| Index: packages/analyzer/lib/src/task/strong_mode.dart
|
| diff --git a/packages/analyzer/lib/src/task/strong_mode.dart b/packages/analyzer/lib/src/task/strong_mode.dart
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..ea3559ded41723b04473d827b2846b5cf84f8a05
|
| --- /dev/null
|
| +++ b/packages/analyzer/lib/src/task/strong_mode.dart
|
| @@ -0,0 +1,506 @@
|
| +// Copyright (c) 2015, the Dart project authors. Please see the AUTHORS file
|
| +// for details. All rights reserved. Use of this source code is governed by a
|
| +// BSD-style license that can be found in the LICENSE file.
|
| +
|
| +library analyzer.src.task.strong_mode;
|
| +
|
| +import 'dart:collection';
|
| +
|
| +import 'package:analyzer/src/generated/ast.dart';
|
| +import 'package:analyzer/src/generated/element.dart';
|
| +import 'package:analyzer/src/generated/resolver.dart';
|
| +import 'package:analyzer/src/generated/utilities_dart.dart';
|
| +
|
| +/**
|
| + * Set the type of the sole parameter of the given [element] to the given [type].
|
| + */
|
| +void setParameterType(PropertyAccessorElement element, DartType type) {
|
| + if (element is PropertyAccessorElementImpl) {
|
| + ParameterElement parameter = _getParameter(element);
|
| + if (parameter is ParameterElementImpl) {
|
| + //
|
| + // Update the type of the parameter.
|
| + //
|
| + parameter.type = type;
|
| + //
|
| + // Update the type of the setter to reflect the new parameter type.
|
| + //
|
| + FunctionType functionType = element.type;
|
| + if (functionType is FunctionTypeImpl) {
|
| + element.type =
|
| + new FunctionTypeImpl(element, functionType.prunedTypedefs)
|
| + ..typeArguments = functionType.typeArguments;
|
| + } else {
|
| + assert(false);
|
| + }
|
| + } else {
|
| + assert(false);
|
| + }
|
| + } else {
|
| + throw new StateError('element is an instance of ${element.runtimeType}');
|
| + assert(false);
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Set the return type of the given [element] to the given [type].
|
| + */
|
| +void setReturnType(ExecutableElement element, DartType type) {
|
| + if (element is ExecutableElementImpl) {
|
| + //
|
| + // Update the return type of the element, which is stored in two places:
|
| + // directly in the element and indirectly in the type of the element.
|
| + //
|
| + element.returnType = type;
|
| + FunctionType functionType = element.type;
|
| + if (functionType is FunctionTypeImpl) {
|
| + element.type = new FunctionTypeImpl(element, functionType.prunedTypedefs)
|
| + ..typeArguments = functionType.typeArguments;
|
| + } else {
|
| + assert(false);
|
| + }
|
| + } else {
|
| + assert(false);
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Return the element for the single parameter of the given [setter], or `null`
|
| + * if the executable element is not a setter or does not have a single
|
| + * parameter.
|
| + */
|
| +ParameterElement _getParameter(ExecutableElement setter) {
|
| + if (setter is PropertyAccessorElement && setter.isSetter) {
|
| + List<ParameterElement> parameters = setter.parameters;
|
| + if (parameters.length == 1) {
|
| + return parameters[0];
|
| + }
|
| + }
|
| + return null;
|
| +}
|
| +
|
| +/**
|
| + * A function that returns `true` if the given [variable] passes the filter.
|
| + */
|
| +typedef bool VariableFilter(VariableElement element);
|
| +
|
| +/**
|
| + * An object used to infer the type of instance fields and the return types of
|
| + * instance methods within a single compilation unit.
|
| + */
|
| +class InstanceMemberInferrer {
|
| + /**
|
| + * The type provider used to look up types.
|
| + */
|
| + final TypeProvider typeProvider;
|
| +
|
| + /**
|
| + * The type system used to compute the least upper bound of types.
