OLD | NEW |
| (Empty) |
1 // Copyright 2013 the V8 project authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "src/arm64/frames-arm64.h" | |
6 #include "src/arm64/lithium-codegen-arm64.h" | |
7 #include "src/arm64/lithium-gap-resolver-arm64.h" | |
8 #include "src/base/bits.h" | |
9 #include "src/code-factory.h" | |
10 #include "src/code-stubs.h" | |
11 #include "src/hydrogen-osr.h" | |
12 #include "src/ic/ic.h" | |
13 #include "src/ic/stub-cache.h" | |
14 #include "src/profiler/cpu-profiler.h" | |
15 | |
16 namespace v8 { | |
17 namespace internal { | |
18 | |
19 | |
20 class SafepointGenerator final : public CallWrapper { | |
21 public: | |
22 SafepointGenerator(LCodeGen* codegen, | |
23 LPointerMap* pointers, | |
24 Safepoint::DeoptMode mode) | |
25 : codegen_(codegen), | |
26 pointers_(pointers), | |
27 deopt_mode_(mode) { } | |
28 virtual ~SafepointGenerator() { } | |
29 | |
30 virtual void BeforeCall(int call_size) const { } | |
31 | |
32 virtual void AfterCall() const { | |
33 codegen_->RecordSafepoint(pointers_, deopt_mode_); | |
34 } | |
35 | |
36 private: | |
37 LCodeGen* codegen_; | |
38 LPointerMap* pointers_; | |
39 Safepoint::DeoptMode deopt_mode_; | |
40 }; | |
41 | |
42 | |
43 #define __ masm()-> | |
44 | |
45 // Emit code to branch if the given condition holds. | |
46 // The code generated here doesn't modify the flags and they must have | |
47 // been set by some prior instructions. | |
48 // | |
49 // The EmitInverted function simply inverts the condition. | |
50 class BranchOnCondition : public BranchGenerator { | |
51 public: | |
52 BranchOnCondition(LCodeGen* codegen, Condition cond) | |
53 : BranchGenerator(codegen), | |
54 cond_(cond) { } | |
55 | |
56 virtual void Emit(Label* label) const { | |
57 __ B(cond_, label); | |
58 } | |
59 | |
60 virtual void EmitInverted(Label* label) const { | |
61 if (cond_ != al) { | |
62 __ B(NegateCondition(cond_), label); | |
63 } | |
64 } | |
65 | |
66 private: | |
67 Condition cond_; | |
68 }; | |
69 | |
70 | |
71 // Emit code to compare lhs and rhs and branch if the condition holds. | |
72 // This uses MacroAssembler's CompareAndBranch function so it will handle | |
73 // converting the comparison to Cbz/Cbnz if the right-hand side is 0. | |
74 // | |
75 // EmitInverted still compares the two operands but inverts the condition. | |
76 class CompareAndBranch : public BranchGenerator { | |
77 public: | |
78 CompareAndBranch(LCodeGen* codegen, | |
79 Condition cond, | |
80 const Register& lhs, | |
81 const Operand& rhs) | |
82 : BranchGenerator(codegen), | |
83 cond_(cond), | |
84 lhs_(lhs), | |
85 rhs_(rhs) { } | |
86 | |
87 virtual void Emit(Label* label) const { | |
88 __ CompareAndBranch(lhs_, rhs_, cond_, label); | |
89 } | |
90 | |
91 virtual void EmitInverted(Label* label) const { | |
92 __ CompareAndBranch(lhs_, rhs_, NegateCondition(cond_), label); | |
93 } | |
94 | |
95 private: | |
96 Condition cond_; | |
97 const Register& lhs_; | |
98 const Operand& rhs_; | |
99 }; | |
100 | |
101 | |
102 // Test the input with the given mask and branch if the condition holds. | |
103 // If the condition is 'eq' or 'ne' this will use MacroAssembler's | |
104 // TestAndBranchIfAllClear and TestAndBranchIfAnySet so it will handle the | |
105 // conversion to Tbz/Tbnz when possible. | |
106 class TestAndBranch : public BranchGenerator { | |
107 public: | |
108 TestAndBranch(LCodeGen* codegen, | |
109 Condition cond, | |
110 const Register& value, | |
111 uint64_t mask) | |
112 : BranchGenerator(codegen), | |
113 cond_(cond), | |
114 value_(value), | |
115 mask_(mask) { } | |
116 | |
117 virtual void Emit(Label* label) const { | |
118 switch (cond_) { | |
119 case eq: | |
120 __ TestAndBranchIfAllClear(value_, mask_, label); | |
121 break; | |
122 case ne: | |
123 __ TestAndBranchIfAnySet(value_, mask_, label); | |
124 break; | |
125 default: | |
126 __ Tst(value_, mask_); | |
127 __ B(cond_, label); | |
128 } | |
129 } | |
130 | |
131 virtual void EmitInverted(Label* label) const { | |
132 // The inverse of "all clear" is "any set" and vice versa. | |
133 switch (cond_) { | |
134 case eq: | |
135 __ TestAndBranchIfAnySet(value_, mask_, label); | |
136 break; | |
137 case ne: | |
138 __ TestAndBranchIfAllClear(value_, mask_, label); | |
139 break; | |
140 default: | |
141 __ Tst(value_, mask_); | |
142 __ B(NegateCondition(cond_), label); | |
143 } | |
144 } | |
145 | |
146 private: | |
147 Condition cond_; | |
148 const Register& value_; | |
149 uint64_t mask_; | |
150 }; | |
151 | |
152 | |
153 // Test the input and branch if it is non-zero and not a NaN. | |
154 class BranchIfNonZeroNumber : public BranchGenerator { | |
155 public: | |
156 BranchIfNonZeroNumber(LCodeGen* codegen, const FPRegister& value, | |
157 const FPRegister& scratch) | |
158 : BranchGenerator(codegen), value_(value), scratch_(scratch) { } | |
159 | |
160 virtual void Emit(Label* label) const { | |
161 __ Fabs(scratch_, value_); | |
162 // Compare with 0.0. Because scratch_ is positive, the result can be one of | |
163 // nZCv (equal), nzCv (greater) or nzCV (unordered). | |
164 __ Fcmp(scratch_, 0.0); | |
165 __ B(gt, label); | |
166 } | |
167 | |
168 virtual void EmitInverted(Label* label) const { | |
169 __ Fabs(scratch_, value_); | |
170 __ Fcmp(scratch_, 0.0); | |
171 __ B(le, label); | |
172 } | |
173 | |
174 private: | |
175 const FPRegister& value_; | |
176 const FPRegister& scratch_; | |
177 }; | |
178 | |
179 | |
180 // Test the input and branch if it is a heap number. | |
181 class BranchIfHeapNumber : public BranchGenerator { | |
182 public: | |
183 BranchIfHeapNumber(LCodeGen* codegen, const Register& value) | |
184 : BranchGenerator(codegen), value_(value) { } | |
185 | |
186 virtual void Emit(Label* label) const { | |
187 __ JumpIfHeapNumber(value_, label); | |
188 } | |
189 | |
190 virtual void EmitInverted(Label* label) const { | |
191 __ JumpIfNotHeapNumber(value_, label); | |
192 } | |
193 | |
194 private: | |
195 const Register& value_; | |
196 }; | |
197 | |
198 | |
199 // Test the input and branch if it is the specified root value. | |
200 class BranchIfRoot : public BranchGenerator { | |
201 public: | |
202 BranchIfRoot(LCodeGen* codegen, const Register& value, | |
203 Heap::RootListIndex index) | |
204 : BranchGenerator(codegen), value_(value), index_(index) { } | |
205 | |
206 virtual void Emit(Label* label) const { | |
207 __ JumpIfRoot(value_, index_, label); | |
208 } | |
209 | |
210 virtual void EmitInverted(Label* label) const { | |
211 __ JumpIfNotRoot(value_, index_, label); | |
212 } | |
213 | |
214 private: | |
215 const Register& value_; | |
216 const Heap::RootListIndex index_; | |
217 }; | |
218 | |
219 | |
220 void LCodeGen::WriteTranslation(LEnvironment* environment, | |
221 Translation* translation) { | |
222 if (environment == NULL) return; | |
223 | |
224 // The translation includes one command per value in the environment. | |
225 int translation_size = environment->translation_size(); | |
226 | |
227 WriteTranslation(environment->outer(), translation); | |
228 WriteTranslationFrame(environment, translation); | |
229 | |
230 int object_index = 0; | |
231 int dematerialized_index = 0; | |
232 for (int i = 0; i < translation_size; ++i) { | |
233 LOperand* value = environment->values()->at(i); | |
234 AddToTranslation( | |
235 environment, translation, value, environment->HasTaggedValueAt(i), | |
236 environment->HasUint32ValueAt(i), &object_index, &dematerialized_index); | |
237 } | |
238 } | |
239 | |
240 | |
241 void LCodeGen::AddToTranslation(LEnvironment* environment, | |
242 Translation* translation, | |
243 LOperand* op, | |
244 bool is_tagged, | |
245 bool is_uint32, | |
246 int* object_index_pointer, | |
247 int* dematerialized_index_pointer) { | |
248 if (op == LEnvironment::materialization_marker()) { | |
249 int object_index = (*object_index_pointer)++; | |
250 if (environment->ObjectIsDuplicateAt(object_index)) { | |
251 int dupe_of = environment->ObjectDuplicateOfAt(object_index); | |
252 translation->DuplicateObject(dupe_of); | |
253 return; | |
254 } | |
255 int object_length = environment->ObjectLengthAt(object_index); | |
256 if (environment->ObjectIsArgumentsAt(object_index)) { | |
257 translation->BeginArgumentsObject(object_length); | |
258 } else { | |
259 translation->BeginCapturedObject(object_length); | |
260 } | |
261 int dematerialized_index = *dematerialized_index_pointer; | |
262 int env_offset = environment->translation_size() + dematerialized_index; | |
263 *dematerialized_index_pointer += object_length; | |
264 for (int i = 0; i < object_length; ++i) { | |
265 LOperand* value = environment->values()->at(env_offset + i); | |
266 AddToTranslation(environment, | |
267 translation, | |
268 value, | |
269 environment->HasTaggedValueAt(env_offset + i), | |
270 environment->HasUint32ValueAt(env_offset + i), | |
271 object_index_pointer, | |
272 dematerialized_index_pointer); | |
273 } | |
274 return; | |
275 } | |
276 | |
277 if (op->IsStackSlot()) { | |
278 int index = op->index(); | |
279 if (index >= 0) { | |
280 index += StandardFrameConstants::kFixedFrameSize / kPointerSize; | |
281 } | |
282 if (is_tagged) { | |
283 translation->StoreStackSlot(index); | |
284 } else if (is_uint32) { | |
285 translation->StoreUint32StackSlot(index); | |
286 } else { | |
287 translation->StoreInt32StackSlot(index); | |
288 } | |
289 } else if (op->IsDoubleStackSlot()) { | |
290 int index = op->index(); | |
291 if (index >= 0) { | |
292 index += StandardFrameConstants::kFixedFrameSize / kPointerSize; | |
293 } | |
294 translation->StoreDoubleStackSlot(index); | |
295 } else if (op->IsRegister()) { | |
296 Register reg = ToRegister(op); | |
297 if (is_tagged) { | |
298 translation->StoreRegister(reg); | |
299 } else if (is_uint32) { | |
300 translation->StoreUint32Register(reg); | |
301 } else { | |
302 translation->StoreInt32Register(reg); | |
303 } | |
304 } else if (op->IsDoubleRegister()) { | |
305 DoubleRegister reg = ToDoubleRegister(op); | |
306 translation->StoreDoubleRegister(reg); | |
307 } else if (op->IsConstantOperand()) { | |
308 HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op)); | |
309 int src_index = DefineDeoptimizationLiteral(constant->handle(isolate())); | |
310 translation->StoreLiteral(src_index); | |
311 } else { | |
312 UNREACHABLE(); | |
313 } | |
314 } | |
315 | |
316 | |
317 void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment, | |
318 Safepoint::DeoptMode mode) { | |
319 environment->set_has_been_used(); | |
320 if (!environment->HasBeenRegistered()) { | |
321 int frame_count = 0; | |
322 int jsframe_count = 0; | |
323 for (LEnvironment* e = environment; e != NULL; e = e->outer()) { | |
324 ++frame_count; | |
325 if (e->frame_type() == JS_FUNCTION) { | |
326 ++jsframe_count; | |
327 } | |
328 } | |
329 Translation translation(&translations_, frame_count, jsframe_count, zone()); | |
330 WriteTranslation(environment, &translation); | |
331 int deoptimization_index = deoptimizations_.length(); | |
332 int pc_offset = masm()->pc_offset(); | |
333 environment->Register(deoptimization_index, | |
334 translation.index(), | |
335 (mode == Safepoint::kLazyDeopt) ? pc_offset : -1); | |
336 deoptimizations_.Add(environment, zone()); | |
337 } | |
338 } | |
339 | |
340 | |
341 void LCodeGen::CallCode(Handle<Code> code, | |
342 RelocInfo::Mode mode, | |
343 LInstruction* instr) { | |
344 CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT); | |
345 } | |
346 | |
347 | |
348 void LCodeGen::CallCodeGeneric(Handle<Code> code, | |
349 RelocInfo::Mode mode, | |
350 LInstruction* instr, | |
351 SafepointMode safepoint_mode) { | |
352 DCHECK(instr != NULL); | |
353 | |
354 Assembler::BlockPoolsScope scope(masm_); | |
355 __ Call(code, mode); | |
356 RecordSafepointWithLazyDeopt(instr, safepoint_mode); | |
357 | |
358 if ((code->kind() == Code::BINARY_OP_IC) || | |
359 (code->kind() == Code::COMPARE_IC)) { | |
360 // Signal that we don't inline smi code before these stubs in the | |
361 // optimizing code generator. | |
362 InlineSmiCheckInfo::EmitNotInlined(masm()); | |
363 } | |
364 } | |
365 | |
366 | |
367 void LCodeGen::DoCallFunction(LCallFunction* instr) { | |
368 DCHECK(ToRegister(instr->context()).is(cp)); | |
369 DCHECK(ToRegister(instr->function()).Is(x1)); | |
370 DCHECK(ToRegister(instr->result()).Is(x0)); | |
371 | |
372 int arity = instr->arity(); | |
373 CallFunctionFlags flags = instr->hydrogen()->function_flags(); | |
374 if (instr->hydrogen()->HasVectorAndSlot()) { | |
375 Register slot_register = ToRegister(instr->temp_slot()); | |
376 Register vector_register = ToRegister(instr->temp_vector()); | |
377 DCHECK(slot_register.is(x3)); | |
378 DCHECK(vector_register.is(x2)); | |
379 | |
380 AllowDeferredHandleDereference vector_structure_check; | |
381 Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector(); | |
382 int index = vector->GetIndex(instr->hydrogen()->slot()); | |
383 | |
384 __ Mov(vector_register, vector); | |
385 __ Mov(slot_register, Operand(Smi::FromInt(index))); | |
386 | |
387 CallICState::CallType call_type = | |
388 (flags & CALL_AS_METHOD) ? CallICState::METHOD : CallICState::FUNCTION; | |
389 | |
390 Handle<Code> ic = | |
391 CodeFactory::CallICInOptimizedCode(isolate(), arity, call_type).code(); | |
392 CallCode(ic, RelocInfo::CODE_TARGET, instr); | |
393 } else { | |
394 CallFunctionStub stub(isolate(), arity, flags); | |
395 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); | |
396 } | |
397 RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta()); | |
398 } | |
399 | |
400 | |
401 void LCodeGen::DoCallNew(LCallNew* instr) { | |
402 DCHECK(ToRegister(instr->context()).is(cp)); | |
403 DCHECK(instr->IsMarkedAsCall()); | |
404 DCHECK(ToRegister(instr->constructor()).is(x1)); | |
405 | |
406 __ Mov(x0, instr->arity()); | |
407 // No cell in x2 for construct type feedback in optimized code. | |
408 __ LoadRoot(x2, Heap::kUndefinedValueRootIndex); | |
409 | |
410 CallConstructStub stub(isolate(), NO_CALL_CONSTRUCTOR_FLAGS); | |
411 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); | |
412 RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta()); | |
413 | |
414 DCHECK(ToRegister(instr->result()).is(x0)); | |
415 } | |
416 | |
417 | |
418 void LCodeGen::DoCallNewArray(LCallNewArray* instr) { | |
419 DCHECK(instr->IsMarkedAsCall()); | |
420 DCHECK(ToRegister(instr->context()).is(cp)); | |
421 DCHECK(ToRegister(instr->constructor()).is(x1)); | |
422 | |
423 __ Mov(x0, Operand(instr->arity())); | |
424 if (instr->arity() == 1) { | |
425 // We only need the allocation site for the case we have a length argument. | |
426 // The case may bail out to the runtime, which will determine the correct | |
427 // elements kind with the site. | |
428 __ Mov(x2, instr->hydrogen()->site()); | |
429 } else { | |
430 __ LoadRoot(x2, Heap::kUndefinedValueRootIndex); | |
431 } | |
432 | |
433 | |
434 ElementsKind kind = instr->hydrogen()->elements_kind(); | |
435 AllocationSiteOverrideMode override_mode = | |
436 (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE) | |
437 ? DISABLE_ALLOCATION_SITES | |
438 : DONT_OVERRIDE; | |
439 | |
440 if (instr->arity() == 0) { | |
441 ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode); | |
442 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); | |
443 } else if (instr->arity() == 1) { | |
444 Label done; | |
445 if (IsFastPackedElementsKind(kind)) { | |
446 Label packed_case; | |
447 | |
448 // We might need to create a holey array; look at the first argument. | |
449 __ Peek(x10, 0); | |
450 __ Cbz(x10, &packed_case); | |
451 | |
452 ElementsKind holey_kind = GetHoleyElementsKind(kind); | |
453 ArraySingleArgumentConstructorStub stub(isolate(), | |
454 holey_kind, | |
455 override_mode); | |
456 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); | |
457 __ B(&done); | |
458 __ Bind(&packed_case); | |
459 } | |
460 | |
461 ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode); | |
462 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); | |
463 __ Bind(&done); | |
464 } else { | |
465 ArrayNArgumentsConstructorStub stub(isolate(), kind, override_mode); | |
466 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); | |
467 } | |
468 RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta()); | |
469 | |
470 DCHECK(ToRegister(instr->result()).is(x0)); | |
471 } | |
472 | |
473 | |
474 void LCodeGen::CallRuntime(const Runtime::Function* function, | |
475 int num_arguments, | |
476 LInstruction* instr, | |
477 SaveFPRegsMode save_doubles) { | |
478 DCHECK(instr != NULL); | |
479 | |
480 __ CallRuntime(function, num_arguments, save_doubles); | |
481 | |
482 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); | |
483 } | |
484 | |
485 | |
486 void LCodeGen::LoadContextFromDeferred(LOperand* context) { | |
487 if (context->IsRegister()) { | |
488 __ Mov(cp, ToRegister(context)); | |
489 } else if (context->IsStackSlot()) { | |
490 __ Ldr(cp, ToMemOperand(context, kMustUseFramePointer)); | |
491 } else if (context->IsConstantOperand()) { | |
492 HConstant* constant = | |
493 chunk_->LookupConstant(LConstantOperand::cast(context)); | |
494 __ LoadHeapObject(cp, | |
495 Handle<HeapObject>::cast(constant->handle(isolate()))); | |
496 } else { | |
497 UNREACHABLE(); | |
498 } | |
499 } | |
500 | |
501 | |
502 void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id, | |
503 int argc, | |
504 LInstruction* instr, | |
505 LOperand* context) { | |
506 LoadContextFromDeferred(context); | |
507 __ CallRuntimeSaveDoubles(id); | |
508 RecordSafepointWithRegisters( | |
509 instr->pointer_map(), argc, Safepoint::kNoLazyDeopt); | |
510 } | |
511 | |
512 | |
513 void LCodeGen::RecordAndWritePosition(int position) { | |
514 if (position == RelocInfo::kNoPosition) return; | |
515 masm()->positions_recorder()->RecordPosition(position); | |
516 masm()->positions_recorder()->WriteRecordedPositions(); | |
517 } | |
518 | |
519 | |
520 void LCodeGen::RecordSafepointWithLazyDeopt(LInstruction* instr, | |
521 SafepointMode safepoint_mode) { | |
522 if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) { | |
523 RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt); | |
524 } else { | |
525 DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); | |
526 RecordSafepointWithRegisters( | |
527 instr->pointer_map(), 0, Safepoint::kLazyDeopt); | |
528 } | |
529 } | |
530 | |
531 | |
532 void LCodeGen::RecordSafepoint(LPointerMap* pointers, | |
533 Safepoint::Kind kind, | |
534 int arguments, | |
535 Safepoint::DeoptMode deopt_mode) { | |
536 DCHECK(expected_safepoint_kind_ == kind); | |
537 | |
538 const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands(); | |
539 Safepoint safepoint = safepoints_.DefineSafepoint( | |
540 masm(), kind, arguments, deopt_mode); | |
541 | |
542 for (int i = 0; i < operands->length(); i++) { | |
543 LOperand* pointer = operands->at(i); | |
544 if (pointer->IsStackSlot()) { | |
545 safepoint.DefinePointerSlot(pointer->index(), zone()); | |
546 } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) { | |
547 safepoint.DefinePointerRegister(ToRegister(pointer), zone()); | |
548 } | |
549 } | |
550 } | |
551 | |
552 void LCodeGen::RecordSafepoint(LPointerMap* pointers, | |
553 Safepoint::DeoptMode deopt_mode) { | |
554 RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode); | |
555 } | |
556 | |
557 | |
558 void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) { | |
559 LPointerMap empty_pointers(zone()); | |
560 RecordSafepoint(&empty_pointers, deopt_mode); | |
561 } | |
562 | |
563 | |
564 void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers, | |
565 int arguments, | |
566 Safepoint::DeoptMode deopt_mode) { | |
567 RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode); | |
568 } | |
569 | |
570 | |
571 bool LCodeGen::GenerateCode() { | |
572 LPhase phase("Z_Code generation", chunk()); | |
573 DCHECK(is_unused()); | |
574 status_ = GENERATING; | |
575 | |
576 // Open a frame scope to indicate that there is a frame on the stack. The | |
577 // NONE indicates that the scope shouldn't actually generate code to set up | |
578 // the frame (that is done in GeneratePrologue). | |
579 FrameScope frame_scope(masm_, StackFrame::NONE); | |
580 | |
581 return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() && | |
582 GenerateJumpTable() && GenerateSafepointTable(); | |
583 } | |
584 | |
585 | |
586 void LCodeGen::SaveCallerDoubles() { | |
587 DCHECK(info()->saves_caller_doubles()); | |
588 DCHECK(NeedsEagerFrame()); | |
589 Comment(";;; Save clobbered callee double registers"); | |
590 BitVector* doubles = chunk()->allocated_double_registers(); | |
591 BitVector::Iterator iterator(doubles); | |
592 int count = 0; | |
593 while (!iterator.Done()) { | |
594 // TODO(all): Is this supposed to save just the callee-saved doubles? It | |
595 // looks like it's saving all of them. | |
596 FPRegister value = FPRegister::from_code(iterator.Current()); | |
597 __ Poke(value, count * kDoubleSize); | |
598 iterator.Advance(); | |
599 count++; | |
600 } | |
601 } | |
602 | |
603 | |
604 void LCodeGen::RestoreCallerDoubles() { | |
605 DCHECK(info()->saves_caller_doubles()); | |
606 DCHECK(NeedsEagerFrame()); | |
607 Comment(";;; Restore clobbered callee double registers"); | |
608 BitVector* doubles = chunk()->allocated_double_registers(); | |
609 BitVector::Iterator iterator(doubles); | |
610 int count = 0; | |
611 while (!iterator.Done()) { | |
612 // TODO(all): Is this supposed to restore just the callee-saved doubles? It | |
613 // looks like it's restoring all of them. | |
614 FPRegister value = FPRegister::from_code(iterator.Current()); | |
615 __ Peek(value, count * kDoubleSize); | |
616 iterator.Advance(); | |
617 count++; | |
618 } | |
619 } | |
620 | |
621 | |
622 bool LCodeGen::GeneratePrologue() { | |
623 DCHECK(is_generating()); | |
624 | |
625 if (info()->IsOptimizing()) { | |
626 ProfileEntryHookStub::MaybeCallEntryHook(masm_); | |
627 | |
628 #ifdef DEBUG | |
629 if (strlen(FLAG_stop_at) > 0 && | |
630 info()->literal()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) { | |
631 __ Debug("stop-at", __LINE__, BREAK); | |
632 } | |
633 #endif | |
634 | |
635 // Sloppy mode functions and builtins need to replace the receiver with the | |
636 // global proxy when called as functions (without an explicit receiver | |
637 // object). | |
638 if (info()->MustReplaceUndefinedReceiverWithGlobalProxy()) { | |
639 Label ok; | |
640 int receiver_offset = info_->scope()->num_parameters() * kXRegSize; | |
641 __ Peek(x10, receiver_offset); | |
642 __ JumpIfNotRoot(x10, Heap::kUndefinedValueRootIndex, &ok); | |
643 | |
644 __ Ldr(x10, GlobalObjectMemOperand()); | |
645 __ Ldr(x10, FieldMemOperand(x10, GlobalObject::kGlobalProxyOffset)); | |
646 __ Poke(x10, receiver_offset); | |
647 | |
648 __ Bind(&ok); | |
649 } | |
650 } | |
651 | |
652 DCHECK(__ StackPointer().Is(jssp)); | |
653 info()->set_prologue_offset(masm_->pc_offset()); | |
654 if (NeedsEagerFrame()) { | |
655 if (info()->IsStub()) { | |
656 __ StubPrologue(); | |
657 } else { | |
658 __ Prologue(info()->IsCodePreAgingActive()); | |
659 } | |
660 frame_is_built_ = true; | |
661 } | |
662 | |
663 // Reserve space for the stack slots needed by the code. | |
664 int slots = GetStackSlotCount(); | |
665 if (slots > 0) { | |
666 __ Claim(slots, kPointerSize); | |
667 } | |
668 | |
669 if (info()->saves_caller_doubles()) { | |
670 SaveCallerDoubles(); | |
671 } | |
672 return !is_aborted(); | |
673 } | |
674 | |
675 | |
676 void LCodeGen::DoPrologue(LPrologue* instr) { | |
677 Comment(";;; Prologue begin"); | |
678 | |
679 // Allocate a local context if needed. | |
680 if (info()->num_heap_slots() > 0) { | |
681 Comment(";;; Allocate local context"); | |
682 bool need_write_barrier = true; | |
683 // Argument to NewContext is the function, which is in x1. | |
684 int slots = info()->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; | |
685 Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt; | |
686 if (info()->scope()->is_script_scope()) { | |
687 __ Mov(x10, Operand(info()->scope()->GetScopeInfo(info()->isolate()))); | |
688 __ Push(x1, x10); | |
689 __ CallRuntime(Runtime::kNewScriptContext, 2); | |
690 deopt_mode = Safepoint::kLazyDeopt; | |
691 } else if (slots <= FastNewContextStub::kMaximumSlots) { | |
692 FastNewContextStub stub(isolate(), slots); | |
693 __ CallStub(&stub); | |
694 // Result of FastNewContextStub is always in new space. | |
695 need_write_barrier = false; | |
696 } else { | |
697 __ Push(x1); | |
698 __ CallRuntime(Runtime::kNewFunctionContext, 1); | |
699 } | |
700 RecordSafepoint(deopt_mode); | |
701 // Context is returned in x0. It replaces the context passed to us. It's | |
702 // saved in the stack and kept live in cp. | |
703 __ Mov(cp, x0); | |
704 __ Str(x0, MemOperand(fp, StandardFrameConstants::kContextOffset)); | |
705 // Copy any necessary parameters into the context. | |
706 int num_parameters = scope()->num_parameters(); | |
707 int first_parameter = scope()->has_this_declaration() ? -1 : 0; | |
708 for (int i = first_parameter; i < num_parameters; i++) { | |
709 Variable* var = (i == -1) ? scope()->receiver() : scope()->parameter(i); | |
710 if (var->IsContextSlot()) { | |
711 Register value = x0; | |
712 Register scratch = x3; | |
713 | |
714 int parameter_offset = StandardFrameConstants::kCallerSPOffset + | |
715 (num_parameters - 1 - i) * kPointerSize; | |
716 // Load parameter from stack. | |
717 __ Ldr(value, MemOperand(fp, parameter_offset)); | |
718 // Store it in the context. | |
719 MemOperand target = ContextMemOperand(cp, var->index()); | |
720 __ Str(value, target); | |
721 // Update the write barrier. This clobbers value and scratch. | |
722 if (need_write_barrier) { | |
723 __ RecordWriteContextSlot(cp, static_cast<int>(target.offset()), | |
724 value, scratch, GetLinkRegisterState(), | |
725 kSaveFPRegs); | |
726 } else if (FLAG_debug_code) { | |
727 Label done; | |
728 __ JumpIfInNewSpace(cp, &done); | |
729 __ Abort(kExpectedNewSpaceObject); | |
730 __ bind(&done); | |
731 } | |
732 } | |
733 } | |
734 Comment(";;; End allocate local context"); | |
735 } | |
736 | |
737 Comment(";;; Prologue end"); | |
738 } | |
739 | |
740 | |
741 void LCodeGen::GenerateOsrPrologue() { | |
742 // Generate the OSR entry prologue at the first unknown OSR value, or if there | |
743 // are none, at the OSR entrypoint instruction. | |
744 if (osr_pc_offset_ >= 0) return; | |
745 | |
746 osr_pc_offset_ = masm()->pc_offset(); | |
747 | |
748 // Adjust the frame size, subsuming the unoptimized frame into the | |
749 // optimized frame. | |
750 int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots(); | |
751 DCHECK(slots >= 0); | |
752 __ Claim(slots); | |
753 } | |
754 | |
755 | |
756 void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) { | |
757 if (instr->IsCall()) { | |
758 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size()); | |
759 } | |
760 if (!instr->IsLazyBailout() && !instr->IsGap()) { | |
761 safepoints_.BumpLastLazySafepointIndex(); | |
762 } | |
763 } | |
764 | |
765 | |
766 bool LCodeGen::GenerateDeferredCode() { | |
767 DCHECK(is_generating()); | |
768 if (deferred_.length() > 0) { | |
769 for (int i = 0; !is_aborted() && (i < deferred_.length()); i++) { | |
770 LDeferredCode* code = deferred_[i]; | |
771 | |
772 HValue* value = | |
773 instructions_->at(code->instruction_index())->hydrogen_value(); | |
774 RecordAndWritePosition( | |
775 chunk()->graph()->SourcePositionToScriptPosition(value->position())); | |
776 | |
777 Comment(";;; <@%d,#%d> " | |
778 "-------------------- Deferred %s --------------------", | |
779 code->instruction_index(), | |
780 code->instr()->hydrogen_value()->id(), | |
781 code->instr()->Mnemonic()); | |
782 | |
783 __ Bind(code->entry()); | |
784 | |
785 if (NeedsDeferredFrame()) { | |
786 Comment(";;; Build frame"); | |
787 DCHECK(!frame_is_built_); | |
788 DCHECK(info()->IsStub()); | |
789 frame_is_built_ = true; | |
790 __ Push(lr, fp, cp); | |
791 __ Mov(fp, Smi::FromInt(StackFrame::STUB)); | |
792 __ Push(fp); | |
793 __ Add(fp, __ StackPointer(), | |
794 StandardFrameConstants::kFixedFrameSizeFromFp); | |
795 Comment(";;; Deferred code"); | |
796 } | |
797 | |
798 code->Generate(); | |
799 | |
800 if (NeedsDeferredFrame()) { | |
801 Comment(";;; Destroy frame"); | |
802 DCHECK(frame_is_built_); | |
803 __ Pop(xzr, cp, fp, lr); | |
804 frame_is_built_ = false; | |
805 } | |
806 | |
807 __ B(code->exit()); | |
808 } | |
809 } | |
810 | |
811 // Force constant pool emission at the end of the deferred code to make | |
812 // sure that no constant pools are emitted after deferred code because | |
813 // deferred code generation is the last step which generates code. The two | |
814 // following steps will only output data used by crakshaft. | |
815 masm()->CheckConstPool(true, false); | |
816 | |
817 return !is_aborted(); | |
818 } | |
819 | |
820 | |
821 bool LCodeGen::GenerateJumpTable() { | |
822 Label needs_frame, call_deopt_entry; | |
823 | |
824 if (jump_table_.length() > 0) { | |
825 Comment(";;; -------------------- Jump table --------------------"); | |
826 Address base = jump_table_[0]->address; | |
827 | |
828 UseScratchRegisterScope temps(masm()); | |
829 Register entry_offset = temps.AcquireX(); | |
830 | |
831 int length = jump_table_.length(); | |
832 for (int i = 0; i < length; i++) { | |
833 Deoptimizer::JumpTableEntry* table_entry = jump_table_[i]; | |
834 __ Bind(&table_entry->label); | |
