Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(401)

Side by Side Diff: packages/analyzer/lib/src/task/strong_mode.dart

Issue 1400473008: Roll Observatory packages and add a roll script (Closed) Base URL: git@github.com:dart-lang/observatory_pub_packages.git@master
Patch Set: Created 5 years, 2 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « packages/analyzer/lib/src/task/model.dart ('k') | packages/analyzer/lib/src/util/asserts.dart » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Copyright (c) 2015, the Dart project authors. Please see the AUTHORS file
2 // for details. All rights reserved. Use of this source code is governed by a
3 // BSD-style license that can be found in the LICENSE file.
4
5 library analyzer.src.task.strong_mode;
6
7 import 'dart:collection';
8
9 import 'package:analyzer/src/generated/ast.dart';
10 import 'package:analyzer/src/generated/element.dart';
11 import 'package:analyzer/src/generated/resolver.dart';
12 import 'package:analyzer/src/generated/utilities_dart.dart';
13
14 /**
15 * Set the type of the sole parameter of the given [element] to the given [type] .
16 */
17 void setParameterType(PropertyAccessorElement element, DartType type) {
18 if (element is PropertyAccessorElementImpl) {
19 ParameterElement parameter = _getParameter(element);
20 if (parameter is ParameterElementImpl) {
21 //
22 // Update the type of the parameter.
23 //
24 parameter.type = type;
25 //
26 // Update the type of the setter to reflect the new parameter type.
27 //
28 FunctionType functionType = element.type;
29 if (functionType is FunctionTypeImpl) {
30 element.type =
31 new FunctionTypeImpl(element, functionType.prunedTypedefs)
32 ..typeArguments = functionType.typeArguments;
33 } else {
34 assert(false);
35 }
36 } else {
37 assert(false);
38 }
39 } else {
40 throw new StateError('element is an instance of ${element.runtimeType}');
41 assert(false);
42 }
43 }
44
45 /**
46 * Set the return type of the given [element] to the given [type].
47 */
48 void setReturnType(ExecutableElement element, DartType type) {
49 if (element is ExecutableElementImpl) {
50 //
51 // Update the return type of the element, which is stored in two places:
52 // directly in the element and indirectly in the type of the element.
53 //
54 element.returnType = type;
55 FunctionType functionType = element.type;
56 if (functionType is FunctionTypeImpl) {
57 element.type = new FunctionTypeImpl(element, functionType.prunedTypedefs)
58 ..typeArguments = functionType.typeArguments;
59 } else {
60 assert(false);
61 }
62 } else {
63 assert(false);
64 }
65 }
66
67 /**
68 * Return the element for the single parameter of the given [setter], or `null`
69 * if the executable element is not a setter or does not have a single
70 * parameter.
71 */
72 ParameterElement _getParameter(ExecutableElement setter) {
73 if (setter is PropertyAccessorElement && setter.isSetter) {
74 List<ParameterElement> parameters = setter.parameters;
75 if (parameters.length == 1) {
76 return parameters[0];
77 }
78 }
79 return null;
80 }
81
82 /**
83 * A function that returns `true` if the given [variable] passes the filter.
84 */
85 typedef bool VariableFilter(VariableElement element);
86
87 /**
88 * An object used to infer the type of instance fields and the return types of
89 * instance methods within a single compilation unit.
90 */
91 class InstanceMemberInferrer {
92 /**
93 * The type provider used to look up types.
94 */
95 final TypeProvider typeProvider;
96
97 /**
98 * The type system used to compute the least upper bound of types.
99 */
100 TypeSystem typeSystem;
101
102 /**
103 * The inheritance manager used to find overridden method.
104 */
105 InheritanceManager inheritanceManager;
106
107 /**
108 * The classes that have been visited while attempting to infer the types of
109 * instance members of some base class.
110 */
111 HashSet<ClassElementImpl> elementsBeingInferred =
112 new HashSet<ClassElementImpl>();
113
114 /**
115 * Initialize a newly create inferrer.
116 */
117 InstanceMemberInferrer(this.typeProvider, {TypeSystem typeSystem})
118 : typeSystem = (typeSystem != null) ? typeSystem : new TypeSystemImpl();
119
120 /**
121 * Infer type information for all of the instance members in the given
122 * compilation [unit].