|
| + */
|
| + TypeSystem typeSystem;
|
| +
|
| + /**
|
| + * The inheritance manager used to find overridden method.
|
| + */
|
| + InheritanceManager inheritanceManager;
|
| +
|
| + /**
|
| + * The classes that have been visited while attempting to infer the types of
|
| + * instance members of some base class.
|
| + */
|
| + HashSet<ClassElementImpl> elementsBeingInferred =
|
| + new HashSet<ClassElementImpl>();
|
| +
|
| + /**
|
| + * Initialize a newly create inferrer.
|
| + */
|
| + InstanceMemberInferrer(this.typeProvider, {TypeSystem typeSystem})
|
| + : typeSystem = (typeSystem != null) ? typeSystem : new TypeSystemImpl();
|
| +
|
| + /**
|
| + * Infer type information for all of the instance members in the given
|
| + * compilation [unit].
|
| + */
|
| + void inferCompilationUnit(CompilationUnitElement unit) {
|
| + inheritanceManager = new InheritanceManager(unit.library);
|
| + unit.types.forEach((ClassElement classElement) {
|
| + try {
|
| + _inferClass(classElement);
|
| + } on _CycleException {
|
| + // This is a short circuit return to prevent types that inherit from
|
| + // types containing a circular reference from being inferred.
|
| + }
|
| + });
|
| + }
|
| +
|
| + /**
|
| + * Compute the best type for the [parameter] at the given [index] that must be
|
| + * compatible with the types of the corresponding parameters of the given
|
| + * [overriddenMethods].
|
| + *
|
| + * At the moment, this method will only return a type other than 'dynamic' if
|
| + * the types of all of the parameters are the same. In the future we might
|
| + * want to be smarter about it, such as by returning the least upper bound of
|
| + * the parameter types.
|
| + */
|
| + DartType _computeParameterType(ParameterElement parameter, int index,
|
| + List<ExecutableElement> overriddenMethods) {
|
| + DartType parameterType = null;
|
| + int length = overriddenMethods.length;
|
| + for (int i = 0; i < length; i++) {
|
| + DartType type = _getTypeOfCorrespondingParameter(
|
| + parameter, index, overriddenMethods[i]);
|
| + if (parameterType == null) {
|
| + parameterType = type;
|
| + } else if (parameterType != type) {
|
| + return typeProvider.dynamicType;
|
| + }
|
| + }
|
| + return parameterType == null ? typeProvider.dynamicType : parameterType;
|
| + }
|
| +
|
| + /**
|
| + * Compute the best return type for a method that must be compatible with the
|
| + * return types of each of the given [overriddenMethods].
|
| + *
|
| + * At the moment, this method will only return a type other than 'dynamic' if
|
| + * the return types of all of the methods are the same. In the future we might
|
| + * want to be smarter about it.
|
| + */
|
| + DartType _computeReturnType(List<ExecutableElement> overriddenMethods) {
|
| + DartType returnType = null;
|
| + int length = overriddenMethods.length;
|
| + for (int i = 0; i < length; i++) {
|
| + DartType type = _getReturnType(overriddenMethods[i]);
|
| + if (returnType == null) {
|
| + returnType = type;
|
| + } else if (returnType != type) {
|
| + return typeProvider.dynamicType;
|
| + }
|
| + }
|
| + return returnType == null ? typeProvider.dynamicType : returnType;
|
| + }
|
| +
|
| + DartType _getReturnType(ExecutableElement element) {
|
| + DartType returnType = element.returnType;
|
| + if (returnType == null) {
|
| + return typeProvider.dynamicType;
|
| + }
|
| + return returnType;
|
| + }
|
| +
|
| + /**
|
| + * Given a [method], return the type of the parameter in the method that
|
| + * corresponds to the given [parameter]. If the parameter is positional, then
|
| + * it appears at the given [index] in its enclosing element's list of
|
| + * parameters.
