| Index: src/gpu/batches/GrTessellatingPathRenderer.cpp
|
| diff --git a/src/gpu/batches/GrTessellatingPathRenderer.cpp b/src/gpu/batches/GrTessellatingPathRenderer.cpp
|
| index 27e287e9c6bceb6b48c7e500ef338fcc7b259775..36b6d657cf2e9f6f47a8420b0336b0d849d44b89 100644
|
| --- a/src/gpu/batches/GrTessellatingPathRenderer.cpp
|
| +++ b/src/gpu/batches/GrTessellatingPathRenderer.cpp
|
| @@ -14,7 +14,7 @@
|
| #include "GrVertices.h"
|
| #include "GrResourceCache.h"
|
| #include "GrResourceProvider.h"
|
| -#include "SkChunkAlloc.h"
|
| +#include "GrTessellator.h"
|
| #include "SkGeometry.h"
|
|
|
| #include "batches/GrVertexBatch.h"
|
| @@ -22,1322 +22,27 @@
|
| #include <stdio.h>
|
|
|
| /*
|
| - * This path renderer tessellates the path into triangles, uploads the triangles to a
|
| - * vertex buffer, and renders them with a single draw call. It does not currently do
|
| + * This path renderer tessellates the path into triangles using GrTessellator, uploads the triangles
|
| + * to a vertex buffer, and renders them with a single draw call. It does not currently do
|
| * antialiasing, so it must be used in conjunction with multisampling.
|
| - *
|
| - * There are six stages to the algorithm:
|
| - *
|
| - * 1) Linearize the path contours into piecewise linear segments (path_to_contours()).
|
| - * 2) Build a mesh of edges connecting the vertices (build_edges()).
|
| - * 3) Sort the vertices in Y (and secondarily in X) (merge_sort()).
|
| - * 4) Simplify the mesh by inserting new vertices at intersecting edges (simplify()).
|
| - * 5) Tessellate the simplified mesh into monotone polygons (tessellate()).
|
| - * 6) Triangulate the monotone polygons directly into a vertex buffer (polys_to_triangles()).
|
| - *
|
| - * The vertex sorting in step (3) is a merge sort, since it plays well with the linked list
|
| - * of vertices (and the necessity of inserting new vertices on intersection).
|
| - *
|
| - * Stages (4) and (5) use an active edge list, which a list of all edges for which the
|
| - * sweep line has crossed the top vertex, but not the bottom vertex. It's sorted
|
| - * left-to-right based on the point where both edges are active (when both top vertices
|
| - * have been seen, so the "lower" top vertex of the two). If the top vertices are equal
|
| - * (shared), it's sorted based on the last point where both edges are active, so the
|
| - * "upper" bottom vertex.
|
| - *
|
| - * The most complex step is the simplification (4). It's based on the Bentley-Ottman
|
| - * line-sweep algorithm, but due to floating point inaccuracy, the intersection points are
|
| - * not exact and may violate the mesh topology or active edge list ordering. We
|
| - * accommodate this by adjusting the topology of the mesh and AEL to match the intersection
|
| - * points. This occurs in three ways:
|
| - *
|
| - * A) Intersections may cause a shortened edge to no longer be ordered with respect to its
|
| - * neighbouring edges at the top or bottom vertex. This is handled by merging the
|
| - * edges (merge_collinear_edges()).
|
| - * B) Intersections may cause an edge to violate the left-to-right ordering of the
|
| - * active edge list. This is handled by splitting the neighbour edge on the
|
| - * intersected vertex (cleanup_active_edges()).
|
| - * C) Shortening an edge may cause an active edge to become inactive or an inactive edge
|
| - * to become active. This is handled by removing or inserting the edge in the active
|
| - * edge list (fix_active_state()).
|
| - *
|
| - * The tessellation steps (5) and (6) are based on "Triangulating Simple Polygons and
|
| - * Equivalent Problems" (Fournier and Montuno); also a line-sweep algorithm. Note that it
|
| - * currently uses a linked list for the active edge list, rather than a 2-3 tree as the
|
| - * paper describes. The 2-3 tree gives O(lg N) lookups, but insertion and removal also
|
| - * become O(lg N). In all the test cases, it was found that the cost of frequent O(lg N)
|
| - * insertions and removals was greater than the cost of infrequent O(N) lookups with the
|
| - * linked list implementation. With the latter, all removals are O(1), and most insertions
|
| - * are O(1), since we know the adjacent edge in the active edge list based on the topology.
|
| - * Only type 2 vertices (see paper) require the O(N) lookups, and these are much less
|
| - * frequent. There may be other data structures worth investigating, however.
|
| - *
|
| - * Note that the orientation of the line sweep algorithms is determined by the aspect ratio of the
|
| - * path bounds. When the path is taller than it is wide, we sort vertices based on increasing Y
|
| - * coordinate, and secondarily by increasing X coordinate. When the path is wider than it is tall,
|
| - * we sort by increasing X coordinate, but secondarily by *decreasing* Y coordinate. This is so
|
| - * that the "left" and "right" orientation in the code remains correct (edges to the left are
|
| - * increasing in Y; edges to the right are decreasing in Y). That is, the setting rotates 90
|
| - * degrees counterclockwise, rather that transposing.
|
| */
|
| -#define LOGGING_ENABLED 0
|
| -#define WIREFRAME 0
|
| -
|
| -#if LOGGING_ENABLED
|
| -#define LOG printf
|
| -#else
|
| -#define LOG(...)
|
| -#endif
|
| -
|
| -#define ALLOC_NEW(Type, args, alloc) new (alloc.allocThrow(sizeof(Type))) Type args
|
| -
|
| namespace {
|
|
|
| -struct Vertex;
|
| -struct Edge;
|
| -struct Poly;
|
| -
|
| -template <class T, T* T::*Prev, T* T::*Next>
|
| -void insert(T* t, T* prev, T* next, T** head, T** tail) {
|
| - t->*Prev = prev;
|
| - t->*Next = next;
|
| - if (prev) {
|
| - prev->*Next = t;
|
| - } else if (head) {
|
| - *head = t;
|
| - }
|
| - if (next) {
|
| - next->*Prev = t;
|
| - } else if (tail) {
|
| - *tail = t;
|
| - }
|
| -}
|
| -
|
| -template <class T, T* T::*Prev, T* T::*Next>
|
| -void remove(T* t, T** head, T** tail) {
|
| - if (t->*Prev) {
|
| - t->*Prev->*Next = t->*Next;
|
| - } else if (head) {
|
| - *head = t->*Next;
|
| - }
|
| - if (t->*Next) {
|
| - t->*Next->*Prev = t->*Prev;
|
| - } else if (tail) {
|
| - *tail = t->*Prev;
|
| - }
|
| - t->*Prev = t->*Next = nullptr;
|
| -}
|
| -
|
| -/**
|
| - * Vertices are used in three ways: first, the path contours are converted into a
|
| - * circularly-linked list of Vertices for each contour. After edge construction, the same Vertices
|
| - * are re-ordered by the merge sort according to the sweep_lt comparator (usually, increasing
|
| - * in Y) using the same fPrev/fNext pointers that were used for the contours, to avoid
|
| - * reallocation. Finally, MonotonePolys are built containing a circularly-linked list of
|
| - * Vertices. (Currently, those Vertices are newly-allocated for the MonotonePolys, since
|
| - * an individual Vertex from the path mesh may belong to multiple
|
| - * MonotonePolys, so the original Vertices cannot be re-used.
|
| - */
|
| -
|
| -struct Vertex {
|
| - Vertex(const SkPoint& point)
|
| - : fPoint(point), fPrev(nullptr), fNext(nullptr)
|
| - , fFirstEdgeAbove(nullptr), fLastEdgeAbove(nullptr)
|
| - , fFirstEdgeBelow(nullptr), fLastEdgeBelow(nullptr)
|
| - , fProcessed(false)
|
| -#if LOGGING_ENABLED
|
| - , fID (-1.0f)
|
| -#endif
|
| - {}
|
| - SkPoint fPoint; // Vertex position
|
| - Vertex* fPrev; // Linked list of contours, then Y-sorted vertices.
|
| - Vertex* fNext; // "
|
| - Edge* fFirstEdgeAbove; // Linked list of edges above this vertex.
|
| - Edge* fLastEdgeAbove; // "
|
| - Edge* fFirstEdgeBelow; // Linked list of edges below this vertex.
|
| - Edge* fLastEdgeBelow; // "
|
| - bool fProcessed; // Has this vertex been seen in simplify()?
|
| -#if LOGGING_ENABLED
|
| - float fID; // Identifier used for logging.