835 | |
836 Address entry = table_entry->address; | |
837 DeoptComment(table_entry->deopt_info); | |
838 | |
839 // Second-level deopt table entries are contiguous and small, so instead | |
840 // of loading the full, absolute address of each one, load the base | |
841 // address and add an immediate offset. | |
842 __ Mov(entry_offset, entry - base); | |
843 | |
844 if (table_entry->needs_frame) { | |
845 DCHECK(!info()->saves_caller_doubles()); | |
846 Comment(";;; call deopt with frame"); | |
847 // Save lr before Bl, fp will be adjusted in the needs_frame code. | |
848 __ Push(lr, fp); | |
849 // Reuse the existing needs_frame code. | |
850 __ Bl(&needs_frame); | |
851 } else { | |
852 // There is nothing special to do, so just continue to the second-level | |
853 // table. | |
854 __ Bl(&call_deopt_entry); | |
855 } | |
856 info()->LogDeoptCallPosition(masm()->pc_offset(), | |
857 table_entry->deopt_info.inlining_id); | |
858 | |
859 masm()->CheckConstPool(false, false); | |
860 } | |
861 | |
862 if (needs_frame.is_linked()) { | |
863 // This variant of deopt can only be used with stubs. Since we don't | |
864 // have a function pointer to install in the stack frame that we're | |
865 // building, install a special marker there instead. | |
866 DCHECK(info()->IsStub()); | |
867 | |
868 Comment(";;; needs_frame common code"); | |
869 UseScratchRegisterScope temps(masm()); | |
870 Register stub_marker = temps.AcquireX(); | |
871 __ Bind(&needs_frame); | |
872 __ Mov(stub_marker, Smi::FromInt(StackFrame::STUB)); | |
873 __ Push(cp, stub_marker); | |
874 __ Add(fp, __ StackPointer(), 2 * kPointerSize); | |
875 } | |
876 | |
877 // Generate common code for calling the second-level deopt table. | |
878 __ Bind(&call_deopt_entry); | |
879 | |
880 if (info()->saves_caller_doubles()) { | |
881 DCHECK(info()->IsStub()); | |
882 RestoreCallerDoubles(); | |
883 } | |
884 | |
885 Register deopt_entry = temps.AcquireX(); | |
886 __ Mov(deopt_entry, Operand(reinterpret_cast<uint64_t>(base), | |
887 RelocInfo::RUNTIME_ENTRY)); | |
888 __ Add(deopt_entry, deopt_entry, entry_offset); | |
889 __ Br(deopt_entry); | |
890 } | |
891 | |
892 // Force constant pool emission at the end of the deopt jump table to make | |
893 // sure that no constant pools are emitted after. | |
894 masm()->CheckConstPool(true, false); | |
895 | |
896 // The deoptimization jump table is the last part of the instruction | |
897 // sequence. Mark the generated code as done unless we bailed out. | |
898 if (!is_aborted()) status_ = DONE; | |
899 return !is_aborted(); | |
900 } | |
901 | |
902 | |
903 bool LCodeGen::GenerateSafepointTable() { | |
904 DCHECK(is_done()); | |
905 // We do not know how much data will be emitted for the safepoint table, so | |
906 // force emission of the veneer pool. | |
907 masm()->CheckVeneerPool(true, true); | |
908 safepoints_.Emit(masm(), GetStackSlotCount()); | |
909 return !is_aborted(); | |
910 } | |
911 | |
912 | |
913 void LCodeGen::FinishCode(Handle<Code> code) { | |
914 DCHECK(is_done()); | |
915 code->set_stack_slots(GetStackSlotCount()); | |
916 code->set_safepoint_table_offset(safepoints_.GetCodeOffset()); | |
917 PopulateDeoptimizationData(code); | |
918 } | |
919 | |
920 | |
921 void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) { | |
922 int length = deoptimizations_.length(); | |
923 if (length == 0) return; | |
924 | |
925 Handle<DeoptimizationInputData> data = | |
926 DeoptimizationInputData::New(isolate(), length, TENURED); | |
927 | |
928 Handle<ByteArray> translations = | |
929 translations_.CreateByteArray(isolate()->factory()); | |
930 data->SetTranslationByteArray(*translations); | |
931 data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_)); | |
932 data->SetOptimizationId(Smi::FromInt(info_->optimization_id())); | |
933 if (info_->IsOptimizing()) { | |
934 // Reference to shared function info does not change between phases. | |
935 AllowDeferredHandleDereference allow_handle_dereference; | |
936 data->SetSharedFunctionInfo(*info_->shared_info()); | |
937 } else { | |
938 data->SetSharedFunctionInfo(Smi::FromInt(0)); | |
939 } | |
940 data->SetWeakCellCache(Smi::FromInt(0)); | |
941 | |
942 Handle<FixedArray> literals = | |
943 factory()->NewFixedArray(deoptimization_literals_.length(), TENURED); | |
944 { AllowDeferredHandleDereference copy_handles; | |
945 for (int i = 0; i < deoptimization_literals_.length(); i++) { | |
946 literals->set(i, *deoptimization_literals_[i]); | |
947 } | |
948 data->SetLiteralArray(*literals); | |
949 } | |
950 | |
951 data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id().ToInt())); | |
952 data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_)); | |
953 | |
954 // Populate the deoptimization entries. | |
955 for (int i = 0; i < length; i++) { | |
956 LEnvironment* env = deoptimizations_[i]; | |
957 data->SetAstId(i, env->ast_id()); | |
958 data->SetTranslationIndex(i, Smi::FromInt(env->translation_index())); | |
959 data->SetArgumentsStackHeight(i, | |
960 Smi::FromInt(env->arguments_stack_height())); | |
961 data->SetPc(i, Smi::FromInt(env->pc_offset())); | |
962 } | |
963 | |
964 code->set_deoptimization_data(*data); | |
965 } | |
966 | |
967 | |
968 void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() { | |
969 DCHECK_EQ(0, deoptimization_literals_.length()); | |
970 for (auto function : chunk()->inlined_functions()) { | |
971 DefineDeoptimizationLiteral(function); | |
972 } | |
973 inlined_function_count_ = deoptimization_literals_.length(); | |
974 } | |
975 | |
976 | |
977 void LCodeGen::DeoptimizeBranch( | |
978 LInstruction* instr, Deoptimizer::DeoptReason deopt_reason, | |
979 BranchType branch_type, Register reg, int bit, | |
980 Deoptimizer::BailoutType* override_bailout_type) { | |
981 LEnvironment* environment = instr->environment(); | |
982 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); | |
983 Deoptimizer::BailoutType bailout_type = | |
984 info()->IsStub() ? Deoptimizer::LAZY : Deoptimizer::EAGER; | |
985 | |
986 if (override_bailout_type != NULL) { | |
987 bailout_type = *override_bailout_type; | |
988 } | |
989 | |
990 DCHECK(environment->HasBeenRegistered()); | |
991 int id = environment->deoptimization_index(); | |
992 Address entry = | |
993 Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type); | |
994 | |
995 if (entry == NULL) { | |
996 Abort(kBailoutWasNotPrepared); | |
997 } | |
998 | |
999 if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) { | |
1000 Label not_zero; | |
1001 ExternalReference count = ExternalReference::stress_deopt_count(isolate()); | |
1002 | |
1003 __ Push(x0, x1, x2); | |
1004 __ Mrs(x2, NZCV); | |
1005 __ Mov(x0, count); | |
1006 __ Ldr(w1, MemOperand(x0)); | |
1007 __ Subs(x1, x1, 1); | |
1008 __ B(gt, ¬_zero); | |
1009 __ Mov(w1, FLAG_deopt_every_n_times); | |
1010 __ Str(w1, MemOperand(x0)); | |
1011 __ Pop(x2, x1, x0); | |
1012 DCHECK(frame_is_built_); | |
1013 __ Call(entry, RelocInfo::RUNTIME_ENTRY); | |
1014 __ Unreachable(); | |
1015 | |
1016 __ Bind(¬_zero); | |
1017 __ Str(w1, MemOperand(x0)); | |
1018 __ Msr(NZCV, x2); | |
1019 __ Pop(x2, x1, x0); | |
1020 } | |
1021 | |
1022 if (info()->ShouldTrapOnDeopt()) { | |
1023 Label dont_trap; | |
1024 __ B(&dont_trap, InvertBranchType(branch_type), reg, bit); | |
1025 __ Debug("trap_on_deopt", __LINE__, BREAK); | |
1026 __ Bind(&dont_trap); | |
1027 } | |
1028 | |
1029 Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason); | |
1030 | |
1031 DCHECK(info()->IsStub() || frame_is_built_); | |
1032 // Go through jump table if we need to build frame, or restore caller doubles. | |
1033 if (branch_type == always && | |
1034 frame_is_built_ && !info()->saves_caller_doubles()) { | |
1035 DeoptComment(deopt_info); | |
1036 __ Call(entry, RelocInfo::RUNTIME_ENTRY); | |
1037 info()->LogDeoptCallPosition(masm()->pc_offset(), deopt_info.inlining_id); | |
1038 } else { | |
1039 Deoptimizer::JumpTableEntry* table_entry = | |
1040 new (zone()) Deoptimizer::JumpTableEntry( | |
1041 entry, deopt_info, bailout_type, !frame_is_built_); | |
1042 // We often have several deopts to the same entry, reuse the last | |
1043 // jump entry if this is the case. | |
1044 if (FLAG_trace_deopt || isolate()->cpu_profiler()->is_profiling() || | |
1045 jump_table_.is_empty() || | |
1046 !table_entry->IsEquivalentTo(*jump_table_.last())) { | |
1047 jump_table_.Add(table_entry, zone()); | |
1048 } | |
1049 __ B(&jump_table_.last()->label, branch_type, reg, bit); | |
1050 } | |
1051 } | |
1052 | |
1053 | |
1054 void LCodeGen::Deoptimize(LInstruction* instr, | |
1055 Deoptimizer::DeoptReason deopt_reason, | |
1056 Deoptimizer::BailoutType* override_bailout_type) { | |
1057 DeoptimizeBranch(instr, deopt_reason, always, NoReg, -1, | |
1058 override_bailout_type); | |
1059 } | |
1060 | |
1061 | |
1062 void LCodeGen::DeoptimizeIf(Condition cond, LInstruction* instr, | |
1063 Deoptimizer::DeoptReason deopt_reason) { | |
1064 DeoptimizeBranch(instr, deopt_reason, static_cast<BranchType>(cond)); | |
1065 } | |
1066 | |
1067 | |
1068 void LCodeGen::DeoptimizeIfZero(Register rt, LInstruction* instr, | |
1069 Deoptimizer::DeoptReason deopt_reason) { | |
1070 DeoptimizeBranch(instr, deopt_reason, reg_zero, rt); | |
1071 } | |
1072 | |
1073 | |
1074 void LCodeGen::DeoptimizeIfNotZero(Register rt, LInstruction* instr, | |
1075 Deoptimizer::DeoptReason deopt_reason) { | |
1076 DeoptimizeBranch(instr, deopt_reason, reg_not_zero, rt); | |
1077 } | |
1078 | |
1079 | |
1080 void LCodeGen::DeoptimizeIfNegative(Register rt, LInstruction* instr, | |
1081 Deoptimizer::DeoptReason deopt_reason) { | |
1082 int sign_bit = rt.Is64Bits() ? kXSignBit : kWSignBit; | |
1083 DeoptimizeIfBitSet(rt, sign_bit, instr, deopt_reason); | |
1084 } | |
1085 | |
1086 | |
1087 void LCodeGen::DeoptimizeIfSmi(Register rt, LInstruction* instr, | |
1088 Deoptimizer::DeoptReason deopt_reason) { | |
1089 DeoptimizeIfBitClear(rt, MaskToBit(kSmiTagMask), instr, deopt_reason); | |
1090 } | |
1091 | |
1092 | |
1093 void LCodeGen::DeoptimizeIfNotSmi(Register rt, LInstruction* instr, | |
1094 Deoptimizer::DeoptReason deopt_reason) { | |
1095 DeoptimizeIfBitSet(rt, MaskToBit(kSmiTagMask), instr, deopt_reason); | |
1096 } | |
1097 | |
1098 | |
1099 void LCodeGen::DeoptimizeIfRoot(Register rt, Heap::RootListIndex index, | |
1100 LInstruction* instr, | |
1101 Deoptimizer::DeoptReason deopt_reason) { | |
1102 __ CompareRoot(rt, index); | |
1103 DeoptimizeIf(eq, instr, deopt_reason); | |
1104 } | |
1105 | |
1106 | |
1107 void LCodeGen::DeoptimizeIfNotRoot(Register rt, Heap::RootListIndex index, | |
1108 LInstruction* instr, | |
1109 Deoptimizer::DeoptReason deopt_reason) { | |
1110 __ CompareRoot(rt, index); | |
1111 DeoptimizeIf(ne, instr, deopt_reason); | |
1112 } | |
1113 | |
1114 | |
1115 void LCodeGen::DeoptimizeIfMinusZero(DoubleRegister input, LInstruction* instr, | |
1116 Deoptimizer::DeoptReason deopt_reason) { | |
1117 __ TestForMinusZero(input); | |
1118 DeoptimizeIf(vs, instr, deopt_reason); | |
1119 } | |
1120 | |
1121 | |
1122 void LCodeGen::DeoptimizeIfNotHeapNumber(Register object, LInstruction* instr) { | |
1123 __ CompareObjectMap(object, Heap::kHeapNumberMapRootIndex); | |
1124 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber); | |
1125 } | |
1126 | |
1127 | |
1128 void LCodeGen::DeoptimizeIfBitSet(Register rt, int bit, LInstruction* instr, | |
1129 Deoptimizer::DeoptReason deopt_reason) { | |
1130 DeoptimizeBranch(instr, deopt_reason, reg_bit_set, rt, bit); | |
1131 } | |
1132 | |
1133 | |
1134 void LCodeGen::DeoptimizeIfBitClear(Register rt, int bit, LInstruction* instr, | |
1135 Deoptimizer::DeoptReason deopt_reason) { | |
1136 DeoptimizeBranch(instr, deopt_reason, reg_bit_clear, rt, bit); | |
1137 } | |
1138 | |
1139 | |
1140 void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) { | |
1141 if (info()->ShouldEnsureSpaceForLazyDeopt()) { | |
1142 // Ensure that we have enough space after the previous lazy-bailout | |
1143 // instruction for patching the code here. | |
1144 intptr_t current_pc = masm()->pc_offset(); | |
1145 | |
1146 if (current_pc < (last_lazy_deopt_pc_ + space_needed)) { | |
1147 ptrdiff_t padding_size = last_lazy_deopt_pc_ + space_needed - current_pc; | |
1148 DCHECK((padding_size % kInstructionSize) == 0); | |
1149 InstructionAccurateScope instruction_accurate( | |
1150 masm(), padding_size / kInstructionSize); | |
1151 | |
1152 while (padding_size > 0) { | |
1153 __ nop(); | |
1154 padding_size -= kInstructionSize; | |
1155 } | |
1156 } | |
1157 } | |
1158 last_lazy_deopt_pc_ = masm()->pc_offset(); | |
1159 } | |
1160 | |
1161 | |
1162 Register LCodeGen::ToRegister(LOperand* op) const { | |
1163 // TODO(all): support zero register results, as ToRegister32. | |
1164 DCHECK((op != NULL) && op->IsRegister()); | |
1165 return Register::from_code(op->index()); | |
1166 } | |
1167 | |
1168 | |
1169 Register LCodeGen::ToRegister32(LOperand* op) const { | |
1170 DCHECK(op != NULL); | |
1171 if (op->IsConstantOperand()) { | |
1172 // If this is a constant operand, the result must be the zero register. | |
1173 DCHECK(ToInteger32(LConstantOperand::cast(op)) == 0); | |
1174 return wzr; | |
1175 } else { | |
1176 return ToRegister(op).W(); | |
1177 } | |
1178 } | |
1179 | |
1180 | |
1181 Smi* LCodeGen::ToSmi(LConstantOperand* op) const { | |
1182 HConstant* constant = chunk_->LookupConstant(op); | |
1183 return Smi::FromInt(constant->Integer32Value()); | |
1184 } | |
1185 | |
1186 | |
1187 DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const { | |
1188 DCHECK((op != NULL) && op->IsDoubleRegister()); | |
1189 return DoubleRegister::from_code(op->index()); | |
1190 } | |
1191 | |
1192 | |
1193 Operand LCodeGen::ToOperand(LOperand* op) { | |
1194 DCHECK(op != NULL); | |
1195 if (op->IsConstantOperand()) { | |
1196 LConstantOperand* const_op = LConstantOperand::cast(op); | |
1197 HConstant* constant = chunk()->LookupConstant(const_op); | |
1198 Representation r = chunk_->LookupLiteralRepresentation(const_op); | |
1199 if (r.IsSmi()) { | |
1200 DCHECK(constant->HasSmiValue()); | |
1201 return Operand(Smi::FromInt(constant->Integer32Value())); | |
1202 } else if (r.IsInteger32()) { | |
1203 DCHECK(constant->HasInteger32Value()); | |
1204 return Operand(constant->Integer32Value()); | |
1205 } else if (r.IsDouble()) { | |
1206 Abort(kToOperandUnsupportedDoubleImmediate); | |
1207 } | |
1208 DCHECK(r.IsTagged()); | |
1209 return Operand(constant->handle(isolate())); | |
1210 } else if (op->IsRegister()) { | |
1211 return Operand(ToRegister(op)); | |
1212 } else if (op->IsDoubleRegister()) { | |
1213 Abort(kToOperandIsDoubleRegisterUnimplemented); | |
1214 return Operand(0); | |
1215 } | |
1216 // Stack slots not implemented, use ToMemOperand instead. | |
1217 UNREACHABLE(); | |
1218 return Operand(0); | |
1219 } | |
1220 | |
1221 | |
1222 Operand LCodeGen::ToOperand32(LOperand* op) { | |
1223 DCHECK(op != NULL); | |
1224 if (op->IsRegister()) { | |
1225 return Operand(ToRegister32(op)); | |
1226 } else if (op->IsConstantOperand()) { | |
1227 LConstantOperand* const_op = LConstantOperand::cast(op); | |
1228 HConstant* constant = chunk()->LookupConstant(const_op); | |
1229 Representation r = chunk_->LookupLiteralRepresentation(const_op); | |
1230 if (r.IsInteger32()) { | |
1231 return Operand(constant->Integer32Value()); | |
1232 } else { | |
1233 // Other constants not implemented. | |
1234 Abort(kToOperand32UnsupportedImmediate); | |
1235 } | |
1236 } | |
1237 // Other cases are not implemented. | |
1238 UNREACHABLE(); | |
1239 return Operand(0); | |
1240 } | |
1241 | |
1242 | |
1243 static int64_t ArgumentsOffsetWithoutFrame(int index) { | |
1244 DCHECK(index < 0); | |
1245 return -(index + 1) * kPointerSize; | |
1246 } | |
1247 | |
1248 | |
1249 MemOperand LCodeGen::ToMemOperand(LOperand* op, StackMode stack_mode) const { | |
1250 DCHECK(op != NULL); | |
1251 DCHECK(!op->IsRegister()); | |
1252 DCHECK(!op->IsDoubleRegister()); | |
1253 DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot()); | |
1254 if (NeedsEagerFrame()) { | |
1255 int fp_offset = StackSlotOffset(op->index()); | |
1256 // Loads and stores have a bigger reach in positive offset than negative. | |
1257 // We try to access using jssp (positive offset) first, then fall back to | |
1258 // fp (negative offset) if that fails. | |
1259 // | |
1260 // We can reference a stack slot from jssp only if we know how much we've | |
1261 // put on the stack. We don't know this in the following cases: | |
1262 // - stack_mode != kCanUseStackPointer: this is the case when deferred | |
1263 // code has saved the registers. | |
1264 // - saves_caller_doubles(): some double registers have been pushed, jssp | |
1265 // references the end of the double registers and not the end of the stack | |
1266 // slots. | |
1267 // In both of the cases above, we _could_ add the tracking information | |
1268 // required so that we can use jssp here, but in practice it isn't worth it. | |
1269 if ((stack_mode == kCanUseStackPointer) && | |
1270 !info()->saves_caller_doubles()) { | |
1271 int jssp_offset_to_fp = | |
1272 StandardFrameConstants::kFixedFrameSizeFromFp + | |
1273 (pushed_arguments_ + GetStackSlotCount()) * kPointerSize; | |
1274 int jssp_offset = fp_offset + jssp_offset_to_fp; | |
1275 if (masm()->IsImmLSScaled(jssp_offset, LSDoubleWord)) { | |
1276 return MemOperand(masm()->StackPointer(), jssp_offset); | |
1277 } | |
1278 } | |
1279 return MemOperand(fp, fp_offset); | |
1280 } else { | |
1281 // Retrieve parameter without eager stack-frame relative to the | |
1282 // stack-pointer. | |
1283 return MemOperand(masm()->StackPointer(), | |
1284 ArgumentsOffsetWithoutFrame(op->index())); | |
1285 } | |
1286 } | |
1287 | |
1288 | |
1289 Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const { | |
1290 HConstant* constant = chunk_->LookupConstant(op); | |
1291 DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged()); | |
1292 return constant->handle(isolate()); | |
1293 } | |
1294 | |
1295 | |
1296 template <class LI> | |
1297 Operand LCodeGen::ToShiftedRightOperand32(LOperand* right, LI* shift_info) { | |
1298 if (shift_info->shift() == NO_SHIFT) { | |
1299 return ToOperand32(right); | |
1300 } else { | |
1301 return Operand( | |
1302 ToRegister32(right), | |
1303 shift_info->shift(), | |
1304 JSShiftAmountFromLConstant(shift_info->shift_amount())); | |
1305 } | |
1306 } | |
1307 | |
1308 | |
1309 bool LCodeGen::IsSmi(LConstantOperand* op) const { | |
1310 return chunk_->LookupLiteralRepresentation(op).IsSmi(); | |
1311 } | |
1312 | |
1313 | |
1314 bool LCodeGen::IsInteger32Constant(LConstantOperand* op) const { | |
1315 return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32(); | |
1316 } | |
1317 | |
1318 | |
1319 int32_t LCodeGen::ToInteger32(LConstantOperand* op) const { | |
1320 HConstant* constant = chunk_->LookupConstant(op); | |
1321 return constant->Integer32Value(); | |
1322 } | |
1323 | |
1324 | |
1325 double LCodeGen::ToDouble(LConstantOperand* op) const { | |
1326 HConstant* constant = chunk_->LookupConstant(op); | |
1327 DCHECK(constant->HasDoubleValue()); | |
1328 return constant->DoubleValue(); | |
1329 } | |
1330 | |
1331 | |
1332 Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) { | |
1333 Condition cond = nv; | |
1334 switch (op) { | |
1335 case Token::EQ: | |
1336 case Token::EQ_STRICT: | |
1337 cond = eq; | |
1338 break; | |
1339 case Token::NE: | |
1340 case Token::NE_STRICT: | |
1341 cond = ne; | |
1342 break; | |
1343 case Token::LT: | |
1344 cond = is_unsigned ? lo : lt; | |
1345 break; | |
1346 case Token::GT: | |
1347 cond = is_unsigned ? hi : gt; | |
1348 break; | |
1349 case Token::LTE: | |
1350 cond = is_unsigned ? ls : le; | |
1351 break; | |
1352 case Token::GTE: | |
1353 cond = is_unsigned ? hs : ge; | |
1354 break; | |
1355 case Token::IN: | |
1356 case Token::INSTANCEOF: | |
1357 default: | |
1358 UNREACHABLE(); | |
1359 } | |
1360 return cond; | |
1361 } | |
1362 | |
1363 | |
1364 template<class InstrType> | |
1365 void LCodeGen::EmitBranchGeneric(InstrType instr, | |
1366 const BranchGenerator& branch) { | |
1367 int left_block = instr->TrueDestination(chunk_); | |
1368 int right_block = instr->FalseDestination(chunk_); | |
1369 | |
1370 int next_block = GetNextEmittedBlock(); | |
1371 | |
1372 if (right_block == left_block) { | |
1373 EmitGoto(left_block); | |
1374 } else if (left_block == next_block) { | |
1375 branch.EmitInverted(chunk_->GetAssemblyLabel(right_block)); | |
1376 } else { | |
1377 branch.Emit(chunk_->GetAssemblyLabel(left_block)); | |
1378 if (right_block != next_block) { | |
1379 __ B(chunk_->GetAssemblyLabel(right_block)); | |
1380 } | |
1381 } | |
1382 } | |
1383 | |
1384 | |
1385 template<class InstrType> | |
1386 void LCodeGen::EmitBranch(InstrType instr, Condition condition) { | |
1387 DCHECK((condition != al) && (condition != nv)); | |
1388 BranchOnCondition branch(this, condition); | |
1389 EmitBranchGeneric(instr, branch); | |
1390 } | |
1391 | |
1392 | |
1393 template<class InstrType> | |
1394 void LCodeGen::EmitCompareAndBranch(InstrType instr, | |
1395 Condition condition, | |
1396 const Register& lhs, | |
1397 const Operand& rhs) { | |
1398 DCHECK((condition != al) && (condition != nv)); | |
1399 CompareAndBranch branch(this, condition, lhs, rhs); | |
1400 EmitBranchGeneric(instr, branch); | |
1401 } | |
1402 | |
1403 | |
1404 template<class InstrType> | |
1405 void LCodeGen::EmitTestAndBranch(InstrType instr, | |
1406 Condition condition, | |
1407 const Register& value, | |
1408 uint64_t mask) { | |
1409 DCHECK((condition != al) && (condition != nv)); | |
1410 TestAndBranch branch(this, condition, value, mask); | |
1411 EmitBranchGeneric(instr, branch); | |
1412 } | |
1413 | |
1414 | |
1415 template<class InstrType> | |
1416 void LCodeGen::EmitBranchIfNonZeroNumber(InstrType instr, | |
1417 const FPRegister& value, | |
1418 const FPRegister& scratch) { | |
1419 BranchIfNonZeroNumber branch(this, value, scratch); | |
1420 EmitBranchGeneric(instr, branch); | |
1421 } | |
1422 | |
1423 | |
1424 template<class InstrType> | |
1425 void LCodeGen::EmitBranchIfHeapNumber(InstrType instr, | |
1426 const Register& value) { | |
1427 BranchIfHeapNumber branch(this, value); | |
1428 EmitBranchGeneric(instr, branch); | |
1429 } | |
1430 | |
1431 | |
1432 template<class InstrType> | |
1433 void LCodeGen::EmitBranchIfRoot(InstrType instr, | |
1434 const Register& value, | |
1435 Heap::RootListIndex index) { | |
1436 BranchIfRoot branch(this, value, index); | |
1437 EmitBranchGeneric(instr, branch); | |
1438 } | |
1439 | |
1440 | |
1441 void LCodeGen::DoGap(LGap* gap) { | |
1442 for (int i = LGap::FIRST_INNER_POSITION; | |
1443 i <= LGap::LAST_INNER_POSITION; | |
1444 i++) { | |
1445 LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i); | |
1446 LParallelMove* move = gap->GetParallelMove(inner_pos); | |
1447 if (move != NULL) { | |
1448 resolver_.Resolve(move); | |
1449 } | |
1450 } | |
1451 } | |
1452 | |
1453 | |
1454 void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) { | |
1455 Register arguments = ToRegister(instr->arguments()); | |
1456 Register result = ToRegister(instr->result()); | |
1457 | |
1458 // The pointer to the arguments array come from DoArgumentsElements. | |
1459 // It does not point directly to the arguments and there is an offest of | |
1460 // two words that we must take into account when accessing an argument. | |
1461 // Subtracting the index from length accounts for one, so we add one more. | |
1462 | |
1463 if (instr->length()->IsConstantOperand() && | |
1464 instr->index()->IsConstantOperand()) { | |
1465 int index = ToInteger32(LConstantOperand::cast(instr->index())); | |
1466 int length = ToInteger32(LConstantOperand::cast(instr->length())); | |
1467 int offset = ((length - index) + 1) * kPointerSize; | |
1468 __ Ldr(result, MemOperand(arguments, offset)); | |
1469 } else if (instr->index()->IsConstantOperand()) { | |
1470 Register length = ToRegister32(instr->length()); | |
1471 int index = ToInteger32(LConstantOperand::cast(instr->index())); | |
1472 int loc = index - 1; | |
1473 if (loc != 0) { | |
1474 __ Sub(result.W(), length, loc); | |
1475 __ Ldr(result, MemOperand(arguments, result, UXTW, kPointerSizeLog2)); | |
1476 } else { | |
1477 __ Ldr(result, MemOperand(arguments, length, UXTW, kPointerSizeLog2)); | |
1478 } | |
1479 } else { | |
1480 Register length = ToRegister32(instr->length()); | |
1481 Operand index = ToOperand32(instr->index()); | |
1482 __ Sub(result.W(), length, index); | |
1483 __ Add(result.W(), result.W(), 1); | |
1484 __ Ldr(result, MemOperand(arguments, result, UXTW, kPointerSizeLog2)); | |
1485 } | |
1486 } | |
1487 | |
1488 | |
1489 void LCodeGen::DoAddE(LAddE* instr) { | |
1490 Register result = ToRegister(instr->result()); | |
1491 Register left = ToRegister(instr->left()); | |
1492 Operand right = Operand(x0); // Dummy initialization. | |
1493 if (instr->hydrogen()->external_add_type() == AddOfExternalAndTagged) { | |
1494 right = Operand(ToRegister(instr->right())); | |
1495 } else if (instr->right()->IsConstantOperand()) { | |
1496 right = ToInteger32(LConstantOperand::cast(instr->right())); | |
1497 } else { | |
1498 right = Operand(ToRegister32(instr->right()), SXTW); | |
1499 } | |
1500 | |
1501 DCHECK(!instr->hydrogen()->CheckFlag(HValue::kCanOverflow)); | |
1502 __ Add(result, left, right); | |
1503 } | |
1504 | |
1505 | |
1506 void LCodeGen::DoAddI(LAddI* instr) { | |
1507 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); | |
1508 Register result = ToRegister32(instr->result()); | |
1509 Register left = ToRegister32(instr->left()); | |
1510 Operand right = ToShiftedRightOperand32(instr->right(), instr); | |
1511 | |
1512 if (can_overflow) { | |
1513 __ Adds(result, left, right); | |
1514 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow); | |
1515 } else { | |
1516 __ Add(result, left, right); | |
1517 } | |
1518 } | |
1519 | |
1520 | |
1521 void LCodeGen::DoAddS(LAddS* instr) { | |
1522 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); | |
1523 Register result = ToRegister(instr->result()); | |
1524 Register left = ToRegister(instr->left()); | |
1525 Operand right = ToOperand(instr->right()); | |
1526 if (can_overflow) { | |
1527 __ Adds(result, left, right); | |
1528 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow); | |
1529 } else { | |
1530 __ Add(result, left, right); | |
1531 } | |
1532 } | |
1533 | |
1534 | |
1535 void LCodeGen::DoAllocate(LAllocate* instr) { | |
1536 class DeferredAllocate: public LDeferredCode { | |
1537 public: | |
1538 DeferredAllocate(LCodeGen* codegen, LAllocate* instr) | |
1539 : LDeferredCode(codegen), instr_(instr) { } | |
1540 virtual void Generate() { codegen()->DoDeferredAllocate(instr_); } | |
1541 virtual LInstruction* instr() { return instr_; } | |
1542 private: | |
1543 LAllocate* instr_; | |
1544 }; | |
1545 | |
1546 DeferredAllocate* deferred = new(zone()) DeferredAllocate(this, instr); | |
1547 | |
1548 Register result = ToRegister(instr->result()); | |
1549 Register temp1 = ToRegister(instr->temp1()); | |
1550 Register temp2 = ToRegister(instr->temp2()); | |
1551 | |
1552 // Allocate memory for the object. | |
1553 AllocationFlags flags = TAG_OBJECT; | |
1554 if (instr->hydrogen()->MustAllocateDoubleAligned()) { | |
1555 flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT); | |
1556 } | |
1557 | |
1558 if (instr->hydrogen()->IsOldSpaceAllocation()) { | |
1559 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); | |
1560 flags = static_cast<AllocationFlags>(flags | PRETENURE); | |
1561 } | |
1562 | |
1563 if (instr->size()->IsConstantOperand()) { | |
1564 int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); | |
1565 CHECK(size <= Page::kMaxRegularHeapObjectSize); | |
1566 __ Allocate(size, result, temp1, temp2, deferred->entry(), flags); | |
1567 } else { | |
1568 Register size = ToRegister32(instr->size()); | |
1569 __ Sxtw(size.X(), size); | |
1570 __ Allocate(size.X(), result, temp1, temp2, deferred->entry(), flags); | |
1571 } | |
1572 | |
1573 __ Bind(deferred->exit()); | |
1574 | |
1575 if (instr->hydrogen()->MustPrefillWithFiller()) { | |
1576 Register filler_count = temp1; | |
1577 Register filler = temp2; | |
1578 Register untagged_result = ToRegister(instr->temp3()); | |
1579 | |
1580 if (instr->size()->IsConstantOperand()) { | |
1581 int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); | |
1582 __ Mov(filler_count, size / kPointerSize); | |
1583 } else { | |
1584 __ Lsr(filler_count.W(), ToRegister32(instr->size()), kPointerSizeLog2); | |
1585 } | |
1586 | |
1587 __ Sub(untagged_result, result, kHeapObjectTag); | |
1588 __ Mov(filler, Operand(isolate()->factory()->one_pointer_filler_map())); | |
1589 __ FillFields(untagged_result, filler_count, filler); | |
1590 } else { | |
1591 DCHECK(instr->temp3() == NULL); | |
1592 } | |
1593 } | |
1594 | |
1595 | |
1596 void LCodeGen::DoDeferredAllocate(LAllocate* instr) { | |
1597 // TODO(3095996): Get rid of this. For now, we need to make the | |
1598 // result register contain a valid pointer because it is already | |
1599 // contained in the register pointer map. | |
1600 __ Mov(ToRegister(instr->result()), Smi::FromInt(0)); | |
1601 | |
1602 PushSafepointRegistersScope scope(this); | |
1603 // We're in a SafepointRegistersScope so we can use any scratch registers. | |
1604 Register size = x0; | |
1605 if (instr->size()->IsConstantOperand()) { | |
1606 __ Mov(size, ToSmi(LConstantOperand::cast(instr->size()))); | |
