpIfNotHeapNumber(value, instr->FalseLabel(chunk()), DO_SMI_CHECK);
2445 __ Ldr(scratch, FieldMemOperand(value, HeapNumber::kValueOffset));
2446 __ JumpIfMinusZero(scratch, instr->TrueLabel(chunk()));
2447 }
2448 EmitGoto(instr->FalseDestination(chunk()));
2449 }
2450
2451
2452 void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
2453 LOperand* left = instr->left();
2454 LOperand* right = instr->right();
2455 bool is_unsigned =
2456 instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
2457 instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
2458 Condition cond = TokenToCondition(instr->op(), is_unsigned);
2459
2460 if (left->IsConstantOperand() && right->IsConstantOperand()) {
2461 // We can statically evaluate the comparison.
2462 double left_val = ToDouble(LConstantOperand::cast(left));
2463 double right_val = ToDouble(LConstantOperand::cast(right));
2464 int next_block = EvalComparison(instr->op(), left_val, right_val) ?
2465 instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_);
2466 EmitGoto(next_block);
2467 } else {
2468 if (instr->is_double()) {
2469 __ Fcmp(ToDoubleRegister(left), ToDoubleRegister(right));
2470
2471 // If a NaN is involved, i.e. the result is unordered (V set),
2472 // jump to false block label.
2473 __ B(vs, instr->FalseLabel(chunk_));
2474 EmitBranch(instr, cond);
2475 } else {
2476 if (instr->hydrogen_value()->representation().IsInteger32()) {
2477 if (right->IsConstantOperand()) {
2478 EmitCompareAndBranch(instr, cond, ToRegister32(left),
2479 ToOperand32(right));
2480 } else {
2481 // Commute the operands and the condition.
2482 EmitCompareAndBranch(instr, CommuteCondition(cond),
2483 ToRegister32(right), ToOperand32(left));
2484 }
2485 } else {
2486 DCHECK(instr->hydrogen_value()->representation().IsSmi());
2487 if (right->IsConstantOperand()) {
2488 int32_t value = ToInteger32(LConstantOperand::cast(right));
2489 EmitCompareAndBranch(instr,
2490 cond,
2491 ToRegister(left),
2492 Operand(Smi::FromInt(value)));
2493 } else if (left->IsConstantOperand()) {
2494 // Commute the operands and the condition.
2495 int32_t value = ToInteger32(LConstantOperand::cast(left));
2496 EmitCompareAndBranch(instr,
2497 CommuteCondition(cond),
2498 ToRegister(right),
2499 Operand(Smi::FromInt(value)));
2500 } else {
2501 EmitCompareAndBranch(instr,
2502 cond,
2503 ToRegister(left),
2504 ToRegister(right));
2505 }
2506 }
2507 }
2508 }
2509 }
2510
2511
2512 void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
2513 Register left = ToRegister(instr->left());
2514 Register right = ToRegister(instr->right());
2515 EmitCompareAndBranch(instr, eq, left, right);
2516 }
2517
2518
2519 void LCodeGen::DoCmpT(LCmpT* instr) {
2520 DCHECK(ToRegister(instr->context()).is(cp));
2521 Token::Value op = instr->op();
2522 Condition cond = TokenToCondition(op, false);
2523
2524 DCHECK(ToRegister(instr->left()).Is(x1));
2525 DCHECK(ToRegister(instr->right()).Is(x0));
2526 Handle<Code> ic =
2527 CodeFactory::CompareIC(isolate(), op, instr->strength()).code();
2528 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2529 // Signal that we don't inline smi code before this stub.
2530 InlineSmiCheckInfo::EmitNotInlined(masm());
2531
2532 // Return true or false depending on CompareIC result.
2533 // This instruction is marked as call. We can clobber any register.
2534 DCHECK(instr->IsMarkedAsCall());
2535 __ LoadTrueFalseRoots(x1, x2);
2536 __ Cmp(x0, 0);
2537 __ Csel(ToRegister(instr->result()), x1, x2, cond);
2538 }
2539
2540
2541 void LCodeGen::DoConstantD(LConstantD* instr) {
2542 DCHECK(instr->result()->IsDoubleRegister());
2543 DoubleRegister result = ToDoubleRegister(instr->result());
2544 if (instr->value() == 0) {
2545 if (copysign(1.0, instr->value()) == 1.0) {
2546 __ Fmov(result, fp_zero);
2547 } else {
2548 __ Fneg(result, fp_zero);
2549 }
2550 } else {
2551 __ Fmov(result, instr->value());
2552 }
2553 }
2554
2555
2556 void LCodeGen::DoConstantE(LConstantE* instr) {
2557 __ Mov(ToRegister(instr->result()), Operand(instr->value()));
2558 }
2559
2560
2561 void LCodeGen::DoConstantI(LConstantI* instr) {
2562 DCHECK(is_int32(instr->value()));
2563 // Cast the value here to ensure that the value isn't sign extended by the
2564 // implicit Operand constructor.
2565 __ Mov(ToRegister32(instr->result()), static_cast<uint32_t>(instr->value()));
2566 }
2567
2568
2569 void LCodeGen::DoConstantS(LConstantS* instr) {
2570 __ Mov(ToRegister(instr->result()), Operand(instr->value()));
2571 }
2572
2573
2574 void LCodeGen::DoConstantT(LConstantT* instr) {
2575 Handle<Object> object = instr->value(isolate());
2576 AllowDeferredHandleDereference smi_check;
2577 __ LoadObject(ToRegister(instr->result()), object);
2578 }
2579
2580
2581 void LCodeGen::DoContext(LContext* instr) {
2582 // If there is a non-return use, the context must be moved to a register.
2583 Register result = ToRegister(instr->result());
2584 if (info()->IsOptimizing()) {
2585 __ Ldr(result, MemOperand(fp, StandardFrameConstants::kContextOffset));
2586 } else {
2587 // If there is no frame, the context must be in cp.
2588 DCHECK(result.is(cp));
2589 }
2590 }
2591
2592
2593 void LCodeGen::DoCheckValue(LCheckValue* instr) {
2594 Register reg = ToRegister(instr->value());
2595 Handle<HeapObject> object = instr->hydrogen()->object().handle();
2596 AllowDeferredHandleDereference smi_check;
2597 if (isolate()->heap()->InNewSpace(*object)) {
2598 UseScratchRegisterScope temps(masm());
2599 Register temp = temps.AcquireX();
2600 Handle<Cell> cell = isolate()->factory()->NewCell(object);
2601 __ Mov(temp, Operand(cell));
2602 __ Ldr(temp, FieldMemOperand(temp, Cell::kValueOffset));
2603 __ Cmp(reg, temp);
2604 } else {
2605 __ Cmp(reg, Operand(object));
2606 }
2607 DeoptimizeIf(ne, instr, Deoptimizer::kValueMismatch);
2608 }
2609
2610
2611 void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
2612 last_lazy_deopt_pc_ = masm()->pc_offset();
2613 DCHECK(instr->HasEnvironment());
2614 LEnvironment* env = instr->environment();
2615 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
2616 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
2617 }
2618
2619
2620 void LCodeGen::DoDateField(LDateField* instr) {
2621 Register object = ToRegister(instr->date());
2622 Register result = ToRegister(instr->result());
2623 Register temp1 = x10;
2624 Register temp2 = x11;
2625 Smi* index = instr->index();
2626
2627 DCHECK(object.is(result) && object.Is(x0));
2628 DCHECK(instr->IsMarkedAsCall());
2629
2630 if (index->value() == 0) {
2631 __ Ldr(result, FieldMemOperand(object, JSDate::kValueOffset));
2632 } else {
2633 Label runtime, done;
2634 if (index->value() < JSDate::kFirstUncachedField) {
2635 ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
2636 __ Mov(temp1, Operand(stamp));
2637 __ Ldr(temp1, MemOperand(temp1));
2638 __ Ldr(temp2, FieldMemOperand(object, JSDate::kCacheStampOffset));
2639 __ Cmp(temp1, temp2);
2640 __ B(ne, &runtime);
2641 __ Ldr(result, FieldMemOperand(object, JSDate::kValueOffset +
2642 kPointerSize * index->value()));
2643 __ B(&done);
2644 }
2645
2646 __ Bind(&runtime);
2647 __ Mov(x1, Operand(index));
2648 __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
2649 __ Bind(&done);
2650 }
2651 }
2652
2653
2654 void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
2655 Deoptimizer::BailoutType type = instr->hydrogen()->type();
2656 // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
2657 // needed return address), even though the implementation of LAZY and EAGER is
2658 // now identical. When LAZY is eventually completely folded into EAGER, remove
2659 // the special case below.
2660 if (info()->IsStub() && (type == Deoptimizer::EAGER)) {
2661 type = Deoptimizer::LAZY;
2662 }
2663
2664 Deoptimize(instr, instr->hydrogen()->reason(), &type);
2665 }
2666
2667
2668 void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
2669 Register dividend = ToRegister32(instr->dividend());
2670 int32_t divisor = instr->divisor();
2671 Register result = ToRegister32(instr->result());
2672 DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
2673 DCHECK(!result.is(dividend));
2674
2675 // Check for (0 / -x) that will produce negative zero.
2676 HDiv* hdiv = instr->hydrogen();
2677 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
2678 DeoptimizeIfZero(dividend, instr, Deoptimizer::kDivisionByZero);
2679 }
2680 // Check for (kMinInt / -1).
2681 if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
2682 // Test dividend for kMinInt by subtracting one (cmp) and checking for
2683 // overflow.
2684 __ Cmp(dividend, 1);
2685 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
2686 }
2687 // Deoptimize if remainder will not be 0.
2688 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
2689 divisor != 1 && divisor != -1) {
2690 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
2691 __ Tst(dividend, mask);
2692 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecision);
2693 }
2694
2695 if (divisor == -1) { // Nice shortcut, not needed for correctness.
2696 __ Neg(result, dividend);
2697 return;
2698 }
2699 int32_t shift = WhichPowerOf2Abs(divisor);
2700 if (shift == 0) {
2701 __ Mov(result, dividend);
2702 } else if (shift == 1) {
2703 __ Add(result, dividend, Operand(dividend, LSR, 31));
2704 } else {
2705 __ Mov(result, Operand(dividend, ASR, 31));
2706 __ Add(result, dividend, Operand(result, LSR, 32 - shift));
2707 }
2708 if (shift > 0) __ Mov(result, Operand(result, ASR, shift));
2709 if (divisor < 0) __ Neg(result, result);
2710 }
2711
2712
2713 void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
2714 Register dividend = ToRegister32(instr->dividend());
2715 int32_t divisor = instr->divisor();
2716 Register result = ToRegister32(instr->result());
2717 DCHECK(!AreAliased(dividend, result));
2718
2719 if (divisor == 0) {
2720 Deoptimize(instr, Deoptimizer::kDivisionByZero);
2721 return;
2722 }
2723
2724 // Check for (0 / -x) that will produce negative zero.
2725 HDiv* hdiv = instr->hydrogen();
2726 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
2727 DeoptimizeIfZero(dividend, instr, Deoptimizer::kMinusZero);
2728 }
2729
2730 __ TruncatingDiv(result, dividend, Abs(divisor));
2731 if (divisor < 0) __ Neg(result, result);
2732
2733 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
2734 Register temp = ToRegister32(instr->temp());
2735 DCHECK(!AreAliased(dividend, result, temp));
2736 __ Sxtw(dividend.X(), dividend);
2737 __ Mov(temp, divisor);
2738 __ Smsubl(temp.X(), result, temp, dividend.X());
2739 DeoptimizeIfNotZero(temp, instr, Deoptimizer::kLostPrecision);
2740 }
2741 }
2742
2743
2744 // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
2745 void LCodeGen::DoDivI(LDivI* instr) {
2746 HBinaryOperation* hdiv = instr->hydrogen();
2747 Register dividend = ToRegister32(instr->dividend());
2748 Register divisor = ToRegister32(instr->divisor());
2749 Register result = ToRegister32(instr->result());
2750
2751 // Issue the division first, and then check for any deopt cases whilst the
2752 // result is computed.
2753 __ Sdiv(result, dividend, divisor);
2754
2755 if (hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
2756 DCHECK(!instr->temp());
2757 return;
2758 }
2759
2760 // Check for x / 0.
2761 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
2762 DeoptimizeIfZero(divisor, instr, Deoptimizer::kDivisionByZero);
2763 }
2764
2765 // Check for (0 / -x) as that will produce negative zero.
2766 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
2767 __ Cmp(divisor, 0);
2768
2769 // If the divisor < 0 (mi), compare the dividend, and deopt if it is
2770 // zero, ie. zero dividend with negative divisor deopts.
2771 // If the divisor >= 0 (pl, the opposite of mi) set the flags to
2772 // condition ne, so we don't deopt, ie. positive divisor doesn't deopt.
2773 __ Ccmp(dividend, 0, NoFlag, mi);
2774 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
2775 }
2776
2777 // Check for (kMinInt / -1).
2778 if (hdiv->CheckFlag(HValue::kCanOverflow)) {
2779 // Test dividend for kMinInt by subtracting one (cmp) and checking for
2780 // overflow.
2781 __ Cmp(dividend, 1);
2782 // If overflow is set, ie. dividend = kMinInt, compare the divisor with
2783 // -1. If overflow is clear, set the flags for condition ne, as the
2784 // dividend isn't -1, and thus we shouldn't deopt.
2785 __ Ccmp(divisor, -1, NoFlag, vs);
2786 DeoptimizeIf(eq, instr, Deoptimizer::kOverflow);
2787 }
2788
2789 // Compute remainder and deopt if it's not zero.
2790 Register remainder = ToRegister32(instr->temp());
2791 __ Msub(remainder, result, divisor, dividend);
2792 DeoptimizeIfNotZero(remainder, instr, Deoptimizer::kLostPrecision);
2793 }
2794
2795
2796 void LCodeGen::DoDoubleToIntOrSmi(LDoubleToIntOrSmi* instr) {
2797 DoubleRegister input = ToDoubleRegister(instr->value());
2798 Register result = ToRegister32(instr->result());
2799
2800 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
2801 DeoptimizeIfMinusZero(input, instr, Deoptimizer::kMinusZero);
2802 }
2803
2804 __ TryRepresentDoubleAsInt32(result, input, double_scratch());
2805 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN);
2806
2807 if (instr->tag_result()) {
2808 __ SmiTag(result.X());
2809 }
2810 }
2811
2812
2813 void LCodeGen::DoDrop(LDrop* instr) {
2814 __ Drop(instr->count());
2815
2816 RecordPushedArgumentsDelta(instr->hydrogen_value()->argument_delta());
2817 }
2818
2819
2820 void LCodeGen::DoDummy(LDummy* instr) {
2821 // Nothing to see here, move on!
2822 }
2823
2824
2825 void LCodeGen::DoDummyUse(LDummyUse* instr) {
2826 // Nothing to see here, move on!
2827 }
2828
2829
2830 void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
2831 Register map = ToRegister(instr->map());
2832 Register result = ToRegister(instr->result());
2833 Label load_cache, done;
2834
2835 __ EnumLengthUntagged(result, map);
2836 __ Cbnz(result, &load_cache);
2837
2838 __ Mov(result, Operand(isolate()->factory()->empty_fixed_array()));
2839 __ B(&done);
2840
2841 __ Bind(&load_cache);
2842 __ LoadInstanceDescriptors(map, result);
2843 __ Ldr(result, FieldMemOperand(result, DescriptorArray::kEnumCacheOffset));
2844 __ Ldr(result, FieldMemOperand(result, FixedArray::SizeFor(instr->idx())));
2845 DeoptimizeIfZero(result, instr, Deoptimizer::kNoCache);
2846
2847 __ Bind(&done);
2848 }
2849
2850
2851 void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
2852 Register object = ToRegister(instr->object());
2853 Register null_value = x5;
2854
2855 DCHECK(instr->IsMarkedAsCall());
2856 DCHECK(object.Is(x0));
2857
2858 DeoptimizeIfSmi(object, instr, Deoptimizer::kSmi);
2859
2860 STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
2861 __ CompareObjectType(object, x1, x1, LAST_JS_PROXY_TYPE);
2862 DeoptimizeIf(le, instr, Deoptimizer::kNotAJavaScriptObject);
2863
2864 Label use_cache, call_runtime;
2865 __ LoadRoot(null_value, Heap::kNullValueRootIndex);
2866 __ CheckEnumCache(object, null_value, x1, x2, x3, x4, &call_runtime);
2867
2868 __ Ldr(object, FieldMemOperand(object, HeapObject::kMapOffset));
2869 __ B(&use_cache);
2870
2871 // Get the set of properties to enumerate.
2872 __ Bind(&call_runtime);
2873 __ Push(object);
2874 CallRuntime(Runtime::kGetPropertyNamesFast, 1, instr);
2875
2876 __ Ldr(x1, FieldMemOperand(object, HeapObject::kMapOffset));
2877 DeoptimizeIfNotRoot(x1, Heap::kMetaMapRootIndex, instr,
2878 Deoptimizer::kWrongMap);
2879
2880 __ Bind(&use_cache);
2881 }
2882
2883
2884 void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
2885 Register input = ToRegister(instr->value());
2886 Register result = ToRegister(instr->result());
2887
2888 __ AssertString(input);
2889
2890 // Assert that we can use a W register load to get the hash.