|
| + */
|
| + DartType _getTypeOfCorrespondingParameter(
|
| + ParameterElement parameter, int index, ExecutableElement method) {
|
| + //
|
| + // Find the corresponding parameter.
|
| + //
|
| + List<ParameterElement> methodParameters = method.parameters;
|
| + ParameterElement matchingParameter = null;
|
| + if (parameter.parameterKind == ParameterKind.NAMED) {
|
| + //
|
| + // If we're looking for a named parameter, only a named parameter with
|
| + // the same name will be matched.
|
| + //
|
| + matchingParameter = methodParameters.lastWhere(
|
| + (ParameterElement methodParameter) =>
|
| + methodParameter.parameterKind == ParameterKind.NAMED &&
|
| + methodParameter.name == parameter.name,
|
| + orElse: () => null);
|
| + } else {
|
| + //
|
| + // If we're looking for a positional parameter we ignore the difference
|
| + // between required and optional parameters.
|
| + //
|
| + if (index < methodParameters.length) {
|
| + matchingParameter = methodParameters[index];
|
| + if (matchingParameter.parameterKind == ParameterKind.NAMED) {
|
| + matchingParameter = null;
|
| + }
|
| + }
|
| + }
|
| + //
|
| + // Then return the type of the parameter.
|
| + //
|
| + return matchingParameter == null
|
| + ? typeProvider.dynamicType
|
| + : matchingParameter.type;
|
| + }
|
| +
|
| + /**
|
| + * Infer type information for all of the instance members in the given
|
| + * [classElement].
|
| + */
|
| + void _inferClass(ClassElement classElement) {
|
| + if (classElement is ClassElementImpl) {
|
| + if (classElement.hasBeenInferred) {
|
| + return;
|
| + }
|
| + if (!elementsBeingInferred.add(classElement)) {
|
| + // We have found a circularity in the class hierarchy. For now we just
|
| + // stop trying to infer any type information for any classes that
|
| + // inherit from any class in the cycle. We could potentially limit the
|
| + // algorithm to only not inferring types in the classes in the cycle,
|
| + // but it isn't clear that the results would be significantly better.
|
| + throw new _CycleException();
|
| + }
|
| + try {
|
| + //
|
| + // Ensure that all of instance members in the supertypes have had types
|
| + // inferred for them.
|
| + //
|
| + _inferType(classElement.supertype);
|
| + classElement.mixins.forEach(_inferType);
|
| + classElement.interfaces.forEach(_inferType);
|
| + //
|
| + // Then infer the types for the members.
|
| + //
|
| + classElement.fields.forEach(_inferField);
|
| + classElement.accessors.forEach(_inferExecutable);
|
| + classElement.methods.forEach(_inferExecutable);
|
| + //
|
| + // Infer initializing formal parameter types. This must happen after
|
| + // field types are inferred.
|
| + //
|
| + classElement.constructors.forEach(_inferConstructorFieldFormals);
|
| + classElement.hasBeenInferred = true;
|
| + } finally {
|
| + elementsBeingInferred.remove(classElement);
|
| + }
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * If the given [fieldElement] represents a non-synthetic instance field for
|
| + * which no type was provided, infer the type of the field.
|
| + */
|
| + void _inferField(FieldElement fieldElement) {
|
| + if (!fieldElement.isSynthetic &&
|
| + !fieldElement.isStatic &&
|
| + fieldElement.hasImplicitType) {
|
| + //
|
| + // First look for overridden getters with the same name as the field.