1607 } else { | |
1608 __ SmiTag(size, ToRegister32(instr->size()).X()); | |
1609 } | |
1610 int flags = AllocateDoubleAlignFlag::encode( | |
1611 instr->hydrogen()->MustAllocateDoubleAligned()); | |
1612 if (instr->hydrogen()->IsOldSpaceAllocation()) { | |
1613 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); | |
1614 flags = AllocateTargetSpace::update(flags, OLD_SPACE); | |
1615 } else { | |
1616 flags = AllocateTargetSpace::update(flags, NEW_SPACE); | |
1617 } | |
1618 __ Mov(x10, Smi::FromInt(flags)); | |
1619 __ Push(size, x10); | |
1620 | |
1621 CallRuntimeFromDeferred( | |
1622 Runtime::kAllocateInTargetSpace, 2, instr, instr->context()); | |
1623 __ StoreToSafepointRegisterSlot(x0, ToRegister(instr->result())); | |
1624 } | |
1625 | |
1626 | |
1627 void LCodeGen::DoApplyArguments(LApplyArguments* instr) { | |
1628 Register receiver = ToRegister(instr->receiver()); | |
1629 Register function = ToRegister(instr->function()); | |
1630 Register length = ToRegister32(instr->length()); | |
1631 | |
1632 Register elements = ToRegister(instr->elements()); | |
1633 Register scratch = x5; | |
1634 DCHECK(receiver.Is(x0)); // Used for parameter count. | |
1635 DCHECK(function.Is(x1)); // Required by InvokeFunction. | |
1636 DCHECK(ToRegister(instr->result()).Is(x0)); | |
1637 DCHECK(instr->IsMarkedAsCall()); | |
1638 | |
1639 // Copy the arguments to this function possibly from the | |
1640 // adaptor frame below it. | |
1641 const uint32_t kArgumentsLimit = 1 * KB; | |
1642 __ Cmp(length, kArgumentsLimit); | |
1643 DeoptimizeIf(hi, instr, Deoptimizer::kTooManyArguments); | |
1644 | |
1645 // Push the receiver and use the register to keep the original | |
1646 // number of arguments. | |
1647 __ Push(receiver); | |
1648 Register argc = receiver; | |
1649 receiver = NoReg; | |
1650 __ Sxtw(argc, length); | |
1651 // The arguments are at a one pointer size offset from elements. | |
1652 __ Add(elements, elements, 1 * kPointerSize); | |
1653 | |
1654 // Loop through the arguments pushing them onto the execution | |
1655 // stack. | |
1656 Label invoke, loop; | |
1657 // length is a small non-negative integer, due to the test above. | |
1658 __ Cbz(length, &invoke); | |
1659 __ Bind(&loop); | |
1660 __ Ldr(scratch, MemOperand(elements, length, SXTW, kPointerSizeLog2)); | |
1661 __ Push(scratch); | |
1662 __ Subs(length, length, 1); | |
1663 __ B(ne, &loop); | |
1664 | |
1665 __ Bind(&invoke); | |
1666 DCHECK(instr->HasPointerMap()); | |
1667 LPointerMap* pointers = instr->pointer_map(); | |
1668 SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt); | |
1669 // The number of arguments is stored in argc (receiver) which is x0, as | |
1670 // expected by InvokeFunction. | |
1671 ParameterCount actual(argc); | |
1672 __ InvokeFunction(function, actual, CALL_FUNCTION, safepoint_generator); | |
1673 } | |
1674 | |
1675 | |
1676 void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) { | |
1677 Register result = ToRegister(instr->result()); | |
1678 | |
1679 if (instr->hydrogen()->from_inlined()) { | |
1680 // When we are inside an inlined function, the arguments are the last things | |
1681 // that have been pushed on the stack. Therefore the arguments array can be | |
1682 // accessed directly from jssp. | |
1683 // However in the normal case, it is accessed via fp but there are two words | |
1684 // on the stack between fp and the arguments (the saved lr and fp) and the | |
1685 // LAccessArgumentsAt implementation take that into account. | |
1686 // In the inlined case we need to subtract the size of 2 words to jssp to | |
1687 // get a pointer which will work well with LAccessArgumentsAt. | |
1688 DCHECK(masm()->StackPointer().Is(jssp)); | |
1689 __ Sub(result, jssp, 2 * kPointerSize); | |
1690 } else { | |
1691 DCHECK(instr->temp() != NULL); | |
1692 Register previous_fp = ToRegister(instr->temp()); | |
1693 | |
1694 __ Ldr(previous_fp, | |
1695 MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); | |
1696 __ Ldr(result, | |
1697 MemOperand(previous_fp, StandardFrameConstants::kContextOffset)); | |
1698 __ Cmp(result, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); | |
1699 __ Csel(result, fp, previous_fp, ne); | |
1700 } | |
1701 } | |
1702 | |
1703 | |
1704 void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) { | |
1705 Register elements = ToRegister(instr->elements()); | |
1706 Register result = ToRegister32(instr->result()); | |
1707 Label done; | |
1708 | |
1709 // If no arguments adaptor frame the number of arguments is fixed. | |
1710 __ Cmp(fp, elements); | |
1711 __ Mov(result, scope()->num_parameters()); | |
1712 __ B(eq, &done); | |
1713 | |
1714 // Arguments adaptor frame present. Get argument length from there. | |
1715 __ Ldr(result.X(), MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); | |
1716 __ Ldr(result, | |
1717 UntagSmiMemOperand(result.X(), | |
1718 ArgumentsAdaptorFrameConstants::kLengthOffset)); | |
1719 | |
1720 // Argument length is in result register. | |
1721 __ Bind(&done); | |
1722 } | |
1723 | |
1724 | |
1725 void LCodeGen::DoArithmeticD(LArithmeticD* instr) { | |
1726 DoubleRegister left = ToDoubleRegister(instr->left()); | |
1727 DoubleRegister right = ToDoubleRegister(instr->right()); | |
1728 DoubleRegister result = ToDoubleRegister(instr->result()); | |
1729 | |
1730 switch (instr->op()) { | |
1731 case Token::ADD: __ Fadd(result, left, right); break; | |
1732 case Token::SUB: __ Fsub(result, left, right); break; | |
1733 case Token::MUL: __ Fmul(result, left, right); break; | |
1734 case Token::DIV: __ Fdiv(result, left, right); break; | |
1735 case Token::MOD: { | |
1736 // The ECMA-262 remainder operator is the remainder from a truncating | |
1737 // (round-towards-zero) division. Note that this differs from IEEE-754. | |
1738 // | |
1739 // TODO(jbramley): See if it's possible to do this inline, rather than by | |
1740 // calling a helper function. With frintz (to produce the intermediate | |
1741 // quotient) and fmsub (to calculate the remainder without loss of | |
1742 // precision), it should be possible. However, we would need support for | |
1743 // fdiv in round-towards-zero mode, and the ARM64 simulator doesn't | |
1744 // support that yet. | |
1745 DCHECK(left.Is(d0)); | |
1746 DCHECK(right.Is(d1)); | |
1747 __ CallCFunction( | |
1748 ExternalReference::mod_two_doubles_operation(isolate()), | |
1749 0, 2); | |
1750 DCHECK(result.Is(d0)); | |
1751 break; | |
1752 } | |
1753 default: | |
1754 UNREACHABLE(); | |
1755 break; | |
1756 } | |
1757 } | |
1758 | |
1759 | |
1760 void LCodeGen::DoArithmeticT(LArithmeticT* instr) { | |
1761 DCHECK(ToRegister(instr->context()).is(cp)); | |
1762 DCHECK(ToRegister(instr->left()).is(x1)); | |
1763 DCHECK(ToRegister(instr->right()).is(x0)); | |
1764 DCHECK(ToRegister(instr->result()).is(x0)); | |
1765 | |
1766 Handle<Code> code = | |
1767 CodeFactory::BinaryOpIC(isolate(), instr->op(), instr->strength()).code(); | |
1768 CallCode(code, RelocInfo::CODE_TARGET, instr); | |
1769 } | |
1770 | |
1771 | |
1772 void LCodeGen::DoBitI(LBitI* instr) { | |
1773 Register result = ToRegister32(instr->result()); | |
1774 Register left = ToRegister32(instr->left()); | |
1775 Operand right = ToShiftedRightOperand32(instr->right(), instr); | |
1776 | |
1777 switch (instr->op()) { | |
1778 case Token::BIT_AND: __ And(result, left, right); break; | |
1779 case Token::BIT_OR: __ Orr(result, left, right); break; | |
1780 case Token::BIT_XOR: __ Eor(result, left, right); break; | |
1781 default: | |
1782 UNREACHABLE(); | |
1783 break; | |
1784 } | |
1785 } | |
1786 | |
1787 | |
1788 void LCodeGen::DoBitS(LBitS* instr) { | |
1789 Register result = ToRegister(instr->result()); | |
1790 Register left = ToRegister(instr->left()); | |
1791 Operand right = ToOperand(instr->right()); | |
1792 | |
1793 switch (instr->op()) { | |
1794 case Token::BIT_AND: __ And(result, left, right); break; | |
1795 case Token::BIT_OR: __ Orr(result, left, right); break; | |
1796 case Token::BIT_XOR: __ Eor(result, left, right); break; | |
1797 default: | |
1798 UNREACHABLE(); | |
1799 break; | |
1800 } | |
1801 } | |
1802 | |
1803 | |
1804 void LCodeGen::DoBoundsCheck(LBoundsCheck *instr) { | |
1805 Condition cond = instr->hydrogen()->allow_equality() ? hi : hs; | |
1806 DCHECK(instr->hydrogen()->index()->representation().IsInteger32()); | |
1807 DCHECK(instr->hydrogen()->length()->representation().IsInteger32()); | |
1808 if (instr->index()->IsConstantOperand()) { | |
1809 Operand index = ToOperand32(instr->index()); | |
1810 Register length = ToRegister32(instr->length()); | |
1811 __ Cmp(length, index); | |
1812 cond = CommuteCondition(cond); | |
1813 } else { | |
1814 Register index = ToRegister32(instr->index()); | |
1815 Operand length = ToOperand32(instr->length()); | |
1816 __ Cmp(index, length); | |
1817 } | |
1818 if (FLAG_debug_code && instr->hydrogen()->skip_check()) { | |
1819 __ Assert(NegateCondition(cond), kEliminatedBoundsCheckFailed); | |
1820 } else { | |
1821 DeoptimizeIf(cond, instr, Deoptimizer::kOutOfBounds); | |
1822 } | |
1823 } | |
1824 | |
1825 | |
1826 void LCodeGen::DoBranch(LBranch* instr) { | |
1827 Representation r = instr->hydrogen()->value()->representation(); | |
1828 Label* true_label = instr->TrueLabel(chunk_); | |
1829 Label* false_label = instr->FalseLabel(chunk_); | |
1830 | |
1831 if (r.IsInteger32()) { | |
1832 DCHECK(!info()->IsStub()); | |
1833 EmitCompareAndBranch(instr, ne, ToRegister32(instr->value()), 0); | |
1834 } else if (r.IsSmi()) { | |
1835 DCHECK(!info()->IsStub()); | |
1836 STATIC_ASSERT(kSmiTag == 0); | |
1837 EmitCompareAndBranch(instr, ne, ToRegister(instr->value()), 0); | |
1838 } else if (r.IsDouble()) { | |
1839 DoubleRegister value = ToDoubleRegister(instr->value()); | |
1840 // Test the double value. Zero and NaN are false. | |
1841 EmitBranchIfNonZeroNumber(instr, value, double_scratch()); | |
1842 } else { | |
1843 DCHECK(r.IsTagged()); | |
1844 Register value = ToRegister(instr->value()); | |
1845 HType type = instr->hydrogen()->value()->type(); | |
1846 | |
1847 if (type.IsBoolean()) { | |
1848 DCHECK(!info()->IsStub()); | |
1849 __ CompareRoot(value, Heap::kTrueValueRootIndex); | |
1850 EmitBranch(instr, eq); | |
1851 } else if (type.IsSmi()) { | |
1852 DCHECK(!info()->IsStub()); | |
1853 EmitCompareAndBranch(instr, ne, value, Smi::FromInt(0)); | |
1854 } else if (type.IsJSArray()) { | |
1855 DCHECK(!info()->IsStub()); | |
1856 EmitGoto(instr->TrueDestination(chunk())); | |
1857 } else if (type.IsHeapNumber()) { | |
1858 DCHECK(!info()->IsStub()); | |
1859 __ Ldr(double_scratch(), FieldMemOperand(value, | |
1860 HeapNumber::kValueOffset)); | |
1861 // Test the double value. Zero and NaN are false. | |
1862 EmitBranchIfNonZeroNumber(instr, double_scratch(), double_scratch()); | |
1863 } else if (type.IsString()) { | |
1864 DCHECK(!info()->IsStub()); | |
1865 Register temp = ToRegister(instr->temp1()); | |
1866 __ Ldr(temp, FieldMemOperand(value, String::kLengthOffset)); | |
1867 EmitCompareAndBranch(instr, ne, temp, 0); | |
1868 } else { | |
1869 ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types(); | |
1870 // Avoid deopts in the case where we've never executed this path before. | |
1871 if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic(); | |
1872 | |
1873 if (expected.Contains(ToBooleanStub::UNDEFINED)) { | |
1874 // undefined -> false. | |
1875 __ JumpIfRoot( | |
1876 value, Heap::kUndefinedValueRootIndex, false_label); | |
1877 } | |
1878 | |
1879 if (expected.Contains(ToBooleanStub::BOOLEAN)) { | |
1880 // Boolean -> its value. | |
1881 __ JumpIfRoot( | |
1882 value, Heap::kTrueValueRootIndex, true_label); | |
1883 __ JumpIfRoot( | |
1884 value, Heap::kFalseValueRootIndex, false_label); | |
1885 } | |
1886 | |
1887 if (expected.Contains(ToBooleanStub::NULL_TYPE)) { | |
1888 // 'null' -> false. | |
1889 __ JumpIfRoot( | |
1890 value, Heap::kNullValueRootIndex, false_label); | |
1891 } | |
1892 | |
1893 if (expected.Contains(ToBooleanStub::SMI)) { | |
1894 // Smis: 0 -> false, all other -> true. | |
1895 DCHECK(Smi::FromInt(0) == 0); | |
1896 __ Cbz(value, false_label); | |
1897 __ JumpIfSmi(value, true_label); | |
1898 } else if (expected.NeedsMap()) { | |
1899 // If we need a map later and have a smi, deopt. | |
1900 DeoptimizeIfSmi(value, instr, Deoptimizer::kSmi); | |
1901 } | |
1902 | |
1903 Register map = NoReg; | |
1904 Register scratch = NoReg; | |
1905 | |
1906 if (expected.NeedsMap()) { | |
1907 DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL)); | |
1908 map = ToRegister(instr->temp1()); | |
1909 scratch = ToRegister(instr->temp2()); | |
1910 | |
1911 __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset)); | |
1912 | |
1913 if (expected.CanBeUndetectable()) { | |
1914 // Undetectable -> false. | |
1915 __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset)); | |
1916 __ TestAndBranchIfAnySet( | |
1917 scratch, 1 << Map::kIsUndetectable, false_label); | |
1918 } | |
1919 } | |
1920 | |
1921 if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) { | |
1922 // spec object -> true. | |
1923 __ CompareInstanceType(map, scratch, FIRST_SPEC_OBJECT_TYPE); | |
1924 __ B(ge, true_label); | |
1925 } | |
1926 | |
1927 if (expected.Contains(ToBooleanStub::STRING)) { | |
1928 // String value -> false iff empty. | |
1929 Label not_string; | |
1930 __ CompareInstanceType(map, scratch, FIRST_NONSTRING_TYPE); | |
1931 __ B(ge, ¬_string); | |
1932 __ Ldr(scratch, FieldMemOperand(value, String::kLengthOffset)); | |
1933 __ Cbz(scratch, false_label); | |
1934 __ B(true_label); | |
1935 __ Bind(¬_string); | |
1936 } | |
1937 | |
1938 if (expected.Contains(ToBooleanStub::SYMBOL)) { | |
1939 // Symbol value -> true. | |
1940 __ CompareInstanceType(map, scratch, SYMBOL_TYPE); | |
1941 __ B(eq, true_label); | |
1942 } | |
1943 | |
1944 if (expected.Contains(ToBooleanStub::SIMD_VALUE)) { | |
1945 // SIMD value -> true. | |
1946 __ CompareInstanceType(map, scratch, SIMD128_VALUE_TYPE); | |
1947 __ B(eq, true_label); | |
1948 } | |
1949 | |
1950 if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) { | |
1951 Label not_heap_number; | |
1952 __ JumpIfNotRoot(map, Heap::kHeapNumberMapRootIndex, ¬_heap_number); | |
1953 | |
1954 __ Ldr(double_scratch(), | |
1955 FieldMemOperand(value, HeapNumber::kValueOffset)); | |
1956 __ Fcmp(double_scratch(), 0.0); | |
1957 // If we got a NaN (overflow bit is set), jump to the false branch. | |
1958 __ B(vs, false_label); | |
1959 __ B(eq, false_label); | |
1960 __ B(true_label); | |
1961 __ Bind(¬_heap_number); | |
1962 } | |
1963 | |
1964 if (!expected.IsGeneric()) { | |
1965 // We've seen something for the first time -> deopt. | |
1966 // This can only happen if we are not generic already. | |
1967 Deoptimize(instr, Deoptimizer::kUnexpectedObject); | |
1968 } | |
1969 } | |
1970 } | |
1971 } | |
1972 | |
1973 | |
1974 void LCodeGen::CallKnownFunction(Handle<JSFunction> function, | |
1975 int formal_parameter_count, int arity, | |
1976 LInstruction* instr) { | |
1977 bool dont_adapt_arguments = | |
1978 formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel; | |
1979 bool can_invoke_directly = | |
1980 dont_adapt_arguments || formal_parameter_count == arity; | |
1981 | |
1982 // The function interface relies on the following register assignments. | |
1983 Register function_reg = x1; | |
1984 Register arity_reg = x0; | |
1985 | |
1986 LPointerMap* pointers = instr->pointer_map(); | |
1987 | |
1988 if (FLAG_debug_code) { | |
1989 Label is_not_smi; | |
1990 // Try to confirm that function_reg (x1) is a tagged pointer. | |
1991 __ JumpIfNotSmi(function_reg, &is_not_smi); | |
1992 __ Abort(kExpectedFunctionObject); | |
1993 __ Bind(&is_not_smi); | |
1994 } | |
1995 | |
1996 if (can_invoke_directly) { | |
1997 // Change context. | |
1998 __ Ldr(cp, FieldMemOperand(function_reg, JSFunction::kContextOffset)); | |
1999 | |
2000 // Always initialize x0 to the number of actual arguments. | |
2001 __ Mov(arity_reg, arity); | |
2002 | |
2003 // Invoke function. | |
2004 __ Ldr(x10, FieldMemOperand(function_reg, JSFunction::kCodeEntryOffset)); | |
2005 __ Call(x10); | |
2006 | |
2007 // Set up deoptimization. | |
2008 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); | |
2009 } else { | |
2010 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); | |
2011 ParameterCount count(arity); | |
2012 ParameterCount expected(formal_parameter_count); | |
2013 __ InvokeFunction(function_reg, expected, count, CALL_FUNCTION, generator); | |
2014 } | |
2015 } | |
2016 | |
2017 | |
2018 void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) { | |
2019 DCHECK(instr->IsMarkedAsCall()); | |
2020 DCHECK(ToRegister(instr->result()).Is(x0)); | |
2021 | |
2022 if (instr->hydrogen()->IsTailCall()) { | |
2023 if (NeedsEagerFrame()) __ LeaveFrame(StackFrame::INTERNAL); | |
2024 | |
2025 if (instr->target()->IsConstantOperand()) { | |
2026 LConstantOperand* target = LConstantOperand::cast(instr->target()); | |
2027 Handle<Code> code = Handle<Code>::cast(ToHandle(target)); | |
2028 // TODO(all): on ARM we use a call descriptor to specify a storage mode | |
2029 // but on ARM64 we only have one storage mode so it isn't necessary. Check | |
2030 // this understanding is correct. | |
2031 __ Jump(code, RelocInfo::CODE_TARGET); | |
2032 } else { | |
2033 DCHECK(instr->target()->IsRegister()); | |
2034 Register target = ToRegister(instr->target()); | |
2035 __ Add(target, target, Code::kHeaderSize - kHeapObjectTag); | |
2036 __ Br(target); | |
2037 } | |
2038 } else { | |
2039 LPointerMap* pointers = instr->pointer_map(); | |
2040 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); | |
2041 | |
2042 if (instr->target()->IsConstantOperand()) { | |
2043 LConstantOperand* target = LConstantOperand::cast(instr->target()); | |
2044 Handle<Code> code = Handle<Code>::cast(ToHandle(target)); | |
2045 generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET)); | |
2046 // TODO(all): on ARM we use a call descriptor to specify a storage mode | |
2047 // but on ARM64 we only have one storage mode so it isn't necessary. Check | |
2048 // this understanding is correct. | |
2049 __ Call(code, RelocInfo::CODE_TARGET, TypeFeedbackId::None()); | |
2050 } else { | |
2051 DCHECK(instr->target()->IsRegister()); | |
2052 Register target = ToRegister(instr->target()); | |
2053 generator.BeforeCall(__ CallSize(target)); | |
2054 __ Add(target, target, Code::kHeaderSize - kHeapObjectTag); | |
2055 __ Call(target); | |
2056 } | |
2057 generator.AfterCall(); | |
2058 } | |
2059 | |
2060 RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta()); | |
2061 } | |
2062 | |
2063 | |
2064 void LCodeGen::DoCallJSFunction(LCallJSFunction* instr) { | |
2065 DCHECK(instr->IsMarkedAsCall()); | |
2066 DCHECK(ToRegister(instr->function()).is(x1)); | |
2067 | |
2068 __ Mov(x0, Operand(instr->arity())); | |
2069 | |
2070 // Change context. | |
2071 __ Ldr(cp, FieldMemOperand(x1, JSFunction::kContextOffset)); | |
2072 | |
2073 // Load the code entry address | |
2074 __ Ldr(x10, FieldMemOperand(x1, JSFunction::kCodeEntryOffset)); | |
2075 __ Call(x10); | |
2076 | |
2077 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); | |
2078 RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta()); | |
2079 } | |
2080 | |
2081 | |
2082 void LCodeGen::DoCallRuntime(LCallRuntime* instr) { | |
2083 CallRuntime(instr->function(), instr->arity(), instr); | |
2084 RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta()); | |
2085 } | |
2086 | |
2087 | |
2088 void LCodeGen::DoCallStub(LCallStub* instr) { | |
2089 DCHECK(ToRegister(instr->context()).is(cp)); | |
2090 DCHECK(ToRegister(instr->result()).is(x0)); | |
2091 switch (instr->hydrogen()->major_key()) { | |
2092 case CodeStub::RegExpExec: { | |
2093 RegExpExecStub stub(isolate()); | |
2094 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); | |
2095 break; | |
2096 } | |
2097 case CodeStub::SubString: { | |
2098 SubStringStub stub(isolate()); | |
2099 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); | |
2100 break; | |
2101 } | |
2102 default: | |
2103 UNREACHABLE(); | |
2104 } | |
2105 RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta()); | |
2106 } | |
2107 | |
2108 | |
2109 void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) { | |
2110 GenerateOsrPrologue(); | |
2111 } | |
2112 | |
2113 | |
2114 void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) { | |
2115 Register temp = ToRegister(instr->temp()); | |
2116 { | |
2117 PushSafepointRegistersScope scope(this); | |
2118 __ Push(object); | |
2119 __ Mov(cp, 0); | |
2120 __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance); | |
2121 RecordSafepointWithRegisters( | |
2122 instr->pointer_map(), 1, Safepoint::kNoLazyDeopt); | |
2123 __ StoreToSafepointRegisterSlot(x0, temp); | |
2124 } | |
2125 DeoptimizeIfSmi(temp, instr, Deoptimizer::kInstanceMigrationFailed); | |
2126 } | |
2127 | |
2128 | |
2129 void LCodeGen::DoCheckMaps(LCheckMaps* instr) { | |
2130 class DeferredCheckMaps: public LDeferredCode { | |
2131 public: | |
2132 DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object) | |
2133 : LDeferredCode(codegen), instr_(instr), object_(object) { | |
2134 SetExit(check_maps()); | |
2135 } | |
2136 virtual void Generate() { | |
2137 codegen()->DoDeferredInstanceMigration(instr_, object_); | |
2138 } | |
2139 Label* check_maps() { return &check_maps_; } | |
2140 virtual LInstruction* instr() { return instr_; } | |
2141 private: | |
2142 LCheckMaps* instr_; | |
2143 Label check_maps_; | |
2144 Register object_; | |
2145 }; | |
2146 | |
2147 if (instr->hydrogen()->IsStabilityCheck()) { | |
2148 const UniqueSet<Map>* maps = instr->hydrogen()->maps(); | |
2149 for (int i = 0; i < maps->size(); ++i) { | |
2150 AddStabilityDependency(maps->at(i).handle()); | |
2151 } | |
2152 return; | |
2153 } | |
2154 | |
2155 Register object = ToRegister(instr->value()); | |
2156 Register map_reg = ToRegister(instr->temp()); | |
2157 | |
2158 __ Ldr(map_reg, FieldMemOperand(object, HeapObject::kMapOffset)); | |
2159 | |
2160 DeferredCheckMaps* deferred = NULL; | |
2161 if (instr->hydrogen()->HasMigrationTarget()) { | |
2162 deferred = new(zone()) DeferredCheckMaps(this, instr, object); | |
2163 __ Bind(deferred->check_maps()); | |
2164 } | |
2165 | |
2166 const UniqueSet<Map>* maps = instr->hydrogen()->maps(); | |
2167 Label success; | |
2168 for (int i = 0; i < maps->size() - 1; i++) { | |
2169 Handle<Map> map = maps->at(i).handle(); | |
2170 __ CompareMap(map_reg, map); | |
2171 __ B(eq, &success); | |
2172 } | |
2173 Handle<Map> map = maps->at(maps->size() - 1).handle(); | |
2174 __ CompareMap(map_reg, map); | |
2175 | |
2176 // We didn't match a map. | |
2177 if (instr->hydrogen()->HasMigrationTarget()) { | |
2178 __ B(ne, deferred->entry()); | |
2179 } else { | |
2180 DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap); | |
2181 } | |
2182 | |
2183 __ Bind(&success); | |
2184 } | |
2185 | |
2186 | |
2187 void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) { | |
2188 if (!instr->hydrogen()->value()->type().IsHeapObject()) { | |
2189 DeoptimizeIfSmi(ToRegister(instr->value()), instr, Deoptimizer::kSmi); | |
2190 } | |
2191 } | |
2192 | |
2193 | |
2194 void LCodeGen::DoCheckSmi(LCheckSmi* instr) { | |
2195 Register value = ToRegister(instr->value()); | |
2196 DCHECK(!instr->result() || ToRegister(instr->result()).Is(value)); | |
2197 DeoptimizeIfNotSmi(value, instr, Deoptimizer::kNotASmi); | |
2198 } | |
2199 | |
2200 | |
2201 void LCodeGen::DoCheckArrayBufferNotNeutered( | |
2202 LCheckArrayBufferNotNeutered* instr) { | |
2203 UseScratchRegisterScope temps(masm()); | |
2204 Register view = ToRegister(instr->view()); | |
2205 Register scratch = temps.AcquireX(); | |
2206 | |
2207 __ Ldr(scratch, FieldMemOperand(view, JSArrayBufferView::kBufferOffset)); | |
2208 __ Ldr(scratch, FieldMemOperand(scratch, JSArrayBuffer::kBitFieldOffset)); | |
2209 __ Tst(scratch, Operand(1 << JSArrayBuffer::WasNeutered::kShift)); | |
2210 DeoptimizeIf(ne, instr, Deoptimizer::kOutOfBounds); | |
2211 } | |
2212 | |
2213 | |
2214 void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) { | |
2215 Register input = ToRegister(instr->value()); | |
2216 Register scratch = ToRegister(instr->temp()); | |
2217 | |
2218 __ Ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); | |
2219 __ Ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); | |
2220 | |
2221 if (instr->hydrogen()->is_interval_check()) { | |
2222 InstanceType first, last; | |
2223 instr->hydrogen()->GetCheckInterval(&first, &last); | |
2224 | |
2225 __ Cmp(scratch, first); | |
2226 if (first == last) { | |
2227 // If there is only one type in the interval check for equality. | |
2228 DeoptimizeIf(ne, instr, Deoptimizer::kWrongInstanceType); | |
2229 } else if (last == LAST_TYPE) { | |
2230 // We don't need to compare with the higher bound of the interval. | |
2231 DeoptimizeIf(lo, instr, Deoptimizer::kWrongInstanceType); | |
2232 } else { | |
2233 // If we are below the lower bound, set the C flag and clear the Z flag | |
2234 // to force a deopt. | |
2235 __ Ccmp(scratch, last, CFlag, hs); | |
2236 DeoptimizeIf(hi, instr, Deoptimizer::kWrongInstanceType); | |
2237 } | |
2238 } else { | |
2239 uint8_t mask; | |
2240 uint8_t tag; | |
2241 instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag); | |
2242 | |
2243 if (base::bits::IsPowerOfTwo32(mask)) { | |
2244 DCHECK((tag == 0) || (tag == mask)); | |
2245 if (tag == 0) { | |
2246 DeoptimizeIfBitSet(scratch, MaskToBit(mask), instr, | |
2247 Deoptimizer::kWrongInstanceType); | |
2248 } else { | |
2249 DeoptimizeIfBitClear(scratch, MaskToBit(mask), instr, | |
2250 Deoptimizer::kWrongInstanceType); | |
2251 } | |
2252 } else { | |
2253 if (tag == 0) { | |
2254 __ Tst(scratch, mask); | |
2255 } else { | |
2256 __ And(scratch, scratch, mask); | |
2257 __ Cmp(scratch, tag); | |
2258 } | |
2259 DeoptimizeIf(ne, instr, Deoptimizer::kWrongInstanceType); | |
2260 } | |
2261 } | |
2262 } | |
2263 | |
2264 | |
2265 void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) { | |
2266 DoubleRegister input = ToDoubleRegister(instr->unclamped()); | |
2267 Register result = ToRegister32(instr->result()); | |
2268 __ ClampDoubleToUint8(result, input, double_scratch()); | |
2269 } | |
2270 | |
2271 | |
2272 void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) { | |
2273 Register input = ToRegister32(instr->unclamped()); | |
2274 Register result = ToRegister32(instr->result()); | |
2275 __ ClampInt32ToUint8(result, input); | |
2276 } | |
2277 | |
2278 | |
2279 void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) { | |
2280 Register input = ToRegister(instr->unclamped()); | |
2281 Register result = ToRegister32(instr->result()); | |
2282 Label done; | |
2283 | |
2284 // Both smi and heap number cases are handled. | |
2285 Label is_not_smi; | |
2286 __ JumpIfNotSmi(input, &is_not_smi); | |
2287 __ SmiUntag(result.X(), input); | |
2288 __ ClampInt32ToUint8(result); | |
2289 __ B(&done); | |
2290 | |
2291 __ Bind(&is_not_smi); | |
2292 | |
2293 // Check for heap number. | |
2294 Label is_heap_number; | |
2295 __ JumpIfHeapNumber(input, &is_heap_number); | |
2296 | |
2297 // Check for undefined. Undefined is coverted to zero for clamping conversion. | |
2298 DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr, | |
2299 Deoptimizer::kNotAHeapNumberUndefined); | |
2300 __ Mov(result, 0); | |
2301 __ B(&done); | |
2302 | |
2303 // Heap number case. | |
2304 __ Bind(&is_heap_number); | |
2305 DoubleRegister dbl_scratch = double_scratch(); | |
2306 DoubleRegister dbl_scratch2 = ToDoubleRegister(instr->temp1()); | |
2307 __ Ldr(dbl_scratch, FieldMemOperand(input, HeapNumber::kValueOffset)); | |
2308 __ ClampDoubleToUint8(result, dbl_scratch, dbl_scratch2); | |
2309 | |
2310 __ Bind(&done); | |
2311 } | |
2312 | |
2313 | |
2314 void LCodeGen::DoDoubleBits(LDoubleBits* instr) { | |
2315 DoubleRegister value_reg = ToDoubleRegister(instr->value()); | |
2316 Register result_reg = ToRegister(instr->result()); | |
2317 if (instr->hydrogen()->bits() == HDoubleBits::HIGH) { | |
2318 __ Fmov(result_reg, value_reg); | |
2319 __ Lsr(result_reg, result_reg, 32); | |
2320 } else { | |
2321 __ Fmov(result_reg.W(), value_reg.S()); | |
2322 } | |
2323 } | |
2324 | |
2325 | |
2326 void LCodeGen::DoConstructDouble(LConstructDouble* instr) { | |
2327 Register hi_reg = ToRegister(instr->hi()); | |
2328 Register lo_reg = ToRegister(instr->lo()); | |
2329 DoubleRegister result_reg = ToDoubleRegister(instr->result()); | |
2330 | |
2331 // Insert the least significant 32 bits of hi_reg into the most significant | |
2332 // 32 bits of lo_reg, and move to a floating point register. | |
2333 __ Bfi(lo_reg, hi_reg, 32, 32); | |
2334 __ Fmov(result_reg, lo_reg); | |
2335 } | |
2336 | |
2337 | |
2338 void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) { | |
2339 Handle<String> class_name = instr->hydrogen()->class_name(); | |
2340 Label* true_label = instr->TrueLabel(chunk_); | |
2341 Label* false_label = instr->FalseLabel(chunk_); | |
2342 Register input = ToRegister(instr->value()); | |
2343 Register scratch1 = ToRegister(instr->temp1()); | |
2344 Register scratch2 = ToRegister(instr->temp2()); | |
2345 | |
2346 __ JumpIfSmi(input, false_label); | |
2347 | |
2348 Register map = scratch2; | |
2349 if (String::Equals(isolate()->factory()->Function_string(), class_name)) { | |
2350 // Assuming the following assertions, we can use the same compares to test | |