2891 DCHECK((String::kHashShift + String::kArrayIndexValueBits) < kWRegSizeInBits);
2892 __ Ldr(result.W(), FieldMemOperand(input, String::kHashFieldOffset));
2893 __ IndexFromHash(result, result);
2894 }
2895
2896
2897 void LCodeGen::EmitGoto(int block) {
2898 // Do not emit jump if we are emitting a goto to the next block.
2899 if (!IsNextEmittedBlock(block)) {
2900 __ B(chunk_->GetAssemblyLabel(LookupDestination(block)));
2901 }
2902 }
2903
2904
2905 void LCodeGen::DoGoto(LGoto* instr) {
2906 EmitGoto(instr->block_id());
2907 }
2908
2909
2910 void LCodeGen::DoHasCachedArrayIndexAndBranch(
2911 LHasCachedArrayIndexAndBranch* instr) {
2912 Register input = ToRegister(instr->value());
2913 Register temp = ToRegister32(instr->temp());
2914
2915 // Assert that the cache status bits fit in a W register.
2916 DCHECK(is_uint32(String::kContainsCachedArrayIndexMask));
2917 __ Ldr(temp, FieldMemOperand(input, String::kHashFieldOffset));
2918 __ Tst(temp, String::kContainsCachedArrayIndexMask);
2919 EmitBranch(instr, eq);
2920 }
2921
2922
2923 // HHasInstanceTypeAndBranch instruction is built with an interval of type
2924 // to test but is only used in very restricted ways. The only possible kinds
2925 // of intervals are:
2926 // - [ FIRST_TYPE, instr->to() ]
2927 // - [ instr->form(), LAST_TYPE ]
2928 // - instr->from() == instr->to()
2929 //
2930 // These kinds of intervals can be check with only one compare instruction
2931 // providing the correct value and test condition are used.
2932 //
2933 // TestType() will return the value to use in the compare instruction and
2934 // BranchCondition() will return the condition to use depending on the kind
2935 // of interval actually specified in the instruction.
2936 static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
2937 InstanceType from = instr->from();
2938 InstanceType to = instr->to();
2939 if (from == FIRST_TYPE) return to;
2940 DCHECK((from == to) || (to == LAST_TYPE));
2941 return from;
2942 }
2943
2944
2945 // See comment above TestType function for what this function does.
2946 static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
2947 InstanceType from = instr->from();
2948 InstanceType to = instr->to();
2949 if (from == to) return eq;
2950 if (to == LAST_TYPE) return hs;
2951 if (from == FIRST_TYPE) return ls;
2952 UNREACHABLE();
2953 return eq;
2954 }
2955
2956
2957 void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
2958 Register input = ToRegister(instr->value());
2959 Register scratch = ToRegister(instr->temp());
2960
2961 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2962 __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2963 }
2964 __ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen()));
2965 EmitBranch(instr, BranchCondition(instr->hydrogen()));
2966 }
2967
2968
2969 void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
2970 Register result = ToRegister(instr->result());
2971 Register base = ToRegister(instr->base_object());
2972 if (instr->offset()->IsConstantOperand()) {
2973 __ Add(result, base, ToOperand32(instr->offset()));
2974 } else {
2975 __ Add(result, base, Operand(ToRegister32(instr->offset()), SXTW));
2976 }
2977 }
2978
2979
2980 void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
2981 DCHECK(ToRegister(instr->context()).is(cp));
2982 DCHECK(ToRegister(instr->left()).is(InstanceOfDescriptor::LeftRegister()));
2983 DCHECK(ToRegister(instr->right()).is(InstanceOfDescriptor::RightRegister()));
2984 DCHECK(ToRegister(instr->result()).is(x0));
2985 InstanceOfStub stub(isolate());
2986 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2987 }
2988
2989
2990 void LCodeGen::DoHasInPrototypeChainAndBranch(
2991 LHasInPrototypeChainAndBranch* instr) {
2992 Register const object = ToRegister(instr->object());
2993 Register const object_map = ToRegister(instr->scratch());
2994 Register const object_prototype = object_map;
2995 Register const prototype = ToRegister(instr->prototype());
2996
2997 // The {object} must be a spec object. It's sufficient to know that {object}
2998 // is not a smi, since all other non-spec objects have {null} prototypes and
2999 // will be ruled out below.
3000 if (instr->hydrogen()->ObjectNeedsSmiCheck()) {
3001 __ JumpIfSmi(object, instr->FalseLabel(chunk_));
3002 }
3003
3004 // Loop through the {object}s prototype chain looking for the {prototype}.
3005 __ Ldr(object_map, FieldMemOperand(object, HeapObject::kMapOffset));
3006 Label loop;
3007 __ Bind(&loop);
3008 __ Ldr(object_prototype, FieldMemOperand(object_map, Map::kPrototypeOffset));
3009 __ Cmp(object_prototype, prototype);
3010 __ B(eq, instr->TrueLabel(chunk_));
3011 __ CompareRoot(object_prototype, Heap::kNullValueRootIndex);
3012 __ B(eq, instr->FalseLabel(chunk_));
3013 __ Ldr(object_map, FieldMemOperand(object_prototype, HeapObject::kMapOffset));
3014 __ B(&loop);
3015 }
3016
3017
3018 void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
3019 DoGap(instr);
3020 }
3021
3022
3023 void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
3024 Register value = ToRegister32(instr->value());
3025 DoubleRegister result = ToDoubleRegister(instr->result());
3026 __ Scvtf(result, value);
3027 }
3028
3029
3030 void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
3031 DCHECK(ToRegister(instr->context()).is(cp));
3032 // The function is required to be in x1.
3033 DCHECK(ToRegister(instr->function()).is(x1));
3034 DCHECK(instr->HasPointerMap());
3035
3036 Handle<JSFunction> known_function = instr->hydrogen()->known_function();
3037 if (known_function.is_null()) {
3038 LPointerMap* pointers = instr->pointer_map();
3039 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3040 ParameterCount count(instr->arity());
3041 __ InvokeFunction(x1, count, CALL_FUNCTION, generator);
3042 } else {
3043 CallKnownFunction(known_function,
3044 instr->hydrogen()->formal_parameter_count(),
3045 instr->arity(), instr);
3046 }
3047 RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta());
3048 }
3049
3050
3051 void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) {
3052 Register temp1 = ToRegister(instr->temp1());
3053 Register temp2 = ToRegister(instr->temp2());
3054
3055 // Get the frame pointer for the calling frame.
3056 __ Ldr(temp1, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3057
3058 // Skip the arguments adaptor frame if it exists.
3059 Label check_frame_marker;
3060 __ Ldr(temp2, MemOperand(temp1, StandardFrameConstants::kContextOffset));
3061 __ Cmp(temp2, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
3062 __ B(ne, &check_frame_marker);
3063 __ Ldr(temp1, MemOperand(temp1, StandardFrameConstants::kCallerFPOffset));
3064
3065 // Check the marker in the calling frame.
3066 __ Bind(&check_frame_marker);
3067 __ Ldr(temp1, MemOperand(temp1, StandardFrameConstants::kMarkerOffset));
3068
3069 EmitCompareAndBranch(
3070 instr, eq, temp1, Operand(Smi::FromInt(StackFrame::CONSTRUCT)));
3071 }
3072
3073
3074 Condition LCodeGen::EmitIsString(Register input,
3075 Register temp1,
3076 Label* is_not_string,
3077 SmiCheck check_needed = INLINE_SMI_CHECK) {
3078 if (check_needed == INLINE_SMI_CHECK) {
3079 __ JumpIfSmi(input, is_not_string);
3080 }
3081 __ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE);
3082
3083 return lt;
3084 }
3085
3086
3087 void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
3088 Register val = ToRegister(instr->value());
3089 Register scratch = ToRegister(instr->temp());
3090
3091 SmiCheck check_needed =
3092 instr->hydrogen()->value()->type().IsHeapObject()
3093 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
3094 Condition true_cond =
3095 EmitIsString(val, scratch, instr->FalseLabel(chunk_), check_needed);
3096
3097 EmitBranch(instr, true_cond);
3098 }
3099
3100
3101 void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
3102 Register value = ToRegister(instr->value());
3103 STATIC_ASSERT(kSmiTag == 0);
3104 EmitTestAndBranch(instr, eq, value, kSmiTagMask);
3105 }
3106
3107
3108 void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
3109 Register input = ToRegister(instr->value());
3110 Register temp = ToRegister(instr->temp());
3111
3112 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
3113 __ JumpIfSmi(input, instr->FalseLabel(chunk_));
3114 }
3115 __ Ldr(temp, FieldMemOperand(input, HeapObject::kMapOffset));
3116 __ Ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
3117
3118 EmitTestAndBranch(instr, ne, temp, 1 << Map::kIsUndetectable);
3119 }
3120
3121
3122 static const char* LabelType(LLabel* label) {
3123 if (label->is_loop_header()) return " (loop header)";
3124 if (label->is_osr_entry()) return " (OSR entry)";
3125 return "";
3126 }
3127
3128
3129 void LCodeGen::DoLabel(LLabel* label) {
3130 Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
3131 current_instruction_,
3132 label->hydrogen_value()->id(),
3133 label->block_id(),
3134 LabelType(label));
3135
3136 // Inherit pushed_arguments_ from the predecessor's argument count.
3137 if (label->block()->HasPredecessor()) {
3138 pushed_arguments_ = label->block()->predecessors()->at(0)->argument_count();
3139 #ifdef DEBUG
3140 for (auto p : *label->block()->predecessors()) {
3141 DCHECK_EQ(p->argument_count(), pushed_arguments_);
3142 }
3143 #endif
3144 }
3145
3146 __ Bind(label->label());
3147 current_block_ = label->block_id();
3148 DoGap(label);
3149 }
3150
3151
3152 void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
3153 Register context = ToRegister(instr->context());
3154 Register result = ToRegister(instr->result());
3155 __ Ldr(result, ContextMemOperand(context, instr->slot_index()));
3156 if (instr->hydrogen()->RequiresHoleCheck()) {
3157 if (instr->hydrogen()->DeoptimizesOnHole()) {
3158 DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr,
3159 Deoptimizer::kHole);
3160 } else {
3161 Label not_the_hole;
3162 __ JumpIfNotRoot(result, Heap::kTheHoleValueRootIndex, &not_the_hole);
3163 __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
3164 __ Bind(&not_the_hole);
3165 }
3166 }
3167 }
3168
3169
3170 void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
3171 Register function = ToRegister(instr->function());
3172 Register result = ToRegister(instr->result());
3173 Register temp = ToRegister(instr->temp());
3174
3175 // Get the prototype or initial map from the function.
3176 __ Ldr(result, FieldMemOperand(function,
3177 JSFunction::kPrototypeOrInitialMapOffset));
3178
3179 // Check that the function has a prototype or an initial map.
3180 DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr,
3181 Deoptimizer::kHole);
3182
3183 // If the function does not have an initial map, we're done.
3184 Label done;
3185 __ CompareObjectType(result, temp, temp, MAP_TYPE);
3186 __ B(ne, &done);
3187
3188 // Get the prototype from the initial map.
3189 __ Ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
3190
3191 // All done.
3192 __ Bind(&done);
3193 }
3194
3195
3196 template <class T>
3197 void LCodeGen::EmitVectorLoadICRegisters(T* instr) {
3198 Register vector_register = ToRegister(instr->temp_vector());
3199 Register slot_register = LoadWithVectorDescriptor::SlotRegister();
3200 DCHECK(vector_register.is(LoadWithVectorDescriptor::VectorRegister()));
3201 DCHECK(slot_register.is(x0));
3202
3203 AllowDeferredHandleDereference vector_structure_check;
3204 Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
3205 __ Mov(vector_register, vector);
3206 // No need to allocate this register.
3207 FeedbackVectorSlot slot = instr->hydrogen()->slot();
3208 int index = vector->GetIndex(slot);
3209 __ Mov(slot_register, Smi::FromInt(index));
3210 }
3211
3212
3213 template <class T>
3214 void LCodeGen::EmitVectorStoreICRegisters(T* instr) {
3215 Register vector_register = ToRegister(instr->temp_vector());
3216 Register slot_register = ToRegister(instr->temp_slot());
3217
3218 AllowDeferredHandleDereference vector_structure_check;
3219 Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
3220 __ Mov(vector_register, vector);
3221 FeedbackVectorSlot slot = instr->hydrogen()->slot();
3222 int index = vector->GetIndex(slot);
3223 __ Mov(slot_register, Smi::FromInt(index));
3224 }
3225
3226
3227 void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
3228 DCHECK(ToRegister(instr->context()).is(cp));
3229 DCHECK(ToRegister(instr->global_object())
3230 .is(LoadDescriptor::ReceiverRegister()));
3231 DCHECK(ToRegister(instr->result()).Is(x0));
3232 __ Mov(LoadDescriptor::NameRegister(), Operand(instr->name()));
3233 EmitVectorLoadICRegisters<LLoadGlobalGeneric>(instr);
3234 Handle<Code> ic =
3235 CodeFactory::LoadICInOptimizedCode(isolate(), instr->typeof_mode(),
3236 SLOPPY, PREMONOMORPHIC).code();
3237 CallCode(ic, RelocInfo::CODE_TARGET, instr);
3238 }
3239
3240
3241 void LCodeGen::DoLoadGlobalViaContext(LLoadGlobalViaContext* instr) {
3242 DCHECK(ToRegister(instr->context()).is(cp));
3243 DCHECK(ToRegister(instr->result()).is(x0));
3244
3245 int const slot = instr->slot_index();
3246 int const depth = instr->depth();
3247 if (depth <= LoadGlobalViaContextStub::kMaximumDepth) {
3248 __ Mov(LoadGlobalViaContextDescriptor::SlotRegister(), Operand(slot));
3249 Handle<Code> stub =
3250 CodeFactory::LoadGlobalViaContext(isolate(), depth).code();
3251 CallCode(stub, RelocInfo::CODE_TARGET, instr);
3252 } else {
3253 __ Push(Smi::FromInt(slot));
3254 __ CallRuntime(Runtime::kLoadGlobalViaContext, 1);
3255 }
3256 }
3257
3258
3259 MemOperand LCodeGen::PrepareKeyedExternalArrayOperand(
3260 Register key,
3261 Register base,
3262 Register scratch,
3263 bool key_is_smi,
3264 bool key_is_constant,
3265 int constant_key,
3266 ElementsKind elements_kind,
3267 int base_offset) {
3268 int element_size_shift = ElementsKindToShiftSize(elements_kind);
3269
3270 if (key_is_constant) {
3271 int key_offset = constant_key << element_size_shift;
3272 return MemOperand(base, key_offset + base_offset);
3273 }
3274
3275 if (key_is_smi) {
3276 __ Add(scratch, base, Operand::UntagSmiAndScale(key, element_size_shift));
3277 return MemOperand(scratch, base_offset);
3278 }
3279
3280 if (base_offset == 0) {
3281 return MemOperand(base, key, SXTW, element_size_shift);
3282 }
3283
3284 DCHECK(!AreAliased(scratch, key));
3285 __ Add(scratch, base, base_offset);
3286 return MemOperand(scratch, key, SXTW, element_size_shift);
3287 }
3288
3289
3290 void LCodeGen::DoLoadKeyedExternal(LLoadKeyedExternal* instr) {
3291 Register ext_ptr = ToRegister(instr->elements());
3292 Register scratch;
3293 ElementsKind elements_kind = instr->elements_kind();
3294
3295 bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
3296 bool key_is_constant = instr->key()->IsConstantOperand();
3297 Register key = no_reg;
3298 int constant_key = 0;
3299 if (key_is_constant) {
3300 DCHECK(instr->temp() == NULL);
3301 constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
3302 if (constant_key & 0xf0000000) {
3303 Abort(kArrayIndexConstantValueTooBig);
3304 }
3305 } else {
3306 scratch = ToRegister(instr->temp());
3307 key = ToRegister(instr->key());
3308 }
3309
3310 MemOperand mem_op =
3311 PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi,
3312 key_is_constant, constant_key,
3313 elements_kind,
3314 instr->base_offset());
3315
3316 if (elements_kind == FLOAT32_ELEMENTS) {
3317 DoubleRegister result = ToDoubleRegister(instr->result());
3318 __ Ldr(result.S(), mem_op);
3319 __ Fcvt(result, result.S());
3320 } else if (elements_kind == FLOAT64_ELEMENTS) {
3321 DoubleRegister result = ToDoubleRegister(instr->result());
3322 __ Ldr(result, mem_op);
3323 } else {
3324 Register result = ToRegister(instr->result());
3325
3326 switch (elements_kind) {
3327 case INT8_ELEMENTS:
3328 __ Ldrsb(result, mem_op);
3329 break;
3330 case UINT8_ELEMENTS:
3331 case UINT8_CLAMPED_ELEMENTS:
3332 __ Ldrb(result, mem_op);
3333 break;
3334 case INT16_ELEMENTS:
3335 __ Ldrsh(result, mem_op);
3336 break;
3337 case UINT16_ELEMENTS:
3338 __ Ldrh(result, mem_op);
3339 break;
3340 case INT32_ELEMENTS:
3341 __ Ldrsw(result, mem_op);
3342 break;
3343 case UINT32_ELEMENTS:
3344 __ Ldr(result.W(), mem_op);
3345 if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
3346 // Deopt if value > 0x80000000.