123 */
124 void inferCompilationUnit(CompilationUnitElement unit) {
125 inheritanceManager = new InheritanceManager(unit.library);
126 unit.types.forEach((ClassElement classElement) {
127 try {
128 _inferClass(classElement);
129 } on _CycleException {
130 // This is a short circuit return to prevent types that inherit from
131 // types containing a circular reference from being inferred.
132 }
133 });
134 }
135
136 /**
137 * Compute the best type for the [parameter] at the given [index] that must be
138 * compatible with the types of the corresponding parameters of the given
139 * [overriddenMethods].
140 *
141 * At the moment, this method will only return a type other than 'dynamic' if
142 * the types of all of the parameters are the same. In the future we might
143 * want to be smarter about it, such as by returning the least upper bound of
144 * the parameter types.
145 */
146 DartType _computeParameterType(ParameterElement parameter, int index,
147 List<ExecutableElement> overriddenMethods) {
148 DartType parameterType = null;
149 int length = overriddenMethods.length;
150 for (int i = 0; i < length; i++) {
151 DartType type = _getTypeOfCorrespondingParameter(
152 parameter, index, overriddenMethods[i]);
153 if (parameterType == null) {
154 parameterType = type;
155 } else if (parameterType != type) {
156 return typeProvider.dynamicType;
157 }
158 }
159 return parameterType == null ? typeProvider.dynamicType : parameterType;
160 }
161
162 /**
163 * Compute the best return type for a method that must be compatible with the
164 * return types of each of the given [overriddenMethods].
165 *
166 * At the moment, this method will only return a type other than 'dynamic' if
167 * the return types of all of the methods are the same. In the future we might
168 * want to be smarter about it.
169 */
170 DartType _computeReturnType(List<ExecutableElement> overriddenMethods) {
171 DartType returnType = null;
172 int length = overriddenMethods.length;
173 for (int i = 0; i < length; i++) {
174 DartType type = _getReturnType(overriddenMethods[i]);
175 if (returnType == null) {
176 returnType = type;
177 } else if (returnType != type) {
178 return typeProvider.dynamicType;
179 }
180 }
181 return returnType == null ? typeProvider.dynamicType : returnType;
182 }
183
184 DartType _getReturnType(ExecutableElement element) {
185 DartType returnType = element.returnType;
186 if (returnType == null) {
187 return typeProvider.dynamicType;
188 }
189 return returnType;
190 }
191
192 /**
193 * Given a [method], return the type of the parameter in the method that
194 * corresponds to the given [parameter]. If the parameter is positional, then
195 * it appears at the given [index] in its enclosing element's list of
196 * parameters.
197 */
198 DartType _getTypeOfCorrespondingParameter(
199 ParameterElement parameter, int index, ExecutableElement method) {
200 //
201 // Find the corresponding parameter.
202 //
203 List<ParameterElement> methodParameters = method.parameters;
204 ParameterElement matchingParameter = null;
205 if (parameter.parameterKind == ParameterKind.NAMED) {
206 //
207 // If we're looking for a named parameter, only a named parameter with
208 // the same name will be matched.
209 //
210 matchingParameter = methodParameters.lastWhere(
211 (ParameterElement methodParameter) =>
212 methodParameter.parameterKind == ParameterKind.NAMED &&
213 methodParameter.name == parameter.name,
214 orElse: () => null);
215 } else {
216 //
217 // If we're looking for a positional parameter we ignore the difference
218 // between required and optional parameters.
219 //
220 if (index < methodParameters.length) {
221 matchingParameter = methodParameters[index];
222 if (matchingParameter.parameterKind == ParameterKind.NAMED) {
223 matchingParameter = null;
224 }
225 }
226 }
227 //
228 // Then return the type of the parameter.
229 //
230 return matchingParameter == null
231 ? typeProvider.dynamicType
232 : matchingParameter.type;
233 }
234
235 /**
236 * Infer type information for all of the instance members in the given
237 * [classElement].
238 */
239 void _inferClass(ClassElement classElement) {
240 if (classElement is ClassElementImpl) {
241 if (classElement.hasBeenInferred) {
242 return;
243 }
244 if (!elementsBeingInferred.add(classElement)) {
245 // We have found a circularity in the class hierarchy. For now we just
246 // stop trying to infer any type information for any classes that
247 // inherit from any class in the cycle. We could potentially limit the
248 // algorithm to only not inferring types in the classes in the cycle,
249 // but it isn't clear that the results would be significantly better.