2351 // for both being a function type and being in the object type range. | |
2352 STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); | |
2353 STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE == | |
2354 FIRST_SPEC_OBJECT_TYPE + 1); | |
2355 STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == | |
2356 LAST_SPEC_OBJECT_TYPE - 1); | |
2357 STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); | |
2358 | |
2359 // We expect CompareObjectType to load the object instance type in scratch1. | |
2360 __ CompareObjectType(input, map, scratch1, FIRST_SPEC_OBJECT_TYPE); | |
2361 __ B(lt, false_label); | |
2362 __ B(eq, true_label); | |
2363 __ Cmp(scratch1, LAST_SPEC_OBJECT_TYPE); | |
2364 __ B(eq, true_label); | |
2365 } else { | |
2366 __ IsObjectJSObjectType(input, map, scratch1, false_label); | |
2367 } | |
2368 | |
2369 // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range. | |
2370 // Check if the constructor in the map is a function. | |
2371 { | |
2372 UseScratchRegisterScope temps(masm()); | |
2373 Register instance_type = temps.AcquireX(); | |
2374 __ GetMapConstructor(scratch1, map, scratch2, instance_type); | |
2375 __ Cmp(instance_type, JS_FUNCTION_TYPE); | |
2376 } | |
2377 // Objects with a non-function constructor have class 'Object'. | |
2378 if (String::Equals(class_name, isolate()->factory()->Object_string())) { | |
2379 __ B(ne, true_label); | |
2380 } else { | |
2381 __ B(ne, false_label); | |
2382 } | |
2383 | |
2384 // The constructor function is in scratch1. Get its instance class name. | |
2385 __ Ldr(scratch1, | |
2386 FieldMemOperand(scratch1, JSFunction::kSharedFunctionInfoOffset)); | |
2387 __ Ldr(scratch1, | |
2388 FieldMemOperand(scratch1, | |
2389 SharedFunctionInfo::kInstanceClassNameOffset)); | |
2390 | |
2391 // The class name we are testing against is internalized since it's a literal. | |
2392 // The name in the constructor is internalized because of the way the context | |
2393 // is booted. This routine isn't expected to work for random API-created | |
2394 // classes and it doesn't have to because you can't access it with natives | |
2395 // syntax. Since both sides are internalized it is sufficient to use an | |
2396 // identity comparison. | |
2397 EmitCompareAndBranch(instr, eq, scratch1, Operand(class_name)); | |
2398 } | |
2399 | |
2400 | |
2401 void LCodeGen::DoCmpHoleAndBranchD(LCmpHoleAndBranchD* instr) { | |
2402 DCHECK(instr->hydrogen()->representation().IsDouble()); | |
2403 FPRegister object = ToDoubleRegister(instr->object()); | |
2404 Register temp = ToRegister(instr->temp()); | |
2405 | |
2406 // If we don't have a NaN, we don't have the hole, so branch now to avoid the | |
2407 // (relatively expensive) hole-NaN check. | |
2408 __ Fcmp(object, object); | |
2409 __ B(vc, instr->FalseLabel(chunk_)); | |
2410 | |
2411 // We have a NaN, but is it the hole? | |
2412 __ Fmov(temp, object); | |
2413 EmitCompareAndBranch(instr, eq, temp, kHoleNanInt64); | |
2414 } | |
2415 | |
2416 | |
2417 void LCodeGen::DoCmpHoleAndBranchT(LCmpHoleAndBranchT* instr) { | |
2418 DCHECK(instr->hydrogen()->representation().IsTagged()); | |
2419 Register object = ToRegister(instr->object()); | |
2420 | |
2421 EmitBranchIfRoot(instr, object, Heap::kTheHoleValueRootIndex); | |
2422 } | |
2423 | |
2424 | |
2425 void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) { | |
2426 Register value = ToRegister(instr->value()); | |
2427 Register map = ToRegister(instr->temp()); | |
2428 | |
2429 __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset)); | |
2430 EmitCompareAndBranch(instr, eq, map, Operand(instr->map())); | |
2431 } | |
2432 | |
2433 | |
2434 void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) { | |
2435 Representation rep = instr->hydrogen()->value()->representation(); | |
2436 DCHECK(!rep.IsInteger32()); | |
2437 Register scratch = ToRegister(instr->temp()); | |
2438 | |
2439 if (rep.IsDouble()) { | |
2440 __ JumpIfMinusZero(ToDoubleRegister(instr->value()), | |
2441 instr->TrueLabel(chunk())); | |
2442 } else { | |
2443 Register value = ToRegister(instr->value()); | |
2444 __ JumpIfNotHeapNumber(value, instr->FalseLabel(chunk()), DO_SMI_CHECK); | |
2445 __ Ldr(scratch, FieldMemOperand(value, HeapNumber::kValueOffset)); | |
2446 __ JumpIfMinusZero(scratch, instr->TrueLabel(chunk())); | |
2447 } | |
2448 EmitGoto(instr->FalseDestination(chunk())); | |
2449 } | |
2450 | |
2451 | |
2452 void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) { | |
2453 LOperand* left = instr->left(); | |
2454 LOperand* right = instr->right(); | |
2455 bool is_unsigned = | |
2456 instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) || | |
2457 instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32); | |
2458 Condition cond = TokenToCondition(instr->op(), is_unsigned); | |
2459 | |
2460 if (left->IsConstantOperand() && right->IsConstantOperand()) { | |
2461 // We can statically evaluate the comparison. | |
2462 double left_val = ToDouble(LConstantOperand::cast(left)); | |
2463 double right_val = ToDouble(LConstantOperand::cast(right)); | |
2464 int next_block = EvalComparison(instr->op(), left_val, right_val) ? | |
2465 instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_); | |
2466 EmitGoto(next_block); | |
2467 } else { | |
2468 if (instr->is_double()) { | |
2469 __ Fcmp(ToDoubleRegister(left), ToDoubleRegister(right)); | |
2470 | |
2471 // If a NaN is involved, i.e. the result is unordered (V set), | |
2472 // jump to false block label. | |
2473 __ B(vs, instr->FalseLabel(chunk_)); | |
2474 EmitBranch(instr, cond); | |
2475 } else { | |
2476 if (instr->hydrogen_value()->representation().IsInteger32()) { | |
2477 if (right->IsConstantOperand()) { | |
2478 EmitCompareAndBranch(instr, cond, ToRegister32(left), | |
2479 ToOperand32(right)); | |
2480 } else { | |
2481 // Commute the operands and the condition. | |
2482 EmitCompareAndBranch(instr, CommuteCondition(cond), | |
2483 ToRegister32(right), ToOperand32(left)); | |
2484 } | |
2485 } else { | |
2486 DCHECK(instr->hydrogen_value()->representation().IsSmi()); | |
2487 if (right->IsConstantOperand()) { | |
2488 int32_t value = ToInteger32(LConstantOperand::cast(right)); | |
2489 EmitCompareAndBranch(instr, | |
2490 cond, | |
2491 ToRegister(left), | |
2492 Operand(Smi::FromInt(value))); | |
2493 } else if (left->IsConstantOperand()) { | |
2494 // Commute the operands and the condition. | |
2495 int32_t value = ToInteger32(LConstantOperand::cast(left)); | |
2496 EmitCompareAndBranch(instr, | |
2497 CommuteCondition(cond), | |
2498 ToRegister(right), | |
2499 Operand(Smi::FromInt(value))); | |
2500 } else { | |
2501 EmitCompareAndBranch(instr, | |
2502 cond, | |
2503 ToRegister(left), | |
2504 ToRegister(right)); | |
2505 } | |
2506 } | |
2507 } | |
2508 } | |
2509 } | |
2510 | |
2511 | |
2512 void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) { | |
2513 Register left = ToRegister(instr->left()); | |
2514 Register right = ToRegister(instr->right()); | |
2515 EmitCompareAndBranch(instr, eq, left, right); | |
2516 } | |
2517 | |
2518 | |
2519 void LCodeGen::DoCmpT(LCmpT* instr) { | |
2520 DCHECK(ToRegister(instr->context()).is(cp)); | |
2521 Token::Value op = instr->op(); | |
2522 Condition cond = TokenToCondition(op, false); | |
2523 | |
2524 DCHECK(ToRegister(instr->left()).Is(x1)); | |
2525 DCHECK(ToRegister(instr->right()).Is(x0)); | |
2526 Handle<Code> ic = | |
2527 CodeFactory::CompareIC(isolate(), op, instr->strength()).code(); | |
2528 CallCode(ic, RelocInfo::CODE_TARGET, instr); | |
2529 // Signal that we don't inline smi code before this stub. | |
2530 InlineSmiCheckInfo::EmitNotInlined(masm()); | |
2531 | |
2532 // Return true or false depending on CompareIC result. | |
2533 // This instruction is marked as call. We can clobber any register. | |
2534 DCHECK(instr->IsMarkedAsCall()); | |
2535 __ LoadTrueFalseRoots(x1, x2); | |
2536 __ Cmp(x0, 0); | |
2537 __ Csel(ToRegister(instr->result()), x1, x2, cond); | |
2538 } | |
2539 | |
2540 | |
2541 void LCodeGen::DoConstantD(LConstantD* instr) { | |
2542 DCHECK(instr->result()->IsDoubleRegister()); | |
2543 DoubleRegister result = ToDoubleRegister(instr->result()); | |
2544 if (instr->value() == 0) { | |
2545 if (copysign(1.0, instr->value()) == 1.0) { | |
2546 __ Fmov(result, fp_zero); | |
2547 } else { | |
2548 __ Fneg(result, fp_zero); | |
2549 } | |
2550 } else { | |
2551 __ Fmov(result, instr->value()); | |
2552 } | |
2553 } | |
2554 | |
2555 | |
2556 void LCodeGen::DoConstantE(LConstantE* instr) { | |
2557 __ Mov(ToRegister(instr->result()), Operand(instr->value())); | |
2558 } | |
2559 | |
2560 | |
2561 void LCodeGen::DoConstantI(LConstantI* instr) { | |
2562 DCHECK(is_int32(instr->value())); | |
2563 // Cast the value here to ensure that the value isn't sign extended by the | |
2564 // implicit Operand constructor. | |
2565 __ Mov(ToRegister32(instr->result()), static_cast<uint32_t>(instr->value())); | |
2566 } | |
2567 | |
2568 | |
2569 void LCodeGen::DoConstantS(LConstantS* instr) { | |
2570 __ Mov(ToRegister(instr->result()), Operand(instr->value())); | |
2571 } | |
2572 | |
2573 | |
2574 void LCodeGen::DoConstantT(LConstantT* instr) { | |
2575 Handle<Object> object = instr->value(isolate()); | |
2576 AllowDeferredHandleDereference smi_check; | |
2577 __ LoadObject(ToRegister(instr->result()), object); | |
2578 } | |
2579 | |
2580 | |
2581 void LCodeGen::DoContext(LContext* instr) { | |
2582 // If there is a non-return use, the context must be moved to a register. | |
2583 Register result = ToRegister(instr->result()); | |
2584 if (info()->IsOptimizing()) { | |
2585 __ Ldr(result, MemOperand(fp, StandardFrameConstants::kContextOffset)); | |
2586 } else { | |
2587 // If there is no frame, the context must be in cp. | |
2588 DCHECK(result.is(cp)); | |
2589 } | |
2590 } | |
2591 | |
2592 | |
2593 void LCodeGen::DoCheckValue(LCheckValue* instr) { | |
2594 Register reg = ToRegister(instr->value()); | |
2595 Handle<HeapObject> object = instr->hydrogen()->object().handle(); | |
2596 AllowDeferredHandleDereference smi_check; | |
2597 if (isolate()->heap()->InNewSpace(*object)) { | |
2598 UseScratchRegisterScope temps(masm()); | |
2599 Register temp = temps.AcquireX(); | |
2600 Handle<Cell> cell = isolate()->factory()->NewCell(object); | |
2601 __ Mov(temp, Operand(cell)); | |
2602 __ Ldr(temp, FieldMemOperand(temp, Cell::kValueOffset)); | |
2603 __ Cmp(reg, temp); | |
2604 } else { | |
2605 __ Cmp(reg, Operand(object)); | |
2606 } | |
2607 DeoptimizeIf(ne, instr, Deoptimizer::kValueMismatch); | |
2608 } | |
2609 | |
2610 | |
2611 void LCodeGen::DoLazyBailout(LLazyBailout* instr) { | |
2612 last_lazy_deopt_pc_ = masm()->pc_offset(); | |
2613 DCHECK(instr->HasEnvironment()); | |
2614 LEnvironment* env = instr->environment(); | |
2615 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); | |
2616 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); | |
2617 } | |
2618 | |
2619 | |
2620 void LCodeGen::DoDateField(LDateField* instr) { | |
2621 Register object = ToRegister(instr->date()); | |
2622 Register result = ToRegister(instr->result()); | |
2623 Register temp1 = x10; | |
2624 Register temp2 = x11; | |
2625 Smi* index = instr->index(); | |
2626 | |
2627 DCHECK(object.is(result) && object.Is(x0)); | |
2628 DCHECK(instr->IsMarkedAsCall()); | |
2629 | |
2630 if (index->value() == 0) { | |
2631 __ Ldr(result, FieldMemOperand(object, JSDate::kValueOffset)); | |
2632 } else { | |
2633 Label runtime, done; | |
2634 if (index->value() < JSDate::kFirstUncachedField) { | |
2635 ExternalReference stamp = ExternalReference::date_cache_stamp(isolate()); | |
2636 __ Mov(temp1, Operand(stamp)); | |
2637 __ Ldr(temp1, MemOperand(temp1)); | |
2638 __ Ldr(temp2, FieldMemOperand(object, JSDate::kCacheStampOffset)); | |
2639 __ Cmp(temp1, temp2); | |
2640 __ B(ne, &runtime); | |
2641 __ Ldr(result, FieldMemOperand(object, JSDate::kValueOffset + | |
2642 kPointerSize * index->value())); | |
2643 __ B(&done); | |
2644 } | |
2645 | |
2646 __ Bind(&runtime); | |
2647 __ Mov(x1, Operand(index)); | |
2648 __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2); | |
2649 __ Bind(&done); | |
2650 } | |
2651 } | |
2652 | |
2653 | |
2654 void LCodeGen::DoDeoptimize(LDeoptimize* instr) { | |
2655 Deoptimizer::BailoutType type = instr->hydrogen()->type(); | |
2656 // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the | |
2657 // needed return address), even though the implementation of LAZY and EAGER is | |
2658 // now identical. When LAZY is eventually completely folded into EAGER, remove | |
2659 // the special case below. | |
2660 if (info()->IsStub() && (type == Deoptimizer::EAGER)) { | |
2661 type = Deoptimizer::LAZY; | |
2662 } | |
2663 | |
2664 Deoptimize(instr, instr->hydrogen()->reason(), &type); | |
2665 } | |
2666 | |
2667 | |
2668 void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) { | |
2669 Register dividend = ToRegister32(instr->dividend()); | |
2670 int32_t divisor = instr->divisor(); | |
2671 Register result = ToRegister32(instr->result()); | |
2672 DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor))); | |
2673 DCHECK(!result.is(dividend)); | |
2674 | |
2675 // Check for (0 / -x) that will produce negative zero. | |
2676 HDiv* hdiv = instr->hydrogen(); | |
2677 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { | |
2678 DeoptimizeIfZero(dividend, instr, Deoptimizer::kDivisionByZero); | |
2679 } | |
2680 // Check for (kMinInt / -1). | |
2681 if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) { | |
2682 // Test dividend for kMinInt by subtracting one (cmp) and checking for | |
2683 // overflow. | |
2684 __ Cmp(dividend, 1); | |
2685 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow); | |
2686 } | |
2687 // Deoptimize if remainder will not be 0. | |
2688 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) && | |
2689 divisor != 1 && divisor != -1) { | |
2690 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1); | |
2691 __ Tst(dividend, mask); | |
2692 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecision); | |
2693 } | |
2694 | |
2695 if (divisor == -1) { // Nice shortcut, not needed for correctness. | |
2696 __ Neg(result, dividend); | |
2697 return; | |
2698 } | |
2699 int32_t shift = WhichPowerOf2Abs(divisor); | |
2700 if (shift == 0) { | |
2701 __ Mov(result, dividend); | |
2702 } else if (shift == 1) { | |
2703 __ Add(result, dividend, Operand(dividend, LSR, 31)); | |
2704 } else { | |
2705 __ Mov(result, Operand(dividend, ASR, 31)); | |
2706 __ Add(result, dividend, Operand(result, LSR, 32 - shift)); | |
2707 } | |
2708 if (shift > 0) __ Mov(result, Operand(result, ASR, shift)); | |
2709 if (divisor < 0) __ Neg(result, result); | |
2710 } | |
2711 | |
2712 | |
2713 void LCodeGen::DoDivByConstI(LDivByConstI* instr) { | |
2714 Register dividend = ToRegister32(instr->dividend()); | |
2715 int32_t divisor = instr->divisor(); | |
2716 Register result = ToRegister32(instr->result()); | |
2717 DCHECK(!AreAliased(dividend, result)); | |
2718 | |
2719 if (divisor == 0) { | |
2720 Deoptimize(instr, Deoptimizer::kDivisionByZero); | |
2721 return; | |
2722 } | |
2723 | |
2724 // Check for (0 / -x) that will produce negative zero. | |
2725 HDiv* hdiv = instr->hydrogen(); | |
2726 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { | |
2727 DeoptimizeIfZero(dividend, instr, Deoptimizer::kMinusZero); | |
2728 } | |
2729 | |
2730 __ TruncatingDiv(result, dividend, Abs(divisor)); | |
2731 if (divisor < 0) __ Neg(result, result); | |
2732 | |
2733 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) { | |
2734 Register temp = ToRegister32(instr->temp()); | |
2735 DCHECK(!AreAliased(dividend, result, temp)); | |
2736 __ Sxtw(dividend.X(), dividend); | |
2737 __ Mov(temp, divisor); | |
2738 __ Smsubl(temp.X(), result, temp, dividend.X()); | |
2739 DeoptimizeIfNotZero(temp, instr, Deoptimizer::kLostPrecision); | |
2740 } | |
2741 } | |
2742 | |
2743 | |
2744 // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI. | |
2745 void LCodeGen::DoDivI(LDivI* instr) { | |
2746 HBinaryOperation* hdiv = instr->hydrogen(); | |
2747 Register dividend = ToRegister32(instr->dividend()); | |
2748 Register divisor = ToRegister32(instr->divisor()); | |
2749 Register result = ToRegister32(instr->result()); | |
2750 | |
2751 // Issue the division first, and then check for any deopt cases whilst the | |
2752 // result is computed. | |
2753 __ Sdiv(result, dividend, divisor); | |
2754 | |
2755 if (hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) { | |
2756 DCHECK(!instr->temp()); | |
2757 return; | |
2758 } | |
2759 | |
2760 // Check for x / 0. | |
2761 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) { | |
2762 DeoptimizeIfZero(divisor, instr, Deoptimizer::kDivisionByZero); | |
2763 } | |
2764 | |
2765 // Check for (0 / -x) as that will produce negative zero. | |
2766 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
2767 __ Cmp(divisor, 0); | |
2768 | |
2769 // If the divisor < 0 (mi), compare the dividend, and deopt if it is | |
2770 // zero, ie. zero dividend with negative divisor deopts. | |
2771 // If the divisor >= 0 (pl, the opposite of mi) set the flags to | |
2772 // condition ne, so we don't deopt, ie. positive divisor doesn't deopt. | |
2773 __ Ccmp(dividend, 0, NoFlag, mi); | |
2774 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero); | |
2775 } | |
2776 | |
2777 // Check for (kMinInt / -1). | |
2778 if (hdiv->CheckFlag(HValue::kCanOverflow)) { | |
2779 // Test dividend for kMinInt by subtracting one (cmp) and checking for | |
2780 // overflow. | |
2781 __ Cmp(dividend, 1); | |
2782 // If overflow is set, ie. dividend = kMinInt, compare the divisor with | |
2783 // -1. If overflow is clear, set the flags for condition ne, as the | |
2784 // dividend isn't -1, and thus we shouldn't deopt. | |
2785 __ Ccmp(divisor, -1, NoFlag, vs); | |
2786 DeoptimizeIf(eq, instr, Deoptimizer::kOverflow); | |
2787 } | |
2788 | |
2789 // Compute remainder and deopt if it's not zero. | |
2790 Register remainder = ToRegister32(instr->temp()); | |
2791 __ Msub(remainder, result, divisor, dividend); | |
2792 DeoptimizeIfNotZero(remainder, instr, Deoptimizer::kLostPrecision); | |
2793 } | |
2794 | |
2795 | |
2796 void LCodeGen::DoDoubleToIntOrSmi(LDoubleToIntOrSmi* instr) { | |
2797 DoubleRegister input = ToDoubleRegister(instr->value()); | |
2798 Register result = ToRegister32(instr->result()); | |
2799 | |
2800 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
2801 DeoptimizeIfMinusZero(input, instr, Deoptimizer::kMinusZero); | |
2802 } | |
2803 | |
2804 __ TryRepresentDoubleAsInt32(result, input, double_scratch()); | |
2805 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN); | |
2806 | |
2807 if (instr->tag_result()) { | |
2808 __ SmiTag(result.X()); | |
2809 } | |
2810 } | |
2811 | |
2812 | |
2813 void LCodeGen::DoDrop(LDrop* instr) { | |
2814 __ Drop(instr->count()); | |
2815 | |
2816 RecordPushedArgumentsDelta(instr->hydrogen_value()->argument_delta()); | |
2817 } | |
2818 | |
2819 | |
2820 void LCodeGen::DoDummy(LDummy* instr) { | |
2821 // Nothing to see here, move on! | |
2822 } | |
2823 | |
2824 | |
2825 void LCodeGen::DoDummyUse(LDummyUse* instr) { | |
2826 // Nothing to see here, move on! | |
2827 } | |
2828 | |
2829 | |
2830 void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) { | |
2831 Register map = ToRegister(instr->map()); | |
2832 Register result = ToRegister(instr->result()); | |
2833 Label load_cache, done; | |
2834 | |
2835 __ EnumLengthUntagged(result, map); | |
2836 __ Cbnz(result, &load_cache); | |
2837 | |
2838 __ Mov(result, Operand(isolate()->factory()->empty_fixed_array())); | |
2839 __ B(&done); | |
2840 | |
2841 __ Bind(&load_cache); | |
2842 __ LoadInstanceDescriptors(map, result); | |
2843 __ Ldr(result, FieldMemOperand(result, DescriptorArray::kEnumCacheOffset)); | |
2844 __ Ldr(result, FieldMemOperand(result, FixedArray::SizeFor(instr->idx()))); | |
2845 DeoptimizeIfZero(result, instr, Deoptimizer::kNoCache); | |
2846 | |
2847 __ Bind(&done); | |
2848 } | |
2849 | |
2850 | |
2851 void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) { | |
2852 Register object = ToRegister(instr->object()); | |
2853 Register null_value = x5; | |
2854 | |
2855 DCHECK(instr->IsMarkedAsCall()); | |
2856 DCHECK(object.Is(x0)); | |
2857 | |
2858 DeoptimizeIfSmi(object, instr, Deoptimizer::kSmi); | |
2859 | |
2860 STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE); | |
2861 __ CompareObjectType(object, x1, x1, LAST_JS_PROXY_TYPE); | |
2862 DeoptimizeIf(le, instr, Deoptimizer::kNotAJavaScriptObject); | |
2863 | |
2864 Label use_cache, call_runtime; | |
2865 __ LoadRoot(null_value, Heap::kNullValueRootIndex); | |
2866 __ CheckEnumCache(object, null_value, x1, x2, x3, x4, &call_runtime); | |
2867 | |
2868 __ Ldr(object, FieldMemOperand(object, HeapObject::kMapOffset)); | |
2869 __ B(&use_cache); | |
2870 | |
2871 // Get the set of properties to enumerate. | |
2872 __ Bind(&call_runtime); | |
2873 __ Push(object); | |
2874 CallRuntime(Runtime::kGetPropertyNamesFast, 1, instr); | |
2875 | |
2876 __ Ldr(x1, FieldMemOperand(object, HeapObject::kMapOffset)); | |
2877 DeoptimizeIfNotRoot(x1, Heap::kMetaMapRootIndex, instr, | |
2878 Deoptimizer::kWrongMap); | |
2879 | |
2880 __ Bind(&use_cache); | |
2881 } | |
2882 | |
2883 | |
2884 void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) { | |
2885 Register input = ToRegister(instr->value()); | |
2886 Register result = ToRegister(instr->result()); | |
2887 | |
2888 __ AssertString(input); | |
2889 | |
2890 // Assert that we can use a W register load to get the hash. | |
2891 DCHECK((String::kHashShift + String::kArrayIndexValueBits) < kWRegSizeInBits); | |
2892 __ Ldr(result.W(), FieldMemOperand(input, String::kHashFieldOffset)); | |
2893 __ IndexFromHash(result, result); | |
2894 } | |
2895 | |
2896 | |
2897 void LCodeGen::EmitGoto(int block) { | |
2898 // Do not emit jump if we are emitting a goto to the next block. | |
2899 if (!IsNextEmittedBlock(block)) { | |
2900 __ B(chunk_->GetAssemblyLabel(LookupDestination(block))); | |
2901 } | |
2902 } | |
2903 | |
2904 | |
2905 void LCodeGen::DoGoto(LGoto* instr) { | |
2906 EmitGoto(instr->block_id()); | |
2907 } | |
2908 | |
2909 | |
2910 void LCodeGen::DoHasCachedArrayIndexAndBranch( | |
2911 LHasCachedArrayIndexAndBranch* instr) { | |
2912 Register input = ToRegister(instr->value()); | |
2913 Register temp = ToRegister32(instr->temp()); | |
2914 | |
2915 // Assert that the cache status bits fit in a W register. | |
2916 DCHECK(is_uint32(String::kContainsCachedArrayIndexMask)); | |
2917 __ Ldr(temp, FieldMemOperand(input, String::kHashFieldOffset)); | |
2918 __ Tst(temp, String::kContainsCachedArrayIndexMask); | |
2919 EmitBranch(instr, eq); | |
2920 } | |
2921 | |
2922 | |
2923 // HHasInstanceTypeAndBranch instruction is built with an interval of type | |
2924 // to test but is only used in very restricted ways. The only possible kinds | |
2925 // of intervals are: | |
2926 // - [ FIRST_TYPE, instr->to() ] | |
2927 // - [ instr->form(), LAST_TYPE ] | |
2928 // - instr->from() == instr->to() | |
2929 // | |
2930 // These kinds of intervals can be check with only one compare instruction | |
2931 // providing the correct value and test condition are used. | |
2932 // | |
2933 // TestType() will return the value to use in the compare instruction and | |
2934 // BranchCondition() will return the condition to use depending on the kind | |
2935 // of interval actually specified in the instruction. | |
2936 static InstanceType TestType(HHasInstanceTypeAndBranch* instr) { | |
2937 InstanceType from = instr->from(); | |
2938 InstanceType to = instr->to(); | |
2939 if (from == FIRST_TYPE) return to; | |
2940 DCHECK((from == to) || (to == LAST_TYPE)); | |
2941 return from; | |
2942 } | |
2943 | |
2944 | |
2945 // See comment above TestType function for what this function does. | |
2946 static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) { | |
2947 InstanceType from = instr->from(); | |
2948 InstanceType to = instr->to(); | |
2949 if (from == to) return eq; | |
2950 if (to == LAST_TYPE) return hs; | |
2951 if (from == FIRST_TYPE) return ls; | |
2952 UNREACHABLE(); | |
2953 return eq; | |
2954 } | |
2955 | |
2956 | |
2957 void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) { | |
2958 Register input = ToRegister(instr->value()); | |
2959 Register scratch = ToRegister(instr->temp()); | |
2960 | |
2961 if (!instr->hydrogen()->value()->type().IsHeapObject()) { | |
2962 __ JumpIfSmi(input, instr->FalseLabel(chunk_)); | |
2963 } | |
2964 __ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen())); | |
2965 EmitBranch(instr, BranchCondition(instr->hydrogen())); | |
2966 } | |
2967 | |
2968 | |
2969 void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) { | |
2970 Register result = ToRegister(instr->result()); | |
2971 Register base = ToRegister(instr->base_object()); | |
2972 if (instr->offset()->IsConstantOperand()) { | |
2973 __ Add(result, base, ToOperand32(instr->offset())); | |
2974 } else { | |
2975 __ Add(result, base, Operand(ToRegister32(instr->offset()), SXTW)); | |
2976 } | |
2977 } | |
2978 | |
2979 | |
2980 void LCodeGen::DoInstanceOf(LInstanceOf* instr) { | |
2981 DCHECK(ToRegister(instr->context()).is(cp)); | |
2982 DCHECK(ToRegister(instr->left()).is(InstanceOfDescriptor::LeftRegister())); | |
2983 DCHECK(ToRegister(instr->right()).is(InstanceOfDescriptor::RightRegister())); | |
2984 DCHECK(ToRegister(instr->result()).is(x0)); | |
2985 InstanceOfStub stub(isolate()); | |
2986 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); | |
2987 } | |
2988 | |
2989 | |
2990 void LCodeGen::DoHasInPrototypeChainAndBranch( | |
2991 LHasInPrototypeChainAndBranch* instr) { | |
2992 Register const object = ToRegister(instr->object()); | |
2993 Register const object_map = ToRegister(instr->scratch()); | |
2994 Register const object_prototype = object_map; | |
2995 Register const prototype = ToRegister(instr->prototype()); | |
2996 | |
2997 // The {object} must be a spec object. It's sufficient to know that {object} | |
2998 // is not a smi, since all other non-spec objects have {null} prototypes and | |
2999 // will be ruled out below. | |
3000 if (instr->hydrogen()->ObjectNeedsSmiCheck()) { | |
3001 __ JumpIfSmi(object, instr->FalseLabel(chunk_)); | |
3002 } | |
3003 | |
3004 // Loop through the {object}s prototype chain looking for the {prototype}. | |
3005 __ Ldr(object_map, FieldMemOperand(object, HeapObject::kMapOffset)); | |
3006 Label loop; | |
3007 __ Bind(&loop); | |
3008 __ Ldr(object_prototype, FieldMemOperand(object_map, Map::kPrototypeOffset)); | |
3009 __ Cmp(object_prototype, prototype); | |
3010 __ B(eq, instr->TrueLabel(chunk_)); | |
3011 __ CompareRoot(object_prototype, Heap::kNullValueRootIndex); | |
3012 __ B(eq, instr->FalseLabel(chunk_)); | |
3013 __ Ldr(object_map, FieldMemOperand(object_prototype, HeapObject::kMapOffset)); | |
3014 __ B(&loop); | |
3015 } | |
3016 | |
3017 | |
3018 void LCodeGen::DoInstructionGap(LInstructionGap* instr) { | |
3019 DoGap(instr); | |
3020 } | |
3021 | |
3022 | |
3023 void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) { | |
3024 Register value = ToRegister32(instr->value()); | |
3025 DoubleRegister result = ToDoubleRegister(instr->result()); | |
3026 __ Scvtf(result, value); | |
3027 } | |
3028 | |
3029 | |
3030 void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) { | |
3031 DCHECK(ToRegister(instr->context()).is(cp)); | |
3032 // The function is required to be in x1. | |
3033 DCHECK(ToRegister(instr->function()).is(x1)); | |
3034 DCHECK(instr->HasPointerMap()); | |
3035 | |
3036 Handle<JSFunction> known_function = instr->hydrogen()->known_function(); | |
3037 if (known_function.is_null()) { | |
3038 LPointerMap* pointers = instr->pointer_map(); | |
3039 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); | |
3040 ParameterCount count(instr->arity()); | |
3041 __ InvokeFunction(x1, count, CALL_FUNCTION, generator); | |
3042 } else { | |
3043 CallKnownFunction(known_function, | |
3044 instr->hydrogen()->formal_parameter_count(), | |
3045 instr->arity(), instr); | |
3046 } | |
3047 RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta()); | |
3048 } | |
3049 | |
3050 | |
3051 void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) { | |
3052 Register temp1 = ToRegister(instr->temp1()); | |
3053 Register temp2 = ToRegister(instr->temp2()); | |
3054 | |
3055 // Get the frame pointer for the calling frame. | |
3056 __ Ldr(temp1, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); | |
3057 | |
3058 // Skip the arguments adaptor frame if it exists. | |
3059 Label check_frame_marker; | |
3060 __ Ldr(temp2, MemOperand(temp1, StandardFrameConstants::kContextOffset)); | |
3061 __ Cmp(temp2, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); | |
3062 __ B(ne, &check_frame_marker); | |
3063 __ Ldr(temp1, MemOperand(temp1, StandardFrameConstants::kCallerFPOffset)); | |
3064 | |
3065 // Check the marker in the calling frame. | |
3066 __ Bind(&check_frame_marker); | |
3067 __ Ldr(temp1, MemOperand(temp1, StandardFrameConstants::kMarkerOffset)); | |
3068 | |
3069 EmitCompareAndBranch( | |
3070 instr, eq, temp1, Operand(Smi::FromInt(StackFrame::CONSTRUCT))); | |
3071 } | |
3072 | |
3073 | |
3074 Condition LCodeGen::EmitIsString(Register input, | |
3075 Register temp1, | |
3076 Label* is_not_string, | |
3077 SmiCheck check_needed = INLINE_SMI_CHECK) { | |
3078 if (check_needed == INLINE_SMI_CHECK) { | |