3347 __ Tst(result, 0xFFFFFFFF80000000);
3348 DeoptimizeIf(ne, instr, Deoptimizer::kNegativeValue);
3349 }
3350 break;
3351 case FLOAT32_ELEMENTS:
3352 case FLOAT64_ELEMENTS:
3353 case FAST_HOLEY_DOUBLE_ELEMENTS:
3354 case FAST_HOLEY_ELEMENTS:
3355 case FAST_HOLEY_SMI_ELEMENTS:
3356 case FAST_DOUBLE_ELEMENTS:
3357 case FAST_ELEMENTS:
3358 case FAST_SMI_ELEMENTS:
3359 case DICTIONARY_ELEMENTS:
3360 case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
3361 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
3362 UNREACHABLE();
3363 break;
3364 }
3365 }
3366 }
3367
3368
3369 MemOperand LCodeGen::PrepareKeyedArrayOperand(Register base,
3370 Register elements,
3371 Register key,
3372 bool key_is_tagged,
3373 ElementsKind elements_kind,
3374 Representation representation,
3375 int base_offset) {
3376 STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
3377 STATIC_ASSERT(kSmiTag == 0);
3378 int element_size_shift = ElementsKindToShiftSize(elements_kind);
3379
3380 // Even though the HLoad/StoreKeyed instructions force the input
3381 // representation for the key to be an integer, the input gets replaced during
3382 // bounds check elimination with the index argument to the bounds check, which
3383 // can be tagged, so that case must be handled here, too.
3384 if (key_is_tagged) {
3385 __ Add(base, elements, Operand::UntagSmiAndScale(key, element_size_shift));
3386 if (representation.IsInteger32()) {
3387 DCHECK(elements_kind == FAST_SMI_ELEMENTS);
3388 // Read or write only the smi payload in the case of fast smi arrays.
3389 return UntagSmiMemOperand(base, base_offset);
3390 } else {
3391 return MemOperand(base, base_offset);
3392 }
3393 } else {
3394 // Sign extend key because it could be a 32-bit negative value or contain
3395 // garbage in the top 32-bits. The address computation happens in 64-bit.
3396 DCHECK((element_size_shift >= 0) && (element_size_shift <= 4));
3397 if (representation.IsInteger32()) {
3398 DCHECK(elements_kind == FAST_SMI_ELEMENTS);
3399 // Read or write only the smi payload in the case of fast smi arrays.
3400 __ Add(base, elements, Operand(key, SXTW, element_size_shift));
3401 return UntagSmiMemOperand(base, base_offset);
3402 } else {
3403 __ Add(base, elements, base_offset);
3404 return MemOperand(base, key, SXTW, element_size_shift);
3405 }
3406 }
3407 }
3408
3409
3410 void LCodeGen::DoLoadKeyedFixedDouble(LLoadKeyedFixedDouble* instr) {
3411 Register elements = ToRegister(instr->elements());
3412 DoubleRegister result = ToDoubleRegister(instr->result());
3413 MemOperand mem_op;
3414
3415 if (instr->key()->IsConstantOperand()) {
3416 DCHECK(instr->hydrogen()->RequiresHoleCheck() ||
3417 (instr->temp() == NULL));
3418
3419 int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
3420 if (constant_key & 0xf0000000) {
3421 Abort(kArrayIndexConstantValueTooBig);
3422 }
3423 int offset = instr->base_offset() + constant_key * kDoubleSize;
3424 mem_op = MemOperand(elements, offset);
3425 } else {
3426 Register load_base = ToRegister(instr->temp());
3427 Register key = ToRegister(instr->key());
3428 bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
3429 mem_op = PrepareKeyedArrayOperand(load_base, elements, key, key_is_tagged,
3430 instr->hydrogen()->elements_kind(),
3431 instr->hydrogen()->representation(),
3432 instr->base_offset());
3433 }
3434
3435 __ Ldr(result, mem_op);
3436
3437 if (instr->hydrogen()->RequiresHoleCheck()) {
3438 Register scratch = ToRegister(instr->temp());
3439 __ Fmov(scratch, result);
3440 __ Eor(scratch, scratch, kHoleNanInt64);
3441 DeoptimizeIfZero(scratch, instr, Deoptimizer::kHole);
3442 }
3443 }
3444
3445
3446 void LCodeGen::DoLoadKeyedFixed(LLoadKeyedFixed* instr) {
3447 Register elements = ToRegister(instr->elements());
3448 Register result = ToRegister(instr->result());
3449 MemOperand mem_op;
3450
3451 Representation representation = instr->hydrogen()->representation();
3452 if (instr->key()->IsConstantOperand()) {
3453 DCHECK(instr->temp() == NULL);
3454 LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
3455 int offset = instr->base_offset() +
3456 ToInteger32(const_operand) * kPointerSize;
3457 if (representation.IsInteger32()) {
3458 DCHECK(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS);
3459 STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
3460 STATIC_ASSERT(kSmiTag == 0);
3461 mem_op = UntagSmiMemOperand(elements, offset);
3462 } else {
3463 mem_op = MemOperand(elements, offset);
3464 }
3465 } else {
3466 Register load_base = ToRegister(instr->temp());
3467 Register key = ToRegister(instr->key());
3468 bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
3469
3470 mem_op = PrepareKeyedArrayOperand(load_base, elements, key, key_is_tagged,
3471 instr->hydrogen()->elements_kind(),
3472 representation, instr->base_offset());
3473 }
3474
3475 __ Load(result, mem_op, representation);
3476
3477 if (instr->hydrogen()->RequiresHoleCheck()) {
3478 if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) {
3479 DeoptimizeIfNotSmi(result, instr, Deoptimizer::kNotASmi);
3480 } else {
3481 DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr,
3482 Deoptimizer::kHole);
3483 }
3484 } else if (instr->hydrogen()->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) {
3485 DCHECK(instr->hydrogen()->elements_kind() == FAST_HOLEY_ELEMENTS);
3486 Label done;
3487 __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
3488 __ B(ne, &done);
3489 if (info()->IsStub()) {
3490 // A stub can safely convert the hole to undefined only if the array
3491 // protector cell contains (Smi) Isolate::kArrayProtectorValid. Otherwise
3492 // it needs to bail out.
3493 __ LoadRoot(result, Heap::kArrayProtectorRootIndex);
3494 __ Ldr(result, FieldMemOperand(result, Cell::kValueOffset));
3495 __ Cmp(result, Operand(Smi::FromInt(Isolate::kArrayProtectorValid)));
3496 DeoptimizeIf(ne, instr, Deoptimizer::kHole);
3497 }
3498 __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
3499 __ Bind(&done);
3500 }
3501 }
3502
3503
3504 void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
3505 DCHECK(ToRegister(instr->context()).is(cp));
3506 DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
3507 DCHECK(ToRegister(instr->key()).is(LoadDescriptor::NameRegister()));
3508
3509 if (instr->hydrogen()->HasVectorAndSlot()) {
3510 EmitVectorLoadICRegisters<LLoadKeyedGeneric>(instr);
3511 }
3512
3513 Handle<Code> ic = CodeFactory::KeyedLoadICInOptimizedCode(
3514 isolate(), instr->hydrogen()->language_mode(),
3515 instr->hydrogen()->initialization_state()).code();
3516 CallCode(ic, RelocInfo::CODE_TARGET, instr);
3517
3518 DCHECK(ToRegister(instr->result()).Is(x0));
3519 }
3520
3521
3522 void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
3523 HObjectAccess access = instr->hydrogen()->access();
3524 int offset = access.offset();
3525 Register object = ToRegister(instr->object());
3526
3527 if (access.IsExternalMemory()) {
3528 Register result = ToRegister(instr->result());
3529 __ Load(result, MemOperand(object, offset), access.representation());
3530 return;
3531 }
3532
3533 if (instr->hydrogen()->representation().IsDouble()) {
3534 DCHECK(access.IsInobject());
3535 FPRegister result = ToDoubleRegister(instr->result());
3536 __ Ldr(result, FieldMemOperand(object, offset));
3537 return;
3538 }
3539
3540 Register result = ToRegister(instr->result());
3541 Register source;
3542 if (access.IsInobject()) {
3543 source = object;
3544 } else {
3545 // Load the properties array, using result as a scratch register.
3546 __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
3547 source = result;
3548 }
3549
3550 if (access.representation().IsSmi() &&
3551 instr->hydrogen()->representation().IsInteger32()) {
3552 // Read int value directly from upper half of the smi.
3553 STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
3554 STATIC_ASSERT(kSmiTag == 0);
3555 __ Load(result, UntagSmiFieldMemOperand(source, offset),
3556 Representation::Integer32());
3557 } else {
3558 __ Load(result, FieldMemOperand(source, offset), access.representation());
3559 }
3560 }
3561
3562
3563 void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
3564 DCHECK(ToRegister(instr->context()).is(cp));
3565 // LoadIC expects name and receiver in registers.
3566 DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
3567 __ Mov(LoadDescriptor::NameRegister(), Operand(instr->name()));
3568 EmitVectorLoadICRegisters<LLoadNamedGeneric>(instr);
3569 Handle<Code> ic =
3570 CodeFactory::LoadICInOptimizedCode(
3571 isolate(), NOT_INSIDE_TYPEOF, instr->hydrogen()->language_mode(),
3572 instr->hydrogen()->initialization_state()).code();
3573 CallCode(ic, RelocInfo::CODE_TARGET, instr);
3574
3575 DCHECK(ToRegister(instr->result()).is(x0));
3576 }
3577
3578
3579 void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
3580 Register result = ToRegister(instr->result());
3581 __ LoadRoot(result, instr->index());
3582 }
3583
3584
3585 void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) {
3586 Register result = ToRegister(instr->result());
3587 Register map = ToRegister(instr->value());
3588 __ EnumLengthSmi(result, map);
3589 }
3590
3591
3592 void LCodeGen::DoMathAbs(LMathAbs* instr) {
3593 Representation r = instr->hydrogen()->value()->representation();
3594 if (r.IsDouble()) {
3595 DoubleRegister input = ToDoubleRegister(instr->value());
3596 DoubleRegister result = ToDoubleRegister(instr->result());
3597 __ Fabs(result, input);
3598 } else if (r.IsSmi() || r.IsInteger32()) {
3599 Register input = r.IsSmi() ? ToRegister(instr->value())
3600 : ToRegister32(instr->value());
3601 Register result = r.IsSmi() ? ToRegister(instr->result())
3602 : ToRegister32(instr->result());
3603 __ Abs(result, input);
3604 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
3605 }
3606 }
3607
3608
3609 void LCodeGen::DoDeferredMathAbsTagged(LMathAbsTagged* instr,
3610 Label* exit,
3611 Label* allocation_entry) {
3612 // Handle the tricky cases of MathAbsTagged:
3613 // - HeapNumber inputs.
3614 // - Negative inputs produce a positive result, so a new HeapNumber is
3615 // allocated to hold it.
3616 // - Positive inputs are returned as-is, since there is no need to allocate
3617 // a new HeapNumber for the result.
3618 // - The (smi) input -0x80000000, produces +0x80000000, which does not fit
3619 // a smi. In this case, the inline code sets the result and jumps directly
3620 // to the allocation_entry label.
3621 DCHECK(instr->context() != NULL);
3622 DCHECK(ToRegister(instr->context()).is(cp));
3623 Register input = ToRegister(instr->value());
3624 Register temp1 = ToRegister(instr->temp1());
3625 Register temp2 = ToRegister(instr->temp2());
3626 Register result_bits = ToRegister(instr->temp3());
3627 Register result = ToRegister(instr->result());
3628
3629 Label runtime_allocation;
3630
3631 // Deoptimize if the input is not a HeapNumber.
3632 DeoptimizeIfNotHeapNumber(input, instr);
3633
3634 // If the argument is positive, we can return it as-is, without any need to
3635 // allocate a new HeapNumber for the result. We have to do this in integer
3636 // registers (rather than with fabs) because we need to be able to distinguish
3637 // the two zeroes.
3638 __ Ldr(result_bits, FieldMemOperand(input, HeapNumber::kValueOffset));
3639 __ Mov(result, input);
3640 __ Tbz(result_bits, kXSignBit, exit);
3641
3642 // Calculate abs(input) by clearing the sign bit.
3643 __ Bic(result_bits, result_bits, kXSignMask);
3644
3645 // Allocate a new HeapNumber to hold the result.
3646 // result_bits The bit representation of the (double) result.
3647 __ Bind(allocation_entry);
3648 __ AllocateHeapNumber(result, &runtime_allocation, temp1, temp2);
3649 // The inline (non-deferred) code will store result_bits into result.
3650 __ B(exit);
3651
3652 __ Bind(&runtime_allocation);
3653 if (FLAG_debug_code) {
3654 // Because result is in the pointer map, we need to make sure it has a valid
3655 // tagged value before we call the runtime. We speculatively set it to the
3656 // input (for abs(+x)) or to a smi (for abs(-SMI_MIN)), so it should already
3657 // be valid.
3658 Label result_ok;
3659 Register input = ToRegister(instr->value());
3660 __ JumpIfSmi(result, &result_ok);
3661 __ Cmp(input, result);
3662 __ Assert(eq, kUnexpectedValue);
3663 __ Bind(&result_ok);
3664 }
3665
3666 { PushSafepointRegistersScope scope(this);
3667 CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr,
3668 instr->context());
3669 __ StoreToSafepointRegisterSlot(x0, result);
3670 }
3671 // The inline (non-deferred) code will store result_bits into result.
3672 }
3673
3674
3675 void LCodeGen::DoMathAbsTagged(LMathAbsTagged* instr) {
3676 // Class for deferred case.
3677 class DeferredMathAbsTagged: public LDeferredCode {
3678 public:
3679 DeferredMathAbsTagged(LCodeGen* codegen, LMathAbsTagged* instr)
3680 : LDeferredCode(codegen), instr_(instr) { }
3681 virtual void Generate() {
3682 codegen()->DoDeferredMathAbsTagged(instr_, exit(),
3683 allocation_entry());
3684 }
3685 virtual LInstruction* instr() { return instr_; }
3686 Label* allocation_entry() { return &allocation; }
3687 private:
3688 LMathAbsTagged* instr_;
3689 Label allocation;
3690 };
3691
3692 // TODO(jbramley): The early-exit mechanism would skip the new frame handling
3693 // in GenerateDeferredCode. Tidy this up.
3694 DCHECK(!NeedsDeferredFrame());
3695
3696 DeferredMathAbsTagged* deferred =
3697 new(zone()) DeferredMathAbsTagged(this, instr);
3698
3699 DCHECK(instr->hydrogen()->value()->representation().IsTagged() ||
3700 instr->hydrogen()->value()->representation().IsSmi());
3701 Register input = ToRegister(instr->value());
3702 Register result_bits = ToRegister(instr->temp3());
3703 Register result = ToRegister(instr->result());
3704 Label done;
3705
3706 // Handle smis inline.
3707 // We can treat smis as 64-bit integers, since the (low-order) tag bits will
3708 // never get set by the negation. This is therefore the same as the Integer32
3709 // case in DoMathAbs, except that it operates on 64-bit values.
3710 STATIC_ASSERT((kSmiValueSize == 32) && (kSmiShift == 32) && (kSmiTag == 0));
3711
3712 __ JumpIfNotSmi(input, deferred->entry());
3713
3714 __ Abs(result, input, NULL, &done);
3715
3716 // The result is the magnitude (abs) of the smallest value a smi can
3717 // represent, encoded as a double.
3718 __ Mov(result_bits, double_to_rawbits(0x80000000));
3719 __ B(deferred->allocation_entry());
3720
3721 __ Bind(deferred->exit());
3722 __ Str(result_bits, FieldMemOperand(result, HeapNumber::kValueOffset));
3723
3724 __ Bind(&done);
3725 }
3726
3727
3728 void LCodeGen::DoMathExp(LMathExp* instr) {
3729 DoubleRegister input = ToDoubleRegister(instr->value());
3730 DoubleRegister result = ToDoubleRegister(instr->result());
3731 DoubleRegister double_temp1 = ToDoubleRegister(instr->double_temp1());
3732 DoubleRegister double_temp2 = double_scratch();
3733 Register temp1 = ToRegister(instr->temp1());
3734 Register temp2 = ToRegister(instr->temp2());
3735 Register temp3 = ToRegister(instr->temp3());
3736
3737 MathExpGenerator::EmitMathExp(masm(), input, result,
3738 double_temp1, double_temp2,
3739 temp1, temp2, temp3);
3740 }
3741
3742
3743 void LCodeGen::DoMathFloorD(LMathFloorD* instr) {
3744 DoubleRegister input = ToDoubleRegister(instr->value());
3745 DoubleRegister result = ToDoubleRegister(instr->result());
3746
3747 __ Frintm(result, input);
3748 }
3749
3750
3751 void LCodeGen::DoMathFloorI(LMathFloorI* instr) {
3752 DoubleRegister input = ToDoubleRegister(instr->value());
3753 Register result = ToRegister(instr->result());
3754
3755 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3756 DeoptimizeIfMinusZero(input, instr, Deoptimizer::kMinusZero);
3757 }
3758
3759 __ Fcvtms(result, input);
3760
3761 // Check that the result fits into a 32-bit integer.
3762 // - The result did not overflow.
3763 __ Cmp(result, Operand(result, SXTW));
3764 // - The input was not NaN.
3765 __ Fccmp(input, input, NoFlag, eq);
3766 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN);
3767 }
3768
3769
3770 void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
3771 Register dividend = ToRegister32(instr->dividend());
3772 Register result = ToRegister32(instr->result());
3773 int32_t divisor = instr->divisor();
3774
3775 // If the divisor is 1, return the dividend.