|
| -#endif
|
| -};
|
| -
|
| -/***************************************************************************************/
|
| -
|
| -typedef bool (*CompareFunc)(const SkPoint& a, const SkPoint& b);
|
| -
|
| -struct Comparator {
|
| - CompareFunc sweep_lt;
|
| - CompareFunc sweep_gt;
|
| -};
|
| -
|
| -bool sweep_lt_horiz(const SkPoint& a, const SkPoint& b) {
|
| - return a.fX == b.fX ? a.fY > b.fY : a.fX < b.fX;
|
| -}
|
| -
|
| -bool sweep_lt_vert(const SkPoint& a, const SkPoint& b) {
|
| - return a.fY == b.fY ? a.fX < b.fX : a.fY < b.fY;
|
| -}
|
| -
|
| -bool sweep_gt_horiz(const SkPoint& a, const SkPoint& b) {
|
| - return a.fX == b.fX ? a.fY < b.fY : a.fX > b.fX;
|
| -}
|
| -
|
| -bool sweep_gt_vert(const SkPoint& a, const SkPoint& b) {
|
| - return a.fY == b.fY ? a.fX > b.fX : a.fY > b.fY;
|
| -}
|
| -
|
| -inline SkPoint* emit_vertex(Vertex* v, SkPoint* data) {
|
| - *data++ = v->fPoint;
|
| - return data;
|
| -}
|
| -
|
| -SkPoint* emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2, SkPoint* data) {
|
| -#if WIREFRAME
|
| - data = emit_vertex(v0, data);
|
| - data = emit_vertex(v1, data);
|
| - data = emit_vertex(v1, data);
|
| - data = emit_vertex(v2, data);
|
| - data = emit_vertex(v2, data);
|
| - data = emit_vertex(v0, data);
|
| -#else
|
| - data = emit_vertex(v0, data);
|
| - data = emit_vertex(v1, data);
|
| - data = emit_vertex(v2, data);
|
| -#endif
|
| - return data;
|
| -}
|
| -
|
| -struct EdgeList {
|
| - EdgeList() : fHead(nullptr), fTail(nullptr) {}
|
| - Edge* fHead;
|
| - Edge* fTail;
|
| -};
|
| -
|
| -/**
|
| - * An Edge joins a top Vertex to a bottom Vertex. Edge ordering for the list of "edges above" and
|
| - * "edge below" a vertex as well as for the active edge list is handled by isLeftOf()/isRightOf().
|
| - * Note that an Edge will give occasionally dist() != 0 for its own endpoints (because floating
|
| - * point). For speed, that case is only tested by the callers which require it (e.g.,
|
| - * cleanup_active_edges()). Edges also handle checking for intersection with other edges.
|
| - * Currently, this converts the edges to the parametric form, in order to avoid doing a division
|
| - * until an intersection has been confirmed. This is slightly slower in the "found" case, but
|
| - * a lot faster in the "not found" case.
|
| - *
|
| - * The coefficients of the line equation stored in double precision to avoid catastrphic
|
| - * cancellation in the isLeftOf() and isRightOf() checks. Using doubles ensures that the result is
|
| - * correct in float, since it's a polynomial of degree 2. The intersect() function, being
|
| - * degree 5, is still subject to catastrophic cancellation. We deal with that by assuming its
|
| - * output may be incorrect, and adjusting the mesh topology to match (see comment at the top of
|
| - * this file).
|
| - */
|
| -
|
| -struct Edge {
|
| - Edge(Vertex* top, Vertex* bottom, int winding)
|
| - : fWinding(winding)
|
| - , fTop(top)
|
| - , fBottom(bottom)
|
| - , fLeft(nullptr)
|
| - , fRight(nullptr)
|
| - , fPrevEdgeAbove(nullptr)
|
| - , fNextEdgeAbove(nullptr)
|
| - , fPrevEdgeBelow(nullptr)
|
| - , fNextEdgeBelow(nullptr)
|
| - , fLeftPoly(nullptr)
|
| - , fRightPoly(nullptr) {
|
| - recompute();
|
| - }
|
| - int fWinding; // 1 == edge goes downward; -1 = edge goes upward.
|
| - Vertex* fTop; // The top vertex in vertex-sort-order (sweep_lt).
|
| - Vertex* fBottom; // The bottom vertex in vertex-sort-order.
|
| - Edge* fLeft; // The linked list of edges in the active edge list.
|
| - Edge* fRight; // "
|
| - Edge* fPrevEdgeAbove; // The linked list of edges in the bottom Vertex's "edges above".
|
| - Edge* fNextEdgeAbove; // "
|
| - Edge* fPrevEdgeBelow; // The linked list of edges in the top Vertex's "edges below".
|
| - Edge* fNextEdgeBelow; // "
|
| - Poly* fLeftPoly; // The Poly to the left of this edge, if any.
|
| - Poly* fRightPoly; // The Poly to the right of this edge, if any.
|
| - double fDX; // The line equation for this edge, in implicit form.
|
| - double fDY; // fDY * x + fDX * y + fC = 0, for point (x, y) on the line.
|
| - double fC;
|
| - double dist(const SkPoint& p) const {
|
| - return fDY * p.fX - fDX * p.fY + fC;
|
| - }
|
| - bool isRightOf(Vertex* v) const {
|
| - return dist(v->fPoint) < 0.0;
|
| - }
|
| - bool isLeftOf(Vertex* v) const {
|
| - return dist(v->fPoint) > 0.0;
|
| - }
|
| - void recompute() {
|
| - fDX = static_cast<double>(fBottom->fPoint.fX) - fTop->fPoint.fX;
|
| - fDY = static_cast<double>(fBottom->fPoint.fY) - fTop->fPoint.fY;
|
| - fC = static_cast<double>(fTop->fPoint.fY) * fBottom->fPoint.fX -
|
| - static_cast<double>(fTop->fPoint.fX) * fBottom->fPoint.fY;
|
| - }
|
| - bool intersect(const Edge& other, SkPoint* p) {
|
| - LOG("intersecting %g -> %g with %g -> %g\n",
|
| - fTop->fID, fBottom->fID,
|
| - other.fTop->fID, other.fBottom->fID);
|
| - if (fTop == other.fTop || fBottom == other.fBottom) {
|
| - return false;
|
| - }
|
| - double denom = fDX * other.fDY - fDY * other.fDX;
|
| - if (denom == 0.0) {
|
| - return false;
|
| - }
|
| - double dx = static_cast<double>(fTop->fPoint.fX) - other.fTop->fPoint.fX;
|
| - double dy = static_cast<double>(fTop->fPoint.fY) - other.fTop->fPoint.fY;
|
| - double sNumer = dy * other.fDX - dx * other.fDY;
|
| - double tNumer = dy * fDX - dx * fDY;
|
| - // If (sNumer / denom) or (tNumer / denom) is not in [0..1], exit early.
|
| - // This saves us doing the divide below unless absolutely necessary.