3079 __ JumpIfSmi(input, is_not_string); | |
3080 } | |
3081 __ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE); | |
3082 | |
3083 return lt; | |
3084 } | |
3085 | |
3086 | |
3087 void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) { | |
3088 Register val = ToRegister(instr->value()); | |
3089 Register scratch = ToRegister(instr->temp()); | |
3090 | |
3091 SmiCheck check_needed = | |
3092 instr->hydrogen()->value()->type().IsHeapObject() | |
3093 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; | |
3094 Condition true_cond = | |
3095 EmitIsString(val, scratch, instr->FalseLabel(chunk_), check_needed); | |
3096 | |
3097 EmitBranch(instr, true_cond); | |
3098 } | |
3099 | |
3100 | |
3101 void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) { | |
3102 Register value = ToRegister(instr->value()); | |
3103 STATIC_ASSERT(kSmiTag == 0); | |
3104 EmitTestAndBranch(instr, eq, value, kSmiTagMask); | |
3105 } | |
3106 | |
3107 | |
3108 void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) { | |
3109 Register input = ToRegister(instr->value()); | |
3110 Register temp = ToRegister(instr->temp()); | |
3111 | |
3112 if (!instr->hydrogen()->value()->type().IsHeapObject()) { | |
3113 __ JumpIfSmi(input, instr->FalseLabel(chunk_)); | |
3114 } | |
3115 __ Ldr(temp, FieldMemOperand(input, HeapObject::kMapOffset)); | |
3116 __ Ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset)); | |
3117 | |
3118 EmitTestAndBranch(instr, ne, temp, 1 << Map::kIsUndetectable); | |
3119 } | |
3120 | |
3121 | |
3122 static const char* LabelType(LLabel* label) { | |
3123 if (label->is_loop_header()) return " (loop header)"; | |
3124 if (label->is_osr_entry()) return " (OSR entry)"; | |
3125 return ""; | |
3126 } | |
3127 | |
3128 | |
3129 void LCodeGen::DoLabel(LLabel* label) { | |
3130 Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------", | |
3131 current_instruction_, | |
3132 label->hydrogen_value()->id(), | |
3133 label->block_id(), | |
3134 LabelType(label)); | |
3135 | |
3136 // Inherit pushed_arguments_ from the predecessor's argument count. | |
3137 if (label->block()->HasPredecessor()) { | |
3138 pushed_arguments_ = label->block()->predecessors()->at(0)->argument_count(); | |
3139 #ifdef DEBUG | |
3140 for (auto p : *label->block()->predecessors()) { | |
3141 DCHECK_EQ(p->argument_count(), pushed_arguments_); | |
3142 } | |
3143 #endif | |
3144 } | |
3145 | |
3146 __ Bind(label->label()); | |
3147 current_block_ = label->block_id(); | |
3148 DoGap(label); | |
3149 } | |
3150 | |
3151 | |
3152 void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) { | |
3153 Register context = ToRegister(instr->context()); | |
3154 Register result = ToRegister(instr->result()); | |
3155 __ Ldr(result, ContextMemOperand(context, instr->slot_index())); | |
3156 if (instr->hydrogen()->RequiresHoleCheck()) { | |
3157 if (instr->hydrogen()->DeoptimizesOnHole()) { | |
3158 DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr, | |
3159 Deoptimizer::kHole); | |
3160 } else { | |
3161 Label not_the_hole; | |
3162 __ JumpIfNotRoot(result, Heap::kTheHoleValueRootIndex, ¬_the_hole); | |
3163 __ LoadRoot(result, Heap::kUndefinedValueRootIndex); | |
3164 __ Bind(¬_the_hole); | |
3165 } | |
3166 } | |
3167 } | |
3168 | |
3169 | |
3170 void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) { | |
3171 Register function = ToRegister(instr->function()); | |
3172 Register result = ToRegister(instr->result()); | |
3173 Register temp = ToRegister(instr->temp()); | |
3174 | |
3175 // Get the prototype or initial map from the function. | |
3176 __ Ldr(result, FieldMemOperand(function, | |
3177 JSFunction::kPrototypeOrInitialMapOffset)); | |
3178 | |
3179 // Check that the function has a prototype or an initial map. | |
3180 DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr, | |
3181 Deoptimizer::kHole); | |
3182 | |
3183 // If the function does not have an initial map, we're done. | |
3184 Label done; | |
3185 __ CompareObjectType(result, temp, temp, MAP_TYPE); | |
3186 __ B(ne, &done); | |
3187 | |
3188 // Get the prototype from the initial map. | |
3189 __ Ldr(result, FieldMemOperand(result, Map::kPrototypeOffset)); | |
3190 | |
3191 // All done. | |
3192 __ Bind(&done); | |
3193 } | |
3194 | |
3195 | |
3196 template <class T> | |
3197 void LCodeGen::EmitVectorLoadICRegisters(T* instr) { | |
3198 Register vector_register = ToRegister(instr->temp_vector()); | |
3199 Register slot_register = LoadWithVectorDescriptor::SlotRegister(); | |
3200 DCHECK(vector_register.is(LoadWithVectorDescriptor::VectorRegister())); | |
3201 DCHECK(slot_register.is(x0)); | |
3202 | |
3203 AllowDeferredHandleDereference vector_structure_check; | |
3204 Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector(); | |
3205 __ Mov(vector_register, vector); | |
3206 // No need to allocate this register. | |
3207 FeedbackVectorSlot slot = instr->hydrogen()->slot(); | |
3208 int index = vector->GetIndex(slot); | |
3209 __ Mov(slot_register, Smi::FromInt(index)); | |
3210 } | |
3211 | |
3212 | |
3213 template <class T> | |
3214 void LCodeGen::EmitVectorStoreICRegisters(T* instr) { | |
3215 Register vector_register = ToRegister(instr->temp_vector()); | |
3216 Register slot_register = ToRegister(instr->temp_slot()); | |
3217 | |
3218 AllowDeferredHandleDereference vector_structure_check; | |
3219 Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector(); | |
3220 __ Mov(vector_register, vector); | |
3221 FeedbackVectorSlot slot = instr->hydrogen()->slot(); | |
3222 int index = vector->GetIndex(slot); | |
3223 __ Mov(slot_register, Smi::FromInt(index)); | |
3224 } | |
3225 | |
3226 | |
3227 void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) { | |
3228 DCHECK(ToRegister(instr->context()).is(cp)); | |
3229 DCHECK(ToRegister(instr->global_object()) | |
3230 .is(LoadDescriptor::ReceiverRegister())); | |
3231 DCHECK(ToRegister(instr->result()).Is(x0)); | |
3232 __ Mov(LoadDescriptor::NameRegister(), Operand(instr->name())); | |
3233 EmitVectorLoadICRegisters<LLoadGlobalGeneric>(instr); | |
3234 Handle<Code> ic = | |
3235 CodeFactory::LoadICInOptimizedCode(isolate(), instr->typeof_mode(), | |
3236 SLOPPY, PREMONOMORPHIC).code(); | |
3237 CallCode(ic, RelocInfo::CODE_TARGET, instr); | |
3238 } | |
3239 | |
3240 | |
3241 void LCodeGen::DoLoadGlobalViaContext(LLoadGlobalViaContext* instr) { | |
3242 DCHECK(ToRegister(instr->context()).is(cp)); | |
3243 DCHECK(ToRegister(instr->result()).is(x0)); | |
3244 | |
3245 int const slot = instr->slot_index(); | |
3246 int const depth = instr->depth(); | |
3247 if (depth <= LoadGlobalViaContextStub::kMaximumDepth) { | |
3248 __ Mov(LoadGlobalViaContextDescriptor::SlotRegister(), Operand(slot)); | |
3249 Handle<Code> stub = | |
3250 CodeFactory::LoadGlobalViaContext(isolate(), depth).code(); | |
3251 CallCode(stub, RelocInfo::CODE_TARGET, instr); | |
3252 } else { | |
3253 __ Push(Smi::FromInt(slot)); | |
3254 __ CallRuntime(Runtime::kLoadGlobalViaContext, 1); | |
3255 } | |
3256 } | |
3257 | |
3258 | |
3259 MemOperand LCodeGen::PrepareKeyedExternalArrayOperand( | |
3260 Register key, | |
3261 Register base, | |
3262 Register scratch, | |
3263 bool key_is_smi, | |
3264 bool key_is_constant, | |
3265 int constant_key, | |
3266 ElementsKind elements_kind, | |
3267 int base_offset) { | |
3268 int element_size_shift = ElementsKindToShiftSize(elements_kind); | |
3269 | |
3270 if (key_is_constant) { | |
3271 int key_offset = constant_key << element_size_shift; | |
3272 return MemOperand(base, key_offset + base_offset); | |
3273 } | |
3274 | |
3275 if (key_is_smi) { | |
3276 __ Add(scratch, base, Operand::UntagSmiAndScale(key, element_size_shift)); | |
3277 return MemOperand(scratch, base_offset); | |
3278 } | |
3279 | |
3280 if (base_offset == 0) { | |
3281 return MemOperand(base, key, SXTW, element_size_shift); | |
3282 } | |
3283 | |
3284 DCHECK(!AreAliased(scratch, key)); | |
3285 __ Add(scratch, base, base_offset); | |
3286 return MemOperand(scratch, key, SXTW, element_size_shift); | |
3287 } | |
3288 | |
3289 | |
3290 void LCodeGen::DoLoadKeyedExternal(LLoadKeyedExternal* instr) { | |
3291 Register ext_ptr = ToRegister(instr->elements()); | |
3292 Register scratch; | |
3293 ElementsKind elements_kind = instr->elements_kind(); | |
3294 | |
3295 bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi(); | |
3296 bool key_is_constant = instr->key()->IsConstantOperand(); | |
3297 Register key = no_reg; | |
3298 int constant_key = 0; | |
3299 if (key_is_constant) { | |
3300 DCHECK(instr->temp() == NULL); | |
3301 constant_key = ToInteger32(LConstantOperand::cast(instr->key())); | |
3302 if (constant_key & 0xf0000000) { | |
3303 Abort(kArrayIndexConstantValueTooBig); | |
3304 } | |
3305 } else { | |
3306 scratch = ToRegister(instr->temp()); | |
3307 key = ToRegister(instr->key()); | |
3308 } | |
3309 | |
3310 MemOperand mem_op = | |
3311 PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi, | |
3312 key_is_constant, constant_key, | |
3313 elements_kind, | |
3314 instr->base_offset()); | |
3315 | |
3316 if (elements_kind == FLOAT32_ELEMENTS) { | |
3317 DoubleRegister result = ToDoubleRegister(instr->result()); | |
3318 __ Ldr(result.S(), mem_op); | |
3319 __ Fcvt(result, result.S()); | |
3320 } else if (elements_kind == FLOAT64_ELEMENTS) { | |
3321 DoubleRegister result = ToDoubleRegister(instr->result()); | |
3322 __ Ldr(result, mem_op); | |
3323 } else { | |
3324 Register result = ToRegister(instr->result()); | |
3325 | |
3326 switch (elements_kind) { | |
3327 case INT8_ELEMENTS: | |
3328 __ Ldrsb(result, mem_op); | |
3329 break; | |
3330 case UINT8_ELEMENTS: | |
3331 case UINT8_CLAMPED_ELEMENTS: | |
3332 __ Ldrb(result, mem_op); | |
3333 break; | |
3334 case INT16_ELEMENTS: | |
3335 __ Ldrsh(result, mem_op); | |
3336 break; | |
3337 case UINT16_ELEMENTS: | |
3338 __ Ldrh(result, mem_op); | |
3339 break; | |
3340 case INT32_ELEMENTS: | |
3341 __ Ldrsw(result, mem_op); | |
3342 break; | |
3343 case UINT32_ELEMENTS: | |
3344 __ Ldr(result.W(), mem_op); | |
3345 if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) { | |
3346 // Deopt if value > 0x80000000. | |
3347 __ Tst(result, 0xFFFFFFFF80000000); | |
3348 DeoptimizeIf(ne, instr, Deoptimizer::kNegativeValue); | |
3349 } | |
3350 break; | |
3351 case FLOAT32_ELEMENTS: | |
3352 case FLOAT64_ELEMENTS: | |
3353 case FAST_HOLEY_DOUBLE_ELEMENTS: | |
3354 case FAST_HOLEY_ELEMENTS: | |
3355 case FAST_HOLEY_SMI_ELEMENTS: | |
3356 case FAST_DOUBLE_ELEMENTS: | |
3357 case FAST_ELEMENTS: | |
3358 case FAST_SMI_ELEMENTS: | |
3359 case DICTIONARY_ELEMENTS: | |
3360 case FAST_SLOPPY_ARGUMENTS_ELEMENTS: | |
3361 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: | |
3362 UNREACHABLE(); | |
3363 break; | |
3364 } | |
3365 } | |
3366 } | |
3367 | |
3368 | |
3369 MemOperand LCodeGen::PrepareKeyedArrayOperand(Register base, | |
3370 Register elements, | |
3371 Register key, | |
3372 bool key_is_tagged, | |
3373 ElementsKind elements_kind, | |
3374 Representation representation, | |
3375 int base_offset) { | |
3376 STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits); | |
3377 STATIC_ASSERT(kSmiTag == 0); | |
3378 int element_size_shift = ElementsKindToShiftSize(elements_kind); | |
3379 | |
3380 // Even though the HLoad/StoreKeyed instructions force the input | |
3381 // representation for the key to be an integer, the input gets replaced during | |
3382 // bounds check elimination with the index argument to the bounds check, which | |
3383 // can be tagged, so that case must be handled here, too. | |
3384 if (key_is_tagged) { | |
3385 __ Add(base, elements, Operand::UntagSmiAndScale(key, element_size_shift)); | |
3386 if (representation.IsInteger32()) { | |
3387 DCHECK(elements_kind == FAST_SMI_ELEMENTS); | |
3388 // Read or write only the smi payload in the case of fast smi arrays. | |
3389 return UntagSmiMemOperand(base, base_offset); | |
3390 } else { | |
3391 return MemOperand(base, base_offset); | |
3392 } | |
3393 } else { | |
3394 // Sign extend key because it could be a 32-bit negative value or contain | |
3395 // garbage in the top 32-bits. The address computation happens in 64-bit. | |
3396 DCHECK((element_size_shift >= 0) && (element_size_shift <= 4)); | |
3397 if (representation.IsInteger32()) { | |
3398 DCHECK(elements_kind == FAST_SMI_ELEMENTS); | |
3399 // Read or write only the smi payload in the case of fast smi arrays. | |
3400 __ Add(base, elements, Operand(key, SXTW, element_size_shift)); | |
3401 return UntagSmiMemOperand(base, base_offset); | |
3402 } else { | |
3403 __ Add(base, elements, base_offset); | |
3404 return MemOperand(base, key, SXTW, element_size_shift); | |
3405 } | |
3406 } | |
3407 } | |
3408 | |
3409 | |
3410 void LCodeGen::DoLoadKeyedFixedDouble(LLoadKeyedFixedDouble* instr) { | |
3411 Register elements = ToRegister(instr->elements()); | |
3412 DoubleRegister result = ToDoubleRegister(instr->result()); | |
3413 MemOperand mem_op; | |
3414 | |
3415 if (instr->key()->IsConstantOperand()) { | |
3416 DCHECK(instr->hydrogen()->RequiresHoleCheck() || | |
3417 (instr->temp() == NULL)); | |
3418 | |
3419 int constant_key = ToInteger32(LConstantOperand::cast(instr->key())); | |
3420 if (constant_key & 0xf0000000) { | |
3421 Abort(kArrayIndexConstantValueTooBig); | |
3422 } | |
3423 int offset = instr->base_offset() + constant_key * kDoubleSize; | |
3424 mem_op = MemOperand(elements, offset); | |
3425 } else { | |
3426 Register load_base = ToRegister(instr->temp()); | |
3427 Register key = ToRegister(instr->key()); | |
3428 bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi(); | |
3429 mem_op = PrepareKeyedArrayOperand(load_base, elements, key, key_is_tagged, | |
3430 instr->hydrogen()->elements_kind(), | |
3431 instr->hydrogen()->representation(), | |
3432 instr->base_offset()); | |
3433 } | |
3434 | |
3435 __ Ldr(result, mem_op); | |
3436 | |
3437 if (instr->hydrogen()->RequiresHoleCheck()) { | |
3438 Register scratch = ToRegister(instr->temp()); | |
3439 __ Fmov(scratch, result); | |
3440 __ Eor(scratch, scratch, kHoleNanInt64); | |
3441 DeoptimizeIfZero(scratch, instr, Deoptimizer::kHole); | |
3442 } | |
3443 } | |
3444 | |
3445 | |
3446 void LCodeGen::DoLoadKeyedFixed(LLoadKeyedFixed* instr) { | |
3447 Register elements = ToRegister(instr->elements()); | |
3448 Register result = ToRegister(instr->result()); | |
3449 MemOperand mem_op; | |
3450 | |
3451 Representation representation = instr->hydrogen()->representation(); | |
3452 if (instr->key()->IsConstantOperand()) { | |
3453 DCHECK(instr->temp() == NULL); | |
3454 LConstantOperand* const_operand = LConstantOperand::cast(instr->key()); | |
3455 int offset = instr->base_offset() + | |
3456 ToInteger32(const_operand) * kPointerSize; | |
3457 if (representation.IsInteger32()) { | |
3458 DCHECK(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS); | |
3459 STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits); | |
3460 STATIC_ASSERT(kSmiTag == 0); | |
3461 mem_op = UntagSmiMemOperand(elements, offset); | |
3462 } else { | |
3463 mem_op = MemOperand(elements, offset); | |
3464 } | |
3465 } else { | |
3466 Register load_base = ToRegister(instr->temp()); | |
3467 Register key = ToRegister(instr->key()); | |
3468 bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi(); | |
3469 | |
3470 mem_op = PrepareKeyedArrayOperand(load_base, elements, key, key_is_tagged, | |
3471 instr->hydrogen()->elements_kind(), | |
3472 representation, instr->base_offset()); | |
3473 } | |
3474 | |
3475 __ Load(result, mem_op, representation); | |
3476 | |
3477 if (instr->hydrogen()->RequiresHoleCheck()) { | |
3478 if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) { | |
3479 DeoptimizeIfNotSmi(result, instr, Deoptimizer::kNotASmi); | |
3480 } else { | |
3481 DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr, | |
3482 Deoptimizer::kHole); | |
3483 } | |
3484 } else if (instr->hydrogen()->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) { | |
3485 DCHECK(instr->hydrogen()->elements_kind() == FAST_HOLEY_ELEMENTS); | |
3486 Label done; | |
3487 __ CompareRoot(result, Heap::kTheHoleValueRootIndex); | |
3488 __ B(ne, &done); | |
3489 if (info()->IsStub()) { | |
3490 // A stub can safely convert the hole to undefined only if the array | |
3491 // protector cell contains (Smi) Isolate::kArrayProtectorValid. Otherwise | |
3492 // it needs to bail out. | |
3493 __ LoadRoot(result, Heap::kArrayProtectorRootIndex); | |
3494 __ Ldr(result, FieldMemOperand(result, Cell::kValueOffset)); | |
3495 __ Cmp(result, Operand(Smi::FromInt(Isolate::kArrayProtectorValid))); | |
3496 DeoptimizeIf(ne, instr, Deoptimizer::kHole); | |
3497 } | |
3498 __ LoadRoot(result, Heap::kUndefinedValueRootIndex); | |
3499 __ Bind(&done); | |
3500 } | |
3501 } | |
3502 | |
3503 | |
3504 void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) { | |
3505 DCHECK(ToRegister(instr->context()).is(cp)); | |
3506 DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister())); | |
3507 DCHECK(ToRegister(instr->key()).is(LoadDescriptor::NameRegister())); | |
3508 | |
3509 if (instr->hydrogen()->HasVectorAndSlot()) { | |
3510 EmitVectorLoadICRegisters<LLoadKeyedGeneric>(instr); | |
3511 } | |
3512 | |
3513 Handle<Code> ic = CodeFactory::KeyedLoadICInOptimizedCode( | |
3514 isolate(), instr->hydrogen()->language_mode(), | |
3515 instr->hydrogen()->initialization_state()).code(); | |
3516 CallCode(ic, RelocInfo::CODE_TARGET, instr); | |
3517 | |
3518 DCHECK(ToRegister(instr->result()).Is(x0)); | |
3519 } | |
3520 | |
3521 | |
3522 void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) { | |
3523 HObjectAccess access = instr->hydrogen()->access(); | |
3524 int offset = access.offset(); | |
3525 Register object = ToRegister(instr->object()); | |
3526 | |
3527 if (access.IsExternalMemory()) { | |
3528 Register result = ToRegister(instr->result()); | |
3529 __ Load(result, MemOperand(object, offset), access.representation()); | |
3530 return; | |
3531 } | |
3532 | |
3533 if (instr->hydrogen()->representation().IsDouble()) { | |
3534 DCHECK(access.IsInobject()); | |
3535 FPRegister result = ToDoubleRegister(instr->result()); | |
3536 __ Ldr(result, FieldMemOperand(object, offset)); | |
3537 return; | |
3538 } | |
3539 | |
3540 Register result = ToRegister(instr->result()); | |
3541 Register source; | |
3542 if (access.IsInobject()) { | |
3543 source = object; | |
3544 } else { | |
3545 // Load the properties array, using result as a scratch register. | |
3546 __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); | |
3547 source = result; | |
3548 } | |
3549 | |
3550 if (access.representation().IsSmi() && | |
3551 instr->hydrogen()->representation().IsInteger32()) { | |
3552 // Read int value directly from upper half of the smi. | |
3553 STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits); | |
3554 STATIC_ASSERT(kSmiTag == 0); | |
3555 __ Load(result, UntagSmiFieldMemOperand(source, offset), | |
3556 Representation::Integer32()); | |
3557 } else { | |
3558 __ Load(result, FieldMemOperand(source, offset), access.representation()); | |
3559 } | |
3560 } | |
3561 | |
3562 | |
3563 void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) { | |
3564 DCHECK(ToRegister(instr->context()).is(cp)); | |
3565 // LoadIC expects name and receiver in registers. | |
3566 DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister())); | |
3567 __ Mov(LoadDescriptor::NameRegister(), Operand(instr->name())); | |
3568 EmitVectorLoadICRegisters<LLoadNamedGeneric>(instr); | |
3569 Handle<Code> ic = | |
3570 CodeFactory::LoadICInOptimizedCode( | |
3571 isolate(), NOT_INSIDE_TYPEOF, instr->hydrogen()->language_mode(), | |
3572 instr->hydrogen()->initialization_state()).code(); | |
3573 CallCode(ic, RelocInfo::CODE_TARGET, instr); | |
3574 | |
3575 DCHECK(ToRegister(instr->result()).is(x0)); | |
3576 } | |
3577 | |
3578 | |
3579 void LCodeGen::DoLoadRoot(LLoadRoot* instr) { | |
3580 Register result = ToRegister(instr->result()); | |
3581 __ LoadRoot(result, instr->index()); | |
3582 } | |
3583 | |
3584 | |
3585 void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) { | |
3586 Register result = ToRegister(instr->result()); | |
3587 Register map = ToRegister(instr->value()); | |
3588 __ EnumLengthSmi(result, map); | |
3589 } | |
3590 | |
3591 | |
3592 void LCodeGen::DoMathAbs(LMathAbs* instr) { | |
3593 Representation r = instr->hydrogen()->value()->representation(); | |
3594 if (r.IsDouble()) { | |
3595 DoubleRegister input = ToDoubleRegister(instr->value()); | |
3596 DoubleRegister result = ToDoubleRegister(instr->result()); | |
3597 __ Fabs(result, input); | |
3598 } else if (r.IsSmi() || r.IsInteger32()) { | |
3599 Register input = r.IsSmi() ? ToRegister(instr->value()) | |
3600 : ToRegister32(instr->value()); | |
3601 Register result = r.IsSmi() ? ToRegister(instr->result()) | |
3602 : ToRegister32(instr->result()); | |
3603 __ Abs(result, input); | |
3604 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow); | |
3605 } | |
3606 } | |
3607 | |
3608 | |
3609 void LCodeGen::DoDeferredMathAbsTagged(LMathAbsTagged* instr, | |
3610 Label* exit, | |
3611 Label* allocation_entry) { | |
3612 // Handle the tricky cases of MathAbsTagged: | |
3613 // - HeapNumber inputs. | |
3614 // - Negative inputs produce a positive result, so a new HeapNumber is | |
3615 // allocated to hold it. | |
3616 // - Positive inputs are returned as-is, since there is no need to allocate | |
3617 // a new HeapNumber for the result. | |
3618 // - The (smi) input -0x80000000, produces +0x80000000, which does not fit | |
3619 // a smi. In this case, the inline code sets the result and jumps directly | |
3620 // to the allocation_entry label. | |
3621 DCHECK(instr->context() != NULL); | |
3622 DCHECK(ToRegister(instr->context()).is(cp)); | |
3623 Register input = ToRegister(instr->value()); | |
3624 Register temp1 = ToRegister(instr->temp1()); | |
3625 Register temp2 = ToRegister(instr->temp2()); | |
3626 Register result_bits = ToRegister(instr->temp3()); | |
3627 Register result = ToRegister(instr->result()); | |
3628 | |
3629 Label runtime_allocation; | |
3630 | |
3631 // Deoptimize if the input is not a HeapNumber. | |
3632 DeoptimizeIfNotHeapNumber(input, instr); | |
3633 | |
3634 // If the argument is positive, we can return it as-is, without any need to | |
3635 // allocate a new HeapNumber for the result. We have to do this in integer | |
3636 // registers (rather than with fabs) because we need to be able to distinguish | |
3637 // the two zeroes. | |
3638 __ Ldr(result_bits, FieldMemOperand(input, HeapNumber::kValueOffset)); | |
3639 __ Mov(result, input); | |
3640 __ Tbz(result_bits, kXSignBit, exit); | |
3641 | |
3642 // Calculate abs(input) by clearing the sign bit. | |
3643 __ Bic(result_bits, result_bits, kXSignMask); | |
3644 | |
3645 // Allocate a new HeapNumber to hold the result. | |
3646 // result_bits The bit representation of the (double) result. | |
3647 __ Bind(allocation_entry); | |
3648 __ AllocateHeapNumber(result, &runtime_allocation, temp1, temp2); | |
3649 // The inline (non-deferred) code will store result_bits into result. | |
3650 __ B(exit); | |
3651 | |
3652 __ Bind(&runtime_allocation); | |
3653 if (FLAG_debug_code) { | |
3654 // Because result is in the pointer map, we need to make sure it has a valid | |
3655 // tagged value before we call the runtime. We speculatively set it to the | |
3656 // input (for abs(+x)) or to a smi (for abs(-SMI_MIN)), so it should already | |
3657 // be valid. | |
3658 Label result_ok; | |
3659 Register input = ToRegister(instr->value()); | |
3660 __ JumpIfSmi(result, &result_ok); | |
3661 __ Cmp(input, result); | |
3662 __ Assert(eq, kUnexpectedValue); | |
3663 __ Bind(&result_ok); | |
3664 } | |
3665 | |
3666 { PushSafepointRegistersScope scope(this); | |
3667 CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr, | |
3668 instr->context()); | |
3669 __ StoreToSafepointRegisterSlot(x0, result); | |
3670 } | |
3671 // The inline (non-deferred) code will store result_bits into result. | |
3672 } | |
3673 | |
3674 | |
3675 void LCodeGen::DoMathAbsTagged(LMathAbsTagged* instr) { | |
3676 // Class for deferred case. | |
3677 class DeferredMathAbsTagged: public LDeferredCode { | |
3678 public: | |
3679 DeferredMathAbsTagged(LCodeGen* codegen, LMathAbsTagged* instr) | |
3680 : LDeferredCode(codegen), instr_(instr) { } | |
3681 virtual void Generate() { | |
3682 codegen()->DoDeferredMathAbsTagged(instr_, exit(), | |
3683 allocation_entry()); | |
3684 } | |
3685 virtual LInstruction* instr() { return instr_; } | |
3686 Label* allocation_entry() { return &allocation; } | |
3687 private: | |
3688 LMathAbsTagged* instr_; | |
3689 Label allocation; | |
3690 }; | |
3691 | |
3692 // TODO(jbramley): The early-exit mechanism would skip the new frame handling | |
3693 // in GenerateDeferredCode. Tidy this up. | |
3694 DCHECK(!NeedsDeferredFrame()); | |
3695 | |
3696 DeferredMathAbsTagged* deferred = | |
3697 new(zone()) DeferredMathAbsTagged(this, instr); | |
3698 | |
3699 DCHECK(instr->hydrogen()->value()->representation().IsTagged() || | |
3700 instr->hydrogen()->value()->representation().IsSmi()); | |
3701 Register input = ToRegister(instr->value()); | |
3702 Register result_bits = ToRegister(instr->temp3()); | |
3703 Register result = ToRegister(instr->result()); | |
3704 Label done; | |
3705 | |
3706 // Handle smis inline. | |
3707 // We can treat smis as 64-bit integers, since the (low-order) tag bits will | |
3708 // never get set by the negation. This is therefore the same as the Integer32 | |
3709 // case in DoMathAbs, except that it operates on 64-bit values. | |
3710 STATIC_ASSERT((kSmiValueSize == 32) && (kSmiShift == 32) && (kSmiTag == 0)); | |
3711 | |
3712 __ JumpIfNotSmi(input, deferred->entry()); | |
3713 | |
3714 __ Abs(result, input, NULL, &done); | |
3715 | |
3716 // The result is the magnitude (abs) of the smallest value a smi can | |
3717 // represent, encoded as a double. | |
3718 __ Mov(result_bits, double_to_rawbits(0x80000000)); | |
3719 __ B(deferred->allocation_entry()); | |
3720 | |
3721 __ Bind(deferred->exit()); | |
3722 __ Str(result_bits, FieldMemOperand(result, HeapNumber::kValueOffset)); | |
3723 | |
3724 __ Bind(&done); | |
3725 } | |
3726 | |
3727 | |
3728 void LCodeGen::DoMathExp(LMathExp* instr) { | |
3729 DoubleRegister input = ToDoubleRegister(instr->value()); | |
3730 DoubleRegister result = ToDoubleRegister(instr->result()); | |
3731 DoubleRegister double_temp1 = ToDoubleRegister(instr->double_temp1()); | |
3732 DoubleRegister double_temp2 = double_scratch(); | |
3733 Register temp1 = ToRegister(instr->temp1()); | |
3734 Register temp2 = ToRegister(instr->temp2()); | |
3735 Register temp3 = ToRegister(instr->temp3()); | |
3736 | |
3737 MathExpGenerator::EmitMathExp(masm(), input, result, | |
3738 double_temp1, double_temp2, | |
3739 temp1, temp2, temp3); | |
3740 } | |
3741 | |
3742 | |
3743 void LCodeGen::DoMathFloorD(LMathFloorD* instr) { | |
3744 DoubleRegister input = ToDoubleRegister(instr->value()); | |
3745 DoubleRegister result = ToDoubleRegister(instr->result()); | |
3746 | |
3747 __ Frintm(result, input); | |
3748 } | |
3749 | |
3750 | |
3751 void LCodeGen::DoMathFloorI(LMathFloorI* instr) { | |
3752 DoubleRegister input = ToDoubleRegister(instr->value()); | |
3753 Register result = ToRegister(instr->result()); | |
3754 | |
3755 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
3756 DeoptimizeIfMinusZero(input, instr, Deoptimizer::kMinusZero); | |
3757 } | |
3758 | |
3759 __ Fcvtms(result, input); | |
3760 | |
3761 // Check that the result fits into a 32-bit integer. | |
3762 // - The result did not overflow. | |
3763 __ Cmp(result, Operand(result, SXTW)); | |
3764 // - The input was not NaN. | |
3765 __ Fccmp(input, input, NoFlag, eq); | |
3766 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN); | |
3767 } | |
3768 | |
3769 | |
3770 void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) { | |
3771 Register dividend = ToRegister32(instr->dividend()); | |
3772 Register result = ToRegister32(instr->result()); | |
3773 int32_t divisor = instr->divisor(); | |
3774 | |
3775 // If the divisor is 1, return the dividend. | |
3776 if (divisor == 1) { | |
3777 __ Mov(result, dividend, kDiscardForSameWReg); | |
3778 return; | |
3779 } | |
3780 | |
3781 // If the divisor is positive, things are easy: There can be no deopts and we | |
3782 // can simply do an arithmetic right shift. | |
3783 int32_t shift = WhichPowerOf2Abs(divisor); | |
3784 if (divisor > 1) { | |
3785 __ Mov(result, Operand(dividend, ASR, shift)); | |
3786 return; | |
3787 } | |
3788 | |
3789 // If the divisor is negative, we have to negate and handle edge cases. | |
3790 __ Negs(result, dividend); | |
3791 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
3792 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero); | |
3793 } | |
3794 | |
3795 // Dividing by -1 is basically negation, unless we overflow. | |
3796 if (divisor == -1) { | |
3797 if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) { | |
3798 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow); | |
3799 } | |
3800 return; | |
3801 } | |
3802 | |
3803 // If the negation could not overflow, simply shifting is OK. | |
3804 if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) { | |
3805 __ Mov(result, Operand(dividend, ASR, shift)); | |
3806 return; | |
3807 } | |
3808 | |
3809 __ Asr(result, result, shift); | |
3810 __ Csel(result, result, kMinInt / divisor, vc); | |
3811 } | |
3812 | |