3776 if (divisor == 1) {
3777 __ Mov(result, dividend, kDiscardForSameWReg);
3778 return;
3779 }
3780
3781 // If the divisor is positive, things are easy: There can be no deopts and we
3782 // can simply do an arithmetic right shift.
3783 int32_t shift = WhichPowerOf2Abs(divisor);
3784 if (divisor > 1) {
3785 __ Mov(result, Operand(dividend, ASR, shift));
3786 return;
3787 }
3788
3789 // If the divisor is negative, we have to negate and handle edge cases.
3790 __ Negs(result, dividend);
3791 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3792 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
3793 }
3794
3795 // Dividing by -1 is basically negation, unless we overflow.
3796 if (divisor == -1) {
3797 if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
3798 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
3799 }
3800 return;
3801 }
3802
3803 // If the negation could not overflow, simply shifting is OK.
3804 if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
3805 __ Mov(result, Operand(dividend, ASR, shift));
3806 return;
3807 }
3808
3809 __ Asr(result, result, shift);
3810 __ Csel(result, result, kMinInt / divisor, vc);
3811 }
3812
3813
3814 void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
3815 Register dividend = ToRegister32(instr->dividend());
3816 int32_t divisor = instr->divisor();
3817 Register result = ToRegister32(instr->result());
3818 DCHECK(!AreAliased(dividend, result));
3819
3820 if (divisor == 0) {
3821 Deoptimize(instr, Deoptimizer::kDivisionByZero);
3822 return;
3823 }
3824
3825 // Check for (0 / -x) that will produce negative zero.
3826 HMathFloorOfDiv* hdiv = instr->hydrogen();
3827 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
3828 DeoptimizeIfZero(dividend, instr, Deoptimizer::kMinusZero);
3829 }
3830
3831 // Easy case: We need no dynamic check for the dividend and the flooring
3832 // division is the same as the truncating division.
3833 if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
3834 (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
3835 __ TruncatingDiv(result, dividend, Abs(divisor));
3836 if (divisor < 0) __ Neg(result, result);
3837 return;
3838 }
3839
3840 // In the general case we may need to adjust before and after the truncating
3841 // division to get a flooring division.
3842 Register temp = ToRegister32(instr->temp());
3843 DCHECK(!AreAliased(temp, dividend, result));
3844 Label needs_adjustment, done;
3845 __ Cmp(dividend, 0);
3846 __ B(divisor > 0 ? lt : gt, &needs_adjustment);
3847 __ TruncatingDiv(result, dividend, Abs(divisor));
3848 if (divisor < 0) __ Neg(result, result);
3849 __ B(&done);
3850 __ Bind(&needs_adjustment);
3851 __ Add(temp, dividend, Operand(divisor > 0 ? 1 : -1));
3852 __ TruncatingDiv(result, temp, Abs(divisor));
3853 if (divisor < 0) __ Neg(result, result);
3854 __ Sub(result, result, Operand(1));
3855 __ Bind(&done);
3856 }
3857
3858
3859 // TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
3860 void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
3861 Register dividend = ToRegister32(instr->dividend());
3862 Register divisor = ToRegister32(instr->divisor());
3863 Register remainder = ToRegister32(instr->temp());
3864 Register result = ToRegister32(instr->result());
3865
3866 // This can't cause an exception on ARM, so we can speculatively
3867 // execute it already now.
3868 __ Sdiv(result, dividend, divisor);
3869
3870 // Check for x / 0.
3871 DeoptimizeIfZero(divisor, instr, Deoptimizer::kDivisionByZero);
3872
3873 // Check for (kMinInt / -1).
3874 if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
3875 // The V flag will be set iff dividend == kMinInt.
3876 __ Cmp(dividend, 1);
3877 __ Ccmp(divisor, -1, NoFlag, vs);
3878 DeoptimizeIf(eq, instr, Deoptimizer::kOverflow);
3879 }
3880
3881 // Check for (0 / -x) that will produce negative zero.
3882 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3883 __ Cmp(divisor, 0);
3884 __ Ccmp(dividend, 0, ZFlag, mi);
3885 // "divisor" can't be null because the code would have already been
3886 // deoptimized. The Z flag is set only if (divisor < 0) and (dividend == 0).
3887 // In this case we need to deoptimize to produce a -0.
3888 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
3889 }
3890
3891 Label done;
3892 // If both operands have the same sign then we are done.
3893 __ Eor(remainder, dividend, divisor);
3894 __ Tbz(remainder, kWSignBit, &done);
3895
3896 // Check if the result needs to be corrected.
3897 __ Msub(remainder, result, divisor, dividend);
3898 __ Cbz(remainder, &done);
3899 __ Sub(result, result, 1);
3900
3901 __ Bind(&done);
3902 }
3903
3904
3905 void LCodeGen::DoMathLog(LMathLog* instr) {
3906 DCHECK(instr->IsMarkedAsCall());
3907 DCHECK(ToDoubleRegister(instr->value()).is(d0));
3908 __ CallCFunction(ExternalReference::math_log_double_function(isolate()),
3909 0, 1);
3910 DCHECK(ToDoubleRegister(instr->result()).Is(d0));
3911 }
3912
3913
3914 void LCodeGen::DoMathClz32(LMathClz32* instr) {
3915 Register input = ToRegister32(instr->value());
3916 Register result = ToRegister32(instr->result());
3917 __ Clz(result, input);
3918 }
3919
3920
3921 void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
3922 DoubleRegister input = ToDoubleRegister(instr->value());
3923 DoubleRegister result = ToDoubleRegister(instr->result());
3924 Label done;
3925
3926 // Math.pow(x, 0.5) differs from fsqrt(x) in the following cases:
3927 // Math.pow(-Infinity, 0.5) == +Infinity
3928 // Math.pow(-0.0, 0.5) == +0.0
3929
3930 // Catch -infinity inputs first.
3931 // TODO(jbramley): A constant infinity register would be helpful here.
3932 __ Fmov(double_scratch(), kFP64NegativeInfinity);
3933 __ Fcmp(double_scratch(), input);
3934 __ Fabs(result, input);
3935 __ B(&done, eq);
3936
3937 // Add +0.0 to convert -0.0 to +0.0.
3938 __ Fadd(double_scratch(), input, fp_zero);
3939 __ Fsqrt(result, double_scratch());
3940
3941 __ Bind(&done);
3942 }
3943
3944
3945 void LCodeGen::DoPower(LPower* instr) {
3946 Representation exponent_type = instr->hydrogen()->right()->representation();
3947 // Having marked this as a call, we can use any registers.
3948 // Just make sure that the input/output registers are the expected ones.
3949 Register tagged_exponent = MathPowTaggedDescriptor::exponent();
3950 Register integer_exponent = MathPowIntegerDescriptor::exponent();
3951 DCHECK(!instr->right()->IsDoubleRegister() ||
3952 ToDoubleRegister(instr->right()).is(d1));
3953 DCHECK(exponent_type.IsInteger32() || !instr->right()->IsRegister() ||
3954 ToRegister(instr->right()).is(tagged_exponent));
3955 DCHECK(!exponent_type.IsInteger32() ||
3956 ToRegister(instr->right()).is(integer_exponent));
3957 DCHECK(ToDoubleRegister(instr->left()).is(d0));
3958 DCHECK(ToDoubleRegister(instr->result()).is(d0));
3959
3960 if (exponent_type.IsSmi()) {
3961 MathPowStub stub(isolate(), MathPowStub::TAGGED);
3962 __ CallStub(&stub);
3963 } else if (exponent_type.IsTagged()) {
3964 Label no_deopt;
3965 __ JumpIfSmi(tagged_exponent, &no_deopt);
3966 DeoptimizeIfNotHeapNumber(tagged_exponent, instr);
3967 __ Bind(&no_deopt);
3968 MathPowStub stub(isolate(), MathPowStub::TAGGED);
3969 __ CallStub(&stub);
3970 } else if (exponent_type.IsInteger32()) {
3971 // Ensure integer exponent has no garbage in top 32-bits, as MathPowStub
3972 // supports large integer exponents.
3973 __ Sxtw(integer_exponent, integer_exponent);
3974 MathPowStub stub(isolate(), MathPowStub::INTEGER);
3975 __ CallStub(&stub);
3976 } else {
3977 DCHECK(exponent_type.IsDouble());
3978 MathPowStub stub(isolate(), MathPowStub::DOUBLE);
3979 __ CallStub(&stub);
3980 }
3981 }
3982
3983
3984 void LCodeGen::DoMathRoundD(LMathRoundD* instr) {
3985 DoubleRegister input = ToDoubleRegister(instr->value());
3986 DoubleRegister result = ToDoubleRegister(instr->result());
3987 DoubleRegister scratch_d = double_scratch();
3988
3989 DCHECK(!AreAliased(input, result, scratch_d));
3990
3991 Label done;
3992
3993 __ Frinta(result, input);
3994 __ Fcmp(input, 0.0);
3995 __ Fccmp(result, input, ZFlag, lt);
3996 // The result is correct if the input was in [-0, +infinity], or was a
3997 // negative integral value.
3998 __ B(eq, &done);
3999
4000 // Here the input is negative, non integral, with an exponent lower than 52.
4001 // We do not have to worry about the 0.49999999999999994 (0x3fdfffffffffffff)
4002 // case. So we can safely add 0.5.
4003 __ Fmov(scratch_d, 0.5);
4004 __ Fadd(result, input, scratch_d);
4005 __ Frintm(result, result);
4006 // The range [-0.5, -0.0[ yielded +0.0. Force the sign to negative.
4007 __ Fabs(result, result);
4008 __ Fneg(result, result);
4009
4010 __ Bind(&done);
4011 }
4012
4013
4014 void LCodeGen::DoMathRoundI(LMathRoundI* instr) {
4015 DoubleRegister input = ToDoubleRegister(instr->value());
4016 DoubleRegister temp = ToDoubleRegister(instr->temp1());
4017 DoubleRegister dot_five = double_scratch();
4018 Register result = ToRegister(instr->result());
4019 Label done;
4020
4021 // Math.round() rounds to the nearest integer, with ties going towards
4022 // +infinity. This does not match any IEEE-754 rounding mode.
4023 // - Infinities and NaNs are propagated unchanged, but cause deopts because
4024 // they can't be represented as integers.
4025 // - The sign of the result is the same as the sign of the input. This means
4026 // that -0.0 rounds to itself, and values -0.5 <= input < 0 also produce a
4027 // result of -0.0.
4028
4029 // Add 0.5 and round towards -infinity.
4030 __ Fmov(dot_five, 0.5);
4031 __ Fadd(temp, input, dot_five);
4032 __ Fcvtms(result, temp);
4033
4034 // The result is correct if:
4035 // result is not 0, as the input could be NaN or [-0.5, -0.0].
4036 // result is not 1, as 0.499...94 will wrongly map to 1.
4037 // result fits in 32 bits.
4038 __ Cmp(result, Operand(result.W(), SXTW));
4039 __ Ccmp(result, 1, ZFlag, eq);
4040 __ B(hi, &done);
4041
4042 // At this point, we have to handle possible inputs of NaN or numbers in the
4043 // range [-0.5, 1.5[, or numbers larger than 32 bits.
4044
4045 // Deoptimize if the result > 1, as it must be larger than 32 bits.
4046 __ Cmp(result, 1);
4047 DeoptimizeIf(hi, instr, Deoptimizer::kOverflow);
4048
4049 // Deoptimize for negative inputs, which at this point are only numbers in
4050 // the range [-0.5, -0.0]
4051 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4052 __ Fmov(result, input);
4053 DeoptimizeIfNegative(result, instr, Deoptimizer::kMinusZero);
4054 }
4055
4056 // Deoptimize if the input was NaN.
4057 __ Fcmp(input, dot_five);
4058 DeoptimizeIf(vs, instr, Deoptimizer::kNaN);
4059
4060 // Now, the only unhandled inputs are in the range [0.0, 1.5[ (or [-0.5, 1.5[
4061 // if we didn't generate a -0.0 bailout). If input >= 0.5 then return 1,
4062 // else 0; we avoid dealing with 0.499...94 directly.
4063 __ Cset(result, ge);
4064 __ Bind(&done);
4065 }
4066
4067
4068 void LCodeGen::DoMathFround(LMathFround* instr) {
4069 DoubleRegister input = ToDoubleRegister(instr->value());
4070 DoubleRegister result = ToDoubleRegister(instr->result());
4071 __ Fcvt(result.S(), input);
4072 __ Fcvt(result, result.S());
4073 }
4074
4075
4076 void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
4077 DoubleRegister input = ToDoubleRegister(instr->value());
4078 DoubleRegister result = ToDoubleRegister(instr->result());
4079 __ Fsqrt(result, input);
4080 }
4081
4082
4083 void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
4084 HMathMinMax::Operation op = instr->hydrogen()->operation();
4085 if (instr->hydrogen()->representation().IsInteger32()) {
4086 Register result = ToRegister32(instr->result());
4087 Register left = ToRegister32(instr->left());
4088 Operand right = ToOperand32(instr->right());
4089
4090 __ Cmp(left, right);
4091 __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le);
4092 } else if (instr->hydrogen()->representation().IsSmi()) {
4093 Register result = ToRegister(instr->result());
4094 Register left = ToRegister(instr->left());
4095 Operand right = ToOperand(instr->right());
4096
4097 __ Cmp(left, right);
4098 __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le);
4099 } else {
4100 DCHECK(instr->hydrogen()->representation().IsDouble());
4101 DoubleRegister result = ToDoubleRegister(instr->result());
4102 DoubleRegister left = ToDoubleRegister(instr->left());
4103 DoubleRegister right = ToDoubleRegister(instr->right());
4104
4105 if (op == HMathMinMax::kMathMax) {
4106 __ Fmax(result, left, right);
4107 } else {
4108 DCHECK(op == HMathMinMax::kMathMin);
4109 __ Fmin(result, left, right);
4110 }
4111 }
4112 }
4113
4114
4115 void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
4116 Register dividend = ToRegister32(instr->dividend());
4117 int32_t divisor = instr->divisor();
4118 DCHECK(dividend.is(ToRegister32(instr->result())));
4119
4120 // Theoretically, a variation of the branch-free code for integer division by
4121 // a power of 2 (calculating the remainder via an additional multiplication
4122 // (which gets simplified to an 'and') and subtraction) should be faster, and
4123 // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
4124 // indicate that positive dividends are heavily favored, so the branching
4125 // version performs better.
4126 HMod* hmod = instr->hydrogen();
4127 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
4128 Label dividend_is_not_negative, done;
4129 if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
4130 __ Tbz(dividend, kWSignBit, &dividend_is_not_negative);
4131 // Note that this is correct even for kMinInt operands.
4132 __ Neg(dividend, dividend);
4133 __ And(dividend, dividend, mask);
4134 __ Negs(dividend, dividend);
4135 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
4136 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
4137 }
4138 __ B(&done);
4139 }
4140
4141 __ bind(&dividend_is_not_negative);
4142 __ And(dividend, dividend, mask);
4143 __ bind(&done);
4144 }
4145
4146
4147 void LCodeGen::DoModByConstI(LModByConstI* instr) {
4148 Register dividend = ToRegister32(instr->dividend());
4149 int32_t divisor = instr->divisor();
4150 Register result = ToRegister32(instr->result());
4151 Register temp = ToRegister32(instr->temp());
4152 DCHECK(!AreAliased(dividend, result, temp));
4153
4154 if (divisor == 0) {
4155 Deoptimize(instr, Deoptimizer::kDivisionByZero);
4156 return;
4157 }
4158
4159 __ TruncatingDiv(result, dividend, Abs(divisor));
4160 __ Sxtw(dividend.X(), dividend);
4161 __ Mov(temp, Abs(divisor));
4162 __ Smsubl(result.X(), result, temp, dividend.X());
4163
4164 // Check for negative zero.
4165 HMod* hmod = instr->hydrogen();
4166 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
4167 Label remainder_not_zero;
4168 __ Cbnz(result, &remainder_not_zero);
4169 DeoptimizeIfNegative(dividend, instr, Deoptimizer::kMinusZero);
4170 __ bind(&remainder_not_zero);
4171 }
4172 }
4173
4174
4175 void LCodeGen::DoModI(LModI* instr) {
4176 Register dividend = ToRegister32(instr->left());
4177 Register divisor = ToRegister32(instr->right());
4178 Register result = ToRegister32(instr->result());
4179
4180 Label done;
4181 // modulo = dividend - quotient * divisor
4182 __ Sdiv(result, dividend, divisor);
4183 if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
4184 DeoptimizeIfZero(divisor, instr, Deoptimizer::kDivisionByZero);
4185 }
4186 __ Msub(result, result, divisor, dividend);
4187 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4188 __ Cbnz(result, &done);
4189 DeoptimizeIfNegative(dividend, instr, Deoptimizer::kMinusZero);
4190 }
4191 __ Bind(&done);
4192 }
4193
4194
4195 void LCodeGen::DoMulConstIS(LMulConstIS* instr) {
4196 DCHECK(instr->hydrogen()->representation().IsSmiOrInteger32());
4197 bool is_smi = instr->hydrogen()->representation().IsSmi();
4198 Register result =
4199 is_smi ? ToRegister(instr->result()) : ToRegister32(instr->result());
4200 Register left =
4201 is_smi ? ToRegister(instr->left()) : ToRegister32(instr->left());
4202 int32_t right = ToInteger32(instr->right());
4203 DCHECK((right > -kMaxInt) && (right < kMaxInt));
4204
4205 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
4206 bool bailout_on_minus_zero =
4207 instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
4208
4209 if (bailout_on_minus_zero) {
4210 if (right < 0) {
4211 // The result is -0 if right is negative and left is zero.