|
| - if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNumer > denom)
|
| - : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNumer < denom)) {
|
| - return false;
|
| - }
|
| - double s = sNumer / denom;
|
| - SkASSERT(s >= 0.0 && s <= 1.0);
|
| - p->fX = SkDoubleToScalar(fTop->fPoint.fX + s * fDX);
|
| - p->fY = SkDoubleToScalar(fTop->fPoint.fY + s * fDY);
|
| - return true;
|
| - }
|
| - bool isActive(EdgeList* activeEdges) const {
|
| - return activeEdges && (fLeft || fRight || activeEdges->fHead == this);
|
| - }
|
| -};
|
| -
|
| -/***************************************************************************************/
|
| -
|
| -struct Poly {
|
| - Poly(int winding)
|
| - : fWinding(winding)
|
| - , fHead(nullptr)
|
| - , fTail(nullptr)
|
| - , fActive(nullptr)
|
| - , fNext(nullptr)
|
| - , fPartner(nullptr)
|
| - , fCount(0)
|
| - {
|
| -#if LOGGING_ENABLED
|
| - static int gID = 0;
|
| - fID = gID++;
|
| - LOG("*** created Poly %d\n", fID);
|
| -#endif
|
| - }
|
| - typedef enum { kNeither_Side, kLeft_Side, kRight_Side } Side;
|
| - struct MonotonePoly {
|
| - MonotonePoly()
|
| - : fSide(kNeither_Side)
|
| - , fHead(nullptr)
|
| - , fTail(nullptr)
|
| - , fPrev(nullptr)
|
| - , fNext(nullptr) {}
|
| - Side fSide;
|
| - Vertex* fHead;
|
| - Vertex* fTail;
|
| - MonotonePoly* fPrev;
|
| - MonotonePoly* fNext;
|
| - bool addVertex(Vertex* v, Side side, SkChunkAlloc& alloc) {
|
| - Vertex* newV = ALLOC_NEW(Vertex, (v->fPoint), alloc);
|
| - bool done = false;
|
| - if (fSide == kNeither_Side) {
|
| - fSide = side;
|
| - } else {
|
| - done = side != fSide;
|
| - }
|
| - if (fHead == nullptr) {
|
| - fHead = fTail = newV;
|
| - } else if (fSide == kRight_Side) {
|
| - newV->fPrev = fTail;
|
| - fTail->fNext = newV;
|
| - fTail = newV;
|
| - } else {
|
| - newV->fNext = fHead;
|
| - fHead->fPrev = newV;
|
| - fHead = newV;
|
| - }
|
| - return done;
|
| - }
|
| -
|
| - SkPoint* emit(SkPoint* data) {
|
| - Vertex* first = fHead;
|
| - Vertex* v = first->fNext;
|
| - while (v != fTail) {
|
| - SkASSERT(v && v->fPrev && v->fNext);
|
| - Vertex* prev = v->fPrev;
|
| - Vertex* curr = v;
|
| - Vertex* next = v->fNext;
|
| - double ax = static_cast<double>(curr->fPoint.fX) - prev->fPoint.fX;
|
| - double ay = static_cast<double>(curr->fPoint.fY) - prev->fPoint.fY;
|
| - double bx = static_cast<double>(next->fPoint.fX) - curr->fPoint.fX;
|
| - double by = static_cast<double>(next->fPoint.fY) - curr->fPoint.fY;
|
| - if (ax * by - ay * bx >= 0.0) {
|
| - data = emit_triangle(prev, curr, next, data);
|
| - v->fPrev->fNext = v->fNext;
|
| - v->fNext->fPrev = v->fPrev;
|
| - if (v->fPrev == first) {
|
| - v = v->fNext;
|
| - } else {
|
| - v = v->fPrev;
|
| - }
|
| - } else {
|
| - v = v->fNext;
|
| - }
|
| - }
|
| - return data;
|
| - }
|
| - };
|
| - Poly* addVertex(Vertex* v, Side side, SkChunkAlloc& alloc) {
|
| - LOG("addVertex() to %d at %g (%g, %g), %s side\n", fID, v->fID, v->fPoint.fX, v->fPoint.fY,
|
| - side == kLeft_Side ? "left" : side == kRight_Side ? "right" : "neither");
|
| - Poly* partner = fPartner;
|
| - Poly* poly = this;
|
| - if (partner) {
|
| - fPartner = partner->fPartner = nullptr;
|
| - }
|
| - if (!fActive) {
|
| - fActive = ALLOC_NEW(MonotonePoly, (), alloc);
|
| - }
|
| - if (fActive->addVertex(v, side, alloc)) {
|
| - if (fTail) {
|
| - fActive->fPrev = fTail;
|
| - fTail->fNext = fActive;
|
| - fTail = fActive;
|
| - } else {
|
| - fHead = fTail = fActive;
|
| - }
|
| - if (partner) {
|
| - partner->addVertex(v, side, alloc);
|
| - poly = partner;
|
| - } else {
|
| - Vertex* prev = fActive->fSide == Poly::kLeft_Side ?
|
| - fActive->fHead->fNext : fActive->fTail->fPrev;
|
| - fActive = ALLOC_NEW(MonotonePoly, , alloc);
|
| - fActive->addVertex(prev, Poly::kNeither_Side, alloc);
|
| - fActive->addVertex(v, side, alloc);
|
| - }
|
| - }
|
| - fCount++;
|
| - return poly;
|
| - }
|
| - void end(Vertex* v, SkChunkAlloc& alloc) {
|
| - LOG("end() %d at %g, %g\n", fID, v->fPoint.fX, v->fPoint.fY);
|
| - if (fPartner) {
|
| - fPartner = fPartner->fPartner = nullptr;
|
| - }
|
| - addVertex(v, fActive->fSide == kLeft_Side ? kRight_Side : kLeft_Side, alloc);
|
| - }
|
| - SkPoint* emit(SkPoint *data) {
|
| - if (fCount < 3) {
|
| - return data;
|
| - }
|
| - LOG("emit() %d, size %d\n", fID, fCount);
|
| - for (MonotonePoly* m = fHead; m != nullptr; m = m->fNext) {
|
| - data = m->emit(data);
|
| - }
|
| - return data;
|
| - }
|
| - int fWinding;
|
| - MonotonePoly* fHead;
|
| - MonotonePoly* fTail;
|
| - MonotonePoly* fActive;
|
| - Poly* fNext;
|
| - Poly* fPartner;
|
| - int fCount;
|
| -#if LOGGING_ENABLED
|
| - int fID;
|
| -#endif
|
| +struct TessInfo {
|
| + SkScalar fTolerance;
|
| + int fCount;
|
| };
|
|
|
| -/***************************************************************************************/
|
| -
|
| -bool coincident(const SkPoint& a, const SkPoint& b) {
|
| - return a == b;
|
| -}
|
| -
|
| -Poly* new_poly(Poly** head, Vertex* v, int winding, SkChunkAlloc& alloc) {
|
| - Poly* poly = ALLOC_NEW(Poly, (winding), alloc);
|
| - poly->addVertex(v, Poly::kNeither_Side, alloc);
|
| - poly->fNext = *head;
|
| - *head = poly;
|
| - return poly;
|
| -}
|
| -
|
| -Vertex* append_point_to_contour(const SkPoint& p, Vertex* prev, Vertex** head,
|
| - SkChunkAlloc& alloc) {
|
| - Vertex* v = ALLOC_NEW(Vertex, (p), alloc);
|
| -#if LOGGING_ENABLED
|
| - static float gID = 0.0f;
|
| - v->fID = gID++;
|
| -#endif
|
| - if (prev) {
|
| - prev->fNext = v;
|
| - v->fPrev = prev;
|
| - } else {
|
| - *head = v;
|
| - }
|
| - return v;
|
| -}
|
| -
|
| -Vertex* generate_quadratic_points(const SkPoint& p0,
|
| - const SkPoint& p1,
|
| - const SkPoint& p2,
|
| - SkScalar tolSqd,
|
| - Vertex* prev,
|
| - Vertex** head,
|
| - int pointsLeft,
|
| - SkChunkAlloc& alloc) {
|
| - SkScalar d = p1.distanceToLineSegmentBetweenSqd(p0, p2);
|
| - if (pointsLeft < 2 || d < tolSqd || !SkScalarIsFinite(d)) {
|
| - return append_point_to_contour(p2, prev, head, alloc);
|
| - }
|
| -
|
| - const SkPoint q[] = {
|
| - { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
|
| - { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
|
| - };
|
| - const SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
|
| -
|
| - pointsLeft >>= 1;
|
| - prev = generate_quadratic_points(p0, q[0], r, tolSqd, prev, head, pointsLeft, alloc);
|
| - prev = generate_quadratic_points(r, q[1], p2, tolSqd, prev, head, pointsLeft, alloc);
|
| - return prev;
|
| -}
|
| -
|
| -Vertex* generate_cubic_points(const SkPoint& p0,
|
| - const SkPoint& p1,
|
| - const SkPoint& p2,
|
| - const SkPoint& p3,
|
| - SkScalar tolSqd,
|
| - Vertex* prev,
|
| - Vertex** head,
|
| - int pointsLeft,
|
| - SkChunkAlloc& alloc) {
|
| - SkScalar d1 = p1.distanceToLineSegmentBetweenSqd(p0, p3);
|
| - SkScalar d2 = p2.distanceToLineSegmentBetweenSqd(p0, p3);
|
| - if (pointsLeft < 2 || (d1 < tolSqd && d2 < tolSqd) ||
|
| - !SkScalarIsFinite(d1) || !SkScalarIsFinite(d2)) {
|
| - return append_point_to_contour(p3, prev, head, alloc);
|
| - }
|
| - const SkPoint q[] = {
|
| - { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
|
| - { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
|
| - { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
|
| - };
|
| - const SkPoint r[] = {
|
| - { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
|
| - { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
|
| - };
|
| - const SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
|
| - pointsLeft >>= 1;
|
| - prev = generate_cubic_points(p0, q[0], r[0], s, tolSqd, prev, head, pointsLeft, alloc);
|
| - prev = generate_cubic_points(s, r[1], q[2], p3, tolSqd, prev, head, pointsLeft, alloc);
|
| - return prev;
|
| -}
|
| -
|
| -// Stage 1: convert the input path to a set of linear contours (linked list of Vertices).