3813 | |
3814 void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) { | |
3815 Register dividend = ToRegister32(instr->dividend()); | |
3816 int32_t divisor = instr->divisor(); | |
3817 Register result = ToRegister32(instr->result()); | |
3818 DCHECK(!AreAliased(dividend, result)); | |
3819 | |
3820 if (divisor == 0) { | |
3821 Deoptimize(instr, Deoptimizer::kDivisionByZero); | |
3822 return; | |
3823 } | |
3824 | |
3825 // Check for (0 / -x) that will produce negative zero. | |
3826 HMathFloorOfDiv* hdiv = instr->hydrogen(); | |
3827 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { | |
3828 DeoptimizeIfZero(dividend, instr, Deoptimizer::kMinusZero); | |
3829 } | |
3830 | |
3831 // Easy case: We need no dynamic check for the dividend and the flooring | |
3832 // division is the same as the truncating division. | |
3833 if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) || | |
3834 (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) { | |
3835 __ TruncatingDiv(result, dividend, Abs(divisor)); | |
3836 if (divisor < 0) __ Neg(result, result); | |
3837 return; | |
3838 } | |
3839 | |
3840 // In the general case we may need to adjust before and after the truncating | |
3841 // division to get a flooring division. | |
3842 Register temp = ToRegister32(instr->temp()); | |
3843 DCHECK(!AreAliased(temp, dividend, result)); | |
3844 Label needs_adjustment, done; | |
3845 __ Cmp(dividend, 0); | |
3846 __ B(divisor > 0 ? lt : gt, &needs_adjustment); | |
3847 __ TruncatingDiv(result, dividend, Abs(divisor)); | |
3848 if (divisor < 0) __ Neg(result, result); | |
3849 __ B(&done); | |
3850 __ Bind(&needs_adjustment); | |
3851 __ Add(temp, dividend, Operand(divisor > 0 ? 1 : -1)); | |
3852 __ TruncatingDiv(result, temp, Abs(divisor)); | |
3853 if (divisor < 0) __ Neg(result, result); | |
3854 __ Sub(result, result, Operand(1)); | |
3855 __ Bind(&done); | |
3856 } | |
3857 | |
3858 | |
3859 // TODO(svenpanne) Refactor this to avoid code duplication with DoDivI. | |
3860 void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) { | |
3861 Register dividend = ToRegister32(instr->dividend()); | |
3862 Register divisor = ToRegister32(instr->divisor()); | |
3863 Register remainder = ToRegister32(instr->temp()); | |
3864 Register result = ToRegister32(instr->result()); | |
3865 | |
3866 // This can't cause an exception on ARM, so we can speculatively | |
3867 // execute it already now. | |
3868 __ Sdiv(result, dividend, divisor); | |
3869 | |
3870 // Check for x / 0. | |
3871 DeoptimizeIfZero(divisor, instr, Deoptimizer::kDivisionByZero); | |
3872 | |
3873 // Check for (kMinInt / -1). | |
3874 if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { | |
3875 // The V flag will be set iff dividend == kMinInt. | |
3876 __ Cmp(dividend, 1); | |
3877 __ Ccmp(divisor, -1, NoFlag, vs); | |
3878 DeoptimizeIf(eq, instr, Deoptimizer::kOverflow); | |
3879 } | |
3880 | |
3881 // Check for (0 / -x) that will produce negative zero. | |
3882 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
3883 __ Cmp(divisor, 0); | |
3884 __ Ccmp(dividend, 0, ZFlag, mi); | |
3885 // "divisor" can't be null because the code would have already been | |
3886 // deoptimized. The Z flag is set only if (divisor < 0) and (dividend == 0). | |
3887 // In this case we need to deoptimize to produce a -0. | |
3888 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero); | |
3889 } | |
3890 | |
3891 Label done; | |
3892 // If both operands have the same sign then we are done. | |
3893 __ Eor(remainder, dividend, divisor); | |
3894 __ Tbz(remainder, kWSignBit, &done); | |
3895 | |
3896 // Check if the result needs to be corrected. | |
3897 __ Msub(remainder, result, divisor, dividend); | |
3898 __ Cbz(remainder, &done); | |
3899 __ Sub(result, result, 1); | |
3900 | |
3901 __ Bind(&done); | |
3902 } | |
3903 | |
3904 | |
3905 void LCodeGen::DoMathLog(LMathLog* instr) { | |
3906 DCHECK(instr->IsMarkedAsCall()); | |
3907 DCHECK(ToDoubleRegister(instr->value()).is(d0)); | |
3908 __ CallCFunction(ExternalReference::math_log_double_function(isolate()), | |
3909 0, 1); | |
3910 DCHECK(ToDoubleRegister(instr->result()).Is(d0)); | |
3911 } | |
3912 | |
3913 | |
3914 void LCodeGen::DoMathClz32(LMathClz32* instr) { | |
3915 Register input = ToRegister32(instr->value()); | |
3916 Register result = ToRegister32(instr->result()); | |
3917 __ Clz(result, input); | |
3918 } | |
3919 | |
3920 | |
3921 void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) { | |
3922 DoubleRegister input = ToDoubleRegister(instr->value()); | |
3923 DoubleRegister result = ToDoubleRegister(instr->result()); | |
3924 Label done; | |
3925 | |
3926 // Math.pow(x, 0.5) differs from fsqrt(x) in the following cases: | |
3927 // Math.pow(-Infinity, 0.5) == +Infinity | |
3928 // Math.pow(-0.0, 0.5) == +0.0 | |
3929 | |
3930 // Catch -infinity inputs first. | |
3931 // TODO(jbramley): A constant infinity register would be helpful here. | |
3932 __ Fmov(double_scratch(), kFP64NegativeInfinity); | |
3933 __ Fcmp(double_scratch(), input); | |
3934 __ Fabs(result, input); | |
3935 __ B(&done, eq); | |
3936 | |
3937 // Add +0.0 to convert -0.0 to +0.0. | |
3938 __ Fadd(double_scratch(), input, fp_zero); | |
3939 __ Fsqrt(result, double_scratch()); | |
3940 | |
3941 __ Bind(&done); | |
3942 } | |
3943 | |
3944 | |
3945 void LCodeGen::DoPower(LPower* instr) { | |
3946 Representation exponent_type = instr->hydrogen()->right()->representation(); | |
3947 // Having marked this as a call, we can use any registers. | |
3948 // Just make sure that the input/output registers are the expected ones. | |
3949 Register tagged_exponent = MathPowTaggedDescriptor::exponent(); | |
3950 Register integer_exponent = MathPowIntegerDescriptor::exponent(); | |
3951 DCHECK(!instr->right()->IsDoubleRegister() || | |
3952 ToDoubleRegister(instr->right()).is(d1)); | |
3953 DCHECK(exponent_type.IsInteger32() || !instr->right()->IsRegister() || | |
3954 ToRegister(instr->right()).is(tagged_exponent)); | |
3955 DCHECK(!exponent_type.IsInteger32() || | |
3956 ToRegister(instr->right()).is(integer_exponent)); | |
3957 DCHECK(ToDoubleRegister(instr->left()).is(d0)); | |
3958 DCHECK(ToDoubleRegister(instr->result()).is(d0)); | |
3959 | |
3960 if (exponent_type.IsSmi()) { | |
3961 MathPowStub stub(isolate(), MathPowStub::TAGGED); | |
3962 __ CallStub(&stub); | |
3963 } else if (exponent_type.IsTagged()) { | |
3964 Label no_deopt; | |
3965 __ JumpIfSmi(tagged_exponent, &no_deopt); | |
3966 DeoptimizeIfNotHeapNumber(tagged_exponent, instr); | |
3967 __ Bind(&no_deopt); | |
3968 MathPowStub stub(isolate(), MathPowStub::TAGGED); | |
3969 __ CallStub(&stub); | |
3970 } else if (exponent_type.IsInteger32()) { | |
3971 // Ensure integer exponent has no garbage in top 32-bits, as MathPowStub | |
3972 // supports large integer exponents. | |
3973 __ Sxtw(integer_exponent, integer_exponent); | |
3974 MathPowStub stub(isolate(), MathPowStub::INTEGER); | |
3975 __ CallStub(&stub); | |
3976 } else { | |
3977 DCHECK(exponent_type.IsDouble()); | |
3978 MathPowStub stub(isolate(), MathPowStub::DOUBLE); | |
3979 __ CallStub(&stub); | |
3980 } | |
3981 } | |
3982 | |
3983 | |
3984 void LCodeGen::DoMathRoundD(LMathRoundD* instr) { | |
3985 DoubleRegister input = ToDoubleRegister(instr->value()); | |
3986 DoubleRegister result = ToDoubleRegister(instr->result()); | |
3987 DoubleRegister scratch_d = double_scratch(); | |
3988 | |
3989 DCHECK(!AreAliased(input, result, scratch_d)); | |
3990 | |
3991 Label done; | |
3992 | |
3993 __ Frinta(result, input); | |
3994 __ Fcmp(input, 0.0); | |
3995 __ Fccmp(result, input, ZFlag, lt); | |
3996 // The result is correct if the input was in [-0, +infinity], or was a | |
3997 // negative integral value. | |
3998 __ B(eq, &done); | |
3999 | |
4000 // Here the input is negative, non integral, with an exponent lower than 52. | |
4001 // We do not have to worry about the 0.49999999999999994 (0x3fdfffffffffffff) | |
4002 // case. So we can safely add 0.5. | |
4003 __ Fmov(scratch_d, 0.5); | |
4004 __ Fadd(result, input, scratch_d); | |
4005 __ Frintm(result, result); | |
4006 // The range [-0.5, -0.0[ yielded +0.0. Force the sign to negative. | |
4007 __ Fabs(result, result); | |
4008 __ Fneg(result, result); | |
4009 | |
4010 __ Bind(&done); | |
4011 } | |
4012 | |
4013 | |
4014 void LCodeGen::DoMathRoundI(LMathRoundI* instr) { | |
4015 DoubleRegister input = ToDoubleRegister(instr->value()); | |
4016 DoubleRegister temp = ToDoubleRegister(instr->temp1()); | |
4017 DoubleRegister dot_five = double_scratch(); | |
4018 Register result = ToRegister(instr->result()); | |
4019 Label done; | |
4020 | |
4021 // Math.round() rounds to the nearest integer, with ties going towards | |
4022 // +infinity. This does not match any IEEE-754 rounding mode. | |
4023 // - Infinities and NaNs are propagated unchanged, but cause deopts because | |
4024 // they can't be represented as integers. | |
4025 // - The sign of the result is the same as the sign of the input. This means | |
4026 // that -0.0 rounds to itself, and values -0.5 <= input < 0 also produce a | |
4027 // result of -0.0. | |
4028 | |
4029 // Add 0.5 and round towards -infinity. | |
4030 __ Fmov(dot_five, 0.5); | |
4031 __ Fadd(temp, input, dot_five); | |
4032 __ Fcvtms(result, temp); | |
4033 | |
4034 // The result is correct if: | |
4035 // result is not 0, as the input could be NaN or [-0.5, -0.0]. | |
4036 // result is not 1, as 0.499...94 will wrongly map to 1. | |
4037 // result fits in 32 bits. | |
4038 __ Cmp(result, Operand(result.W(), SXTW)); | |
4039 __ Ccmp(result, 1, ZFlag, eq); | |
4040 __ B(hi, &done); | |
4041 | |
4042 // At this point, we have to handle possible inputs of NaN or numbers in the | |
4043 // range [-0.5, 1.5[, or numbers larger than 32 bits. | |
4044 | |
4045 // Deoptimize if the result > 1, as it must be larger than 32 bits. | |
4046 __ Cmp(result, 1); | |
4047 DeoptimizeIf(hi, instr, Deoptimizer::kOverflow); | |
4048 | |
4049 // Deoptimize for negative inputs, which at this point are only numbers in | |
4050 // the range [-0.5, -0.0] | |
4051 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
4052 __ Fmov(result, input); | |
4053 DeoptimizeIfNegative(result, instr, Deoptimizer::kMinusZero); | |
4054 } | |
4055 | |
4056 // Deoptimize if the input was NaN. | |
4057 __ Fcmp(input, dot_five); | |
4058 DeoptimizeIf(vs, instr, Deoptimizer::kNaN); | |
4059 | |
4060 // Now, the only unhandled inputs are in the range [0.0, 1.5[ (or [-0.5, 1.5[ | |
4061 // if we didn't generate a -0.0 bailout). If input >= 0.5 then return 1, | |
4062 // else 0; we avoid dealing with 0.499...94 directly. | |
4063 __ Cset(result, ge); | |
4064 __ Bind(&done); | |
4065 } | |
4066 | |
4067 | |
4068 void LCodeGen::DoMathFround(LMathFround* instr) { | |
4069 DoubleRegister input = ToDoubleRegister(instr->value()); | |
4070 DoubleRegister result = ToDoubleRegister(instr->result()); | |
4071 __ Fcvt(result.S(), input); | |
4072 __ Fcvt(result, result.S()); | |
4073 } | |
4074 | |
4075 | |
4076 void LCodeGen::DoMathSqrt(LMathSqrt* instr) { | |
4077 DoubleRegister input = ToDoubleRegister(instr->value()); | |
4078 DoubleRegister result = ToDoubleRegister(instr->result()); | |
4079 __ Fsqrt(result, input); | |
4080 } | |
4081 | |
4082 | |
4083 void LCodeGen::DoMathMinMax(LMathMinMax* instr) { | |
4084 HMathMinMax::Operation op = instr->hydrogen()->operation(); | |
4085 if (instr->hydrogen()->representation().IsInteger32()) { | |
4086 Register result = ToRegister32(instr->result()); | |
4087 Register left = ToRegister32(instr->left()); | |
4088 Operand right = ToOperand32(instr->right()); | |
4089 | |
4090 __ Cmp(left, right); | |
4091 __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le); | |
4092 } else if (instr->hydrogen()->representation().IsSmi()) { | |
4093 Register result = ToRegister(instr->result()); | |
4094 Register left = ToRegister(instr->left()); | |
4095 Operand right = ToOperand(instr->right()); | |
4096 | |
4097 __ Cmp(left, right); | |
4098 __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le); | |
4099 } else { | |
4100 DCHECK(instr->hydrogen()->representation().IsDouble()); | |
4101 DoubleRegister result = ToDoubleRegister(instr->result()); | |
4102 DoubleRegister left = ToDoubleRegister(instr->left()); | |
4103 DoubleRegister right = ToDoubleRegister(instr->right()); | |
4104 | |
4105 if (op == HMathMinMax::kMathMax) { | |
4106 __ Fmax(result, left, right); | |
4107 } else { | |
4108 DCHECK(op == HMathMinMax::kMathMin); | |
4109 __ Fmin(result, left, right); | |
4110 } | |
4111 } | |
4112 } | |
4113 | |
4114 | |
4115 void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) { | |
4116 Register dividend = ToRegister32(instr->dividend()); | |
4117 int32_t divisor = instr->divisor(); | |
4118 DCHECK(dividend.is(ToRegister32(instr->result()))); | |
4119 | |
4120 // Theoretically, a variation of the branch-free code for integer division by | |
4121 // a power of 2 (calculating the remainder via an additional multiplication | |
4122 // (which gets simplified to an 'and') and subtraction) should be faster, and | |
4123 // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to | |
4124 // indicate that positive dividends are heavily favored, so the branching | |
4125 // version performs better. | |
4126 HMod* hmod = instr->hydrogen(); | |
4127 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1); | |
4128 Label dividend_is_not_negative, done; | |
4129 if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) { | |
4130 __ Tbz(dividend, kWSignBit, ÷nd_is_not_negative); | |
4131 // Note that this is correct even for kMinInt operands. | |
4132 __ Neg(dividend, dividend); | |
4133 __ And(dividend, dividend, mask); | |
4134 __ Negs(dividend, dividend); | |
4135 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
4136 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero); | |
4137 } | |
4138 __ B(&done); | |
4139 } | |
4140 | |
4141 __ bind(÷nd_is_not_negative); | |
4142 __ And(dividend, dividend, mask); | |
4143 __ bind(&done); | |
4144 } | |
4145 | |
4146 | |
4147 void LCodeGen::DoModByConstI(LModByConstI* instr) { | |
4148 Register dividend = ToRegister32(instr->dividend()); | |
4149 int32_t divisor = instr->divisor(); | |
4150 Register result = ToRegister32(instr->result()); | |
4151 Register temp = ToRegister32(instr->temp()); | |
4152 DCHECK(!AreAliased(dividend, result, temp)); | |
4153 | |
4154 if (divisor == 0) { | |
4155 Deoptimize(instr, Deoptimizer::kDivisionByZero); | |
4156 return; | |
4157 } | |
4158 | |
4159 __ TruncatingDiv(result, dividend, Abs(divisor)); | |
4160 __ Sxtw(dividend.X(), dividend); | |
4161 __ Mov(temp, Abs(divisor)); | |
4162 __ Smsubl(result.X(), result, temp, dividend.X()); | |
4163 | |
4164 // Check for negative zero. | |
4165 HMod* hmod = instr->hydrogen(); | |
4166 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
4167 Label remainder_not_zero; | |
4168 __ Cbnz(result, &remainder_not_zero); | |
4169 DeoptimizeIfNegative(dividend, instr, Deoptimizer::kMinusZero); | |
4170 __ bind(&remainder_not_zero); | |
4171 } | |
4172 } | |
4173 | |
4174 | |
4175 void LCodeGen::DoModI(LModI* instr) { | |
4176 Register dividend = ToRegister32(instr->left()); | |
4177 Register divisor = ToRegister32(instr->right()); | |
4178 Register result = ToRegister32(instr->result()); | |
4179 | |
4180 Label done; | |
4181 // modulo = dividend - quotient * divisor | |
4182 __ Sdiv(result, dividend, divisor); | |
4183 if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) { | |
4184 DeoptimizeIfZero(divisor, instr, Deoptimizer::kDivisionByZero); | |
4185 } | |
4186 __ Msub(result, result, divisor, dividend); | |
4187 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
4188 __ Cbnz(result, &done); | |
4189 DeoptimizeIfNegative(dividend, instr, Deoptimizer::kMinusZero); | |
4190 } | |
4191 __ Bind(&done); | |
4192 } | |
4193 | |
4194 | |
4195 void LCodeGen::DoMulConstIS(LMulConstIS* instr) { | |
4196 DCHECK(instr->hydrogen()->representation().IsSmiOrInteger32()); | |
4197 bool is_smi = instr->hydrogen()->representation().IsSmi(); | |
4198 Register result = | |
4199 is_smi ? ToRegister(instr->result()) : ToRegister32(instr->result()); | |
4200 Register left = | |
4201 is_smi ? ToRegister(instr->left()) : ToRegister32(instr->left()); | |
4202 int32_t right = ToInteger32(instr->right()); | |
4203 DCHECK((right > -kMaxInt) && (right < kMaxInt)); | |
4204 | |
4205 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); | |
4206 bool bailout_on_minus_zero = | |
4207 instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero); | |
4208 | |
4209 if (bailout_on_minus_zero) { | |
4210 if (right < 0) { | |
4211 // The result is -0 if right is negative and left is zero. | |
4212 DeoptimizeIfZero(left, instr, Deoptimizer::kMinusZero); | |
4213 } else if (right == 0) { | |
4214 // The result is -0 if the right is zero and the left is negative. | |
4215 DeoptimizeIfNegative(left, instr, Deoptimizer::kMinusZero); | |
4216 } | |
4217 } | |
4218 | |
4219 switch (right) { | |
4220 // Cases which can detect overflow. | |
4221 case -1: | |
4222 if (can_overflow) { | |
4223 // Only 0x80000000 can overflow here. | |
4224 __ Negs(result, left); | |
4225 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow); | |
4226 } else { | |
4227 __ Neg(result, left); | |
4228 } | |
4229 break; | |
4230 case 0: | |
4231 // This case can never overflow. | |
4232 __ Mov(result, 0); | |
4233 break; | |
4234 case 1: | |
4235 // This case can never overflow. | |
4236 __ Mov(result, left, kDiscardForSameWReg); | |
4237 break; | |
4238 case 2: | |
4239 if (can_overflow) { | |
4240 __ Adds(result, left, left); | |
4241 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow); | |
4242 } else { | |
4243 __ Add(result, left, left); | |
4244 } | |
4245 break; | |
4246 | |
4247 default: | |
4248 // Multiplication by constant powers of two (and some related values) | |
4249 // can be done efficiently with shifted operands. | |
4250 int32_t right_abs = Abs(right); | |
4251 | |
4252 if (base::bits::IsPowerOfTwo32(right_abs)) { | |
4253 int right_log2 = WhichPowerOf2(right_abs); | |
4254 | |
4255 if (can_overflow) { | |
4256 Register scratch = result; | |
4257 DCHECK(!AreAliased(scratch, left)); | |
4258 __ Cls(scratch, left); | |
4259 __ Cmp(scratch, right_log2); | |
4260 DeoptimizeIf(lt, instr, Deoptimizer::kOverflow); | |
4261 } | |
4262 | |
4263 if (right >= 0) { | |
4264 // result = left << log2(right) | |
4265 __ Lsl(result, left, right_log2); | |
4266 } else { | |
4267 // result = -left << log2(-right) | |
4268 if (can_overflow) { | |
4269 __ Negs(result, Operand(left, LSL, right_log2)); | |
4270 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow); | |
4271 } else { | |
4272 __ Neg(result, Operand(left, LSL, right_log2)); | |
4273 } | |
4274 } | |
4275 return; | |
4276 } | |
4277 | |
4278 | |
4279 // For the following cases, we could perform a conservative overflow check | |
4280 // with CLS as above. However the few cycles saved are likely not worth | |
4281 // the risk of deoptimizing more often than required. | |
4282 DCHECK(!can_overflow); | |
4283 | |
4284 if (right >= 0) { | |
4285 if (base::bits::IsPowerOfTwo32(right - 1)) { | |
4286 // result = left + left << log2(right - 1) | |
4287 __ Add(result, left, Operand(left, LSL, WhichPowerOf2(right - 1))); | |
4288 } else if (base::bits::IsPowerOfTwo32(right + 1)) { | |
4289 // result = -left + left << log2(right + 1) | |
4290 __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(right + 1))); | |
4291 __ Neg(result, result); | |
4292 } else { | |
4293 UNREACHABLE(); | |
4294 } | |
4295 } else { | |
4296 if (base::bits::IsPowerOfTwo32(-right + 1)) { | |
4297 // result = left - left << log2(-right + 1) | |
4298 __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(-right + 1))); | |
4299 } else if (base::bits::IsPowerOfTwo32(-right - 1)) { | |
4300 // result = -left - left << log2(-right - 1) | |
4301 __ Add(result, left, Operand(left, LSL, WhichPowerOf2(-right - 1))); | |
4302 __ Neg(result, result); | |
4303 } else { | |
4304 UNREACHABLE(); | |
4305 } | |
4306 } | |
4307 } | |
4308 } | |
4309 | |
4310 | |
4311 void LCodeGen::DoMulI(LMulI* instr) { | |
4312 Register result = ToRegister32(instr->result()); | |
4313 Register left = ToRegister32(instr->left()); | |
4314 Register right = ToRegister32(instr->right()); | |
4315 | |
4316 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); | |
4317 bool bailout_on_minus_zero = | |
4318 instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero); | |
4319 | |
4320 if (bailout_on_minus_zero && !left.Is(right)) { | |
4321 // If one operand is zero and the other is negative, the result is -0. | |
4322 // - Set Z (eq) if either left or right, or both, are 0. | |
4323 __ Cmp(left, 0); | |
4324 __ Ccmp(right, 0, ZFlag, ne); | |
4325 // - If so (eq), set N (mi) if left + right is negative. | |
4326 // - Otherwise, clear N. | |
4327 __ Ccmn(left, right, NoFlag, eq); | |
4328 DeoptimizeIf(mi, instr, Deoptimizer::kMinusZero); | |
4329 } | |
4330 | |
4331 if (can_overflow) { | |
4332 __ Smull(result.X(), left, right); | |
4333 __ Cmp(result.X(), Operand(result, SXTW)); | |
4334 DeoptimizeIf(ne, instr, Deoptimizer::kOverflow); | |
4335 } else { | |
4336 __ Mul(result, left, right); | |
4337 } | |
4338 } | |
4339 | |
4340 | |
4341 void LCodeGen::DoMulS(LMulS* instr) { | |
4342 Register result = ToRegister(instr->result()); | |
4343 Register left = ToRegister(instr->left()); | |
4344 Register right = ToRegister(instr->right()); | |
4345 | |
4346 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); | |
4347 bool bailout_on_minus_zero = | |
4348 instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero); | |
4349 | |
4350 if (bailout_on_minus_zero && !left.Is(right)) { | |
4351 // If one operand is zero and the other is negative, the result is -0. | |
4352 // - Set Z (eq) if either left or right, or both, are 0. | |
4353 __ Cmp(left, 0); | |
4354 __ Ccmp(right, 0, ZFlag, ne); | |
4355 // - If so (eq), set N (mi) if left + right is negative. | |
4356 // - Otherwise, clear N. | |
4357 __ Ccmn(left, right, NoFlag, eq); | |
4358 DeoptimizeIf(mi, instr, Deoptimizer::kMinusZero); | |
4359 } | |
4360 | |
4361 STATIC_ASSERT((kSmiShift == 32) && (kSmiTag == 0)); | |
4362 if (can_overflow) { | |
4363 __ Smulh(result, left, right); | |
4364 __ Cmp(result, Operand(result.W(), SXTW)); | |
4365 __ SmiTag(result); | |
4366 DeoptimizeIf(ne, instr, Deoptimizer::kOverflow); | |
4367 } else { | |
4368 if (AreAliased(result, left, right)) { | |
4369 // All three registers are the same: half untag the input and then | |
4370 // multiply, giving a tagged result. | |
4371 STATIC_ASSERT((kSmiShift % 2) == 0); | |
4372 __ Asr(result, left, kSmiShift / 2); | |
4373 __ Mul(result, result, result); | |
4374 } else if (result.Is(left) && !left.Is(right)) { | |
4375 // Registers result and left alias, right is distinct: untag left into | |
4376 // result, and then multiply by right, giving a tagged result. | |
4377 __ SmiUntag(result, left); | |
4378 __ Mul(result, result, right); | |
4379 } else { | |
4380 DCHECK(!left.Is(result)); | |
4381 // Registers result and right alias, left is distinct, or all registers | |
4382 // are distinct: untag right into result, and then multiply by left, | |
4383 // giving a tagged result. | |
4384 __ SmiUntag(result, right); | |
4385 __ Mul(result, left, result); | |
4386 } | |
4387 } | |
4388 } | |
4389 | |
4390 | |
4391 void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) { | |
4392 // TODO(3095996): Get rid of this. For now, we need to make the | |
4393 // result register contain a valid pointer because it is already | |
4394 // contained in the register pointer map. | |
4395 Register result = ToRegister(instr->result()); | |
4396 __ Mov(result, 0); | |
4397 | |
4398 PushSafepointRegistersScope scope(this); | |
4399 // NumberTagU and NumberTagD use the context from the frame, rather than | |
4400 // the environment's HContext or HInlinedContext value. | |
4401 // They only call Runtime::kAllocateHeapNumber. | |
4402 // The corresponding HChange instructions are added in a phase that does | |
4403 // not have easy access to the local context. | |
4404 __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); | |
4405 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber); | |
4406 RecordSafepointWithRegisters( | |
4407 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt); | |
4408 __ StoreToSafepointRegisterSlot(x0, result); | |
4409 } | |
4410 | |
4411 | |
4412 void LCodeGen::DoNumberTagD(LNumberTagD* instr) { | |
4413 class DeferredNumberTagD: public LDeferredCode { | |
4414 public: | |
4415 DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr) | |
4416 : LDeferredCode(codegen), instr_(instr) { } | |
4417 virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); } | |
4418 virtual LInstruction* instr() { return instr_; } | |
4419 private: | |
4420 LNumberTagD* instr_; | |
4421 }; | |
4422 | |
4423 DoubleRegister input = ToDoubleRegister(instr->value()); | |
4424 Register result = ToRegister(instr->result()); | |
4425 Register temp1 = ToRegister(instr->temp1()); | |
4426 Register temp2 = ToRegister(instr->temp2()); | |
4427 | |
4428 DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr); | |
4429 if (FLAG_inline_new) { | |
4430 __ AllocateHeapNumber(result, deferred->entry(), temp1, temp2); | |
4431 } else { | |
4432 __ B(deferred->entry()); | |
4433 } | |
4434 | |
4435 __ Bind(deferred->exit()); | |
4436 __ Str(input, FieldMemOperand(result, HeapNumber::kValueOffset)); | |
4437 } | |
4438 | |
4439 | |
4440 void LCodeGen::DoDeferredNumberTagU(LInstruction* instr, | |
4441 LOperand* value, | |
4442 LOperand* temp1, | |
4443 LOperand* temp2) { | |
4444 Label slow, convert_and_store; | |
4445 Register src = ToRegister32(value); | |
4446 Register dst = ToRegister(instr->result()); | |
4447 Register scratch1 = ToRegister(temp1); | |
4448 | |
4449 if (FLAG_inline_new) { | |
4450 Register scratch2 = ToRegister(temp2); | |
4451 __ AllocateHeapNumber(dst, &slow, scratch1, scratch2); | |
4452 __ B(&convert_and_store); | |
4453 } | |
4454 | |
4455 // Slow case: call the runtime system to do the number allocation. | |
4456 __ Bind(&slow); | |
4457 // TODO(3095996): Put a valid pointer value in the stack slot where the result | |
4458 // register is stored, as this register is in the pointer map, but contains an | |
4459 // integer value. | |
4460 __ Mov(dst, 0); | |
4461 { | |
4462 // Preserve the value of all registers. | |
4463 PushSafepointRegistersScope scope(this); | |
4464 | |
4465 // NumberTagU and NumberTagD use the context from the frame, rather than | |
4466 // the environment's HContext or HInlinedContext value. | |
4467 // They only call Runtime::kAllocateHeapNumber. | |
4468 // The corresponding HChange instructions are added in a phase that does | |
4469 // not have easy access to the local context. | |
4470 __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); | |
4471 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber); | |
4472 RecordSafepointWithRegisters( | |
4473 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt); | |
4474 __ StoreToSafepointRegisterSlot(x0, dst); | |
4475 } | |
4476 | |
4477 // Convert number to floating point and store in the newly allocated heap | |
4478 // number. | |
4479 __ Bind(&convert_and_store); | |
4480 DoubleRegister dbl_scratch = double_scratch(); | |
4481 __ Ucvtf(dbl_scratch, src); | |
4482 __ Str(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset)); | |
4483 } | |
4484 | |
4485 | |
4486 void LCodeGen::DoNumberTagU(LNumberTagU* instr) { | |
4487 class DeferredNumberTagU: public LDeferredCode { | |
4488 public: | |
4489 DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr) | |
4490 : LDeferredCode(codegen), instr_(instr) { } | |
4491 virtual void Generate() { | |
4492 codegen()->DoDeferredNumberTagU(instr_, | |
4493 instr_->value(), | |
4494 instr_->temp1(), | |
4495 instr_->temp2()); | |
4496 } | |
4497 virtual LInstruction* instr() { return instr_; } | |
4498 private: | |
4499 LNumberTagU* instr_; | |
4500 }; | |
4501 | |
4502 Register value = ToRegister32(instr->value()); | |
4503 Register result = ToRegister(instr->result()); | |
4504 | |
4505 DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr); | |
4506 __ Cmp(value, Smi::kMaxValue); | |
4507 __ B(hi, deferred->entry()); | |
4508 __ SmiTag(result, value.X()); | |
4509 __ Bind(deferred->exit()); | |
4510 } | |
4511 | |
4512 | |
4513 void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) { | |
4514 Register input = ToRegister(instr->value()); | |
4515 Register scratch = ToRegister(instr->temp()); | |
4516 DoubleRegister result = ToDoubleRegister(instr->result()); | |
4517 bool can_convert_undefined_to_nan = | |
4518 instr->hydrogen()->can_convert_undefined_to_nan(); | |
4519 | |
4520 Label done, load_smi; | |
4521 | |
4522 // Work out what untag mode we're working with. | |
4523 HValue* value = instr->hydrogen()->value(); | |
4524 NumberUntagDMode mode = value->representation().IsSmi() | |
4525 ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED; | |
4526 | |
4527 if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) { | |
4528 __ JumpIfSmi(input, &load_smi); | |
4529 | |
4530 Label convert_undefined; | |
4531 | |
4532 // Heap number map check. | |
4533 if (can_convert_undefined_to_nan) { | |
4534 __ JumpIfNotHeapNumber(input, &convert_undefined); | |
4535 } else { | |
4536 DeoptimizeIfNotHeapNumber(input, instr); | |