4212 DeoptimizeIfZero(left, instr, Deoptimizer::kMinusZero);
4213 } else if (right == 0) {
4214 // The result is -0 if the right is zero and the left is negative.
4215 DeoptimizeIfNegative(left, instr, Deoptimizer::kMinusZero);
4216 }
4217 }
4218
4219 switch (right) {
4220 // Cases which can detect overflow.
4221 case -1:
4222 if (can_overflow) {
4223 // Only 0x80000000 can overflow here.
4224 __ Negs(result, left);
4225 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
4226 } else {
4227 __ Neg(result, left);
4228 }
4229 break;
4230 case 0:
4231 // This case can never overflow.
4232 __ Mov(result, 0);
4233 break;
4234 case 1:
4235 // This case can never overflow.
4236 __ Mov(result, left, kDiscardForSameWReg);
4237 break;
4238 case 2:
4239 if (can_overflow) {
4240 __ Adds(result, left, left);
4241 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
4242 } else {
4243 __ Add(result, left, left);
4244 }
4245 break;
4246
4247 default:
4248 // Multiplication by constant powers of two (and some related values)
4249 // can be done efficiently with shifted operands.
4250 int32_t right_abs = Abs(right);
4251
4252 if (base::bits::IsPowerOfTwo32(right_abs)) {
4253 int right_log2 = WhichPowerOf2(right_abs);
4254
4255 if (can_overflow) {
4256 Register scratch = result;
4257 DCHECK(!AreAliased(scratch, left));
4258 __ Cls(scratch, left);
4259 __ Cmp(scratch, right_log2);
4260 DeoptimizeIf(lt, instr, Deoptimizer::kOverflow);
4261 }
4262
4263 if (right >= 0) {
4264 // result = left << log2(right)
4265 __ Lsl(result, left, right_log2);
4266 } else {
4267 // result = -left << log2(-right)
4268 if (can_overflow) {
4269 __ Negs(result, Operand(left, LSL, right_log2));
4270 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
4271 } else {
4272 __ Neg(result, Operand(left, LSL, right_log2));
4273 }
4274 }
4275 return;
4276 }
4277
4278
4279 // For the following cases, we could perform a conservative overflow check
4280 // with CLS as above. However the few cycles saved are likely not worth
4281 // the risk of deoptimizing more often than required.
4282 DCHECK(!can_overflow);
4283
4284 if (right >= 0) {
4285 if (base::bits::IsPowerOfTwo32(right - 1)) {
4286 // result = left + left << log2(right - 1)
4287 __ Add(result, left, Operand(left, LSL, WhichPowerOf2(right - 1)));
4288 } else if (base::bits::IsPowerOfTwo32(right + 1)) {
4289 // result = -left + left << log2(right + 1)
4290 __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(right + 1)));
4291 __ Neg(result, result);
4292 } else {
4293 UNREACHABLE();
4294 }
4295 } else {
4296 if (base::bits::IsPowerOfTwo32(-right + 1)) {
4297 // result = left - left << log2(-right + 1)
4298 __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(-right + 1)));
4299 } else if (base::bits::IsPowerOfTwo32(-right - 1)) {
4300 // result = -left - left << log2(-right - 1)
4301 __ Add(result, left, Operand(left, LSL, WhichPowerOf2(-right - 1)));
4302 __ Neg(result, result);
4303 } else {
4304 UNREACHABLE();
4305 }
4306 }
4307 }
4308 }
4309
4310
4311 void LCodeGen::DoMulI(LMulI* instr) {
4312 Register result = ToRegister32(instr->result());
4313 Register left = ToRegister32(instr->left());
4314 Register right = ToRegister32(instr->right());
4315
4316 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
4317 bool bailout_on_minus_zero =
4318 instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
4319
4320 if (bailout_on_minus_zero && !left.Is(right)) {
4321 // If one operand is zero and the other is negative, the result is -0.
4322 // - Set Z (eq) if either left or right, or both, are 0.
4323 __ Cmp(left, 0);
4324 __ Ccmp(right, 0, ZFlag, ne);
4325 // - If so (eq), set N (mi) if left + right is negative.
4326 // - Otherwise, clear N.
4327 __ Ccmn(left, right, NoFlag, eq);
4328 DeoptimizeIf(mi, instr, Deoptimizer::kMinusZero);
4329 }
4330
4331 if (can_overflow) {
4332 __ Smull(result.X(), left, right);
4333 __ Cmp(result.X(), Operand(result, SXTW));
4334 DeoptimizeIf(ne, instr, Deoptimizer::kOverflow);
4335 } else {
4336 __ Mul(result, left, right);
4337 }
4338 }
4339
4340
4341 void LCodeGen::DoMulS(LMulS* instr) {
4342 Register result = ToRegister(instr->result());
4343 Register left = ToRegister(instr->left());
4344 Register right = ToRegister(instr->right());
4345
4346 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
4347 bool bailout_on_minus_zero =
4348 instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
4349
4350 if (bailout_on_minus_zero && !left.Is(right)) {
4351 // If one operand is zero and the other is negative, the result is -0.
4352 // - Set Z (eq) if either left or right, or both, are 0.
4353 __ Cmp(left, 0);
4354 __ Ccmp(right, 0, ZFlag, ne);
4355 // - If so (eq), set N (mi) if left + right is negative.
4356 // - Otherwise, clear N.
4357 __ Ccmn(left, right, NoFlag, eq);
4358 DeoptimizeIf(mi, instr, Deoptimizer::kMinusZero);
4359 }
4360
4361 STATIC_ASSERT((kSmiShift == 32) && (kSmiTag == 0));
4362 if (can_overflow) {
4363 __ Smulh(result, left, right);
4364 __ Cmp(result, Operand(result.W(), SXTW));
4365 __ SmiTag(result);
4366 DeoptimizeIf(ne, instr, Deoptimizer::kOverflow);
4367 } else {
4368 if (AreAliased(result, left, right)) {
4369 // All three registers are the same: half untag the input and then
4370 // multiply, giving a tagged result.
4371 STATIC_ASSERT((kSmiShift % 2) == 0);
4372 __ Asr(result, left, kSmiShift / 2);
4373 __ Mul(result, result, result);
4374 } else if (result.Is(left) && !left.Is(right)) {
4375 // Registers result and left alias, right is distinct: untag left into
4376 // result, and then multiply by right, giving a tagged result.
4377 __ SmiUntag(result, left);
4378 __ Mul(result, result, right);
4379 } else {
4380 DCHECK(!left.Is(result));
4381 // Registers result and right alias, left is distinct, or all registers
4382 // are distinct: untag right into result, and then multiply by left,
4383 // giving a tagged result.
4384 __ SmiUntag(result, right);
4385 __ Mul(result, left, result);
4386 }
4387 }
4388 }
4389
4390
4391 void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
4392 // TODO(3095996): Get rid of this. For now, we need to make the
4393 // result register contain a valid pointer because it is already
4394 // contained in the register pointer map.
4395 Register result = ToRegister(instr->result());
4396 __ Mov(result, 0);
4397
4398 PushSafepointRegistersScope scope(this);
4399 // NumberTagU and NumberTagD use the context from the frame, rather than
4400 // the environment's HContext or HInlinedContext value.
4401 // They only call Runtime::kAllocateHeapNumber.
4402 // The corresponding HChange instructions are added in a phase that does
4403 // not have easy access to the local context.
4404 __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4405 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4406 RecordSafepointWithRegisters(
4407 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4408 __ StoreToSafepointRegisterSlot(x0, result);
4409 }
4410
4411
4412 void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
4413 class DeferredNumberTagD: public LDeferredCode {
4414 public:
4415 DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
4416 : LDeferredCode(codegen), instr_(instr) { }
4417 virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); }
4418 virtual LInstruction* instr() { return instr_; }
4419 private:
4420 LNumberTagD* instr_;
4421 };
4422
4423 DoubleRegister input = ToDoubleRegister(instr->value());
4424 Register result = ToRegister(instr->result());
4425 Register temp1 = ToRegister(instr->temp1());
4426 Register temp2 = ToRegister(instr->temp2());
4427
4428 DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr);
4429 if (FLAG_inline_new) {
4430 __ AllocateHeapNumber(result, deferred->entry(), temp1, temp2);
4431 } else {
4432 __ B(deferred->entry());
4433 }
4434
4435 __ Bind(deferred->exit());
4436 __ Str(input, FieldMemOperand(result, HeapNumber::kValueOffset));
4437 }
4438
4439
4440 void LCodeGen::DoDeferredNumberTagU(LInstruction* instr,
4441 LOperand* value,
4442 LOperand* temp1,
4443 LOperand* temp2) {
4444 Label slow, convert_and_store;
4445 Register src = ToRegister32(value);
4446 Register dst = ToRegister(instr->result());
4447 Register scratch1 = ToRegister(temp1);
4448
4449 if (FLAG_inline_new) {
4450 Register scratch2 = ToRegister(temp2);
4451 __ AllocateHeapNumber(dst, &slow, scratch1, scratch2);
4452 __ B(&convert_and_store);
4453 }
4454
4455 // Slow case: call the runtime system to do the number allocation.
4456 __ Bind(&slow);
4457 // TODO(3095996): Put a valid pointer value in the stack slot where the result
4458 // register is stored, as this register is in the pointer map, but contains an
4459 // integer value.
4460 __ Mov(dst, 0);
4461 {
4462 // Preserve the value of all registers.
4463 PushSafepointRegistersScope scope(this);
4464
4465 // NumberTagU and NumberTagD use the context from the frame, rather than
4466 // the environment's HContext or HInlinedContext value.
4467 // They only call Runtime::kAllocateHeapNumber.
4468 // The corresponding HChange instructions are added in a phase that does
4469 // not have easy access to the local context.
4470 __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4471 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4472 RecordSafepointWithRegisters(
4473 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4474 __ StoreToSafepointRegisterSlot(x0, dst);
4475 }
4476
4477 // Convert number to floating point and store in the newly allocated heap
4478 // number.
4479 __ Bind(&convert_and_store);
4480 DoubleRegister dbl_scratch = double_scratch();
4481 __ Ucvtf(dbl_scratch, src);
4482 __ Str(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset));
4483 }
4484
4485
4486 void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
4487 class DeferredNumberTagU: public LDeferredCode {
4488 public:
4489 DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
4490 : LDeferredCode(codegen), instr_(instr) { }
4491 virtual void Generate() {
4492 codegen()->DoDeferredNumberTagU(instr_,
4493 instr_->value(),
4494 instr_->temp1(),
4495 instr_->temp2());
4496 }
4497 virtual LInstruction* instr() { return instr_; }
4498 private:
4499 LNumberTagU* instr_;
4500 };
4501
4502 Register value = ToRegister32(instr->value());
4503 Register result = ToRegister(instr->result());
4504
4505 DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr);
4506 __ Cmp(value, Smi::kMaxValue);
4507 __ B(hi, deferred->entry());
4508 __ SmiTag(result, value.X());
4509 __ Bind(deferred->exit());
4510 }
4511
4512
4513 void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
4514 Register input = ToRegister(instr->value());
4515 Register scratch = ToRegister(instr->temp());
4516 DoubleRegister result = ToDoubleRegister(instr->result());
4517 bool can_convert_undefined_to_nan =
4518 instr->hydrogen()->can_convert_undefined_to_nan();
4519
4520 Label done, load_smi;
4521
4522 // Work out what untag mode we're working with.
4523 HValue* value = instr->hydrogen()->value();
4524 NumberUntagDMode mode = value->representation().IsSmi()
4525 ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
4526
4527 if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
4528 __ JumpIfSmi(input, &load_smi);
4529
4530 Label convert_undefined;
4531
4532 // Heap number map check.
4533 if (can_convert_undefined_to_nan) {
4534 __ JumpIfNotHeapNumber(input, &convert_undefined);
4535 } else {
4536 DeoptimizeIfNotHeapNumber(input, instr);
4537 }
4538
4539 // Load heap number.
4540 __ Ldr(result, FieldMemOperand(input, HeapNumber::kValueOffset));
4541 if (instr->hydrogen()->deoptimize_on_minus_zero()) {
4542 DeoptimizeIfMinusZero(result, instr, Deoptimizer::kMinusZero);
4543 }
4544 __ B(&done);
4545
4546 if (can_convert_undefined_to_nan) {
4547 __ Bind(&convert_undefined);
4548 DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr,
4549 Deoptimizer::kNotAHeapNumberUndefined);
4550
4551 __ LoadRoot(scratch, Heap::kNanValueRootIndex);
4552 __ Ldr(result, FieldMemOperand(scratch, HeapNumber::kValueOffset));
4553 __ B(&done);
4554 }
4555
4556 } else {
4557 DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
4558 // Fall through to load_smi.
4559 }
4560
4561 // Smi to double register conversion.
4562 __ Bind(&load_smi);
4563 __ SmiUntagToDouble(result, input);
4564
4565 __ Bind(&done);
4566 }
4567
4568
4569 void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
4570 // This is a pseudo-instruction that ensures that the environment here is
4571 // properly registered for deoptimization and records the assembler's PC
4572 // offset.
4573 LEnvironment* environment = instr->environment();
4574
4575 // If the environment were already registered, we would have no way of
4576 // backpatching it with the spill slot operands.
4577 DCHECK(!environment->HasBeenRegistered());
4578 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
4579
4580 GenerateOsrPrologue();
4581 }
4582
4583
4584 void LCodeGen::DoParameter(LParameter* instr) {
4585 // Nothing to do.
4586 }
4587
4588
4589 void LCodeGen::DoPreparePushArguments(LPreparePushArguments* instr) {
4590 __ PushPreamble(instr->argc(), kPointerSize);
4591 }
4592
4593
4594 void LCodeGen::DoPushArguments(LPushArguments* instr) {
4595 MacroAssembler::PushPopQueue args(masm());
4596
4597 for (int i = 0; i < instr->ArgumentCount(); ++i) {
4598 LOperand* arg = instr->argument(i);
4599 if (arg->IsDoubleRegister() || arg->IsDoubleStackSlot()) {
4600 Abort(kDoPushArgumentNotImplementedForDoubleType);
4601 return;
4602 }
4603 args.Queue(ToRegister(arg));
4604 }
4605
4606 // The preamble was done by LPreparePushArguments.
4607 args.PushQueued(MacroAssembler::PushPopQueue::SKIP_PREAMBLE);
4608
4609 RecordPushedArgumentsDelta(instr->ArgumentCount());
4610 }
4611
4612
4613 void LCodeGen::DoReturn(LReturn* instr) {
4614 if (FLAG_trace && info()->IsOptimizing()) {
4615 // Push the return value on the stack as the parameter.
4616 // Runtime::TraceExit returns its parameter in x0. We're leaving the code
4617 // managed by the register allocator and tearing down the frame, it's
4618 // safe to write to the context register.
4619 __ Push(x0);
4620 __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4621 __ CallRuntime(Runtime::kTraceExit, 1);
4622 }
4623
4624 if (info()->saves_caller_doubles()) {
4625 RestoreCallerDoubles();
4626 }
4627
4628 if (NeedsEagerFrame()) {
4629 Register stack_pointer = masm()->StackPointer();
4630 __ Mov(stack_pointer, fp);
4631 __ Pop(fp, lr);
4632 }
4633
4634 if (instr->has_constant_parameter_count()) {
4635 int parameter_count = ToInteger32(instr->constant_parameter_count());
4636 __ Drop(parameter_count + 1);
4637 } else {
4638 DCHECK(info()->IsStub()); // Functions would need to drop one more value.
4639 Register parameter_count = ToRegister(instr->parameter_count());
4640 __ DropBySMI(parameter_count);
4641 }
4642 __ Ret();
4643 }
4644
4645
4646 MemOperand LCodeGen::BuildSeqStringOperand(Register string,
4647 Register temp,
4648 LOperand* index,
4649 String::Encoding encoding) {
4650 if (index->IsConstantOperand()) {
4651 int offset = ToInteger32(LConstantOperand::cast(index));
4652 if (encoding == String::TWO_BYTE_ENCODING) {
4653 offset *= kUC16Size;
4654 }
4655 STATIC_ASSERT(kCharSize == 1);
4656 return FieldMemOperand(string, SeqString::kHeaderSize + offset);
4657 }
4658
4659 __ Add(temp, string, SeqString::kHeaderSize - kHeapObjectTag);
4660 if (encoding == String::ONE_BYTE_ENCODING) {
4661 return MemOperand(temp, ToRegister32(index), SXTW);
4662 } else {
4663 STATIC_ASSERT(kUC16Size == 2);
4664 return MemOperand(temp, ToRegister32(index), SXTW, 1);
4665 }
4666 }
4667
4668
4669 void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
4670 String::Encoding encoding = instr->hydrogen()->encoding();
4671 Register string = ToRegister(instr->string());
4672 Register result = ToRegister(instr->result());
4673 Register temp = ToRegister(instr->temp());
4674
4675 if (FLAG_debug_code) {
4676 // Even though this lithium instruction comes with a temp register, we
4677 // can't use it here because we want to use "AtStart" constraints on the
4678 // inputs and the debug code here needs a scratch register.