|
| -
|
| -void path_to_contours(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
|
| - Vertex** contours, SkChunkAlloc& alloc, bool *isLinear) {
|
| -
|
| - SkScalar toleranceSqd = tolerance * tolerance;
|
| -
|
| - SkPoint pts[4];
|
| - bool done = false;
|
| - *isLinear = true;
|
| - SkPath::Iter iter(path, false);
|
| - Vertex* prev = nullptr;
|
| - Vertex* head = nullptr;
|
| - if (path.isInverseFillType()) {
|
| - SkPoint quad[4];
|
| - clipBounds.toQuad(quad);
|
| - for (int i = 3; i >= 0; i--) {
|
| - prev = append_point_to_contour(quad[i], prev, &head, alloc);
|
| - }
|
| - head->fPrev = prev;
|
| - prev->fNext = head;
|
| - *contours++ = head;
|
| - head = prev = nullptr;
|
| - }
|
| - SkAutoConicToQuads converter;
|
| - while (!done) {
|
| - SkPath::Verb verb = iter.next(pts);
|
| - switch (verb) {
|
| - case SkPath::kConic_Verb: {
|
| - SkScalar weight = iter.conicWeight();
|
| - const SkPoint* quadPts = converter.computeQuads(pts, weight, toleranceSqd);
|
| - for (int i = 0; i < converter.countQuads(); ++i) {
|
| - int pointsLeft = GrPathUtils::quadraticPointCount(quadPts, tolerance);
|
| - prev = generate_quadratic_points(quadPts[0], quadPts[1], quadPts[2],
|
| - toleranceSqd, prev, &head, pointsLeft, alloc);
|
| - quadPts += 2;
|
| - }
|
| - *isLinear = false;
|
| - break;
|
| - }
|
| - case SkPath::kMove_Verb:
|
| - if (head) {
|
| - head->fPrev = prev;
|
| - prev->fNext = head;
|
| - *contours++ = head;
|
| - }
|
| - head = prev = nullptr;
|
| - prev = append_point_to_contour(pts[0], prev, &head, alloc);
|
| - break;
|
| - case SkPath::kLine_Verb: {
|
| - prev = append_point_to_contour(pts[1], prev, &head, alloc);
|
| - break;
|
| - }
|
| - case SkPath::kQuad_Verb: {
|
| - int pointsLeft = GrPathUtils::quadraticPointCount(pts, tolerance);
|
| - prev = generate_quadratic_points(pts[0], pts[1], pts[2], toleranceSqd, prev,
|
| - &head, pointsLeft, alloc);
|
| - *isLinear = false;
|
| - break;
|
| - }
|
| - case SkPath::kCubic_Verb: {
|
| - int pointsLeft = GrPathUtils::cubicPointCount(pts, tolerance);
|
| - prev = generate_cubic_points(pts[0], pts[1], pts[2], pts[3],
|
| - toleranceSqd, prev, &head, pointsLeft, alloc);
|
| - *isLinear = false;
|
| - break;
|
| - }
|
| - case SkPath::kClose_Verb:
|
| - if (head) {
|
| - head->fPrev = prev;
|
| - prev->fNext = head;
|
| - *contours++ = head;
|
| - }
|
| - head = prev = nullptr;
|
| - break;
|
| - case SkPath::kDone_Verb:
|
| - if (head) {
|
| - head->fPrev = prev;
|
| - prev->fNext = head;
|
| - *contours++ = head;
|
| - }
|
| - done = true;
|
| - break;
|
| - }
|
| - }
|
| -}
|
| -
|
| -inline bool apply_fill_type(SkPath::FillType fillType, int winding) {
|
| - switch (fillType) {
|
| - case SkPath::kWinding_FillType:
|
| - return winding != 0;
|
| - case SkPath::kEvenOdd_FillType:
|
| - return (winding & 1) != 0;
|
| - case SkPath::kInverseWinding_FillType:
|
| - return winding == 1;
|
| - case SkPath::kInverseEvenOdd_FillType:
|
| - return (winding & 1) == 1;
|
| - default:
|
| - SkASSERT(false);
|
| - return false;
|
| - }
|
| -}
|
| -
|
| -Edge* new_edge(Vertex* prev, Vertex* next, SkChunkAlloc& alloc, Comparator& c) {
|
| - int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1;
|
| - Vertex* top = winding < 0 ? next : prev;
|
| - Vertex* bottom = winding < 0 ? prev : next;
|
| - return ALLOC_NEW(Edge, (top, bottom, winding), alloc);
|
| -}
|
| -
|
| -void remove_edge(Edge* edge, EdgeList* edges) {
|
| - LOG("removing edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
|
| - SkASSERT(edge->isActive(edges));
|
| - remove<Edge, &Edge::fLeft, &Edge::fRight>(edge, &edges->fHead, &edges->fTail);
|
| -}
|
| -
|
| -void insert_edge(Edge* edge, Edge* prev, EdgeList* edges) {
|
| - LOG("inserting edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
|
| - SkASSERT(!edge->isActive(edges));
|
| - Edge* next = prev ? prev->fRight : edges->fHead;
|
| - insert<Edge, &Edge::fLeft, &Edge::fRight>(edge, prev, next, &edges->fHead, &edges->fTail);
|
| -}
|
| -
|
| -void find_enclosing_edges(Vertex* v, EdgeList* edges, Edge** left, Edge** right) {
|
| - if (v->fFirstEdgeAbove) {
|
| - *left = v->fFirstEdgeAbove->fLeft;
|
| - *right = v->fLastEdgeAbove->fRight;
|
| - return;
|
| - }
|
| - Edge* next = nullptr;
|
| - Edge* prev;
|
| - for (prev = edges->fTail; prev != nullptr; prev = prev->fLeft) {
|
| - if (prev->isLeftOf(v)) {
|
| - break;
|
| - }
|
| - next = prev;
|
| - }
|
| - *left = prev;
|
| - *right = next;
|
| - return;
|
| -}
|
| -
|
| -void find_enclosing_edges(Edge* edge, EdgeList* edges, Comparator& c, Edge** left, Edge** right) {
|
| - Edge* prev = nullptr;
|
| - Edge* next;
|
| - for (next = edges->fHead; next != nullptr; next = next->fRight) {
|
| - if ((c.sweep_gt(edge->fTop->fPoint, next->fTop->fPoint) && next->isRightOf(edge->fTop)) ||
|
| - (c.sweep_gt(next->fTop->fPoint, edge->fTop->fPoint) && edge->isLeftOf(next->fTop)) ||
|
| - (c.sweep_lt(edge->fBottom->fPoint, next->fBottom->fPoint) &&
|
| - next->isRightOf(edge->fBottom)) ||
|
| - (c.sweep_lt(next->fBottom->fPoint, edge->fBottom->fPoint) &&
|
| - edge->isLeftOf(next->fBottom))) {
|
| - break;
|
| - }
|
| - prev = next;
|
| - }
|
| - *left = prev;
|
| - *right = next;
|
| - return;
|
| -}
|
| -
|
| -void fix_active_state(Edge* edge, EdgeList* activeEdges, Comparator& c) {
|
| - if (edge->isActive(activeEdges)) {
|
| - if (edge->fBottom->fProcessed || !edge->fTop->fProcessed) {
|
| - remove_edge(edge, activeEdges);
|
| - }
|
| - } else if (edge->fTop->fProcessed && !edge->fBottom->fProcessed) {
|
| - Edge* left;
|
| - Edge* right;
|
| - find_enclosing_edges(edge, activeEdges, c, &left, &right);
|
| - insert_edge(edge, left, activeEdges);
|
| - }
|
| -}
|
| -
|
| -void insert_edge_above(Edge* edge, Vertex* v, Comparator& c) {
|
| - if (edge->fTop->fPoint == edge->fBottom->fPoint ||
|
| - c.sweep_gt(edge->fTop->fPoint, edge->fBottom->fPoint)) {
|
| - return;
|
| - }
|
| - LOG("insert edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID);
|
| - Edge* prev = nullptr;
|
| - Edge* next;
|
| - for (next = v->fFirstEdgeAbove; next; next = next->fNextEdgeAbove) {
|
| - if (next->isRightOf(edge->fTop)) {
|
| - break;
|
| - }
|
| - prev = next;
|
| - }
|
| - insert<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
|
| - edge, prev, next, &v->fFirstEdgeAbove, &v->fLastEdgeAbove);
|
| -}
|
| -
|
| -void insert_edge_below(Edge* edge, Vertex* v, Comparator& c) {
|
| - if (edge->fTop->fPoint == edge->fBottom->fPoint ||
|
| - c.sweep_gt(edge->fTop->fPoint, edge->fBottom->fPoint)) {
|
| - return;
|
| - }
|
| - LOG("insert edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID);
|
| - Edge* prev = nullptr;
|
| - Edge* next;
|
| - for (next = v->fFirstEdgeBelow; next; next = next->fNextEdgeBelow) {
|
| - if (next->isRightOf(edge->fBottom)) {
|
| - break;
|
| - }
|
| - prev = next;
|
| - }
|
| - insert<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
|