4537 } | |
4538 | |
4539 // Load heap number. | |
4540 __ Ldr(result, FieldMemOperand(input, HeapNumber::kValueOffset)); | |
4541 if (instr->hydrogen()->deoptimize_on_minus_zero()) { | |
4542 DeoptimizeIfMinusZero(result, instr, Deoptimizer::kMinusZero); | |
4543 } | |
4544 __ B(&done); | |
4545 | |
4546 if (can_convert_undefined_to_nan) { | |
4547 __ Bind(&convert_undefined); | |
4548 DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr, | |
4549 Deoptimizer::kNotAHeapNumberUndefined); | |
4550 | |
4551 __ LoadRoot(scratch, Heap::kNanValueRootIndex); | |
4552 __ Ldr(result, FieldMemOperand(scratch, HeapNumber::kValueOffset)); | |
4553 __ B(&done); | |
4554 } | |
4555 | |
4556 } else { | |
4557 DCHECK(mode == NUMBER_CANDIDATE_IS_SMI); | |
4558 // Fall through to load_smi. | |
4559 } | |
4560 | |
4561 // Smi to double register conversion. | |
4562 __ Bind(&load_smi); | |
4563 __ SmiUntagToDouble(result, input); | |
4564 | |
4565 __ Bind(&done); | |
4566 } | |
4567 | |
4568 | |
4569 void LCodeGen::DoOsrEntry(LOsrEntry* instr) { | |
4570 // This is a pseudo-instruction that ensures that the environment here is | |
4571 // properly registered for deoptimization and records the assembler's PC | |
4572 // offset. | |
4573 LEnvironment* environment = instr->environment(); | |
4574 | |
4575 // If the environment were already registered, we would have no way of | |
4576 // backpatching it with the spill slot operands. | |
4577 DCHECK(!environment->HasBeenRegistered()); | |
4578 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); | |
4579 | |
4580 GenerateOsrPrologue(); | |
4581 } | |
4582 | |
4583 | |
4584 void LCodeGen::DoParameter(LParameter* instr) { | |
4585 // Nothing to do. | |
4586 } | |
4587 | |
4588 | |
4589 void LCodeGen::DoPreparePushArguments(LPreparePushArguments* instr) { | |
4590 __ PushPreamble(instr->argc(), kPointerSize); | |
4591 } | |
4592 | |
4593 | |
4594 void LCodeGen::DoPushArguments(LPushArguments* instr) { | |
4595 MacroAssembler::PushPopQueue args(masm()); | |
4596 | |
4597 for (int i = 0; i < instr->ArgumentCount(); ++i) { | |
4598 LOperand* arg = instr->argument(i); | |
4599 if (arg->IsDoubleRegister() || arg->IsDoubleStackSlot()) { | |
4600 Abort(kDoPushArgumentNotImplementedForDoubleType); | |
4601 return; | |
4602 } | |
4603 args.Queue(ToRegister(arg)); | |
4604 } | |
4605 | |
4606 // The preamble was done by LPreparePushArguments. | |
4607 args.PushQueued(MacroAssembler::PushPopQueue::SKIP_PREAMBLE); | |
4608 | |
4609 RecordPushedArgumentsDelta(instr->ArgumentCount()); | |
4610 } | |
4611 | |
4612 | |
4613 void LCodeGen::DoReturn(LReturn* instr) { | |
4614 if (FLAG_trace && info()->IsOptimizing()) { | |
4615 // Push the return value on the stack as the parameter. | |
4616 // Runtime::TraceExit returns its parameter in x0. We're leaving the code | |
4617 // managed by the register allocator and tearing down the frame, it's | |
4618 // safe to write to the context register. | |
4619 __ Push(x0); | |
4620 __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); | |
4621 __ CallRuntime(Runtime::kTraceExit, 1); | |
4622 } | |
4623 | |
4624 if (info()->saves_caller_doubles()) { | |
4625 RestoreCallerDoubles(); | |
4626 } | |
4627 | |
4628 if (NeedsEagerFrame()) { | |
4629 Register stack_pointer = masm()->StackPointer(); | |
4630 __ Mov(stack_pointer, fp); | |
4631 __ Pop(fp, lr); | |
4632 } | |
4633 | |
4634 if (instr->has_constant_parameter_count()) { | |
4635 int parameter_count = ToInteger32(instr->constant_parameter_count()); | |
4636 __ Drop(parameter_count + 1); | |
4637 } else { | |
4638 DCHECK(info()->IsStub()); // Functions would need to drop one more value. | |
4639 Register parameter_count = ToRegister(instr->parameter_count()); | |
4640 __ DropBySMI(parameter_count); | |
4641 } | |
4642 __ Ret(); | |
4643 } | |
4644 | |
4645 | |
4646 MemOperand LCodeGen::BuildSeqStringOperand(Register string, | |
4647 Register temp, | |
4648 LOperand* index, | |
4649 String::Encoding encoding) { | |
4650 if (index->IsConstantOperand()) { | |
4651 int offset = ToInteger32(LConstantOperand::cast(index)); | |
4652 if (encoding == String::TWO_BYTE_ENCODING) { | |
4653 offset *= kUC16Size; | |
4654 } | |
4655 STATIC_ASSERT(kCharSize == 1); | |
4656 return FieldMemOperand(string, SeqString::kHeaderSize + offset); | |
4657 } | |
4658 | |
4659 __ Add(temp, string, SeqString::kHeaderSize - kHeapObjectTag); | |
4660 if (encoding == String::ONE_BYTE_ENCODING) { | |
4661 return MemOperand(temp, ToRegister32(index), SXTW); | |
4662 } else { | |
4663 STATIC_ASSERT(kUC16Size == 2); | |
4664 return MemOperand(temp, ToRegister32(index), SXTW, 1); | |
4665 } | |
4666 } | |
4667 | |
4668 | |
4669 void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) { | |
4670 String::Encoding encoding = instr->hydrogen()->encoding(); | |
4671 Register string = ToRegister(instr->string()); | |
4672 Register result = ToRegister(instr->result()); | |
4673 Register temp = ToRegister(instr->temp()); | |
4674 | |
4675 if (FLAG_debug_code) { | |
4676 // Even though this lithium instruction comes with a temp register, we | |
4677 // can't use it here because we want to use "AtStart" constraints on the | |
4678 // inputs and the debug code here needs a scratch register. | |
4679 UseScratchRegisterScope temps(masm()); | |
4680 Register dbg_temp = temps.AcquireX(); | |
4681 | |
4682 __ Ldr(dbg_temp, FieldMemOperand(string, HeapObject::kMapOffset)); | |
4683 __ Ldrb(dbg_temp, FieldMemOperand(dbg_temp, Map::kInstanceTypeOffset)); | |
4684 | |
4685 __ And(dbg_temp, dbg_temp, | |
4686 Operand(kStringRepresentationMask | kStringEncodingMask)); | |
4687 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; | |
4688 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; | |
4689 __ Cmp(dbg_temp, Operand(encoding == String::ONE_BYTE_ENCODING | |
4690 ? one_byte_seq_type : two_byte_seq_type)); | |
4691 __ Check(eq, kUnexpectedStringType); | |
4692 } | |
4693 | |
4694 MemOperand operand = | |
4695 BuildSeqStringOperand(string, temp, instr->index(), encoding); | |
4696 if (encoding == String::ONE_BYTE_ENCODING) { | |
4697 __ Ldrb(result, operand); | |
4698 } else { | |
4699 __ Ldrh(result, operand); | |
4700 } | |
4701 } | |
4702 | |
4703 | |
4704 void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) { | |
4705 String::Encoding encoding = instr->hydrogen()->encoding(); | |
4706 Register string = ToRegister(instr->string()); | |
4707 Register value = ToRegister(instr->value()); | |
4708 Register temp = ToRegister(instr->temp()); | |
4709 | |
4710 if (FLAG_debug_code) { | |
4711 DCHECK(ToRegister(instr->context()).is(cp)); | |
4712 Register index = ToRegister(instr->index()); | |
4713 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; | |
4714 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; | |
4715 int encoding_mask = | |
4716 instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING | |
4717 ? one_byte_seq_type : two_byte_seq_type; | |
4718 __ EmitSeqStringSetCharCheck(string, index, kIndexIsInteger32, temp, | |
4719 encoding_mask); | |
4720 } | |
4721 MemOperand operand = | |
4722 BuildSeqStringOperand(string, temp, instr->index(), encoding); | |
4723 if (encoding == String::ONE_BYTE_ENCODING) { | |
4724 __ Strb(value, operand); | |
4725 } else { | |
4726 __ Strh(value, operand); | |
4727 } | |
4728 } | |
4729 | |
4730 | |
4731 void LCodeGen::DoSmiTag(LSmiTag* instr) { | |
4732 HChange* hchange = instr->hydrogen(); | |
4733 Register input = ToRegister(instr->value()); | |
4734 Register output = ToRegister(instr->result()); | |
4735 if (hchange->CheckFlag(HValue::kCanOverflow) && | |
4736 hchange->value()->CheckFlag(HValue::kUint32)) { | |
4737 DeoptimizeIfNegative(input.W(), instr, Deoptimizer::kOverflow); | |
4738 } | |
4739 __ SmiTag(output, input); | |
4740 } | |
4741 | |
4742 | |
4743 void LCodeGen::DoSmiUntag(LSmiUntag* instr) { | |
4744 Register input = ToRegister(instr->value()); | |
4745 Register result = ToRegister(instr->result()); | |
4746 Label done, untag; | |
4747 | |
4748 if (instr->needs_check()) { | |
4749 DeoptimizeIfNotSmi(input, instr, Deoptimizer::kNotASmi); | |
4750 } | |
4751 | |
4752 __ Bind(&untag); | |
4753 __ SmiUntag(result, input); | |
4754 __ Bind(&done); | |
4755 } | |
4756 | |
4757 | |
4758 void LCodeGen::DoShiftI(LShiftI* instr) { | |
4759 LOperand* right_op = instr->right(); | |
4760 Register left = ToRegister32(instr->left()); | |
4761 Register result = ToRegister32(instr->result()); | |
4762 | |
4763 if (right_op->IsRegister()) { | |
4764 Register right = ToRegister32(instr->right()); | |
4765 switch (instr->op()) { | |
4766 case Token::ROR: __ Ror(result, left, right); break; | |
4767 case Token::SAR: __ Asr(result, left, right); break; | |
4768 case Token::SHL: __ Lsl(result, left, right); break; | |
4769 case Token::SHR: | |
4770 __ Lsr(result, left, right); | |
4771 if (instr->can_deopt()) { | |
4772 // If `left >>> right` >= 0x80000000, the result is not representable | |
4773 // in a signed 32-bit smi. | |
4774 DeoptimizeIfNegative(result, instr, Deoptimizer::kNegativeValue); | |
4775 } | |
4776 break; | |
4777 default: UNREACHABLE(); | |
4778 } | |
4779 } else { | |
4780 DCHECK(right_op->IsConstantOperand()); | |
4781 int shift_count = JSShiftAmountFromLConstant(right_op); | |
4782 if (shift_count == 0) { | |
4783 if ((instr->op() == Token::SHR) && instr->can_deopt()) { | |
4784 DeoptimizeIfNegative(left, instr, Deoptimizer::kNegativeValue); | |
4785 } | |
4786 __ Mov(result, left, kDiscardForSameWReg); | |
4787 } else { | |
4788 switch (instr->op()) { | |
4789 case Token::ROR: __ Ror(result, left, shift_count); break; | |
4790 case Token::SAR: __ Asr(result, left, shift_count); break; | |
4791 case Token::SHL: __ Lsl(result, left, shift_count); break; | |
4792 case Token::SHR: __ Lsr(result, left, shift_count); break; | |
4793 default: UNREACHABLE(); | |
4794 } | |
4795 } | |
4796 } | |
4797 } | |
4798 | |
4799 | |
4800 void LCodeGen::DoShiftS(LShiftS* instr) { | |
4801 LOperand* right_op = instr->right(); | |
4802 Register left = ToRegister(instr->left()); | |
4803 Register result = ToRegister(instr->result()); | |
4804 | |
4805 if (right_op->IsRegister()) { | |
4806 Register right = ToRegister(instr->right()); | |
4807 | |
4808 // JavaScript shifts only look at the bottom 5 bits of the 'right' operand. | |
4809 // Since we're handling smis in X registers, we have to extract these bits | |
4810 // explicitly. | |
4811 __ Ubfx(result, right, kSmiShift, 5); | |
4812 | |
4813 switch (instr->op()) { | |
4814 case Token::ROR: { | |
4815 // This is the only case that needs a scratch register. To keep things | |
4816 // simple for the other cases, borrow a MacroAssembler scratch register. | |
4817 UseScratchRegisterScope temps(masm()); | |
4818 Register temp = temps.AcquireW(); | |
4819 __ SmiUntag(temp, left); | |
4820 __ Ror(result.W(), temp.W(), result.W()); | |
4821 __ SmiTag(result); | |
4822 break; | |
4823 } | |
4824 case Token::SAR: | |
4825 __ Asr(result, left, result); | |
4826 __ Bic(result, result, kSmiShiftMask); | |
4827 break; | |
4828 case Token::SHL: | |
4829 __ Lsl(result, left, result); | |
4830 break; | |
4831 case Token::SHR: | |
4832 __ Lsr(result, left, result); | |
4833 __ Bic(result, result, kSmiShiftMask); | |
4834 if (instr->can_deopt()) { | |
4835 // If `left >>> right` >= 0x80000000, the result is not representable | |
4836 // in a signed 32-bit smi. | |
4837 DeoptimizeIfNegative(result, instr, Deoptimizer::kNegativeValue); | |
4838 } | |
4839 break; | |
4840 default: UNREACHABLE(); | |
4841 } | |
4842 } else { | |
4843 DCHECK(right_op->IsConstantOperand()); | |
4844 int shift_count = JSShiftAmountFromLConstant(right_op); | |
4845 if (shift_count == 0) { | |
4846 if ((instr->op() == Token::SHR) && instr->can_deopt()) { | |
4847 DeoptimizeIfNegative(left, instr, Deoptimizer::kNegativeValue); | |
4848 } | |
4849 __ Mov(result, left); | |
4850 } else { | |
4851 switch (instr->op()) { | |
4852 case Token::ROR: | |
4853 __ SmiUntag(result, left); | |
4854 __ Ror(result.W(), result.W(), shift_count); | |
4855 __ SmiTag(result); | |
4856 break; | |
4857 case Token::SAR: | |
4858 __ Asr(result, left, shift_count); | |
4859 __ Bic(result, result, kSmiShiftMask); | |
4860 break; | |
4861 case Token::SHL: | |
4862 __ Lsl(result, left, shift_count); | |
4863 break; | |
4864 case Token::SHR: | |
4865 __ Lsr(result, left, shift_count); | |
4866 __ Bic(result, result, kSmiShiftMask); | |
4867 break; | |
4868 default: UNREACHABLE(); | |
4869 } | |
4870 } | |
4871 } | |
4872 } | |
4873 | |
4874 | |
4875 void LCodeGen::DoDebugBreak(LDebugBreak* instr) { | |
4876 __ Debug("LDebugBreak", 0, BREAK); | |
4877 } | |
4878 | |
4879 | |
4880 void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) { | |
4881 DCHECK(ToRegister(instr->context()).is(cp)); | |
4882 Register scratch1 = x5; | |
4883 Register scratch2 = x6; | |
4884 DCHECK(instr->IsMarkedAsCall()); | |
4885 | |
4886 // TODO(all): if Mov could handle object in new space then it could be used | |
4887 // here. | |
4888 __ LoadHeapObject(scratch1, instr->hydrogen()->pairs()); | |
4889 __ Mov(scratch2, Smi::FromInt(instr->hydrogen()->flags())); | |
4890 __ Push(scratch1, scratch2); | |
4891 CallRuntime(Runtime::kDeclareGlobals, 2, instr); | |
4892 } | |
4893 | |
4894 | |
4895 void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) { | |
4896 PushSafepointRegistersScope scope(this); | |
4897 LoadContextFromDeferred(instr->context()); | |
4898 __ CallRuntimeSaveDoubles(Runtime::kStackGuard); | |
4899 RecordSafepointWithLazyDeopt( | |
4900 instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); | |
4901 DCHECK(instr->HasEnvironment()); | |
4902 LEnvironment* env = instr->environment(); | |
4903 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); | |
4904 } | |
4905 | |
4906 | |
4907 void LCodeGen::DoStackCheck(LStackCheck* instr) { | |
4908 class DeferredStackCheck: public LDeferredCode { | |
4909 public: | |
4910 DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr) | |
4911 : LDeferredCode(codegen), instr_(instr) { } | |
4912 virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); } | |
4913 virtual LInstruction* instr() { return instr_; } | |
4914 private: | |
4915 LStackCheck* instr_; | |
4916 }; | |
4917 | |
4918 DCHECK(instr->HasEnvironment()); | |
4919 LEnvironment* env = instr->environment(); | |
4920 // There is no LLazyBailout instruction for stack-checks. We have to | |
4921 // prepare for lazy deoptimization explicitly here. | |
4922 if (instr->hydrogen()->is_function_entry()) { | |
4923 // Perform stack overflow check. | |
4924 Label done; | |
4925 __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex); | |
4926 __ B(hs, &done); | |
4927 | |
4928 PredictableCodeSizeScope predictable(masm_, | |
4929 Assembler::kCallSizeWithRelocation); | |
4930 DCHECK(instr->context()->IsRegister()); | |
4931 DCHECK(ToRegister(instr->context()).is(cp)); | |
4932 CallCode(isolate()->builtins()->StackCheck(), | |
4933 RelocInfo::CODE_TARGET, | |
4934 instr); | |
4935 __ Bind(&done); | |
4936 } else { | |
4937 DCHECK(instr->hydrogen()->is_backwards_branch()); | |
4938 // Perform stack overflow check if this goto needs it before jumping. | |
4939 DeferredStackCheck* deferred_stack_check = | |
4940 new(zone()) DeferredStackCheck(this, instr); | |
4941 __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex); | |
4942 __ B(lo, deferred_stack_check->entry()); | |
4943 | |
4944 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size()); | |
4945 __ Bind(instr->done_label()); | |
4946 deferred_stack_check->SetExit(instr->done_label()); | |
4947 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); | |
4948 // Don't record a deoptimization index for the safepoint here. | |
4949 // This will be done explicitly when emitting call and the safepoint in | |
4950 // the deferred code. | |
4951 } | |
4952 } | |
4953 | |
4954 | |
4955 void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) { | |
4956 Register function = ToRegister(instr->function()); | |
4957 Register code_object = ToRegister(instr->code_object()); | |
4958 Register temp = ToRegister(instr->temp()); | |
4959 __ Add(temp, code_object, Code::kHeaderSize - kHeapObjectTag); | |
4960 __ Str(temp, FieldMemOperand(function, JSFunction::kCodeEntryOffset)); | |
4961 } | |
4962 | |
4963 | |
4964 void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) { | |
4965 Register context = ToRegister(instr->context()); | |
4966 Register value = ToRegister(instr->value()); | |
4967 Register scratch = ToRegister(instr->temp()); | |
4968 MemOperand target = ContextMemOperand(context, instr->slot_index()); | |
4969 | |
4970 Label skip_assignment; | |
4971 | |
4972 if (instr->hydrogen()->RequiresHoleCheck()) { | |
4973 __ Ldr(scratch, target); | |
4974 if (instr->hydrogen()->DeoptimizesOnHole()) { | |
4975 DeoptimizeIfRoot(scratch, Heap::kTheHoleValueRootIndex, instr, | |
4976 Deoptimizer::kHole); | |
4977 } else { | |
4978 __ JumpIfNotRoot(scratch, Heap::kTheHoleValueRootIndex, &skip_assignment); | |
4979 } | |
4980 } | |
4981 | |
4982 __ Str(value, target); | |
4983 if (instr->hydrogen()->NeedsWriteBarrier()) { | |
4984 SmiCheck check_needed = | |
4985 instr->hydrogen()->value()->type().IsHeapObject() | |
4986 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; | |
4987 __ RecordWriteContextSlot(context, static_cast<int>(target.offset()), value, | |
4988 scratch, GetLinkRegisterState(), kSaveFPRegs, | |
4989 EMIT_REMEMBERED_SET, check_needed); | |
4990 } | |
4991 __ Bind(&skip_assignment); | |
4992 } | |
4993 | |
4994 | |
4995 void LCodeGen::DoStoreKeyedExternal(LStoreKeyedExternal* instr) { | |
4996 Register ext_ptr = ToRegister(instr->elements()); | |
4997 Register key = no_reg; | |
4998 Register scratch; | |
4999 ElementsKind elements_kind = instr->elements_kind(); | |
5000 | |
5001 bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi(); | |
5002 bool key_is_constant = instr->key()->IsConstantOperand(); | |
5003 int constant_key = 0; | |
5004 if (key_is_constant) { | |
5005 DCHECK(instr->temp() == NULL); | |
5006 constant_key = ToInteger32(LConstantOperand::cast(instr->key())); | |
5007 if (constant_key & 0xf0000000) { | |
5008 Abort(kArrayIndexConstantValueTooBig); | |
5009 } | |
5010 } else { | |
5011 key = ToRegister(instr->key()); | |
5012 scratch = ToRegister(instr->temp()); | |
5013 } | |
5014 | |
5015 MemOperand dst = | |
5016 PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi, | |
5017 key_is_constant, constant_key, | |
5018 elements_kind, | |
5019 instr->base_offset()); | |
5020 | |
5021 if (elements_kind == FLOAT32_ELEMENTS) { | |
5022 DoubleRegister value = ToDoubleRegister(instr->value()); | |
5023 DoubleRegister dbl_scratch = double_scratch(); | |
5024 __ Fcvt(dbl_scratch.S(), value); | |
5025 __ Str(dbl_scratch.S(), dst); | |
5026 } else if (elements_kind == FLOAT64_ELEMENTS) { | |
5027 DoubleRegister value = ToDoubleRegister(instr->value()); | |
5028 __ Str(value, dst); | |
5029 } else { | |
5030 Register value = ToRegister(instr->value()); | |
5031 | |
5032 switch (elements_kind) { | |
5033 case UINT8_ELEMENTS: | |
5034 case UINT8_CLAMPED_ELEMENTS: | |
5035 case INT8_ELEMENTS: | |
5036 __ Strb(value, dst); | |
5037 break; | |
5038 case INT16_ELEMENTS: | |
5039 case UINT16_ELEMENTS: | |
5040 __ Strh(value, dst); | |
5041 break; | |
5042 case INT32_ELEMENTS: | |
5043 case UINT32_ELEMENTS: | |
5044 __ Str(value.W(), dst); | |
5045 break; | |
5046 case FLOAT32_ELEMENTS: | |
5047 case FLOAT64_ELEMENTS: | |
5048 case FAST_DOUBLE_ELEMENTS: | |
5049 case FAST_ELEMENTS: | |
5050 case FAST_SMI_ELEMENTS: | |
5051 case FAST_HOLEY_DOUBLE_ELEMENTS: | |
5052 case FAST_HOLEY_ELEMENTS: | |
5053 case FAST_HOLEY_SMI_ELEMENTS: | |
5054 case DICTIONARY_ELEMENTS: | |
5055 case FAST_SLOPPY_ARGUMENTS_ELEMENTS: | |
5056 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: | |
5057 UNREACHABLE(); | |
5058 break; | |
5059 } | |
5060 } | |
5061 } | |
5062 | |
5063 | |
5064 void LCodeGen::DoStoreKeyedFixedDouble(LStoreKeyedFixedDouble* instr) { | |
5065 Register elements = ToRegister(instr->elements()); | |
5066 DoubleRegister value = ToDoubleRegister(instr->value()); | |
5067 MemOperand mem_op; | |
5068 | |
5069 if (instr->key()->IsConstantOperand()) { | |
5070 int constant_key = ToInteger32(LConstantOperand::cast(instr->key())); | |
5071 if (constant_key & 0xf0000000) { | |
5072 Abort(kArrayIndexConstantValueTooBig); | |
5073 } | |
5074 int offset = instr->base_offset() + constant_key * kDoubleSize; | |
5075 mem_op = MemOperand(elements, offset); | |
5076 } else { | |
5077 Register store_base = ToRegister(instr->temp()); | |
5078 Register key = ToRegister(instr->key()); | |
5079 bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi(); | |
5080 mem_op = PrepareKeyedArrayOperand(store_base, elements, key, key_is_tagged, | |
5081 instr->hydrogen()->elements_kind(), | |
5082 instr->hydrogen()->representation(), | |
5083 instr->base_offset()); | |
5084 } | |
5085 | |
5086 if (instr->NeedsCanonicalization()) { | |
5087 __ CanonicalizeNaN(double_scratch(), value); | |
5088 __ Str(double_scratch(), mem_op); | |
5089 } else { | |
5090 __ Str(value, mem_op); | |
5091 } | |
5092 } | |
5093 | |
5094 | |
5095 void LCodeGen::DoStoreKeyedFixed(LStoreKeyedFixed* instr) { | |
5096 Register value = ToRegister(instr->value()); | |
5097 Register elements = ToRegister(instr->elements()); | |
5098 Register scratch = no_reg; | |
5099 Register store_base = no_reg; | |
5100 Register key = no_reg; | |
5101 MemOperand mem_op; | |
5102 | |
5103 if (!instr->key()->IsConstantOperand() || | |
5104 instr->hydrogen()->NeedsWriteBarrier()) { | |
5105 scratch = ToRegister(instr->temp()); | |
5106 } | |
5107 | |
5108 Representation representation = instr->hydrogen()->value()->representation(); | |
5109 if (instr->key()->IsConstantOperand()) { | |
5110 LConstantOperand* const_operand = LConstantOperand::cast(instr->key()); | |
5111 int offset = instr->base_offset() + | |
5112 ToInteger32(const_operand) * kPointerSize; | |
5113 store_base = elements; | |
5114 if (representation.IsInteger32()) { | |
5115 DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY); | |
5116 DCHECK(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS); | |
5117 STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits); | |
5118 STATIC_ASSERT(kSmiTag == 0); | |
5119 mem_op = UntagSmiMemOperand(store_base, offset); | |
5120 } else { | |
5121 mem_op = MemOperand(store_base, offset); | |
5122 } | |
5123 } else { | |
5124 store_base = scratch; | |
5125 key = ToRegister(instr->key()); | |
5126 bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi(); | |
5127 | |
5128 mem_op = PrepareKeyedArrayOperand(store_base, elements, key, key_is_tagged, | |
5129 instr->hydrogen()->elements_kind(), | |
5130 representation, instr->base_offset()); | |
5131 } | |
5132 | |
5133 __ Store(value, mem_op, representation); | |
5134 | |
5135 if (instr->hydrogen()->NeedsWriteBarrier()) { | |
5136 DCHECK(representation.IsTagged()); | |
5137 // This assignment may cause element_addr to alias store_base. | |
5138 Register element_addr = scratch; | |
5139 SmiCheck check_needed = | |
5140 instr->hydrogen()->value()->type().IsHeapObject() | |
5141 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; | |
5142 // Compute address of modified element and store it into key register. | |
5143 __ Add(element_addr, mem_op.base(), mem_op.OffsetAsOperand()); | |
5144 __ RecordWrite(elements, element_addr, value, GetLinkRegisterState(), | |
5145 kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed, | |
5146 instr->hydrogen()->PointersToHereCheckForValue()); | |
5147 } | |
5148 } | |
5149 | |
5150 | |
5151 void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) { | |
5152 DCHECK(ToRegister(instr->context()).is(cp)); | |
5153 DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister())); | |
5154 DCHECK(ToRegister(instr->key()).is(StoreDescriptor::NameRegister())); | |
5155 DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister())); | |
5156 | |
5157 if (instr->hydrogen()->HasVectorAndSlot()) { | |
5158 EmitVectorStoreICRegisters<LStoreKeyedGeneric>(instr); | |
5159 } | |
5160 | |
5161 Handle<Code> ic = CodeFactory::KeyedStoreICInOptimizedCode( | |
5162 isolate(), instr->language_mode(), | |
5163 instr->hydrogen()->initialization_state()).code(); | |
5164 CallCode(ic, RelocInfo::CODE_TARGET, instr); | |
5165 } | |
5166 | |
5167 | |
5168 void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) { | |
5169 class DeferredMaybeGrowElements final : public LDeferredCode { | |
5170 public: | |
5171 DeferredMaybeGrowElements(LCodeGen* codegen, LMaybeGrowElements* instr) | |
5172 : LDeferredCode(codegen), instr_(instr) {} | |
5173 void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); } | |
5174 LInstruction* instr() override { return instr_; } | |
5175 | |
5176 private: | |
5177 LMaybeGrowElements* instr_; | |
5178 }; | |
5179 | |
5180 Register result = x0; | |
5181 DeferredMaybeGrowElements* deferred = | |
5182 new (zone()) DeferredMaybeGrowElements(this, instr); | |
5183 LOperand* key = instr->key(); | |
5184 LOperand* current_capacity = instr->current_capacity(); | |
5185 | |
5186 DCHECK(instr->hydrogen()->key()->representation().IsInteger32()); | |
5187 DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32()); | |
5188 DCHECK(key->IsConstantOperand() || key->IsRegister()); | |
5189 DCHECK(current_capacity->IsConstantOperand() || | |
5190 current_capacity->IsRegister()); | |
5191 | |
5192 if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) { | |
5193 int32_t constant_key = ToInteger32(LConstantOperand::cast(key)); | |
5194 int32_t constant_capacity = | |
5195 ToInteger32(LConstantOperand::cast(current_capacity)); | |
5196 if (constant_key >= constant_capacity) { | |
5197 // Deferred case. | |
5198 __ B(deferred->entry()); | |
5199 } | |
5200 } else if (key->IsConstantOperand()) { | |
5201 int32_t constant_key = ToInteger32(LConstantOperand::cast(key)); | |
5202 __ Cmp(ToRegister(current_capacity), Operand(constant_key)); | |
5203 __ B(le, deferred->entry()); | |
5204 } else if (current_capacity->IsConstantOperand()) { | |
5205 int32_t constant_capacity = | |
5206 ToInteger32(LConstantOperand::cast(current_capacity)); | |
5207 __ Cmp(ToRegister(key), Operand(constant_capacity)); | |
5208 __ B(ge, deferred->entry()); | |
5209 } else { | |
5210 __ Cmp(ToRegister(key), ToRegister(current_capacity)); | |
5211 __ B(ge, deferred->entry()); | |
5212 } | |
5213 | |
5214 __ Mov(result, ToRegister(instr->elements())); | |
5215 | |
5216 __ Bind(deferred->exit()); | |
5217 } | |
5218 | |
5219 | |
5220 void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) { | |
5221 // TODO(3095996): Get rid of this. For now, we need to make the | |
5222 // result register contain a valid pointer because it is already | |
5223 // contained in the register pointer map. | |
5224 Register result = x0; | |
5225 __ Mov(result, 0); | |
5226 | |
5227 // We have to call a stub. | |
5228 { | |
5229 PushSafepointRegistersScope scope(this); | |
5230 __ Move(result, ToRegister(instr->object())); | |
5231 | |
5232 LOperand* key = instr->key(); | |
5233 if (key->IsConstantOperand()) { | |
5234 __ Mov(x3, Operand(ToSmi(LConstantOperand::cast(key)))); | |
5235 } else { | |
5236 __ Mov(x3, ToRegister(key)); | |
5237 __ SmiTag(x3); | |
5238 } | |
5239 | |
5240 GrowArrayElementsStub stub(isolate(), instr->hydrogen()->is_js_array(), | |
5241 instr->hydrogen()->kind()); | |
5242 __ CallStub(&stub); | |
5243 RecordSafepointWithLazyDeopt( | |
5244 instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); | |
5245 __ StoreToSafepointRegisterSlot(result, result); | |
5246 } | |
5247 | |
5248 // Deopt on smi, which means the elements array changed to dictionary mode. | |
5249 DeoptimizeIfSmi(result, instr, Deoptimizer::kSmi); | |
5250 } | |
5251 | |
5252 | |
5253 void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) { | |
5254 Representation representation = instr->representation(); | |
5255 | |
5256 Register object = ToRegister(instr->object()); | |
5257 HObjectAccess access = instr->hydrogen()->access(); | |
5258 int offset = access.offset(); | |
5259 | |
5260 if (access.IsExternalMemory()) { | |
5261 DCHECK(!instr->hydrogen()->has_transition()); | |
5262 DCHECK(!instr->hydrogen()->NeedsWriteBarrier()); | |
5263 Register value = ToRegister(instr->value()); | |
5264 __ Store(value, MemOperand(object, offset), representation); | |
5265 return; | |
5266 } | |
5267 | |
5268 __ AssertNotSmi(object); | |
5269 | |
5270 if (!FLAG_unbox_double_fields && representation.IsDouble()) { | |
5271 DCHECK(access.IsInobject()); | |
5272 DCHECK(!instr->hydrogen()->has_transition()); | |
5273 DCHECK(!instr->hydrogen()->NeedsWriteBarrier()); | |
5274 FPRegister value = ToDoubleRegister(instr->value()); | |
5275 __ Str(value, FieldMemOperand(object, offset)); | |
5276 return; | |
5277 } | |
5278 | |
5279 DCHECK(!representation.IsSmi() || | |
5280 !instr->value()->IsConstantOperand() || | |
5281 IsInteger32Constant(LConstantOperand::cast(instr->value()))); | |
5282 | |
5283 if (instr->hydrogen()->has_transition()) { | |
5284 Handle<Map> transition = instr->hydrogen()->transition_map(); | |
5285 AddDeprecationDependency(transition); | |
5286 // Store the new map value. | |
5287 Register new_map_value = ToRegister(instr->temp0()); | |
5288 __ Mov(new_map_value, Operand(transition)); | |
5289 __ Str(new_map_value, FieldMemOperand(object, HeapObject::kMapOffset)); | |