250 throw new _CycleException();
251 }
252 try {
253 //
254 // Ensure that all of instance members in the supertypes have had types
255 // inferred for them.
256 //
257 _inferType(classElement.supertype);
258 classElement.mixins.forEach(_inferType);
259 classElement.interfaces.forEach(_inferType);
260 //
261 // Then infer the types for the members.
262 //
263 classElement.fields.forEach(_inferField);
264 classElement.accessors.forEach(_inferExecutable);
265 classElement.methods.forEach(_inferExecutable);
266 //
267 // Infer initializing formal parameter types. This must happen after
268 // field types are inferred.
269 //
270 classElement.constructors.forEach(_inferConstructorFieldFormals);
271 classElement.hasBeenInferred = true;
272 } finally {
273 elementsBeingInferred.remove(classElement);
274 }
275 }
276 }
277
278 /**
279 * If the given [fieldElement] represents a non-synthetic instance field for
280 * which no type was provided, infer the type of the field.
281 */
282 void _inferField(FieldElement fieldElement) {
283 if (!fieldElement.isSynthetic &&
284 !fieldElement.isStatic &&
285 fieldElement.hasImplicitType) {
286 //
287 // First look for overridden getters with the same name as the field.
288 //
289 List<ExecutableElement> overriddenGetters = inheritanceManager
290 .lookupOverrides(fieldElement.enclosingElement, fieldElement.name);
291 DartType newType = null;
292 if (overriddenGetters.isNotEmpty && _onlyGetters(overriddenGetters)) {
293 newType = _computeReturnType(overriddenGetters);
294 List<ExecutableElement> overriddenSetters = inheritanceManager
295 .lookupOverrides(
296 fieldElement.enclosingElement, fieldElement.name + '=');
297 if (!_isCompatible(newType, overriddenSetters)) {
298 newType = null;
299 }
300 }
301 //
302 // If there is no overridden getter or if the overridden getter's type is
303 // dynamic, then we can infer the type from the initialization expression
304 // without breaking subtype rules. We could potentially infer a consistent
305 // return type even if the overridden getter's type was not dynamic, but
306 // choose not to for simplicity. The field is required to be final to
307 // prevent choosing a type that is inconsistent with assignments we cannot
308 // analyze.
309 //
310 if (newType == null || newType.isDynamic) {
311 if (fieldElement.initializer != null &&
312 (fieldElement.isFinal || overriddenGetters.isEmpty)) {
313 newType = fieldElement.initializer.returnType;
314 }
315 }
316 if (newType == null || newType.isBottom) {
317 newType = typeProvider.dynamicType;
318 }
319 (fieldElement as FieldElementImpl).type = newType;
320 setReturnType(fieldElement.getter, newType);
321 if (!fieldElement.isFinal && !fieldElement.isConst) {
322 setParameterType(fieldElement.setter, newType);
323 }
324 }
325 }
326
327 /**
328 * If the given [element] represents a non-synthetic instance method,
329 * getter or setter, infer the return type and any parameter type(s) where
330 * they were not provided.
331 */
332 void _inferExecutable(ExecutableElement element) {
333 if (element.isSynthetic || element.isStatic) {
334 return;
335 }
336 List<ExecutableElement> overriddenMethods = null;
337 //
338 // Infer the return type.
339 //
340 if (element.hasImplicitReturnType) {
341 overriddenMethods = inheritanceManager.lookupOverrides(
342 element.enclosingElement, element.name);
343 if (overriddenMethods.isEmpty ||
344 !_allSameElementKind(element, overriddenMethods)) {
345 return;
346 }
347 setReturnType(element, _computeReturnType(overriddenMethods));
348 if (element is PropertyAccessorElement) {
349 _updateSyntheticVariableType(element);
350 }
351 }
352 //
353 // Infer the parameter types.
354 //
355 List<ParameterElement> parameters = element.parameters;
356 int length = parameters.length;
357 for (int i = 0; i < length; ++i) {
358 ParameterElement parameter = parameters[i];
359 if (parameter is ParameterElementImpl && parameter.hasImplicitType) {
360 if (overriddenMethods == null) {
361 overriddenMethods = inheritanceManager.lookupOverrides(
362 element.enclosingElement, element.name);
363 }
364 if (overriddenMethods.isEmpty ||
365 !_allSameElementKind(element, overriddenMethods)) {
366 return;
367 }
368 parameter.type = _computeParameterType(parameter, i, overriddenMethods);
369 if (element is PropertyAccessorElement) {
370 _updateSyntheticVariableType(element);
371 }
372 }
373 }
374 }
375
376 /**
377 * If the given [element] is a non-synthetic getter or setter, update its
378 * synthetic variable's type to match the getter's return type, or if no
379 * corresponding getter exists, use the setter's parameter type.