| - edge, prev, next, &v->fFirstEdgeBelow, &v->fLastEdgeBelow);
|
| -}
|
| -
|
| -void remove_edge_above(Edge* edge) {
|
| - LOG("removing edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
|
| - edge->fBottom->fID);
|
| - remove<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
|
| - edge, &edge->fBottom->fFirstEdgeAbove, &edge->fBottom->fLastEdgeAbove);
|
| -}
|
| -
|
| -void remove_edge_below(Edge* edge) {
|
| - LOG("removing edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
|
| - edge->fTop->fID);
|
| - remove<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
|
| - edge, &edge->fTop->fFirstEdgeBelow, &edge->fTop->fLastEdgeBelow);
|
| -}
|
| -
|
| -void erase_edge_if_zero_winding(Edge* edge, EdgeList* edges) {
|
| - if (edge->fWinding != 0) {
|
| - return;
|
| - }
|
| - LOG("erasing edge (%g -> %g)\n", edge->fTop->fID, edge->fBottom->fID);
|
| - remove_edge_above(edge);
|
| - remove_edge_below(edge);
|
| - if (edge->isActive(edges)) {
|
| - remove_edge(edge, edges);
|
| - }
|
| -}
|
| -
|
| -void merge_collinear_edges(Edge* edge, EdgeList* activeEdges, Comparator& c);
|
| -
|
| -void set_top(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c) {
|
| - remove_edge_below(edge);
|
| - edge->fTop = v;
|
| - edge->recompute();
|
| - insert_edge_below(edge, v, c);
|
| - fix_active_state(edge, activeEdges, c);
|
| - merge_collinear_edges(edge, activeEdges, c);
|
| -}
|
| -
|
| -void set_bottom(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c) {
|
| - remove_edge_above(edge);
|
| - edge->fBottom = v;
|
| - edge->recompute();
|
| - insert_edge_above(edge, v, c);
|
| - fix_active_state(edge, activeEdges, c);
|
| - merge_collinear_edges(edge, activeEdges, c);
|
| -}
|
| -
|
| -void merge_edges_above(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c) {
|
| - if (coincident(edge->fTop->fPoint, other->fTop->fPoint)) {
|
| - LOG("merging coincident above edges (%g, %g) -> (%g, %g)\n",
|
| - edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
|
| - edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
|
| - other->fWinding += edge->fWinding;
|
| - erase_edge_if_zero_winding(other, activeEdges);
|
| - edge->fWinding = 0;
|
| - erase_edge_if_zero_winding(edge, activeEdges);
|
| - } else if (c.sweep_lt(edge->fTop->fPoint, other->fTop->fPoint)) {
|
| - other->fWinding += edge->fWinding;
|
| - erase_edge_if_zero_winding(other, activeEdges);
|
| - set_bottom(edge, other->fTop, activeEdges, c);
|
| - } else {
|
| - edge->fWinding += other->fWinding;
|
| - erase_edge_if_zero_winding(edge, activeEdges);
|
| - set_bottom(other, edge->fTop, activeEdges, c);
|
| - }
|
| -}
|
| -
|
| -void merge_edges_below(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c) {
|
| - if (coincident(edge->fBottom->fPoint, other->fBottom->fPoint)) {
|
| - LOG("merging coincident below edges (%g, %g) -> (%g, %g)\n",
|
| - edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
|
| - edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
|
| - other->fWinding += edge->fWinding;
|
| - erase_edge_if_zero_winding(other, activeEdges);
|
| - edge->fWinding = 0;
|
| - erase_edge_if_zero_winding(edge, activeEdges);
|
| - } else if (c.sweep_lt(edge->fBottom->fPoint, other->fBottom->fPoint)) {
|
| - edge->fWinding += other->fWinding;
|
| - erase_edge_if_zero_winding(edge, activeEdges);
|
| - set_top(other, edge->fBottom, activeEdges, c);
|
| - } else {
|
| - other->fWinding += edge->fWinding;
|
| - erase_edge_if_zero_winding(other, activeEdges);
|
| - set_top(edge, other->fBottom, activeEdges, c);
|
| - }
|
| -}
|
| -
|
| -void merge_collinear_edges(Edge* edge, EdgeList* activeEdges, Comparator& c) {
|
| - if (edge->fPrevEdgeAbove && (edge->fTop == edge->fPrevEdgeAbove->fTop ||
|
| - !edge->fPrevEdgeAbove->isLeftOf(edge->fTop))) {
|
| - merge_edges_above(edge, edge->fPrevEdgeAbove, activeEdges, c);
|
| - } else if (edge->fNextEdgeAbove && (edge->fTop == edge->fNextEdgeAbove->fTop ||
|
| - !edge->isLeftOf(edge->fNextEdgeAbove->fTop))) {
|
| - merge_edges_above(edge, edge->fNextEdgeAbove, activeEdges, c);
|
| - }
|
| - if (edge->fPrevEdgeBelow && (edge->fBottom == edge->fPrevEdgeBelow->fBottom ||
|
| - !edge->fPrevEdgeBelow->isLeftOf(edge->fBottom))) {
|
| - merge_edges_below(edge, edge->fPrevEdgeBelow, activeEdges, c);
|
| - } else if (edge->fNextEdgeBelow && (edge->fBottom == edge->fNextEdgeBelow->fBottom ||
|
| - !edge->isLeftOf(edge->fNextEdgeBelow->fBottom))) {
|
| - merge_edges_below(edge, edge->fNextEdgeBelow, activeEdges, c);
|
| - }
|
| -}
|
| -
|
| -void split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c, SkChunkAlloc& alloc);
|
| -
|
| -void cleanup_active_edges(Edge* edge, EdgeList* activeEdges, Comparator& c, SkChunkAlloc& alloc) {
|
| - Vertex* top = edge->fTop;
|
| - Vertex* bottom = edge->fBottom;
|
| - if (edge->fLeft) {
|
| - Vertex* leftTop = edge->fLeft->fTop;
|
| - Vertex* leftBottom = edge->fLeft->fBottom;
|
| - if (c.sweep_gt(top->fPoint, leftTop->fPoint) && !edge->fLeft->isLeftOf(top)) {
|
| - split_edge(edge->fLeft, edge->fTop, activeEdges, c, alloc);
|
| - } else if (c.sweep_gt(leftTop->fPoint, top->fPoint) && !edge->isRightOf(leftTop)) {
|
| - split_edge(edge, leftTop, activeEdges, c, alloc);
|
| - } else if (c.sweep_lt(bottom->fPoint, leftBottom->fPoint) &&
|
| - !edge->fLeft->isLeftOf(bottom)) {
|
| - split_edge(edge->fLeft, bottom, activeEdges, c, alloc);
|
| - } else if (c.sweep_lt(leftBottom->fPoint, bottom->fPoint) && !edge->isRightOf(leftBottom)) {
|
| - split_edge(edge, leftBottom, activeEdges, c, alloc);
|
| - }
|
| - }
|
| - if (edge->fRight) {
|
| - Vertex* rightTop = edge->fRight->fTop;
|
| - Vertex* rightBottom = edge->fRight->fBottom;
|
| - if (c.sweep_gt(top->fPoint, rightTop->fPoint) && !edge->fRight->isRightOf(top)) {
|
| - split_edge(edge->fRight, top, activeEdges, c, alloc);
|
| - } else if (c.sweep_gt(rightTop->fPoint, top->fPoint) && !edge->isLeftOf(rightTop)) {
|
| - split_edge(edge, rightTop, activeEdges, c, alloc);
|
| - } else if (c.sweep_lt(bottom->fPoint, rightBottom->fPoint) &&
|
| - !edge->fRight->isRightOf(bottom)) {
|
| - split_edge(edge->fRight, bottom, activeEdges, c, alloc);
|
| - } else if (c.sweep_lt(rightBottom->fPoint, bottom->fPoint) &&
|
| - !edge->isLeftOf(rightBottom)) {
|
| - split_edge(edge, rightBottom, activeEdges, c, alloc);
|
| - }
|
| - }
|
| -}
|
| -
|
| -void split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c, SkChunkAlloc& alloc) {
|
| - LOG("splitting edge (%g -> %g) at vertex %g (%g, %g)\n",
|
| - edge->fTop->fID, edge->fBottom->fID,
|
| - v->fID, v->fPoint.fX, v->fPoint.fY);
|
| - if (c.sweep_lt(v->fPoint, edge->fTop->fPoint)) {
|
| - set_top(edge, v, activeEdges, c);
|
| - } else if (c.sweep_gt(v->fPoint, edge->fBottom->fPoint)) {
|
| - set_bottom(edge, v, activeEdges, c);
|
| - } else {
|
| - Edge* newEdge = ALLOC_NEW(Edge, (v, edge->fBottom, edge->fWinding), alloc);
|
| - insert_edge_below(newEdge, v, c);
|