4679 UseScratchRegisterScope temps(masm());
4680 Register dbg_temp = temps.AcquireX();
4681
4682 __ Ldr(dbg_temp, FieldMemOperand(string, HeapObject::kMapOffset));
4683 __ Ldrb(dbg_temp, FieldMemOperand(dbg_temp, Map::kInstanceTypeOffset));
4684
4685 __ And(dbg_temp, dbg_temp,
4686 Operand(kStringRepresentationMask | kStringEncodingMask));
4687 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
4688 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
4689 __ Cmp(dbg_temp, Operand(encoding == String::ONE_BYTE_ENCODING
4690 ? one_byte_seq_type : two_byte_seq_type));
4691 __ Check(eq, kUnexpectedStringType);
4692 }
4693
4694 MemOperand operand =
4695 BuildSeqStringOperand(string, temp, instr->index(), encoding);
4696 if (encoding == String::ONE_BYTE_ENCODING) {
4697 __ Ldrb(result, operand);
4698 } else {
4699 __ Ldrh(result, operand);
4700 }
4701 }
4702
4703
4704 void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
4705 String::Encoding encoding = instr->hydrogen()->encoding();
4706 Register string = ToRegister(instr->string());
4707 Register value = ToRegister(instr->value());
4708 Register temp = ToRegister(instr->temp());
4709
4710 if (FLAG_debug_code) {
4711 DCHECK(ToRegister(instr->context()).is(cp));
4712 Register index = ToRegister(instr->index());
4713 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
4714 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
4715 int encoding_mask =
4716 instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
4717 ? one_byte_seq_type : two_byte_seq_type;
4718 __ EmitSeqStringSetCharCheck(string, index, kIndexIsInteger32, temp,
4719 encoding_mask);
4720 }
4721 MemOperand operand =
4722 BuildSeqStringOperand(string, temp, instr->index(), encoding);
4723 if (encoding == String::ONE_BYTE_ENCODING) {
4724 __ Strb(value, operand);
4725 } else {
4726 __ Strh(value, operand);
4727 }
4728 }
4729
4730
4731 void LCodeGen::DoSmiTag(LSmiTag* instr) {
4732 HChange* hchange = instr->hydrogen();
4733 Register input = ToRegister(instr->value());
4734 Register output = ToRegister(instr->result());
4735 if (hchange->CheckFlag(HValue::kCanOverflow) &&
4736 hchange->value()->CheckFlag(HValue::kUint32)) {
4737 DeoptimizeIfNegative(input.W(), instr, Deoptimizer::kOverflow);
4738 }
4739 __ SmiTag(output, input);
4740 }
4741
4742
4743 void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
4744 Register input = ToRegister(instr->value());
4745 Register result = ToRegister(instr->result());
4746 Label done, untag;
4747
4748 if (instr->needs_check()) {
4749 DeoptimizeIfNotSmi(input, instr, Deoptimizer::kNotASmi);
4750 }
4751
4752 __ Bind(&untag);
4753 __ SmiUntag(result, input);
4754 __ Bind(&done);
4755 }
4756
4757
4758 void LCodeGen::DoShiftI(LShiftI* instr) {
4759 LOperand* right_op = instr->right();
4760 Register left = ToRegister32(instr->left());
4761 Register result = ToRegister32(instr->result());
4762
4763 if (right_op->IsRegister()) {
4764 Register right = ToRegister32(instr->right());
4765 switch (instr->op()) {
4766 case Token::ROR: __ Ror(result, left, right); break;
4767 case Token::SAR: __ Asr(result, left, right); break;
4768 case Token::SHL: __ Lsl(result, left, right); break;
4769 case Token::SHR:
4770 __ Lsr(result, left, right);
4771 if (instr->can_deopt()) {
4772 // If `left >>> right` >= 0x80000000, the result is not representable
4773 // in a signed 32-bit smi.
4774 DeoptimizeIfNegative(result, instr, Deoptimizer::kNegativeValue);
4775 }
4776 break;
4777 default: UNREACHABLE();
4778 }
4779 } else {
4780 DCHECK(right_op->IsConstantOperand());
4781 int shift_count = JSShiftAmountFromLConstant(right_op);
4782 if (shift_count == 0) {
4783 if ((instr->op() == Token::SHR) && instr->can_deopt()) {
4784 DeoptimizeIfNegative(left, instr, Deoptimizer::kNegativeValue);
4785 }
4786 __ Mov(result, left, kDiscardForSameWReg);
4787 } else {
4788 switch (instr->op()) {
4789 case Token::ROR: __ Ror(result, left, shift_count); break;
4790 case Token::SAR: __ Asr(result, left, shift_count); break;
4791 case Token::SHL: __ Lsl(result, left, shift_count); break;
4792 case Token::SHR: __ Lsr(result, left, shift_count); break;
4793 default: UNREACHABLE();
4794 }
4795 }
4796 }
4797 }
4798
4799
4800 void LCodeGen::DoShiftS(LShiftS* instr) {
4801 LOperand* right_op = instr->right();
4802 Register left = ToRegister(instr->left());
4803 Register result = ToRegister(instr->result());
4804
4805 if (right_op->IsRegister()) {
4806 Register right = ToRegister(instr->right());
4807
4808 // JavaScript shifts only look at the bottom 5 bits of the 'right' operand.
4809 // Since we're handling smis in X registers, we have to extract these bits
4810 // explicitly.
4811 __ Ubfx(result, right, kSmiShift, 5);
4812
4813 switch (instr->op()) {
4814 case Token::ROR: {
4815 // This is the only case that needs a scratch register. To keep things
4816 // simple for the other cases, borrow a MacroAssembler scratch register.
4817 UseScratchRegisterScope temps(masm());
4818 Register temp = temps.AcquireW();
4819 __ SmiUntag(temp, left);
4820 __ Ror(result.W(), temp.W(), result.W());
4821 __ SmiTag(result);
4822 break;
4823 }
4824 case Token::SAR:
4825 __ Asr(result, left, result);
4826 __ Bic(result, result, kSmiShiftMask);
4827 break;
4828 case Token::SHL:
4829 __ Lsl(result, left, result);
4830 break;
4831 case Token::SHR:
4832 __ Lsr(result, left, result);
4833 __ Bic(result, result, kSmiShiftMask);
4834 if (instr->can_deopt()) {
4835 // If `left >>> right` >= 0x80000000, the result is not representable
4836 // in a signed 32-bit smi.
4837 DeoptimizeIfNegative(result, instr, Deoptimizer::kNegativeValue);
4838 }
4839 break;
4840 default: UNREACHABLE();
4841 }
4842 } else {
4843 DCHECK(right_op->IsConstantOperand());
4844 int shift_count = JSShiftAmountFromLConstant(right_op);
4845 if (shift_count == 0) {
4846 if ((instr->op() == Token::SHR) && instr->can_deopt()) {
4847 DeoptimizeIfNegative(left, instr, Deoptimizer::kNegativeValue);
4848 }
4849 __ Mov(result, left);
4850 } else {
4851 switch (instr->op()) {
4852 case Token::ROR:
4853 __ SmiUntag(result, left);
4854 __ Ror(result.W(), result.W(), shift_count);
4855 __ SmiTag(result);
4856 break;
4857 case Token::SAR:
4858 __ Asr(result, left, shift_count);
4859 __ Bic(result, result, kSmiShiftMask);
4860 break;
4861 case Token::SHL:
4862 __ Lsl(result, left, shift_count);
4863 break;
4864 case Token::SHR:
4865 __ Lsr(result, left, shift_count);
4866 __ Bic(result, result, kSmiShiftMask);
4867 break;
4868 default: UNREACHABLE();
4869 }
4870 }
4871 }
4872 }
4873
4874
4875 void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
4876 __ Debug("LDebugBreak", 0, BREAK);
4877 }
4878
4879
4880 void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
4881 DCHECK(ToRegister(instr->context()).is(cp));
4882 Register scratch1 = x5;
4883 Register scratch2 = x6;
4884 DCHECK(instr->IsMarkedAsCall());
4885
4886 // TODO(all): if Mov could handle object in new space then it could be used
4887 // here.
4888 __ LoadHeapObject(scratch1, instr->hydrogen()->pairs());
4889 __ Mov(scratch2, Smi::FromInt(instr->hydrogen()->flags()));
4890 __ Push(scratch1, scratch2);
4891 CallRuntime(Runtime::kDeclareGlobals, 2, instr);
4892 }
4893
4894
4895 void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
4896 PushSafepointRegistersScope scope(this);
4897 LoadContextFromDeferred(instr->context());
4898 __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
4899 RecordSafepointWithLazyDeopt(
4900 instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
4901 DCHECK(instr->HasEnvironment());
4902 LEnvironment* env = instr->environment();
4903 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
4904 }
4905
4906
4907 void LCodeGen::DoStackCheck(LStackCheck* instr) {
4908 class DeferredStackCheck: public LDeferredCode {
4909 public:
4910 DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
4911 : LDeferredCode(codegen), instr_(instr) { }
4912 virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); }
4913 virtual LInstruction* instr() { return instr_; }
4914 private:
4915 LStackCheck* instr_;
4916 };
4917
4918 DCHECK(instr->HasEnvironment());
4919 LEnvironment* env = instr->environment();
4920 // There is no LLazyBailout instruction for stack-checks. We have to
4921 // prepare for lazy deoptimization explicitly here.
4922 if (instr->hydrogen()->is_function_entry()) {
4923 // Perform stack overflow check.
4924 Label done;
4925 __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex);
4926 __ B(hs, &done);
4927
4928 PredictableCodeSizeScope predictable(masm_,
4929 Assembler::kCallSizeWithRelocation);
4930 DCHECK(instr->context()->IsRegister());
4931 DCHECK(ToRegister(instr->context()).is(cp));
4932 CallCode(isolate()->builtins()->StackCheck(),
4933 RelocInfo::CODE_TARGET,
4934 instr);
4935 __ Bind(&done);
4936 } else {
4937 DCHECK(instr->hydrogen()->is_backwards_branch());
4938 // Perform stack overflow check if this goto needs it before jumping.
4939 DeferredStackCheck* deferred_stack_check =
4940 new(zone()) DeferredStackCheck(this, instr);
4941 __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex);
4942 __ B(lo, deferred_stack_check->entry());
4943
4944 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
4945 __ Bind(instr->done_label());
4946 deferred_stack_check->SetExit(instr->done_label());
4947 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
4948 // Don't record a deoptimization index for the safepoint here.
4949 // This will be done explicitly when emitting call and the safepoint in
4950 // the deferred code.
4951 }
4952 }
4953
4954
4955 void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
4956 Register function = ToRegister(instr->function());
4957 Register code_object = ToRegister(instr->code_object());
4958 Register temp = ToRegister(instr->temp());
4959 __ Add(temp, code_object, Code::kHeaderSize - kHeapObjectTag);
4960 __ Str(temp, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
4961 }
4962
4963
4964 void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
4965 Register context = ToRegister(instr->context());
4966 Register value = ToRegister(instr->value());
4967 Register scratch = ToRegister(instr->temp());
4968 MemOperand target = ContextMemOperand(context, instr->slot_index());
4969
4970 Label skip_assignment;
4971
4972 if (instr->hydrogen()->RequiresHoleCheck()) {
4973 __ Ldr(scratch, target);
4974 if (instr->hydrogen()->DeoptimizesOnHole()) {
4975 DeoptimizeIfRoot(scratch, Heap::kTheHoleValueRootIndex, instr,
4976 Deoptimizer::kHole);
4977 } else {
4978 __ JumpIfNotRoot(scratch, Heap::kTheHoleValueRootIndex, &skip_assignment);
4979 }
4980 }
4981
4982 __ Str(value, target);
4983 if (instr->hydrogen()->NeedsWriteBarrier()) {
4984 SmiCheck check_needed =
4985 instr->hydrogen()->value()->type().IsHeapObject()
4986 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
4987 __ RecordWriteContextSlot(context, static_cast<int>(target.offset()), value,
4988 scratch, GetLinkRegisterState(), kSaveFPRegs,
4989 EMIT_REMEMBERED_SET, check_needed);
4990 }
4991 __ Bind(&skip_assignment);
4992 }
4993
4994
4995 void LCodeGen::DoStoreKeyedExternal(LStoreKeyedExternal* instr) {
4996 Register ext_ptr = ToRegister(instr->elements());
4997 Register key = no_reg;
4998 Register scratch;
4999 ElementsKind elements_kind = instr->elements_kind();
5000
5001 bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
5002 bool key_is_constant = instr->key()->IsConstantOperand();
5003 int constant_key = 0;
5004 if (key_is_constant) {
5005 DCHECK(instr->temp() == NULL);
5006 constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
5007 if (constant_key & 0xf0000000) {
5008 Abort(kArrayIndexConstantValueTooBig);
5009 }
5010 } else {
5011 key = ToRegister(instr->key());
5012 scratch = ToRegister(instr->temp());
5013 }
5014
5015 MemOperand dst =
5016 PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi,
5017 key_is_constant, constant_key,
5018 elements_kind,
5019 instr->base_offset());
5020
5021 if (elements_kind == FLOAT32_ELEMENTS) {
5022 DoubleRegister value = ToDoubleRegister(instr->value());
5023 DoubleRegister dbl_scratch = double_scratch();
5024 __ Fcvt(dbl_scratch.S(), value);
5025 __ Str(dbl_scratch.S(), dst);
5026 } else if (elements_kind == FLOAT64_ELEMENTS) {
5027 DoubleRegister value = ToDoubleRegister(instr->value());
5028 __ Str(value, dst);
5029 } else {
5030 Register value = ToRegister(instr->value());
5031
5032 switch (elements_kind) {
5033 case UINT8_ELEMENTS:
5034 case UINT8_CLAMPED_ELEMENTS:
5035 case INT8_ELEMENTS:
5036 __ Strb(value, dst);
5037 break;
5038 case INT16_ELEMENTS:
5039 case UINT16_ELEMENTS:
5040 __ Strh(value, dst);
5041 break;
5042 case INT32_ELEMENTS:
5043 case UINT32_ELEMENTS:
5044 __ Str(value.W(), dst);
5045 break;
5046 case FLOAT32_ELEMENTS:
5047 case FLOAT64_ELEMENTS:
5048 case FAST_DOUBLE_ELEMENTS:
5049 case FAST_ELEMENTS:
5050 case FAST_SMI_ELEMENTS:
5051 case FAST_HOLEY_DOUBLE_ELEMENTS:
5052 case FAST_HOLEY_ELEMENTS:
5053 case FAST_HOLEY_SMI_ELEMENTS:
5054 case DICTIONARY_ELEMENTS:
5055 case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
5056 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
5057 UNREACHABLE();
5058 break;
5059 }
5060 }
5061 }
5062
5063
5064 void LCodeGen::DoStoreKeyedFixedDouble(LStoreKeyedFixedDouble* instr) {
5065 Register elements = ToRegister(instr->elements());
5066 DoubleRegister value = ToDoubleRegister(instr->value());
5067 MemOperand mem_op;
5068
5069 if (instr->key()->IsConstantOperand()) {
5070 int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
5071 if (constant_key & 0xf0000000) {
5072 Abort(kArrayIndexConstantValueTooBig);
5073 }
5074 int offset = instr->base_offset() + constant_key * kDoubleSize;
5075 mem_op = MemOperand(elements, offset);
5076 } else {
5077 Register store_base = ToRegister(instr->temp());
5078 Register key = ToRegister(instr->key());
5079 bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
5080 mem_op = PrepareKeyedArrayOperand(store_base, elements, key, key_is_tagged,
5081 instr->hydrogen()->elements_kind(),
5082 instr->hydrogen()->representation(),
5083 instr->base_offset());
5084 }
5085
5086 if (instr->NeedsCanonicalization()) {
5087 __ CanonicalizeNaN(double_scratch(), value);
5088 __ Str(double_scratch(), mem_op);
5089 } else {
5090 __ Str(value, mem_op);
5091 }
5092 }
5093
5094
5095 void LCodeGen::DoStoreKeyedFixed(LStoreKeyedFixed* instr) {
5096 Register value = ToRegister(instr->value());
5097 Register elements = ToRegister(instr->elements());
5098 Register scratch = no_reg;
5099 Register store_base = no_reg;
5100 Register key = no_reg;
5101 MemOperand mem_op;
5102
5103 if (!instr->key()->IsConstantOperand() ||
5104 instr->hydrogen()->NeedsWriteBarrier()) {
5105 scratch = ToRegister(instr->temp());
5106 }
5107
5108 Representation representation = instr->hydrogen()->value()->representation();
5109 if (instr->key()->IsConstantOperand()) {
5110 LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
5111 int offset = instr->base_offset() +
5112 ToInteger32(const_operand) * kPointerSize;
5113 store_base = elements;
5114 if (representation.IsInteger32()) {
5115 DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY);
5116 DCHECK(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS);
5117 STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
5118 STATIC_ASSERT(kSmiTag == 0);
5119 mem_op = UntagSmiMemOperand(store_base, offset);
5120 } else {
5121 mem_op = MemOperand(store_base, offset);
5122 }
5123 } else {
5124 store_base = scratch;
5125 key = ToRegister(instr->key());
5126 bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
5127
5128 mem_op = PrepareKeyedArrayOperand(store_base, elements, key, key_is_tagged,
5129 instr->hydrogen()->elements_kind(),
5130 representation, instr->base_offset());
5131 }
5132
5133 __ Store(value, mem_op, representation);
5134
5135 if (instr->hydrogen()->NeedsWriteBarrier()) {
5136 DCHECK(representation.IsTagged());
5137 // This assignment may cause element_addr to alias store_base.