|
| + //
|
| + List<ExecutableElement> overriddenGetters = inheritanceManager
|
| + .lookupOverrides(fieldElement.enclosingElement, fieldElement.name);
|
| + DartType newType = null;
|
| + if (overriddenGetters.isNotEmpty && _onlyGetters(overriddenGetters)) {
|
| + newType = _computeReturnType(overriddenGetters);
|
| + List<ExecutableElement> overriddenSetters = inheritanceManager
|
| + .lookupOverrides(
|
| + fieldElement.enclosingElement, fieldElement.name + '=');
|
| + if (!_isCompatible(newType, overriddenSetters)) {
|
| + newType = null;
|
| + }
|
| + }
|
| + //
|
| + // If there is no overridden getter or if the overridden getter's type is
|
| + // dynamic, then we can infer the type from the initialization expression
|
| + // without breaking subtype rules. We could potentially infer a consistent
|
| + // return type even if the overridden getter's type was not dynamic, but
|
| + // choose not to for simplicity. The field is required to be final to
|
| + // prevent choosing a type that is inconsistent with assignments we cannot
|
| + // analyze.
|
| + //
|
| + if (newType == null || newType.isDynamic) {
|
| + if (fieldElement.initializer != null &&
|
| + (fieldElement.isFinal || overriddenGetters.isEmpty)) {
|
| + newType = fieldElement.initializer.returnType;
|
| + }
|
| + }
|
| + if (newType == null || newType.isBottom) {
|
| + newType = typeProvider.dynamicType;
|
| + }
|
| + (fieldElement as FieldElementImpl).type = newType;
|
| + setReturnType(fieldElement.getter, newType);
|
| + if (!fieldElement.isFinal && !fieldElement.isConst) {
|
| + setParameterType(fieldElement.setter, newType);
|
| + }
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * If the given [element] represents a non-synthetic instance method,
|
| + * getter or setter, infer the return type and any parameter type(s) where
|
| + * they were not provided.
|
| + */
|
| + void _inferExecutable(ExecutableElement element) {
|
| + if (element.isSynthetic || element.isStatic) {
|
| + return;
|
| + }
|
| + List<ExecutableElement> overriddenMethods = null;
|
| + //
|
| + // Infer the return type.
|
| + //
|
| + if (element.hasImplicitReturnType) {
|
| + overriddenMethods = inheritanceManager.lookupOverrides(
|
| + element.enclosingElement, element.name);
|
| + if (overriddenMethods.isEmpty ||
|
| + !_allSameElementKind(element, overriddenMethods)) {
|
| + return;
|
| + }
|
| + setReturnType(element, _computeReturnType(overriddenMethods));
|
| + if (element is PropertyAccessorElement) {
|
| + _updateSyntheticVariableType(element);
|
| + }
|
| + }
|
| + //
|
| + // Infer the parameter types.
|
| + //
|
| + List<ParameterElement> parameters = element.parameters;
|
| + int length = parameters.length;
|
| + for (int i = 0; i < length; ++i) {
|
| + ParameterElement parameter = parameters[i];
|
| + if (parameter is ParameterElementImpl && parameter.hasImplicitType) {
|
| + if (overriddenMethods == null) {
|
| + overriddenMethods = inheritanceManager.lookupOverrides(
|
| + element.enclosingElement, element.name);
|
| + }
|
| + if (overriddenMethods.isEmpty ||
|
| + !_allSameElementKind(element, overriddenMethods)) {
|
| + return;
|
| + }
|
| + parameter.type = _computeParameterType(parameter, i, overriddenMethods);
|
| + if (element is PropertyAccessorElement) {
|
| + _updateSyntheticVariableType(element);
|
| + }
|
| + }
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * If the given [element] is a non-synthetic getter or setter, update its
|
| + * synthetic variable's type to match the getter's return type, or if no
|
| + * corresponding getter exists, use the setter's parameter type.
|
| + *
|
| + * In general, the type of the synthetic variable should not be used, because
|
| + * getters and setters are independent methods. But this logic matches what
|
| + * `TypeResolverVisitor.visitMethodDeclaration` would fill in there.
|
| + */
|
| + void _updateSyntheticVariableType(PropertyAccessorElement element) {
|
| + assert(!element.isSynthetic);
|
| + PropertyAccessorElement getter = element;
|
| + if (element.isSetter) {
|
| + // See if we can find any getter.