380 *
381 * In general, the type of the synthetic variable should not be used, because
382 * getters and setters are independent methods. But this logic matches what
383 * `TypeResolverVisitor.visitMethodDeclaration` would fill in there.
384 */
385 void _updateSyntheticVariableType(PropertyAccessorElement element) {
386 assert(!element.isSynthetic);
387 PropertyAccessorElement getter = element;
388 if (element.isSetter) {
389 // See if we can find any getter.
390 getter = element.correspondingGetter;
391 }
392 DartType newType;
393 if (getter != null) {
394 newType = getter.returnType;
395 } else if (element.isSetter && element.parameters.isNotEmpty) {
396 newType = element.parameters[0].type;
397 }
398 if (newType != null) {
399 (element.variable as VariableElementImpl).type = newType;
400 }
401 }
402
403 /**
404 * Infer type information for all of the instance members in the given
405 * interface [type].
406 */
407 void _inferType(InterfaceType type) {
408 if (type != null) {
409 ClassElement element = type.element;
410 if (element != null) {
411 _inferClass(element);
412 }
413 }
414 }
415
416 /**
417 * Return `true` if the given [type] is compatible with the argument types of
418 * all of the given [setters].
419 */
420 bool _isCompatible(DartType type, List<ExecutableElement> setters) {
421 for (ExecutableElement setter in setters) {
422 ParameterElement parameter = _getParameter(setter);
423 if (parameter != null && !typeSystem.isSubtypeOf(parameter.type, type)) {
424 return false;
425 }
426 }
427 return true;
428 }
429
430 /**
431 * Return `true` if the list of [elements] contains only getters.
432 */
433 bool _onlyGetters(List<ExecutableElement> elements) {
434 for (ExecutableElement element in elements) {
435 if (!(element is PropertyAccessorElement && element.isGetter)) {
436 return false;
437 }
438 }
439 return true;
440 }
441
442 /**
443 * Return `true` if the list of [elements] contains only methods.
444 */
445 bool _allSameElementKind(
446 ExecutableElement element, List<ExecutableElement> elements) {
447 return elements.every((e) => e.kind == element.kind);
448 }
449
450 void _inferConstructorFieldFormals(ConstructorElement element) {
451 for (ParameterElement p in element.parameters) {
452 if (p is FieldFormalParameterElement) {
453 _inferFieldFormalParameter(p);
454 }
455 }
456 }
457
458 void _inferFieldFormalParameter(FieldFormalParameterElement element) {
459 FieldElement field = element.field;
460 if (field != null && element.hasImplicitType) {
461 (element as FieldFormalParameterElementImpl).type = field.type;
462 }
463 }
464 }
465
466 /**
467 * A visitor that will gather all of the variables referenced within a given
468 * AST structure. The collection can be restricted to contain only those
469 * variables that pass a specified filter.
470 */
471 class VariableGatherer extends RecursiveAstVisitor {
472 /**
473 * The filter used to limit which variables are gathered, or `null` if no
474 * filtering is to be performed.
475 */
476 final VariableFilter filter;
477
478 /**
479 * The variables that were found.
480 */
481 final Set<VariableElement> results = new HashSet<VariableElement>();
482
483 /**
484 * Initialize a newly created gatherer to gather all of the variables that
485 * pass the given [filter] (or all variables if no filter is provided).
486 */
487 VariableGatherer([this.filter = null]);
488
489 @override
490 void visitSimpleIdentifier(SimpleIdentifier node) {
491 if (!node.inDeclarationContext()) {
492 Element element = node.staticElement;
493 if (element is PropertyAccessorElement && element.isSynthetic) {
494 element = (element as PropertyAccessorElement).variable;
495 }
496 if (element is VariableElement && (filter == null || filter(element))) {
497 results.add(element);
498 }
499 }
500 }
501 }
502
503 /**
504 * A class of exception that is not used anywhere else.
505 */
506 class _CycleException implements Exception {}
OLDNEW
« no previous file with comments | « packages/analyzer/lib/src/task/model.dart ('k') | packages/analyzer/lib/src/util/asserts.dart » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698