5290 if (instr->hydrogen()->NeedsWriteBarrierForMap()) { | |
5291 // Update the write barrier for the map field. | |
5292 __ RecordWriteForMap(object, | |
5293 new_map_value, | |
5294 ToRegister(instr->temp1()), | |
5295 GetLinkRegisterState(), | |
5296 kSaveFPRegs); | |
5297 } | |
5298 } | |
5299 | |
5300 // Do the store. | |
5301 Register destination; | |
5302 if (access.IsInobject()) { | |
5303 destination = object; | |
5304 } else { | |
5305 Register temp0 = ToRegister(instr->temp0()); | |
5306 __ Ldr(temp0, FieldMemOperand(object, JSObject::kPropertiesOffset)); | |
5307 destination = temp0; | |
5308 } | |
5309 | |
5310 if (FLAG_unbox_double_fields && representation.IsDouble()) { | |
5311 DCHECK(access.IsInobject()); | |
5312 FPRegister value = ToDoubleRegister(instr->value()); | |
5313 __ Str(value, FieldMemOperand(object, offset)); | |
5314 } else if (representation.IsSmi() && | |
5315 instr->hydrogen()->value()->representation().IsInteger32()) { | |
5316 DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY); | |
5317 #ifdef DEBUG | |
5318 Register temp0 = ToRegister(instr->temp0()); | |
5319 __ Ldr(temp0, FieldMemOperand(destination, offset)); | |
5320 __ AssertSmi(temp0); | |
5321 // If destination aliased temp0, restore it to the address calculated | |
5322 // earlier. | |
5323 if (destination.Is(temp0)) { | |
5324 DCHECK(!access.IsInobject()); | |
5325 __ Ldr(destination, FieldMemOperand(object, JSObject::kPropertiesOffset)); | |
5326 } | |
5327 #endif | |
5328 STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits); | |
5329 STATIC_ASSERT(kSmiTag == 0); | |
5330 Register value = ToRegister(instr->value()); | |
5331 __ Store(value, UntagSmiFieldMemOperand(destination, offset), | |
5332 Representation::Integer32()); | |
5333 } else { | |
5334 Register value = ToRegister(instr->value()); | |
5335 __ Store(value, FieldMemOperand(destination, offset), representation); | |
5336 } | |
5337 if (instr->hydrogen()->NeedsWriteBarrier()) { | |
5338 Register value = ToRegister(instr->value()); | |
5339 __ RecordWriteField(destination, | |
5340 offset, | |
5341 value, // Clobbered. | |
5342 ToRegister(instr->temp1()), // Clobbered. | |
5343 GetLinkRegisterState(), | |
5344 kSaveFPRegs, | |
5345 EMIT_REMEMBERED_SET, | |
5346 instr->hydrogen()->SmiCheckForWriteBarrier(), | |
5347 instr->hydrogen()->PointersToHereCheckForValue()); | |
5348 } | |
5349 } | |
5350 | |
5351 | |
5352 void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) { | |
5353 DCHECK(ToRegister(instr->context()).is(cp)); | |
5354 DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister())); | |
5355 DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister())); | |
5356 | |
5357 if (instr->hydrogen()->HasVectorAndSlot()) { | |
5358 EmitVectorStoreICRegisters<LStoreNamedGeneric>(instr); | |
5359 } | |
5360 | |
5361 __ Mov(StoreDescriptor::NameRegister(), Operand(instr->name())); | |
5362 Handle<Code> ic = CodeFactory::StoreICInOptimizedCode( | |
5363 isolate(), instr->language_mode(), | |
5364 instr->hydrogen()->initialization_state()).code(); | |
5365 CallCode(ic, RelocInfo::CODE_TARGET, instr); | |
5366 } | |
5367 | |
5368 | |
5369 void LCodeGen::DoStoreGlobalViaContext(LStoreGlobalViaContext* instr) { | |
5370 DCHECK(ToRegister(instr->context()).is(cp)); | |
5371 DCHECK(ToRegister(instr->value()) | |
5372 .is(StoreGlobalViaContextDescriptor::ValueRegister())); | |
5373 | |
5374 int const slot = instr->slot_index(); | |
5375 int const depth = instr->depth(); | |
5376 if (depth <= StoreGlobalViaContextStub::kMaximumDepth) { | |
5377 __ Mov(StoreGlobalViaContextDescriptor::SlotRegister(), Operand(slot)); | |
5378 Handle<Code> stub = CodeFactory::StoreGlobalViaContext( | |
5379 isolate(), depth, instr->language_mode()) | |
5380 .code(); | |
5381 CallCode(stub, RelocInfo::CODE_TARGET, instr); | |
5382 } else { | |
5383 __ Push(Smi::FromInt(slot)); | |
5384 __ Push(StoreGlobalViaContextDescriptor::ValueRegister()); | |
5385 __ CallRuntime(is_strict(instr->language_mode()) | |
5386 ? Runtime::kStoreGlobalViaContext_Strict | |
5387 : Runtime::kStoreGlobalViaContext_Sloppy, | |
5388 2); | |
5389 } | |
5390 } | |
5391 | |
5392 | |
5393 void LCodeGen::DoStringAdd(LStringAdd* instr) { | |
5394 DCHECK(ToRegister(instr->context()).is(cp)); | |
5395 DCHECK(ToRegister(instr->left()).Is(x1)); | |
5396 DCHECK(ToRegister(instr->right()).Is(x0)); | |
5397 StringAddStub stub(isolate(), | |
5398 instr->hydrogen()->flags(), | |
5399 instr->hydrogen()->pretenure_flag()); | |
5400 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); | |
5401 } | |
5402 | |
5403 | |
5404 void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) { | |
5405 class DeferredStringCharCodeAt: public LDeferredCode { | |
5406 public: | |
5407 DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr) | |
5408 : LDeferredCode(codegen), instr_(instr) { } | |
5409 virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); } | |
5410 virtual LInstruction* instr() { return instr_; } | |
5411 private: | |
5412 LStringCharCodeAt* instr_; | |
5413 }; | |
5414 | |
5415 DeferredStringCharCodeAt* deferred = | |
5416 new(zone()) DeferredStringCharCodeAt(this, instr); | |
5417 | |
5418 StringCharLoadGenerator::Generate(masm(), | |
5419 ToRegister(instr->string()), | |
5420 ToRegister32(instr->index()), | |
5421 ToRegister(instr->result()), | |
5422 deferred->entry()); | |
5423 __ Bind(deferred->exit()); | |
5424 } | |
5425 | |
5426 | |
5427 void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) { | |
5428 Register string = ToRegister(instr->string()); | |
5429 Register result = ToRegister(instr->result()); | |
5430 | |
5431 // TODO(3095996): Get rid of this. For now, we need to make the | |
5432 // result register contain a valid pointer because it is already | |
5433 // contained in the register pointer map. | |
5434 __ Mov(result, 0); | |
5435 | |
5436 PushSafepointRegistersScope scope(this); | |
5437 __ Push(string); | |
5438 // Push the index as a smi. This is safe because of the checks in | |
5439 // DoStringCharCodeAt above. | |
5440 Register index = ToRegister(instr->index()); | |
5441 __ SmiTagAndPush(index); | |
5442 | |
5443 CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, instr, | |
5444 instr->context()); | |
5445 __ AssertSmi(x0); | |
5446 __ SmiUntag(x0); | |
5447 __ StoreToSafepointRegisterSlot(x0, result); | |
5448 } | |
5449 | |
5450 | |
5451 void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) { | |
5452 class DeferredStringCharFromCode: public LDeferredCode { | |
5453 public: | |
5454 DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr) | |
5455 : LDeferredCode(codegen), instr_(instr) { } | |
5456 virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); } | |
5457 virtual LInstruction* instr() { return instr_; } | |
5458 private: | |
5459 LStringCharFromCode* instr_; | |
5460 }; | |
5461 | |
5462 DeferredStringCharFromCode* deferred = | |
5463 new(zone()) DeferredStringCharFromCode(this, instr); | |
5464 | |
5465 DCHECK(instr->hydrogen()->value()->representation().IsInteger32()); | |
5466 Register char_code = ToRegister32(instr->char_code()); | |
5467 Register result = ToRegister(instr->result()); | |
5468 | |
5469 __ Cmp(char_code, String::kMaxOneByteCharCode); | |
5470 __ B(hi, deferred->entry()); | |
5471 __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex); | |
5472 __ Add(result, result, FixedArray::kHeaderSize - kHeapObjectTag); | |
5473 __ Ldr(result, MemOperand(result, char_code, SXTW, kPointerSizeLog2)); | |
5474 __ CompareRoot(result, Heap::kUndefinedValueRootIndex); | |
5475 __ B(eq, deferred->entry()); | |
5476 __ Bind(deferred->exit()); | |
5477 } | |
5478 | |
5479 | |
5480 void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) { | |
5481 Register char_code = ToRegister(instr->char_code()); | |
5482 Register result = ToRegister(instr->result()); | |
5483 | |
5484 // TODO(3095996): Get rid of this. For now, we need to make the | |
5485 // result register contain a valid pointer because it is already | |
5486 // contained in the register pointer map. | |
5487 __ Mov(result, 0); | |
5488 | |
5489 PushSafepointRegistersScope scope(this); | |
5490 __ SmiTagAndPush(char_code); | |
5491 CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr, instr->context()); | |
5492 __ StoreToSafepointRegisterSlot(x0, result); | |
5493 } | |
5494 | |
5495 | |
5496 void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) { | |
5497 DCHECK(ToRegister(instr->context()).is(cp)); | |
5498 DCHECK(ToRegister(instr->left()).is(x1)); | |
5499 DCHECK(ToRegister(instr->right()).is(x0)); | |
5500 | |
5501 Handle<Code> code = CodeFactory::StringCompare(isolate()).code(); | |
5502 CallCode(code, RelocInfo::CODE_TARGET, instr); | |
5503 | |
5504 EmitCompareAndBranch(instr, TokenToCondition(instr->op(), false), x0, 0); | |
5505 } | |
5506 | |
5507 | |
5508 void LCodeGen::DoSubI(LSubI* instr) { | |
5509 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); | |
5510 Register result = ToRegister32(instr->result()); | |
5511 Register left = ToRegister32(instr->left()); | |
5512 Operand right = ToShiftedRightOperand32(instr->right(), instr); | |
5513 | |
5514 if (can_overflow) { | |
5515 __ Subs(result, left, right); | |
5516 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow); | |
5517 } else { | |
5518 __ Sub(result, left, right); | |
5519 } | |
5520 } | |
5521 | |
5522 | |
5523 void LCodeGen::DoSubS(LSubS* instr) { | |
5524 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); | |
5525 Register result = ToRegister(instr->result()); | |
5526 Register left = ToRegister(instr->left()); | |
5527 Operand right = ToOperand(instr->right()); | |
5528 if (can_overflow) { | |
5529 __ Subs(result, left, right); | |
5530 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow); | |
5531 } else { | |
5532 __ Sub(result, left, right); | |
5533 } | |
5534 } | |
5535 | |
5536 | |
5537 void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr, | |
5538 LOperand* value, | |
5539 LOperand* temp1, | |
5540 LOperand* temp2) { | |
5541 Register input = ToRegister(value); | |
5542 Register scratch1 = ToRegister(temp1); | |
5543 DoubleRegister dbl_scratch1 = double_scratch(); | |
5544 | |
5545 Label done; | |
5546 | |
5547 if (instr->truncating()) { | |
5548 Register output = ToRegister(instr->result()); | |
5549 Label check_bools; | |
5550 | |
5551 // If it's not a heap number, jump to undefined check. | |
5552 __ JumpIfNotHeapNumber(input, &check_bools); | |
5553 | |
5554 // A heap number: load value and convert to int32 using truncating function. | |
5555 __ TruncateHeapNumberToI(output, input); | |
5556 __ B(&done); | |
5557 | |
5558 __ Bind(&check_bools); | |
5559 | |
5560 Register true_root = output; | |
5561 Register false_root = scratch1; | |
5562 __ LoadTrueFalseRoots(true_root, false_root); | |
5563 __ Cmp(input, true_root); | |
5564 __ Cset(output, eq); | |
5565 __ Ccmp(input, false_root, ZFlag, ne); | |
5566 __ B(eq, &done); | |
5567 | |
5568 // Output contains zero, undefined is converted to zero for truncating | |
5569 // conversions. | |
5570 DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr, | |
5571 Deoptimizer::kNotAHeapNumberUndefinedBoolean); | |
5572 } else { | |
5573 Register output = ToRegister32(instr->result()); | |
5574 DoubleRegister dbl_scratch2 = ToDoubleRegister(temp2); | |
5575 | |
5576 DeoptimizeIfNotHeapNumber(input, instr); | |
5577 | |
5578 // A heap number: load value and convert to int32 using non-truncating | |
5579 // function. If the result is out of range, branch to deoptimize. | |
5580 __ Ldr(dbl_scratch1, FieldMemOperand(input, HeapNumber::kValueOffset)); | |
5581 __ TryRepresentDoubleAsInt32(output, dbl_scratch1, dbl_scratch2); | |
5582 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN); | |
5583 | |
5584 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
5585 __ Cmp(output, 0); | |
5586 __ B(ne, &done); | |
5587 __ Fmov(scratch1, dbl_scratch1); | |
5588 DeoptimizeIfNegative(scratch1, instr, Deoptimizer::kMinusZero); | |
5589 } | |
5590 } | |
5591 __ Bind(&done); | |
5592 } | |
5593 | |
5594 | |
5595 void LCodeGen::DoTaggedToI(LTaggedToI* instr) { | |
5596 class DeferredTaggedToI: public LDeferredCode { | |
5597 public: | |
5598 DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr) | |
5599 : LDeferredCode(codegen), instr_(instr) { } | |
5600 virtual void Generate() { | |
5601 codegen()->DoDeferredTaggedToI(instr_, instr_->value(), instr_->temp1(), | |
5602 instr_->temp2()); | |
5603 } | |
5604 | |
5605 virtual LInstruction* instr() { return instr_; } | |
5606 private: | |
5607 LTaggedToI* instr_; | |
5608 }; | |
5609 | |
5610 Register input = ToRegister(instr->value()); | |
5611 Register output = ToRegister(instr->result()); | |
5612 | |
5613 if (instr->hydrogen()->value()->representation().IsSmi()) { | |
5614 __ SmiUntag(output, input); | |
5615 } else { | |
5616 DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr); | |
5617 | |
5618 __ JumpIfNotSmi(input, deferred->entry()); | |
5619 __ SmiUntag(output, input); | |
5620 __ Bind(deferred->exit()); | |
5621 } | |
5622 } | |
5623 | |
5624 | |
5625 void LCodeGen::DoThisFunction(LThisFunction* instr) { | |
5626 Register result = ToRegister(instr->result()); | |
5627 __ Ldr(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); | |
5628 } | |
5629 | |
5630 | |
5631 void LCodeGen::DoToFastProperties(LToFastProperties* instr) { | |
5632 DCHECK(ToRegister(instr->value()).Is(x0)); | |
5633 DCHECK(ToRegister(instr->result()).Is(x0)); | |
5634 __ Push(x0); | |
5635 CallRuntime(Runtime::kToFastProperties, 1, instr); | |
5636 } | |
5637 | |
5638 | |
5639 void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) { | |
5640 DCHECK(ToRegister(instr->context()).is(cp)); | |
5641 Label materialized; | |
5642 // Registers will be used as follows: | |
5643 // x7 = literals array. | |
5644 // x1 = regexp literal. | |
5645 // x0 = regexp literal clone. | |
5646 // x10-x12 are used as temporaries. | |
5647 int literal_offset = | |
5648 LiteralsArray::OffsetOfLiteralAt(instr->hydrogen()->literal_index()); | |
5649 __ LoadObject(x7, instr->hydrogen()->literals()); | |
5650 __ Ldr(x1, FieldMemOperand(x7, literal_offset)); | |
5651 __ JumpIfNotRoot(x1, Heap::kUndefinedValueRootIndex, &materialized); | |
5652 | |
5653 // Create regexp literal using runtime function | |
5654 // Result will be in x0. | |
5655 __ Mov(x12, Operand(Smi::FromInt(instr->hydrogen()->literal_index()))); | |
5656 __ Mov(x11, Operand(instr->hydrogen()->pattern())); | |
5657 __ Mov(x10, Operand(instr->hydrogen()->flags())); | |
5658 __ Push(x7, x12, x11, x10); | |
5659 CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr); | |
5660 __ Mov(x1, x0); | |
5661 | |
5662 __ Bind(&materialized); | |
5663 int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize; | |
5664 Label allocated, runtime_allocate; | |
5665 | |
5666 __ Allocate(size, x0, x10, x11, &runtime_allocate, TAG_OBJECT); | |
5667 __ B(&allocated); | |
5668 | |
5669 __ Bind(&runtime_allocate); | |
5670 __ Mov(x0, Smi::FromInt(size)); | |
5671 __ Push(x1, x0); | |
5672 CallRuntime(Runtime::kAllocateInNewSpace, 1, instr); | |
5673 __ Pop(x1); | |
5674 | |
5675 __ Bind(&allocated); | |
5676 // Copy the content into the newly allocated memory. | |
5677 __ CopyFields(x0, x1, CPURegList(x10, x11, x12), size / kPointerSize); | |
5678 } | |
5679 | |
5680 | |
5681 void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) { | |
5682 Register object = ToRegister(instr->object()); | |
5683 | |
5684 Handle<Map> from_map = instr->original_map(); | |
5685 Handle<Map> to_map = instr->transitioned_map(); | |
5686 ElementsKind from_kind = instr->from_kind(); | |
5687 ElementsKind to_kind = instr->to_kind(); | |
5688 | |
5689 Label not_applicable; | |
5690 | |
5691 if (IsSimpleMapChangeTransition(from_kind, to_kind)) { | |
5692 Register temp1 = ToRegister(instr->temp1()); | |
5693 Register new_map = ToRegister(instr->temp2()); | |
5694 __ CheckMap(object, temp1, from_map, ¬_applicable, DONT_DO_SMI_CHECK); | |
5695 __ Mov(new_map, Operand(to_map)); | |
5696 __ Str(new_map, FieldMemOperand(object, HeapObject::kMapOffset)); | |
5697 // Write barrier. | |
5698 __ RecordWriteForMap(object, new_map, temp1, GetLinkRegisterState(), | |
5699 kDontSaveFPRegs); | |
5700 } else { | |
5701 { | |
5702 UseScratchRegisterScope temps(masm()); | |
5703 // Use the temp register only in a restricted scope - the codegen checks | |
5704 // that we do not use any register across a call. | |
5705 __ CheckMap(object, temps.AcquireX(), from_map, ¬_applicable, | |
5706 DONT_DO_SMI_CHECK); | |
5707 } | |
5708 DCHECK(object.is(x0)); | |
5709 DCHECK(ToRegister(instr->context()).is(cp)); | |
5710 PushSafepointRegistersScope scope(this); | |
5711 __ Mov(x1, Operand(to_map)); | |
5712 bool is_js_array = from_map->instance_type() == JS_ARRAY_TYPE; | |
5713 TransitionElementsKindStub stub(isolate(), from_kind, to_kind, is_js_array); | |
5714 __ CallStub(&stub); | |
5715 RecordSafepointWithRegisters( | |
5716 instr->pointer_map(), 0, Safepoint::kLazyDeopt); | |
5717 } | |
5718 __ Bind(¬_applicable); | |
5719 } | |
5720 | |
5721 | |
5722 void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) { | |
5723 Register object = ToRegister(instr->object()); | |
5724 Register temp1 = ToRegister(instr->temp1()); | |
5725 Register temp2 = ToRegister(instr->temp2()); | |
5726 | |
5727 Label no_memento_found; | |
5728 __ TestJSArrayForAllocationMemento(object, temp1, temp2, &no_memento_found); | |
5729 DeoptimizeIf(eq, instr, Deoptimizer::kMementoFound); | |
5730 __ Bind(&no_memento_found); | |
5731 } | |
5732 | |
5733 | |
5734 void LCodeGen::DoTruncateDoubleToIntOrSmi(LTruncateDoubleToIntOrSmi* instr) { | |
5735 DoubleRegister input = ToDoubleRegister(instr->value()); | |
5736 Register result = ToRegister(instr->result()); | |
5737 __ TruncateDoubleToI(result, input); | |
5738 if (instr->tag_result()) { | |
5739 __ SmiTag(result, result); | |
5740 } | |
5741 } | |
5742 | |
5743 | |
5744 void LCodeGen::DoTypeof(LTypeof* instr) { | |
5745 DCHECK(ToRegister(instr->value()).is(x3)); | |
5746 DCHECK(ToRegister(instr->result()).is(x0)); | |
5747 Label end, do_call; | |
5748 Register value_register = ToRegister(instr->value()); | |
5749 __ JumpIfNotSmi(value_register, &do_call); | |
5750 __ Mov(x0, Immediate(isolate()->factory()->number_string())); | |
5751 __ B(&end); | |
5752 __ Bind(&do_call); | |
5753 TypeofStub stub(isolate()); | |
5754 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); | |
5755 __ Bind(&end); | |
5756 } | |
5757 | |
5758 | |
5759 void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) { | |
5760 Handle<String> type_name = instr->type_literal(); | |
5761 Label* true_label = instr->TrueLabel(chunk_); | |
5762 Label* false_label = instr->FalseLabel(chunk_); | |
5763 Register value = ToRegister(instr->value()); | |
5764 | |
5765 Factory* factory = isolate()->factory(); | |
5766 if (String::Equals(type_name, factory->number_string())) { | |
5767 __ JumpIfSmi(value, true_label); | |
5768 | |
5769 int true_block = instr->TrueDestination(chunk_); | |
5770 int false_block = instr->FalseDestination(chunk_); | |
5771 int next_block = GetNextEmittedBlock(); | |
5772 | |
5773 if (true_block == false_block) { | |
5774 EmitGoto(true_block); | |
5775 } else if (true_block == next_block) { | |
5776 __ JumpIfNotHeapNumber(value, chunk_->GetAssemblyLabel(false_block)); | |
5777 } else { | |
5778 __ JumpIfHeapNumber(value, chunk_->GetAssemblyLabel(true_block)); | |
5779 if (false_block != next_block) { | |
5780 __ B(chunk_->GetAssemblyLabel(false_block)); | |
5781 } | |
5782 } | |
5783 | |
5784 } else if (String::Equals(type_name, factory->string_string())) { | |
5785 DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL)); | |
5786 Register map = ToRegister(instr->temp1()); | |
5787 Register scratch = ToRegister(instr->temp2()); | |
5788 | |
5789 __ JumpIfSmi(value, false_label); | |
5790 __ CompareObjectType(value, map, scratch, FIRST_NONSTRING_TYPE); | |
5791 EmitBranch(instr, lt); | |
5792 | |
5793 } else if (String::Equals(type_name, factory->symbol_string())) { | |
5794 DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL)); | |
5795 Register map = ToRegister(instr->temp1()); | |
5796 Register scratch = ToRegister(instr->temp2()); | |
5797 | |
5798 __ JumpIfSmi(value, false_label); | |
5799 __ CompareObjectType(value, map, scratch, SYMBOL_TYPE); | |
5800 EmitBranch(instr, eq); | |
5801 | |
5802 } else if (String::Equals(type_name, factory->boolean_string())) { | |
5803 __ JumpIfRoot(value, Heap::kTrueValueRootIndex, true_label); | |
5804 __ CompareRoot(value, Heap::kFalseValueRootIndex); | |
5805 EmitBranch(instr, eq); | |
5806 | |
5807 } else if (String::Equals(type_name, factory->undefined_string())) { | |
5808 DCHECK(instr->temp1() != NULL); | |
5809 Register scratch = ToRegister(instr->temp1()); | |
5810 | |
5811 __ JumpIfRoot(value, Heap::kUndefinedValueRootIndex, true_label); | |
5812 __ JumpIfSmi(value, false_label); | |
5813 // Check for undetectable objects and jump to the true branch in this case. | |
5814 __ Ldr(scratch, FieldMemOperand(value, HeapObject::kMapOffset)); | |
5815 __ Ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset)); | |
5816 EmitTestAndBranch(instr, ne, scratch, 1 << Map::kIsUndetectable); | |
5817 | |
5818 } else if (String::Equals(type_name, factory->function_string())) { | |
5819 DCHECK(instr->temp1() != NULL); | |
5820 Register scratch = ToRegister(instr->temp1()); | |
5821 | |
5822 __ JumpIfSmi(value, false_label); | |
5823 __ Ldr(scratch, FieldMemOperand(value, HeapObject::kMapOffset)); | |
5824 __ Ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset)); | |
5825 __ And(scratch, scratch, | |
5826 (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)); | |
5827 EmitCompareAndBranch(instr, eq, scratch, 1 << Map::kIsCallable); | |
5828 | |
5829 } else if (String::Equals(type_name, factory->object_string())) { | |
5830 DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL)); | |
5831 Register map = ToRegister(instr->temp1()); | |
5832 Register scratch = ToRegister(instr->temp2()); | |
5833 | |
5834 __ JumpIfSmi(value, false_label); | |
5835 __ JumpIfRoot(value, Heap::kNullValueRootIndex, true_label); | |
5836 STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); | |
5837 __ JumpIfObjectType(value, map, scratch, FIRST_SPEC_OBJECT_TYPE, | |
5838 false_label, lt); | |
5839 // Check for callable or undetectable objects => false. | |
5840 __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset)); | |
5841 EmitTestAndBranch(instr, eq, scratch, | |
5842 (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)); | |
5843 | |
5844 // clang-format off | |
5845 #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \ | |
5846 } else if (String::Equals(type_name, factory->type##_string())) { \ | |
5847 DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL)); \ | |
5848 Register map = ToRegister(instr->temp1()); \ | |
5849 \ | |
5850 __ JumpIfSmi(value, false_label); \ | |
5851 __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset)); \ | |
5852 __ CompareRoot(map, Heap::k##Type##MapRootIndex); \ | |
5853 EmitBranch(instr, eq); | |
5854 SIMD128_TYPES(SIMD128_TYPE) | |
5855 #undef SIMD128_TYPE | |
5856 // clang-format on | |
5857 | |
5858 } else { | |
5859 __ B(false_label); | |
5860 } | |
5861 } | |
5862 | |
5863 | |
5864 void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) { | |
5865 __ Ucvtf(ToDoubleRegister(instr->result()), ToRegister32(instr->value())); | |
5866 } | |
5867 | |
5868 | |
5869 void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) { | |
5870 Register object = ToRegister(instr->value()); | |
5871 Register map = ToRegister(instr->map()); | |
5872 Register temp = ToRegister(instr->temp()); | |
5873 __ Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset)); | |
5874 __ Cmp(map, temp); | |
5875 DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap); | |
5876 } | |
5877 | |
5878 | |
5879 void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) { | |
5880 Register receiver = ToRegister(instr->receiver()); | |
5881 Register function = ToRegister(instr->function()); | |
5882 Register result = ToRegister(instr->result()); | |
5883 | |
5884 // If the receiver is null or undefined, we have to pass the global object as | |
5885 // a receiver to normal functions. Values have to be passed unchanged to | |
5886 // builtins and strict-mode functions. | |
5887 Label global_object, done, copy_receiver; | |
5888 | |
5889 if (!instr->hydrogen()->known_function()) { | |
5890 __ Ldr(result, FieldMemOperand(function, | |
5891 JSFunction::kSharedFunctionInfoOffset)); | |
5892 | |
5893 // CompilerHints is an int32 field. See objects.h. | |
5894 __ Ldr(result.W(), | |
5895 FieldMemOperand(result, SharedFunctionInfo::kCompilerHintsOffset)); | |
5896 | |
5897 // Do not transform the receiver to object for strict mode functions. | |
5898 __ Tbnz(result, SharedFunctionInfo::kStrictModeFunction, ©_receiver); | |
5899 | |
5900 // Do not transform the receiver to object for builtins. | |
5901 __ Tbnz(result, SharedFunctionInfo::kNative, ©_receiver); | |
5902 } | |
5903 | |
5904 // Normal function. Replace undefined or null with global receiver. | |
5905 __ JumpIfRoot(receiver, Heap::kNullValueRootIndex, &global_object); | |
5906 __ JumpIfRoot(receiver, Heap::kUndefinedValueRootIndex, &global_object); | |
5907 | |
5908 // Deoptimize if the receiver is not a JS object. | |
5909 DeoptimizeIfSmi(receiver, instr, Deoptimizer::kSmi); | |
5910 __ CompareObjectType(receiver, result, result, FIRST_SPEC_OBJECT_TYPE); | |
5911 __ B(ge, ©_receiver); | |
5912 Deoptimize(instr, Deoptimizer::kNotAJavaScriptObject); | |
5913 | |
5914 __ Bind(&global_object); | |
5915 __ Ldr(result, FieldMemOperand(function, JSFunction::kContextOffset)); | |
5916 __ Ldr(result, ContextMemOperand(result, Context::GLOBAL_OBJECT_INDEX)); | |
5917 __ Ldr(result, FieldMemOperand(result, GlobalObject::kGlobalProxyOffset)); | |
5918 __ B(&done); | |
5919 | |
5920 __ Bind(©_receiver); | |
5921 __ Mov(result, receiver); | |
5922 __ Bind(&done); | |
5923 } | |
5924 | |
5925 | |
5926 void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr, | |
5927 Register result, | |
5928 Register object, | |
5929 Register index) { | |
5930 PushSafepointRegistersScope scope(this); | |
5931 __ Push(object); | |
5932 __ Push(index); | |
5933 __ Mov(cp, 0); | |
5934 __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble); | |
5935 RecordSafepointWithRegisters( | |
5936 instr->pointer_map(), 2, Safepoint::kNoLazyDeopt); | |
5937 __ StoreToSafepointRegisterSlot(x0, result); | |
5938 } | |
5939 | |
5940 | |
5941 void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) { | |
5942 class DeferredLoadMutableDouble final : public LDeferredCode { | |
5943 public: | |
5944 DeferredLoadMutableDouble(LCodeGen* codegen, | |
5945 LLoadFieldByIndex* instr, | |
5946 Register result, | |
5947 Register object, | |
5948 Register index) | |
5949 : LDeferredCode(codegen), | |
5950 instr_(instr), | |
5951 result_(result), | |
5952 object_(object), | |
5953 index_(index) { | |
5954 } | |
5955 void Generate() override { | |
5956 codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_); | |
5957 } | |
5958 LInstruction* instr() override { return instr_; } | |
5959 | |
5960 private: | |
5961 LLoadFieldByIndex* instr_; | |
5962 Register result_; | |
5963 Register object_; | |
5964 Register index_; | |
5965 }; | |
5966 Register object = ToRegister(instr->object()); | |
5967 Register index = ToRegister(instr->index()); | |
5968 Register result = ToRegister(instr->result()); | |
5969 | |
5970 __ AssertSmi(index); | |
5971 | |
5972 DeferredLoadMutableDouble* deferred; | |
5973 deferred = new(zone()) DeferredLoadMutableDouble( | |
5974 this, instr, result, object, index); | |
5975 | |
5976 Label out_of_object, done; | |
5977 | |
5978 __ TestAndBranchIfAnySet( | |
5979 index, reinterpret_cast<uint64_t>(Smi::FromInt(1)), deferred->entry()); | |
5980 __ Mov(index, Operand(index, ASR, 1)); | |
5981 | |
5982 __ Cmp(index, Smi::FromInt(0)); | |
5983 __ B(lt, &out_of_object); | |
5984 | |
5985 STATIC_ASSERT(kPointerSizeLog2 > kSmiTagSize); | |
5986 __ Add(result, object, Operand::UntagSmiAndScale(index, kPointerSizeLog2)); | |
5987 __ Ldr(result, FieldMemOperand(result, JSObject::kHeaderSize)); | |
5988 | |
5989 __ B(&done); | |
5990 | |
5991 __ Bind(&out_of_object); | |
5992 __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); | |
5993 // Index is equal to negated out of object property index plus 1. | |
5994 __ Sub(result, result, Operand::UntagSmiAndScale(index, kPointerSizeLog2)); | |
5995 __ Ldr(result, FieldMemOperand(result, | |
5996 FixedArray::kHeaderSize - kPointerSize)); | |
5997 __ Bind(deferred->exit()); | |
5998 __ Bind(&done); | |
5999 } | |
6000 | |
6001 | |
6002 void LCodeGen::DoStoreFrameContext(LStoreFrameContext* instr) { | |
6003 Register context = ToRegister(instr->context()); | |
6004 __ Str(context, MemOperand(fp, StandardFrameConstants::kContextOffset)); | |
6005 } | |
6006 | |
6007 | |
6008 void LCodeGen::DoAllocateBlockContext(LAllocateBlockContext* instr) { | |
6009 Handle<ScopeInfo> scope_info = instr->scope_info(); | |
6010 __ Push(scope_info); | |
6011 __ Push(ToRegister(instr->function())); | |
6012 CallRuntime(Runtime::kPushBlockContext, 2, instr); | |
6013 RecordSafepoint(Safepoint::kNoLazyDeopt); | |
6014 } | |
6015 | |
6016 | |
6017 } // namespace internal | |
6018 } // namespace v8 | |
OLD | NEW |