5138 Register element_addr = scratch;
5139 SmiCheck check_needed =
5140 instr->hydrogen()->value()->type().IsHeapObject()
5141 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
5142 // Compute address of modified element and store it into key register.
5143 __ Add(element_addr, mem_op.base(), mem_op.OffsetAsOperand());
5144 __ RecordWrite(elements, element_addr, value, GetLinkRegisterState(),
5145 kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed,
5146 instr->hydrogen()->PointersToHereCheckForValue());
5147 }
5148 }
5149
5150
5151 void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
5152 DCHECK(ToRegister(instr->context()).is(cp));
5153 DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
5154 DCHECK(ToRegister(instr->key()).is(StoreDescriptor::NameRegister()));
5155 DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
5156
5157 if (instr->hydrogen()->HasVectorAndSlot()) {
5158 EmitVectorStoreICRegisters<LStoreKeyedGeneric>(instr);
5159 }
5160
5161 Handle<Code> ic = CodeFactory::KeyedStoreICInOptimizedCode(
5162 isolate(), instr->language_mode(),
5163 instr->hydrogen()->initialization_state()).code();
5164 CallCode(ic, RelocInfo::CODE_TARGET, instr);
5165 }
5166
5167
5168 void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) {
5169 class DeferredMaybeGrowElements final : public LDeferredCode {
5170 public:
5171 DeferredMaybeGrowElements(LCodeGen* codegen, LMaybeGrowElements* instr)
5172 : LDeferredCode(codegen), instr_(instr) {}
5173 void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); }
5174 LInstruction* instr() override { return instr_; }
5175
5176 private:
5177 LMaybeGrowElements* instr_;
5178 };
5179
5180 Register result = x0;
5181 DeferredMaybeGrowElements* deferred =
5182 new (zone()) DeferredMaybeGrowElements(this, instr);
5183 LOperand* key = instr->key();
5184 LOperand* current_capacity = instr->current_capacity();
5185
5186 DCHECK(instr->hydrogen()->key()->representation().IsInteger32());
5187 DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32());
5188 DCHECK(key->IsConstantOperand() || key->IsRegister());
5189 DCHECK(current_capacity->IsConstantOperand() ||
5190 current_capacity->IsRegister());
5191
5192 if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) {
5193 int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
5194 int32_t constant_capacity =
5195 ToInteger32(LConstantOperand::cast(current_capacity));
5196 if (constant_key >= constant_capacity) {
5197 // Deferred case.
5198 __ B(deferred->entry());
5199 }
5200 } else if (key->IsConstantOperand()) {
5201 int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
5202 __ Cmp(ToRegister(current_capacity), Operand(constant_key));
5203 __ B(le, deferred->entry());
5204 } else if (current_capacity->IsConstantOperand()) {
5205 int32_t constant_capacity =
5206 ToInteger32(LConstantOperand::cast(current_capacity));
5207 __ Cmp(ToRegister(key), Operand(constant_capacity));
5208 __ B(ge, deferred->entry());
5209 } else {
5210 __ Cmp(ToRegister(key), ToRegister(current_capacity));
5211 __ B(ge, deferred->entry());
5212 }
5213
5214 __ Mov(result, ToRegister(instr->elements()));
5215
5216 __ Bind(deferred->exit());
5217 }
5218
5219
5220 void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) {
5221 // TODO(3095996): Get rid of this. For now, we need to make the
5222 // result register contain a valid pointer because it is already
5223 // contained in the register pointer map.
5224 Register result = x0;
5225 __ Mov(result, 0);
5226
5227 // We have to call a stub.
5228 {
5229 PushSafepointRegistersScope scope(this);
5230 __ Move(result, ToRegister(instr->object()));
5231
5232 LOperand* key = instr->key();
5233 if (key->IsConstantOperand()) {
5234 __ Mov(x3, Operand(ToSmi(LConstantOperand::cast(key))));
5235 } else {
5236 __ Mov(x3, ToRegister(key));
5237 __ SmiTag(x3);
5238 }
5239
5240 GrowArrayElementsStub stub(isolate(), instr->hydrogen()->is_js_array(),
5241 instr->hydrogen()->kind());
5242 __ CallStub(&stub);
5243 RecordSafepointWithLazyDeopt(
5244 instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
5245 __ StoreToSafepointRegisterSlot(result, result);
5246 }
5247
5248 // Deopt on smi, which means the elements array changed to dictionary mode.
5249 DeoptimizeIfSmi(result, instr, Deoptimizer::kSmi);
5250 }
5251
5252
5253 void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
5254 Representation representation = instr->representation();
5255
5256 Register object = ToRegister(instr->object());
5257 HObjectAccess access = instr->hydrogen()->access();
5258 int offset = access.offset();
5259
5260 if (access.IsExternalMemory()) {
5261 DCHECK(!instr->hydrogen()->has_transition());
5262 DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
5263 Register value = ToRegister(instr->value());
5264 __ Store(value, MemOperand(object, offset), representation);
5265 return;
5266 }
5267
5268 __ AssertNotSmi(object);
5269
5270 if (!FLAG_unbox_double_fields && representation.IsDouble()) {
5271 DCHECK(access.IsInobject());
5272 DCHECK(!instr->hydrogen()->has_transition());
5273 DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
5274 FPRegister value = ToDoubleRegister(instr->value());
5275 __ Str(value, FieldMemOperand(object, offset));
5276 return;
5277 }
5278
5279 DCHECK(!representation.IsSmi() ||
5280 !instr->value()->IsConstantOperand() ||
5281 IsInteger32Constant(LConstantOperand::cast(instr->value())));
5282
5283 if (instr->hydrogen()->has_transition()) {
5284 Handle<Map> transition = instr->hydrogen()->transition_map();
5285 AddDeprecationDependency(transition);
5286 // Store the new map value.
5287 Register new_map_value = ToRegister(instr->temp0());
5288 __ Mov(new_map_value, Operand(transition));
5289 __ Str(new_map_value, FieldMemOperand(object, HeapObject::kMapOffset));
5290 if (instr->hydrogen()->NeedsWriteBarrierForMap()) {
5291 // Update the write barrier for the map field.
5292 __ RecordWriteForMap(object,
5293 new_map_value,
5294 ToRegister(instr->temp1()),
5295 GetLinkRegisterState(),
5296 kSaveFPRegs);
5297 }
5298 }
5299
5300 // Do the store.
5301 Register destination;
5302 if (access.IsInobject()) {
5303 destination = object;
5304 } else {
5305 Register temp0 = ToRegister(instr->temp0());
5306 __ Ldr(temp0, FieldMemOperand(object, JSObject::kPropertiesOffset));
5307 destination = temp0;
5308 }
5309
5310 if (FLAG_unbox_double_fields && representation.IsDouble()) {
5311 DCHECK(access.IsInobject());
5312 FPRegister value = ToDoubleRegister(instr->value());
5313 __ Str(value, FieldMemOperand(object, offset));
5314 } else if (representation.IsSmi() &&
5315 instr->hydrogen()->value()->representation().IsInteger32()) {
5316 DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY);
5317 #ifdef DEBUG
5318 Register temp0 = ToRegister(instr->temp0());
5319 __ Ldr(temp0, FieldMemOperand(destination, offset));
5320 __ AssertSmi(temp0);
5321 // If destination aliased temp0, restore it to the address calculated
5322 // earlier.
5323 if (destination.Is(temp0)) {
5324 DCHECK(!access.IsInobject());
5325 __ Ldr(destination, FieldMemOperand(object, JSObject::kPropertiesOffset));
5326 }
5327 #endif
5328 STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
5329 STATIC_ASSERT(kSmiTag == 0);
5330 Register value = ToRegister(instr->value());
5331 __ Store(value, UntagSmiFieldMemOperand(destination, offset),
5332 Representation::Integer32());
5333 } else {
5334 Register value = ToRegister(instr->value());
5335 __ Store(value, FieldMemOperand(destination, offset), representation);
5336 }
5337 if (instr->hydrogen()->NeedsWriteBarrier()) {
5338 Register value = ToRegister(instr->value());
5339 __ RecordWriteField(destination,
5340 offset,
5341 value, // Clobbered.
5342 ToRegister(instr->temp1()), // Clobbered.
5343 GetLinkRegisterState(),
5344 kSaveFPRegs,
5345 EMIT_REMEMBERED_SET,
5346 instr->hydrogen()->SmiCheckForWriteBarrier(),
5347 instr->hydrogen()->PointersToHereCheckForValue());
5348 }
5349 }
5350
5351
5352 void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
5353 DCHECK(ToRegister(instr->context()).is(cp));
5354 DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
5355 DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
5356
5357 if (instr->hydrogen()->HasVectorAndSlot()) {
5358 EmitVectorStoreICRegisters<LStoreNamedGeneric>(instr);
5359 }
5360
5361 __ Mov(StoreDescriptor::NameRegister(), Operand(instr->name()));
5362 Handle<Code> ic = CodeFactory::StoreICInOptimizedCode(
5363 isolate(), instr->language_mode(),
5364 instr->hydrogen()->initialization_state()).code();
5365 CallCode(ic, RelocInfo::CODE_TARGET, instr);
5366 }
5367
5368
5369 void LCodeGen::DoStoreGlobalViaContext(LStoreGlobalViaContext* instr) {
5370 DCHECK(ToRegister(instr->context()).is(cp));
5371 DCHECK(ToRegister(instr->value())
5372 .is(StoreGlobalViaContextDescriptor::ValueRegister()));
5373
5374 int const slot = instr->slot_index();
5375 int const depth = instr->depth();
5376 if (depth <= StoreGlobalViaContextStub::kMaximumDepth) {
5377 __ Mov(StoreGlobalViaContextDescriptor::SlotRegister(), Operand(slot));
5378 Handle<Code> stub = CodeFactory::StoreGlobalViaContext(
5379 isolate(), depth, instr->language_mode())
5380 .code();
5381 CallCode(stub, RelocInfo::CODE_TARGET, instr);
5382 } else {
5383 __ Push(Smi::FromInt(slot));
5384 __ Push(StoreGlobalViaContextDescriptor::ValueRegister());
5385 __ CallRuntime(is_strict(instr->language_mode())
5386 ? Runtime::kStoreGlobalViaContext_Strict
5387 : Runtime::kStoreGlobalViaContext_Sloppy,
5388 2);
5389 }
5390 }
5391
5392
5393 void LCodeGen::DoStringAdd(LStringAdd* instr) {
5394 DCHECK(ToRegister(instr->context()).is(cp));
5395 DCHECK(ToRegister(instr->left()).Is(x1));
5396 DCHECK(ToRegister(instr->right()).Is(x0));
5397 StringAddStub stub(isolate(),
5398 instr->hydrogen()->flags(),
5399 instr->hydrogen()->pretenure_flag());
5400 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
5401 }
5402
5403
5404 void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
5405 class DeferredStringCharCodeAt: public LDeferredCode {
5406 public:
5407 DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
5408 : LDeferredCode(codegen), instr_(instr) { }
5409 virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); }
5410 virtual LInstruction* instr() { return instr_; }
5411 private:
5412 LStringCharCodeAt* instr_;
5413 };
5414
5415 DeferredStringCharCodeAt* deferred =
5416 new(zone()) DeferredStringCharCodeAt(this, instr);
5417
5418 StringCharLoadGenerator::Generate(masm(),
5419 ToRegister(instr->string()),
5420 ToRegister32(instr->index()),
5421 ToRegister(instr->result()),
5422 deferred->entry());
5423 __ Bind(deferred->exit());
5424 }
5425
5426
5427 void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
5428 Register string = ToRegister(instr->string());
5429 Register result = ToRegister(instr->result());
5430
5431 // TODO(3095996): Get rid of this. For now, we need to make the
5432 // result register contain a valid pointer because it is already
5433 // contained in the register pointer map.
5434 __ Mov(result, 0);
5435
5436 PushSafepointRegistersScope scope(this);
5437 __ Push(string);
5438 // Push the index as a smi. This is safe because of the checks in
5439 // DoStringCharCodeAt above.
5440 Register index = ToRegister(instr->index());
5441 __ SmiTagAndPush(index);
5442
5443 CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, instr,
5444 instr->context());
5445 __ AssertSmi(x0);
5446 __ SmiUntag(x0);
5447 __ StoreToSafepointRegisterSlot(x0, result);
5448 }
5449
5450
5451 void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
5452 class DeferredStringCharFromCode: public LDeferredCode {
5453 public:
5454 DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
5455 : LDeferredCode(codegen), instr_(instr) { }
5456 virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); }
5457 virtual LInstruction* instr() { return instr_; }
5458 private:
5459 LStringCharFromCode* instr_;
5460 };
5461
5462 DeferredStringCharFromCode* deferred =
5463 new(zone()) DeferredStringCharFromCode(this, instr);
5464
5465 DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
5466 Register char_code = ToRegister32(instr->char_code());
5467 Register result = ToRegister(instr->result());
5468
5469 __ Cmp(char_code, String::kMaxOneByteCharCode);
5470 __ B(hi, deferred->entry());
5471 __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
5472 __ Add(result, result, FixedArray::kHeaderSize - kHeapObjectTag);
5473 __ Ldr(result, MemOperand(result, char_code, SXTW, kPointerSizeLog2));
5474 __ CompareRoot(result, Heap::kUndefinedValueRootIndex);
5475 __ B(eq, deferred->entry());
5476 __ Bind(deferred->exit());
5477 }
5478
5479
5480 void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
5481 Register char_code = ToRegister(instr->char_code());
5482 Register result = ToRegister(instr->result());
5483
5484 // TODO(3095996): Get rid of this. For now, we need to make the
5485 // result register contain a valid pointer because it is already
5486 // contained in the register pointer map.
5487 __ Mov(result, 0);
5488
5489 PushSafepointRegistersScope scope(this);
5490 __ SmiTagAndPush(char_code);
5491 CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr, instr->context());
5492 __ StoreToSafepointRegisterSlot(x0, result);
5493 }
5494
5495
5496 void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
5497 DCHECK(ToRegister(instr->context()).is(cp));
5498 DCHECK(ToRegister(instr->left()).is(x1));
5499 DCHECK(ToRegister(instr->right()).is(x0));
5500
5501 Handle<Code> code = CodeFactory::StringCompare(isolate()).code();
5502 CallCode(code, RelocInfo::CODE_TARGET, instr);
5503
5504 EmitCompareAndBranch(instr, TokenToCondition(instr->op(), false), x0, 0);
5505 }
5506
5507
5508 void LCodeGen::DoSubI(LSubI* instr) {
5509 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
5510 Register result = ToRegister32(instr->result());
5511 Register left = ToRegister32(instr->left());
5512 Operand right = ToShiftedRightOperand32(instr->right(), instr);
5513
5514 if (can_overflow) {
5515 __ Subs(result, left, right);
5516 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
5517 } else {
5518 __ Sub(result, left, right);
5519 }
5520 }
5521
5522
5523 void LCodeGen::DoSubS(LSubS* instr) {
5524 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
5525 Register result = ToRegister(instr->result());
5526 Register left = ToRegister(instr->left());
5527 Operand right = ToOperand(instr->right());
5528 if (can_overflow) {
5529 __ Subs(result, left, right);
5530 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
5531 } else {
5532 __ Sub(result, left, right);
5533 }
5534 }
5535
5536
5537 void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr,
5538 LOperand* value,
5539 LOperand* temp1,
5540 LOperand* temp2) {
5541 Register input = ToRegister(value);
5542 Register scratch1 = ToRegister(temp1);
5543 DoubleRegister dbl_scratch1 = double_scratch();
5544
5545 Label done;
5546
5547 if (instr->truncating()) {
5548 Register output = ToRegister(instr->result());
5549 Label check_bools;
5550
5551 // If it's not a heap number, jump to undefined check.
5552 __ JumpIfNotHeapNumber(input, &check_bools);
5553
5554 // A heap number: load value and convert to int32 using truncating function.
5555 __ TruncateHeapNumberToI(output, input);
5556 __ B(&done);
5557
5558 __ Bind(&check_bools);
5559
5560 Register true_root = output;
5561 Register false_root = scratch1;
5562 __ LoadTrueFalseRoots(true_root, false_root);
5563 __ Cmp(input, true_root);
5564 __ Cset(output, eq);
5565 __ Ccmp(input, false_root, ZFlag, ne);
5566 __ B(eq, &done);
5567
5568 // Output contains zero, undefined is converted to zero for truncating
5569 // conversions.
5570 DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr,
5571 Deoptimizer::kNotAHeapNumberUndefinedBoolean);
5572 } else {
5573 Register output = ToRegister32(instr->result());
5574 DoubleRegister dbl_scratch2 = ToDoubleRegister(temp2);
5575
5576 DeoptimizeIfNotHeapNumber(input, instr);
5577
5578 // A heap number: load value and convert to int32 using non-truncating
5579 // function. If the result is out of range, branch to deoptimize.