| - insert_edge_above(newEdge, edge->fBottom, c);
|
| - set_bottom(edge, v, activeEdges, c);
|
| - cleanup_active_edges(edge, activeEdges, c, alloc);
|
| - fix_active_state(newEdge, activeEdges, c);
|
| - merge_collinear_edges(newEdge, activeEdges, c);
|
| - }
|
| -}
|
| -
|
| -void merge_vertices(Vertex* src, Vertex* dst, Vertex** head, Comparator& c, SkChunkAlloc& alloc) {
|
| - LOG("found coincident verts at %g, %g; merging %g into %g\n", src->fPoint.fX, src->fPoint.fY,
|
| - src->fID, dst->fID);
|
| - for (Edge* edge = src->fFirstEdgeAbove; edge;) {
|
| - Edge* next = edge->fNextEdgeAbove;
|
| - set_bottom(edge, dst, nullptr, c);
|
| - edge = next;
|
| - }
|
| - for (Edge* edge = src->fFirstEdgeBelow; edge;) {
|
| - Edge* next = edge->fNextEdgeBelow;
|
| - set_top(edge, dst, nullptr, c);
|
| - edge = next;
|
| - }
|
| - remove<Vertex, &Vertex::fPrev, &Vertex::fNext>(src, head, nullptr);
|
| -}
|
| -
|
| -Vertex* check_for_intersection(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c,
|
| - SkChunkAlloc& alloc) {
|
| - SkPoint p;
|
| - if (!edge || !other) {
|
| - return nullptr;
|
| - }
|
| - if (edge->intersect(*other, &p)) {
|
| - Vertex* v;
|
| - LOG("found intersection, pt is %g, %g\n", p.fX, p.fY);
|
| - if (p == edge->fTop->fPoint || c.sweep_lt(p, edge->fTop->fPoint)) {
|
| - split_edge(other, edge->fTop, activeEdges, c, alloc);
|
| - v = edge->fTop;
|
| - } else if (p == edge->fBottom->fPoint || c.sweep_gt(p, edge->fBottom->fPoint)) {
|
| - split_edge(other, edge->fBottom, activeEdges, c, alloc);
|
| - v = edge->fBottom;
|
| - } else if (p == other->fTop->fPoint || c.sweep_lt(p, other->fTop->fPoint)) {
|
| - split_edge(edge, other->fTop, activeEdges, c, alloc);
|
| - v = other->fTop;
|
| - } else if (p == other->fBottom->fPoint || c.sweep_gt(p, other->fBottom->fPoint)) {
|
| - split_edge(edge, other->fBottom, activeEdges, c, alloc);
|
| - v = other->fBottom;
|
| - } else {
|
| - Vertex* nextV = edge->fTop;
|
| - while (c.sweep_lt(p, nextV->fPoint)) {
|
| - nextV = nextV->fPrev;
|
| - }
|
| - while (c.sweep_lt(nextV->fPoint, p)) {
|
| - nextV = nextV->fNext;
|
| - }
|
| - Vertex* prevV = nextV->fPrev;
|
| - if (coincident(prevV->fPoint, p)) {
|
| - v = prevV;
|
| - } else if (coincident(nextV->fPoint, p)) {
|
| - v = nextV;
|
| - } else {
|
| - v = ALLOC_NEW(Vertex, (p), alloc);
|
| - LOG("inserting between %g (%g, %g) and %g (%g, %g)\n",
|
| - prevV->fID, prevV->fPoint.fX, prevV->fPoint.fY,
|
| - nextV->fID, nextV->fPoint.fX, nextV->fPoint.fY);
|
| -#if LOGGING_ENABLED
|
| - v->fID = (nextV->fID + prevV->fID) * 0.5f;
|
| -#endif
|
| - v->fPrev = prevV;
|
| - v->fNext = nextV;
|
| - prevV->fNext = v;
|
| - nextV->fPrev = v;
|
| - }
|
| - split_edge(edge, v, activeEdges, c, alloc);
|
| - split_edge(other, v, activeEdges, c, alloc);
|
| - }
|
| - return v;
|
| - }
|
| - return nullptr;
|
| -}
|
| -
|
| -void sanitize_contours(Vertex** contours, int contourCnt) {
|
| - for (int i = 0; i < contourCnt; ++i) {
|
| - SkASSERT(contours[i]);
|
| - for (Vertex* v = contours[i];;) {
|
| - if (coincident(v->fPrev->fPoint, v->fPoint)) {
|
| - LOG("vertex %g,%g coincident; removing\n", v->fPoint.fX, v->fPoint.fY);
|
| - if (v->fPrev == v) {
|
| - contours[i] = nullptr;
|
| - break;
|
| - }
|
| - v->fPrev->fNext = v->fNext;
|
| - v->fNext->fPrev = v->fPrev;
|
| - if (contours[i] == v) {
|
| - contours[i] = v->fNext;
|
| - }
|
| - v = v->fPrev;
|
| - } else {
|
| - v = v->fNext;
|
| - if (v == contours[i]) break;
|
| - }
|
| - }
|
| - }
|
| -}
|
| -
|
| -void merge_coincident_vertices(Vertex** vertices, Comparator& c, SkChunkAlloc& alloc) {
|
| - for (Vertex* v = (*vertices)->fNext; v != nullptr; v = v->fNext) {
|
| - if (c.sweep_lt(v->fPoint, v->fPrev->fPoint)) {
|
| - v->fPoint = v->fPrev->fPoint;
|
| - }
|
| - if (coincident(v->fPrev->fPoint, v->fPoint)) {
|
| - merge_vertices(v->fPrev, v, vertices, c, alloc);
|
| - }
|
| - }
|
| -}
|
| -
|
| -// Stage 2: convert the contours to a mesh of edges connecting the vertices.
|
| -
|
| -Vertex* build_edges(Vertex** contours, int contourCnt, Comparator& c, SkChunkAlloc& alloc) {
|
| - Vertex* vertices = nullptr;
|
| - Vertex* prev = nullptr;
|
| - for (int i = 0; i < contourCnt; ++i) {
|
| - for (Vertex* v = contours[i]; v != nullptr;) {
|
| - Vertex* vNext = v->fNext;
|
| - Edge* edge = new_edge(v->fPrev, v, alloc, c);
|
| - if (edge->fWinding > 0) {
|
| - insert_edge_below(edge, v->fPrev, c);
|
| - insert_edge_above(edge, v, c);
|
| - } else {
|
| - insert_edge_below(edge, v, c);
|
| - insert_edge_above(edge, v->fPrev, c);
|
| - }
|
| - merge_collinear_edges(edge, nullptr, c);
|
| - if (prev) {
|
| - prev->fNext = v;
|
| - v->fPrev = prev;
|
| - } else {
|
| - vertices = v;
|
| - }
|
| - prev = v;
|
| - v = vNext;
|
| - if (v == contours[i]) break;
|
| - }
|
| - }
|
| - if (prev) {
|
| - prev->fNext = vertices->fPrev = nullptr;
|
| - }
|
| - return vertices;
|
| -}
|
| -
|
| -// Stage 3: sort the vertices by increasing sweep direction.
|
| -
|
| -Vertex* sorted_merge(Vertex* a, Vertex* b, Comparator& c);
|
| -
|
| -void front_back_split(Vertex* v, Vertex** pFront, Vertex** pBack) {
|
| - Vertex* fast;
|
| - Vertex* slow;
|
| - if (!v || !v->fNext) {
|
| - *pFront = v;
|
| - *pBack = nullptr;
|
| - } else {
|
| - slow = v;
|
| - fast = v->fNext;
|
| -
|
| - while (fast != nullptr) {
|
| - fast = fast->fNext;
|
| - if (fast != nullptr) {
|
| - slow = slow->fNext;
|
| - fast = fast->fNext;
|
| - }
|
| - }
|
| -
|
| - *pFront = v;
|
| - *pBack = slow->fNext;
|
| - slow->fNext->fPrev = nullptr;
|
| - slow->fNext = nullptr;
|
| - }
|
| -}
|
| -
|
| -void merge_sort(Vertex** head, Comparator& c) {
|
| - if (!*head || !(*head)->fNext) {
|
| - return;
|
| - }
|
| -
|
| - Vertex* a;
|
| - Vertex* b;
|
| - front_back_split(*head, &a, &b);
|
| -
|
| - merge_sort(&a, c);
|
| - merge_sort(&b, c);
|
| -
|
| - *head = sorted_merge(a, b, c);
|
| -}
|
| -
|
| -inline void append_vertex(Vertex* v, Vertex** head, Vertex** tail) {
|
| - insert<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, *tail, nullptr, head, tail);
|
| -}
|
| -
|
| -inline void append_vertex_list(Vertex* v, Vertex** head, Vertex** tail) {
|
| - insert<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, *tail, v->fNext, head, tail);
|
| -}
|
| -
|
| -Vertex* sorted_merge(Vertex* a, Vertex* b, Comparator& c) {
|
| - Vertex* head = nullptr;
|
| - Vertex* tail = nullptr;
|
| -
|
| - while (a && b) {
|
| - if (c.sweep_lt(a->fPoint, b->fPoint)) {
|
| - Vertex* next = a->fNext;
|
| - append_vertex(a, &head, &tail);
|
| - a = next;
|
| - } else {
|
| - Vertex* next = b->fNext;
|
| - append_vertex(b, &head, &tail);
|
| - b = next;
|
| - }
|
| - }
|
| - if (a) {
|
| - append_vertex_list(a, &head, &tail);
|
| - }
|
| - if (b) {
|
| - append_vertex_list(b, &head, &tail);
|
| - }
|
| - return head;
|
| -}
|
| -
|
| -// Stage 4: Simplify the mesh by inserting new vertices at intersecting edges.