|
| + getter = element.correspondingGetter;
|
| + }
|
| + DartType newType;
|
| + if (getter != null) {
|
| + newType = getter.returnType;
|
| + } else if (element.isSetter && element.parameters.isNotEmpty) {
|
| + newType = element.parameters[0].type;
|
| + }
|
| + if (newType != null) {
|
| + (element.variable as VariableElementImpl).type = newType;
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Infer type information for all of the instance members in the given
|
| + * interface [type].
|
| + */
|
| + void _inferType(InterfaceType type) {
|
| + if (type != null) {
|
| + ClassElement element = type.element;
|
| + if (element != null) {
|
| + _inferClass(element);
|
| + }
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Return `true` if the given [type] is compatible with the argument types of
|
| + * all of the given [setters].
|
| + */
|
| + bool _isCompatible(DartType type, List<ExecutableElement> setters) {
|
| + for (ExecutableElement setter in setters) {
|
| + ParameterElement parameter = _getParameter(setter);
|
| + if (parameter != null && !typeSystem.isSubtypeOf(parameter.type, type)) {
|
| + return false;
|
| + }
|
| + }
|
| + return true;
|
| + }
|
| +
|
| + /**
|
| + * Return `true` if the list of [elements] contains only getters.
|
| + */
|
| + bool _onlyGetters(List<ExecutableElement> elements) {
|
| + for (ExecutableElement element in elements) {
|
| + if (!(element is PropertyAccessorElement && element.isGetter)) {
|
| + return false;
|
| + }
|
| + }
|
| + return true;
|
| + }
|
| +
|
| + /**
|
| + * Return `true` if the list of [elements] contains only methods.
|
| + */
|
| + bool _allSameElementKind(
|
| + ExecutableElement element, List<ExecutableElement> elements) {
|
| + return elements.every((e) => e.kind == element.kind);
|
| + }
|
| +
|
| + void _inferConstructorFieldFormals(ConstructorElement element) {
|
| + for (ParameterElement p in element.parameters) {
|
| + if (p is FieldFormalParameterElement) {
|
| + _inferFieldFormalParameter(p);
|
| + }
|
| + }
|
| + }
|
| +
|
| + void _inferFieldFormalParameter(FieldFormalParameterElement element) {
|
| + FieldElement field = element.field;
|
| + if (field != null && element.hasImplicitType) {
|
| + (element as FieldFormalParameterElementImpl).type = field.type;
|
| + }
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * A visitor that will gather all of the variables referenced within a given
|
| + * AST structure. The collection can be restricted to contain only those
|
| + * variables that pass a specified filter.
|
| + */
|
| +class VariableGatherer extends RecursiveAstVisitor {
|
| + /**
|
| + * The filter used to limit which variables are gathered, or `null` if no
|
| + * filtering is to be performed.
|
| + */
|
| + final VariableFilter filter;
|
| +
|
| + /**
|
| + * The variables that were found.
|
| + */
|
| + final Set<VariableElement> results = new HashSet<VariableElement>();
|
| +
|
| + /**
|
| + * Initialize a newly created gatherer to gather all of the variables that
|
| + * pass the given [filter] (or all variables if no filter is provided).
|
| + */
|
| + VariableGatherer([this.filter = null]);
|
| +
|
| + @override
|
| + void visitSimpleIdentifier(SimpleIdentifier node) {
|
| + if (!node.inDeclarationContext()) {
|
| + Element element = node.staticElement;
|
| + if (element is PropertyAccessorElement && element.isSynthetic) {
|
| + element = (element as PropertyAccessorElement).variable;
|
| + }
|
| + if (element is VariableElement && (filter == null || filter(element))) {
|
| + results.add(element);
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * A class of exception that is not used anywhere else.
|
| + */
|
| +class _CycleException implements Exception {}
|
|
|