5580 __ Ldr(dbl_scratch1, FieldMemOperand(input, HeapNumber::kValueOffset));
5581 __ TryRepresentDoubleAsInt32(output, dbl_scratch1, dbl_scratch2);
5582 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN);
5583
5584 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
5585 __ Cmp(output, 0);
5586 __ B(ne, &done);
5587 __ Fmov(scratch1, dbl_scratch1);
5588 DeoptimizeIfNegative(scratch1, instr, Deoptimizer::kMinusZero);
5589 }
5590 }
5591 __ Bind(&done);
5592 }
5593
5594
5595 void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
5596 class DeferredTaggedToI: public LDeferredCode {
5597 public:
5598 DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
5599 : LDeferredCode(codegen), instr_(instr) { }
5600 virtual void Generate() {
5601 codegen()->DoDeferredTaggedToI(instr_, instr_->value(), instr_->temp1(),
5602 instr_->temp2());
5603 }
5604
5605 virtual LInstruction* instr() { return instr_; }
5606 private:
5607 LTaggedToI* instr_;
5608 };
5609
5610 Register input = ToRegister(instr->value());
5611 Register output = ToRegister(instr->result());
5612
5613 if (instr->hydrogen()->value()->representation().IsSmi()) {
5614 __ SmiUntag(output, input);
5615 } else {
5616 DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr);
5617
5618 __ JumpIfNotSmi(input, deferred->entry());
5619 __ SmiUntag(output, input);
5620 __ Bind(deferred->exit());
5621 }
5622 }
5623
5624
5625 void LCodeGen::DoThisFunction(LThisFunction* instr) {
5626 Register result = ToRegister(instr->result());
5627 __ Ldr(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
5628 }
5629
5630
5631 void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
5632 DCHECK(ToRegister(instr->value()).Is(x0));
5633 DCHECK(ToRegister(instr->result()).Is(x0));
5634 __ Push(x0);
5635 CallRuntime(Runtime::kToFastProperties, 1, instr);
5636 }
5637
5638
5639 void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) {
5640 DCHECK(ToRegister(instr->context()).is(cp));
5641 Label materialized;
5642 // Registers will be used as follows:
5643 // x7 = literals array.
5644 // x1 = regexp literal.
5645 // x0 = regexp literal clone.
5646 // x10-x12 are used as temporaries.
5647 int literal_offset =
5648 LiteralsArray::OffsetOfLiteralAt(instr->hydrogen()->literal_index());
5649 __ LoadObject(x7, instr->hydrogen()->literals());
5650 __ Ldr(x1, FieldMemOperand(x7, literal_offset));
5651 __ JumpIfNotRoot(x1, Heap::kUndefinedValueRootIndex, &materialized);
5652
5653 // Create regexp literal using runtime function
5654 // Result will be in x0.
5655 __ Mov(x12, Operand(Smi::FromInt(instr->hydrogen()->literal_index())));
5656 __ Mov(x11, Operand(instr->hydrogen()->pattern()));
5657 __ Mov(x10, Operand(instr->hydrogen()->flags()));
5658 __ Push(x7, x12, x11, x10);
5659 CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr);
5660 __ Mov(x1, x0);
5661
5662 __ Bind(&materialized);
5663 int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
5664 Label allocated, runtime_allocate;
5665
5666 __ Allocate(size, x0, x10, x11, &runtime_allocate, TAG_OBJECT);
5667 __ B(&allocated);
5668
5669 __ Bind(&runtime_allocate);
5670 __ Mov(x0, Smi::FromInt(size));
5671 __ Push(x1, x0);
5672 CallRuntime(Runtime::kAllocateInNewSpace, 1, instr);
5673 __ Pop(x1);
5674
5675 __ Bind(&allocated);
5676 // Copy the content into the newly allocated memory.
5677 __ CopyFields(x0, x1, CPURegList(x10, x11, x12), size / kPointerSize);
5678 }
5679
5680
5681 void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
5682 Register object = ToRegister(instr->object());
5683
5684 Handle<Map> from_map = instr->original_map();
5685 Handle<Map> to_map = instr->transitioned_map();
5686 ElementsKind from_kind = instr->from_kind();
5687 ElementsKind to_kind = instr->to_kind();
5688
5689 Label not_applicable;
5690
5691 if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
5692 Register temp1 = ToRegister(instr->temp1());
5693 Register new_map = ToRegister(instr->temp2());
5694 __ CheckMap(object, temp1, from_map, &not_applicable, DONT_DO_SMI_CHECK);
5695 __ Mov(new_map, Operand(to_map));
5696 __ Str(new_map, FieldMemOperand(object, HeapObject::kMapOffset));
5697 // Write barrier.
5698 __ RecordWriteForMap(object, new_map, temp1, GetLinkRegisterState(),
5699 kDontSaveFPRegs);
5700 } else {
5701 {
5702 UseScratchRegisterScope temps(masm());
5703 // Use the temp register only in a restricted scope - the codegen checks
5704 // that we do not use any register across a call.
5705 __ CheckMap(object, temps.AcquireX(), from_map, &not_applicable,
5706 DONT_DO_SMI_CHECK);
5707 }
5708 DCHECK(object.is(x0));
5709 DCHECK(ToRegister(instr->context()).is(cp));
5710 PushSafepointRegistersScope scope(this);
5711 __ Mov(x1, Operand(to_map));
5712 bool is_js_array = from_map->instance_type() == JS_ARRAY_TYPE;
5713 TransitionElementsKindStub stub(isolate(), from_kind, to_kind, is_js_array);
5714 __ CallStub(&stub);
5715 RecordSafepointWithRegisters(
5716 instr->pointer_map(), 0, Safepoint::kLazyDeopt);
5717 }
5718 __ Bind(&not_applicable);
5719 }
5720
5721
5722 void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
5723 Register object = ToRegister(instr->object());
5724 Register temp1 = ToRegister(instr->temp1());
5725 Register temp2 = ToRegister(instr->temp2());
5726
5727 Label no_memento_found;
5728 __ TestJSArrayForAllocationMemento(object, temp1, temp2, &no_memento_found);
5729 DeoptimizeIf(eq, instr, Deoptimizer::kMementoFound);
5730 __ Bind(&no_memento_found);
5731 }
5732
5733
5734 void LCodeGen::DoTruncateDoubleToIntOrSmi(LTruncateDoubleToIntOrSmi* instr) {
5735 DoubleRegister input = ToDoubleRegister(instr->value());
5736 Register result = ToRegister(instr->result());
5737 __ TruncateDoubleToI(result, input);
5738 if (instr->tag_result()) {
5739 __ SmiTag(result, result);
5740 }
5741 }
5742
5743
5744 void LCodeGen::DoTypeof(LTypeof* instr) {
5745 DCHECK(ToRegister(instr->value()).is(x3));
5746 DCHECK(ToRegister(instr->result()).is(x0));
5747 Label end, do_call;
5748 Register value_register = ToRegister(instr->value());
5749 __ JumpIfNotSmi(value_register, &do_call);
5750 __ Mov(x0, Immediate(isolate()->factory()->number_string()));
5751 __ B(&end);
5752 __ Bind(&do_call);
5753 TypeofStub stub(isolate());
5754 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
5755 __ Bind(&end);
5756 }
5757
5758
5759 void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
5760 Handle<String> type_name = instr->type_literal();
5761 Label* true_label = instr->TrueLabel(chunk_);
5762 Label* false_label = instr->FalseLabel(chunk_);
5763 Register value = ToRegister(instr->value());
5764
5765 Factory* factory = isolate()->factory();
5766 if (String::Equals(type_name, factory->number_string())) {
5767 __ JumpIfSmi(value, true_label);
5768
5769 int true_block = instr->TrueDestination(chunk_);
5770 int false_block = instr->FalseDestination(chunk_);
5771 int next_block = GetNextEmittedBlock();
5772
5773 if (true_block == false_block) {
5774 EmitGoto(true_block);
5775 } else if (true_block == next_block) {
5776 __ JumpIfNotHeapNumber(value, chunk_->GetAssemblyLabel(false_block));
5777 } else {
5778 __ JumpIfHeapNumber(value, chunk_->GetAssemblyLabel(true_block));
5779 if (false_block != next_block) {
5780 __ B(chunk_->GetAssemblyLabel(false_block));
5781 }
5782 }
5783
5784 } else if (String::Equals(type_name, factory->string_string())) {
5785 DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));
5786 Register map = ToRegister(instr->temp1());
5787 Register scratch = ToRegister(instr->temp2());
5788
5789 __ JumpIfSmi(value, false_label);
5790 __ CompareObjectType(value, map, scratch, FIRST_NONSTRING_TYPE);
5791 EmitBranch(instr, lt);
5792
5793 } else if (String::Equals(type_name, factory->symbol_string())) {
5794 DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));
5795 Register map = ToRegister(instr->temp1());
5796 Register scratch = ToRegister(instr->temp2());
5797
5798 __ JumpIfSmi(value, false_label);
5799 __ CompareObjectType(value, map, scratch, SYMBOL_TYPE);
5800 EmitBranch(instr, eq);
5801
5802 } else if (String::Equals(type_name, factory->boolean_string())) {
5803 __ JumpIfRoot(value, Heap::kTrueValueRootIndex, true_label);
5804 __ CompareRoot(value, Heap::kFalseValueRootIndex);
5805 EmitBranch(instr, eq);
5806
5807 } else if (String::Equals(type_name, factory->undefined_string())) {
5808 DCHECK(instr->temp1() != NULL);
5809 Register scratch = ToRegister(instr->temp1());
5810
5811 __ JumpIfRoot(value, Heap::kUndefinedValueRootIndex, true_label);
5812 __ JumpIfSmi(value, false_label);
5813 // Check for undetectable objects and jump to the true branch in this case.
5814 __ Ldr(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
5815 __ Ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
5816 EmitTestAndBranch(instr, ne, scratch, 1 << Map::kIsUndetectable);
5817
5818 } else if (String::Equals(type_name, factory->function_string())) {
5819 DCHECK(instr->temp1() != NULL);
5820 Register scratch = ToRegister(instr->temp1());
5821
5822 __ JumpIfSmi(value, false_label);
5823 __ Ldr(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
5824 __ Ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
5825 __ And(scratch, scratch,
5826 (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable));
5827 EmitCompareAndBranch(instr, eq, scratch, 1 << Map::kIsCallable);
5828
5829 } else if (String::Equals(type_name, factory->object_string())) {
5830 DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));
5831 Register map = ToRegister(instr->temp1());
5832 Register scratch = ToRegister(instr->temp2());
5833
5834 __ JumpIfSmi(value, false_label);
5835 __ JumpIfRoot(value, Heap::kNullValueRootIndex, true_label);
5836 STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
5837 __ JumpIfObjectType(value, map, scratch, FIRST_SPEC_OBJECT_TYPE,
5838 false_label, lt);
5839 // Check for callable or undetectable objects => false.
5840 __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
5841 EmitTestAndBranch(instr, eq, scratch,
5842 (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable));
5843
5844 // clang-format off
5845 #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \
5846 } else if (String::Equals(type_name, factory->type##_string())) { \
5847 DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL)); \
5848 Register map = ToRegister(instr->temp1()); \
5849 \
5850 __ JumpIfSmi(value, false_label); \
5851 __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset)); \
5852 __ CompareRoot(map, Heap::k##Type##MapRootIndex); \
5853 EmitBranch(instr, eq);
5854 SIMD128_TYPES(SIMD128_TYPE)
5855 #undef SIMD128_TYPE
5856 // clang-format on
5857
5858 } else {
5859 __ B(false_label);
5860 }
5861 }
5862
5863
5864 void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
5865 __ Ucvtf(ToDoubleRegister(instr->result()), ToRegister32(instr->value()));
5866 }
5867
5868
5869 void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
5870 Register object = ToRegister(instr->value());
5871 Register map = ToRegister(instr->map());
5872 Register temp = ToRegister(instr->temp());
5873 __ Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
5874 __ Cmp(map, temp);
5875 DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap);
5876 }
5877
5878
5879 void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
5880 Register receiver = ToRegister(instr->receiver());
5881 Register function = ToRegister(instr->function());
5882 Register result = ToRegister(instr->result());
5883
5884 // If the receiver is null or undefined, we have to pass the global object as
5885 // a receiver to normal functions. Values have to be passed unchanged to
5886 // builtins and strict-mode functions.
5887 Label global_object, done, copy_receiver;
5888
5889 if (!instr->hydrogen()->known_function()) {
5890 __ Ldr(result, FieldMemOperand(function,
5891 JSFunction::kSharedFunctionInfoOffset));
5892
5893 // CompilerHints is an int32 field. See objects.h.
5894 __ Ldr(result.W(),
5895 FieldMemOperand(result, SharedFunctionInfo::kCompilerHintsOffset));
5896
5897 // Do not transform the receiver to object for strict mode functions.
5898 __ Tbnz(result, SharedFunctionInfo::kStrictModeFunction, &copy_receiver);
5899
5900 // Do not transform the receiver to object for builtins.
5901 __ Tbnz(result, SharedFunctionInfo::kNative, &copy_receiver);
5902 }
5903
5904 // Normal function. Replace undefined or null with global receiver.
5905 __ JumpIfRoot(receiver, Heap::kNullValueRootIndex, &global_object);
5906 __ JumpIfRoot(receiver, Heap::kUndefinedValueRootIndex, &global_object);
5907
5908 // Deoptimize if the receiver is not a JS object.
5909 DeoptimizeIfSmi(receiver, instr, Deoptimizer::kSmi);
5910 __ CompareObjectType(receiver, result, result, FIRST_SPEC_OBJECT_TYPE);
5911 __ B(ge, &copy_receiver);
5912 Deoptimize(instr, Deoptimizer::kNotAJavaScriptObject);
5913
5914 __ Bind(&global_object);
5915 __ Ldr(result, FieldMemOperand(function, JSFunction::kContextOffset));
5916 __ Ldr(result, ContextMemOperand(result, Context::GLOBAL_OBJECT_INDEX));
5917 __ Ldr(result, FieldMemOperand(result, GlobalObject::kGlobalProxyOffset));
5918 __ B(&done);
5919
5920 __ Bind(&copy_receiver);
5921 __ Mov(result, receiver);
5922 __ Bind(&done);
5923 }
5924
5925
5926 void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
5927 Register result,
5928 Register object,
5929 Register index) {
5930 PushSafepointRegistersScope scope(this);
5931 __ Push(object);
5932 __ Push(index);
5933 __ Mov(cp, 0);
5934 __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
5935 RecordSafepointWithRegisters(
5936 instr->pointer_map(), 2, Safepoint::kNoLazyDeopt);
5937 __ StoreToSafepointRegisterSlot(x0, result);
5938 }
5939
5940
5941 void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
5942 class DeferredLoadMutableDouble final : public LDeferredCode {
5943 public:
5944 DeferredLoadMutableDouble(LCodeGen* codegen,
5945 LLoadFieldByIndex* instr,
5946 Register result,
5947 Register object,
5948 Register index)
5949 : LDeferredCode(codegen),
5950 instr_(instr),
5951 result_(result),
5952 object_(object),
5953 index_(index) {
5954 }
5955 void Generate() override {
5956 codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_);
5957 }
5958 LInstruction* instr() override { return instr_; }
5959
5960 private:
5961 LLoadFieldByIndex* instr_;
5962 Register result_;
5963 Register object_;
5964 Register index_;
5965 };
5966 Register object = ToRegister(instr->object());
5967 Register index = ToRegister(instr->index());
5968 Register result = ToRegister(instr->result());
5969
5970 __ AssertSmi(index);
5971
5972 DeferredLoadMutableDouble* deferred;
5973 deferred = new(zone()) DeferredLoadMutableDouble(
5974 this, instr, result, object, index);
5975
5976 Label out_of_object, done;
5977
5978 __ TestAndBranchIfAnySet(
5979 index, reinterpret_cast<uint64_t>(Smi::FromInt(1)), deferred->entry());
5980 __ Mov(index, Operand(index, ASR, 1));
5981
5982 __ Cmp(index, Smi::FromInt(0));
5983 __ B(lt, &out_of_object);
5984
5985 STATIC_ASSERT(kPointerSizeLog2 > kSmiTagSize);
5986 __ Add(result, object, Operand::UntagSmiAndScale(index, kPointerSizeLog2));
5987 __ Ldr(result, FieldMemOperand(result, JSObject::kHeaderSize));
5988
5989 __ B(&done);
5990
5991 __ Bind(&out_of_object);
5992 __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
5993 // Index is equal to negated out of object property index plus 1.
5994 __ Sub(result, result, Operand::UntagSmiAndScale(index, kPointerSizeLog2));
5995 __ Ldr(result, FieldMemOperand(result,
5996 FixedArray::kHeaderSize - kPointerSize));
5997 __ Bind(deferred->exit());
5998 __ Bind(&done);
5999 }
6000
6001
6002 void LCodeGen::DoStoreFrameContext(LStoreFrameContext* instr) {
6003 Register context = ToRegister(instr->context());
6004 __ Str(context, MemOperand(fp, StandardFrameConstants::kContextOffset));
6005 }
6006
6007
6008 void LCodeGen::DoAllocateBlockContext(LAllocateBlockContext* instr) {
6009 Handle<ScopeInfo> scope_info = instr->scope_info();
6010 __ Push(scope_info);
6011 __ Push(ToRegister(instr->function()));
6012 CallRuntime(Runtime::kPushBlockContext, 2, instr);
6013 RecordSafepoint(Safepoint::kNoLazyDeopt);
6014 }
6015
6016
6017 } // namespace internal
6018 } // namespace v8
OLDNEW
« no previous file with comments | « src/arm64/lithium-codegen-arm64.h ('k') | src/arm64/lithium-gap-resolver-arm64.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698