|
| -
|
| -void simplify(Vertex* vertices, Comparator& c, SkChunkAlloc& alloc) {
|
| - LOG("simplifying complex polygons\n");
|
| - EdgeList activeEdges;
|
| - for (Vertex* v = vertices; v != nullptr; v = v->fNext) {
|
| - if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
|
| - continue;
|
| - }
|
| -#if LOGGING_ENABLED
|
| - LOG("\nvertex %g: (%g,%g)\n", v->fID, v->fPoint.fX, v->fPoint.fY);
|
| -#endif
|
| - Edge* leftEnclosingEdge = nullptr;
|
| - Edge* rightEnclosingEdge = nullptr;
|
| - bool restartChecks;
|
| - do {
|
| - restartChecks = false;
|
| - find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
|
| - if (v->fFirstEdgeBelow) {
|
| - for (Edge* edge = v->fFirstEdgeBelow; edge != nullptr; edge = edge->fNextEdgeBelow) {
|
| - if (check_for_intersection(edge, leftEnclosingEdge, &activeEdges, c, alloc)) {
|
| - restartChecks = true;
|
| - break;
|
| - }
|
| - if (check_for_intersection(edge, rightEnclosingEdge, &activeEdges, c, alloc)) {
|
| - restartChecks = true;
|
| - break;
|
| - }
|
| - }
|
| - } else {
|
| - if (Vertex* pv = check_for_intersection(leftEnclosingEdge, rightEnclosingEdge,
|
| - &activeEdges, c, alloc)) {
|
| - if (c.sweep_lt(pv->fPoint, v->fPoint)) {
|
| - v = pv;
|
| - }
|
| - restartChecks = true;
|
| - }
|
| -
|
| - }
|
| - } while (restartChecks);
|
| - for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
|
| - remove_edge(e, &activeEdges);
|
| - }
|
| - Edge* leftEdge = leftEnclosingEdge;
|
| - for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
|
| - insert_edge(e, leftEdge, &activeEdges);
|
| - leftEdge = e;
|
| - }
|
| - v->fProcessed = true;
|
| - }
|
| -}
|
| -
|
| -// Stage 5: Tessellate the simplified mesh into monotone polygons.
|
| -
|
| -Poly* tessellate(Vertex* vertices, SkChunkAlloc& alloc) {
|
| - LOG("tessellating simple polygons\n");
|
| - EdgeList activeEdges;
|
| - Poly* polys = nullptr;
|
| - for (Vertex* v = vertices; v != nullptr; v = v->fNext) {
|
| - if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
|
| - continue;
|
| - }
|
| -#if LOGGING_ENABLED
|
| - LOG("\nvertex %g: (%g,%g)\n", v->fID, v->fPoint.fX, v->fPoint.fY);
|
| -#endif
|
| - Edge* leftEnclosingEdge = nullptr;
|
| - Edge* rightEnclosingEdge = nullptr;
|
| - find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
|
| - Poly* leftPoly = nullptr;
|
| - Poly* rightPoly = nullptr;
|
| - if (v->fFirstEdgeAbove) {
|
| - leftPoly = v->fFirstEdgeAbove->fLeftPoly;
|
| - rightPoly = v->fLastEdgeAbove->fRightPoly;
|
| - } else {
|
| - leftPoly = leftEnclosingEdge ? leftEnclosingEdge->fRightPoly : nullptr;
|
| - rightPoly = rightEnclosingEdge ? rightEnclosingEdge->fLeftPoly : nullptr;
|
| - }
|
| -#if LOGGING_ENABLED
|
| - LOG("edges above:\n");
|
| - for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
|
| - LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
|
| - e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
|
| - }
|
| - LOG("edges below:\n");
|
| - for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
|
| - LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
|
| - e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
|
| - }
|
| -#endif
|
| - if (v->fFirstEdgeAbove) {
|
| - if (leftPoly) {
|
| - leftPoly = leftPoly->addVertex(v, Poly::kRight_Side, alloc);
|
| - }
|
| - if (rightPoly) {
|
| - rightPoly = rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
|
| - }
|
| - for (Edge* e = v->fFirstEdgeAbove; e != v->fLastEdgeAbove; e = e->fNextEdgeAbove) {
|
| - Edge* leftEdge = e;
|
| - Edge* rightEdge = e->fNextEdgeAbove;
|
| - SkASSERT(rightEdge->isRightOf(leftEdge->fTop));
|
| - remove_edge(leftEdge, &activeEdges);
|
| - if (leftEdge->fRightPoly) {
|
| - leftEdge->fRightPoly->end(v, alloc);
|
| - }
|
| - if (rightEdge->fLeftPoly && rightEdge->fLeftPoly != leftEdge->fRightPoly) {
|
| - rightEdge->fLeftPoly->end(v, alloc);
|
| - }
|
| - }
|
| - remove_edge(v->fLastEdgeAbove, &activeEdges);
|
| - if (!v->fFirstEdgeBelow) {
|
| - if (leftPoly && rightPoly && leftPoly != rightPoly) {
|
| - SkASSERT(leftPoly->fPartner == nullptr && rightPoly->fPartner == nullptr);
|
| - rightPoly->fPartner = leftPoly;
|
| - leftPoly->fPartner = rightPoly;
|
| - }
|
| - }
|
| - }
|
| - if (v->fFirstEdgeBelow) {
|
| - if (!v->fFirstEdgeAbove) {
|
| - if (leftPoly && leftPoly == rightPoly) {
|
| - // Split the poly.
|
| - if (leftPoly->fActive->fSide == Poly::kLeft_Side) {
|
| - leftPoly = new_poly(&polys, leftEnclosingEdge->fTop, leftPoly->fWinding,
|
| - alloc);
|
| - leftPoly->addVertex(v, Poly::kRight_Side, alloc);
|
| - rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
|
| - leftEnclosingEdge->fRightPoly = leftPoly;
|
| - } else {
|
| - rightPoly = new_poly(&polys, rightEnclosingEdge->fTop, rightPoly->fWinding,
|
| - alloc);
|
| - rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
|
| - leftPoly->addVertex(v, Poly::kRight_Side, alloc);
|
| - rightEnclosingEdge->fLeftPoly = rightPoly;
|
| - }
|
| - } else {
|
| - if (leftPoly) {
|
| - leftPoly = leftPoly->addVertex(v, Poly::kRight_Side, alloc);
|
| - }
|
| - if (rightPoly) {
|
| - rightPoly = rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
|
| - }
|
| - }
|
| - }
|
| - Edge* leftEdge = v->fFirstEdgeBelow;
|
| - leftEdge->fLeftPoly = leftPoly;
|
| - insert_edge(leftEdge, leftEnclosingEdge, &activeEdges);
|
| - for (Edge* rightEdge = leftEdge->fNextEdgeBelow; rightEdge;
|
| - rightEdge = rightEdge->fNextEdgeBelow) {
|
| - insert_edge(rightEdge, leftEdge, &activeEdges);
|
| - int winding = leftEdge->fLeftPoly ? leftEdge->fLeftPoly->fWinding : 0;
|
| - winding += leftEdge->fWinding;
|
| - if (winding != 0) {
|
| - Poly* poly = new_poly(&polys, v, winding, alloc);
|
| - leftEdge->fRightPoly = rightEdge->fLeftPoly = poly;
|
| - }
|
| - leftEdge = rightEdge;
|
| - }
|
| - v->fLastEdgeBelow->fRightPoly = rightPoly;
|
| - }
|
| -#if LOGGING_ENABLED
|
| - LOG("\nactive edges:\n");
|
| - for (Edge* e = activeEdges.fHead; e != nullptr; e = e->fRight) {
|
| - LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
|
| - e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
|
| - }
|
| -#endif
|
| - }
|
| - return polys;
|
| -}
|
| -
|
| -// This is a driver function which calls stages 2-5 in turn.
|
| -
|
| -Poly* contours_to_polys(Vertex** contours, int contourCnt, Comparator& c, SkChunkAlloc& alloc) {
|
| -#if LOGGING_ENABLED
|
| - for (int i = 0; i < contourCnt; ++i) {
|
| - Vertex* v = contours[i];
|
| - SkASSERT(v);
|
| - LOG("path.moveTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
|
| - for (v = v->fNext; v != contours[i]; v = v->fNext) {
|
| - LOG("path.lineTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
|
| - }
|
| - }
|
| -#endif
|
| - sanitize_contours(contours, contourCnt);
|
| - Vertex* vertices = build_edges(contours, contourCnt, c, alloc);
|
| - if (!vertices) {
|
| - return nullptr;
|
| - }
|
| -
|
| - // Sort vertices in Y (secondarily in X).
|
| - merge_sort(&vertices, c);
|
| - merge_coincident_vertices(&vertices, c, alloc);
|
| -#if LOGGING_ENABLED
|
| - for (Vertex* v = vertices; v != nullptr; v = v->fNext) {
|
| - static float gID = 0.0f;
|
| - v->fID = gID++;
|
| - }
|
| -#endif
|
| - simplify(vertices, c, alloc);
|
| - return tessellate(vertices, alloc);
|
| -}
|
| -
|
| -// Stage 6: Triangulate the monotone polygons into a vertex buffer.
|
| +// When the SkPathRef genID changes, invalidate a corresponding GrResource described by key.
|
| +class PathInvalidator : public SkPathRef::GenIDChangeListener {
|
| +public:
|
| + explicit PathInvalidator(const GrUniqueKey& key) : fMsg(key) {}
|
| +private:
|
| + GrUniqueKeyInvalidatedMessage fMsg;
|
|
|
| -SkPoint* polys_to_triangles(Poly* polys, SkPath::FillType fillType, SkPoint* data) {
|
| - SkPoint* d = data;
|
| - for (Poly* poly = polys; poly; poly = poly->fNext) {
|
| - if (apply_fill_type(fillType, poly->fWinding)) {
|
| - d = poly->emit(d);
|
| - }
|
| + void onChange() override {
|
| + SkMessageBus<GrUniqueKeyInvalidatedMessage>::Post(fMsg);
|
| }
|
| - return d;
|
| -}
|
| -
|
| -struct TessInfo {
|
| - SkScalar fTolerance;
|
| - int fCount;
|
| };
|
|
|
| bool cache_match(GrVertexBuffer* vertexBuffer, SkScalar tol, int* actualCount) {
|
| @@ -1354,27 +59,11 @@ bool cache_match(GrVertexBuffer* vertexBuffer, SkScalar tol, int* actualCount) {
|
| return false;
|
| }
|
|
|
| -};
|
| +} // namespace
|
|
|
| GrTessellatingPathRenderer::GrTessellatingPathRenderer() {
|
| }
|
|
|
| -namespace {
|
| -
|
| -// When the SkPathRef genID changes, invalidate a corresponding GrResource described by key.
|
| -class PathInvalidator : public SkPathRef::GenIDChangeListener {
|
| -public:
|
| - explicit PathInvalidator(const GrUniqueKey& key) : fMsg(key) {}
|
| -private:
|
| - GrUniqueKeyInvalidatedMessage fMsg;
|
| -
|
| - void onChange() override {
|
| - SkMessageBus<GrUniqueKeyInvalidatedMessage>::Post(fMsg);
|
| - }
|
| -};
|
| -
|
| -} // namespace
|
| -
|
| bool GrTessellatingPathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const {
|
| // This path renderer can draw all fill styles, all stroke styles except hairlines, but does
|
| // not do antialiasing. It can do convex and concave paths, but we'll leave the convex ones to
|
| @@ -1435,90 +124,23 @@ private:
|
| }
|
| stroke.setFillStyle();
|
| }
|
| - SkRect pathBounds = path.getBounds();
|
| - Comparator c;
|
| - if (pathBounds.width() > pathBounds.height()) {
|
| - c.sweep_lt = sweep_lt_horiz;
|
| - c.sweep_gt = sweep_gt_horiz;
|
| - } else {
|
| - c.sweep_lt = sweep_lt_vert;
|
| - c.sweep_gt = sweep_gt_vert;
|
| - }
|
| SkScalar screenSpaceTol = GrPathUtils::kDefaultTolerance;
|
| + SkRect pathBounds = path.getBounds();
|
| SkScalar tol = GrPathUtils::scaleToleranceToSrc(screenSpaceTol, fViewMatrix, pathBounds);
|
| - int contourCnt;
|
| - int maxPts = GrPathUtils::worstCasePointCount(path, &contourCnt, tol);
|
| - if (maxPts <= 0) {
|
| - return 0;
|
| - }
|
| - if (maxPts > ((int)SK_MaxU16 + 1)) {
|
| - SkDebugf("Path not rendered, too many verts (%d)\n", maxPts);
|
| - return 0;
|
| - }
|
| - SkPath::FillType fillType = path.getFillType();
|
| - if (SkPath::IsInverseFillType(fillType)) {
|
| - contourCnt++;
|
| - }
|
|
|
| - LOG("got %d pts, %d contours\n", maxPts, contourCnt);
|
| - SkAutoTDeleteArray<Vertex*> contours(new Vertex* [contourCnt]);
|
| -
|
| - // For the initial size of the chunk allocator, estimate based on the point count:
|
| - // one vertex per point for the initial passes, plus two for the vertices in the
|
| - // resulting Polys, since the same point may end up in two Polys. Assume minimal
|
| - // connectivity of one Edge per Vertex (will grow for intersections).
|
| - SkChunkAlloc alloc(maxPts * (3 * sizeof(Vertex) + sizeof(Edge)));
|
| bool isLinear;
|
| - path_to_contours(path, tol, fClipBounds, contours.get(), alloc, &isLinear);
|
| - Poly* polys;
|
| - polys = contours_to_polys(contours.get(), contourCnt, c, alloc);
|
| - int count = 0;
|
| - for (Poly* poly = polys; poly; poly = poly->fNext) {
|
| - if (apply_fill_type(fillType, poly->fWinding) && poly->fCount >= 3) {
|
| - count += (poly->fCount - 2) * (WIREFRAME ? 6 : 3);
|
| - }
|
| - }
|
| - if (0 == count) {
|
| - return 0;
|
| - }
|
| -
|
| - size_t size = count * sizeof(SkPoint);
|
| - if (!vertexBuffer.get() || vertexBuffer->gpuMemorySize() < size) {
|
| - vertexBuffer.reset(resourceProvider->createVertexBuffer(
|
| - size, GrResourceProvider::kStatic_BufferUsage, 0));
|
| - }
|
| - if (!vertexBuffer.get()) {
|
| - SkDebugf("Could not allocate vertices\n");
|
| - return 0;
|
| - }
|
| - SkPoint* verts;
|
| - if (canMapVB) {
|
| - verts = static_cast<SkPoint*>(vertexBuffer->map());
|
| - } else {
|
| - verts = new SkPoint[count];
|
| - }
|
| - SkPoint* end = polys_to_triangles(polys, fillType, verts);
|
| - int actualCount = static_cast<int>(end - verts);
|
| - LOG("actual count: %d\n", actualCount);
|
| - SkASSERT(actualCount <= count);
|
| - if (canMapVB) {
|
| - vertexBuffer->unmap();
|
| - } else {
|
| - vertexBuffer->updateData(verts, actualCount * sizeof(SkPoint));
|
| - delete[] verts;
|
| - }
|
| -
|
| -
|
| + int count = GrTessellator::PathToTriangles(path, tol, fClipBounds, resourceProvider,
|
| + vertexBuffer, canMapVB, &isLinear);
|
| if (!fPath.isVolatile()) {
|
| TessInfo info;
|
| info.fTolerance = isLinear ? 0 : tol;
|
| - info.fCount = actualCount;
|
| + info.fCount = count;
|
| SkAutoTUnref<SkData> data(SkData::NewWithCopy(&info, sizeof(info)));
|
| key->setCustomData(data.get());
|
| resourceProvider->assignUniqueKeyToResource(*key, vertexBuffer.get());
|
| SkPathPriv::AddGenIDChangeListener(fPath, new PathInvalidator(*key));
|
| }
|
| - return actualCount;
|
| + return count;
|
| }
|
|
|
| void onPrepareDraws(Target* target) const override {
|
| @@ -1574,8 +196,8 @@ private:
|
| target->initDraw(gp, this->pipeline());
|
| SkASSERT(gp->getVertexStride() == sizeof(SkPoint));
|
|
|
| - GrPrimitiveType primitiveType = WIREFRAME ? kLines_GrPrimitiveType
|
| - : kTriangles_GrPrimitiveType;
|
| + GrPrimitiveType primitiveType = TESSELLATOR_WIREFRAME ? kLines_GrPrimitiveType
|
| + : kTriangles_GrPrimitiveType;
|
| GrVertices vertices;
|
| vertices.init(primitiveType, vertexBuffer.get(), 0, actualCount);
|
| target->draw(vertices);
|
|
|