| Index: src/gpu/GrTessellator.cpp
|
| diff --git a/src/gpu/batches/GrTessellatingPathRenderer.cpp b/src/gpu/GrTessellator.cpp
|
| similarity index 79%
|
| copy from src/gpu/batches/GrTessellatingPathRenderer.cpp
|
| copy to src/gpu/GrTessellator.cpp
|
| index 27e287e9c6bceb6b48c7e500ef338fcc7b259775..ea130cf15fec269f741998cd9077d0694db61720 100644
|
| --- a/src/gpu/batches/GrTessellatingPathRenderer.cpp
|
| +++ b/src/gpu/GrTessellator.cpp
|
| @@ -5,7 +5,7 @@
|
| * found in the LICENSE file.
|
| */
|
|
|
| -#include "GrTessellatingPathRenderer.h"
|
| +#include "GrTessellator.h"
|
|
|
| #include "GrBatchFlushState.h"
|
| #include "GrBatchTest.h"
|
| @@ -14,18 +14,14 @@
|
| #include "GrVertices.h"
|
| #include "GrResourceCache.h"
|
| #include "GrResourceProvider.h"
|
| -#include "SkChunkAlloc.h"
|
| #include "SkGeometry.h"
|
| +#include "SkChunkAlloc.h"
|
|
|
| #include "batches/GrVertexBatch.h"
|
|
|
| #include <stdio.h>
|
|
|
| /*
|
| - * This path renderer tessellates the path into triangles, uploads the triangles to a
|
| - * vertex buffer, and renders them with a single draw call. It does not currently do
|
| - * antialiasing, so it must be used in conjunction with multisampling.
|
| - *
|
| * There are six stages to the algorithm:
|
| *
|
| * 1) Linearize the path contours into piecewise linear segments (path_to_contours()).
|
| @@ -80,8 +76,8 @@
|
| * increasing in Y; edges to the right are decreasing in Y). That is, the setting rotates 90
|
| * degrees counterclockwise, rather that transposing.
|
| */
|
| +
|
| #define LOGGING_ENABLED 0
|
| -#define WIREFRAME 0
|
|
|
| #if LOGGING_ENABLED
|
| #define LOG printf
|
| @@ -541,7 +537,6 @@ Vertex* generate_cubic_points(const SkPoint& p0,
|
|
|
| void path_to_contours(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
|
| Vertex** contours, SkChunkAlloc& alloc, bool *isLinear) {
|
| -
|
| SkScalar toleranceSqd = tolerance * tolerance;
|
|
|
| SkPoint pts[4];
|
| @@ -1293,7 +1288,16 @@ Poly* tessellate(Vertex* vertices, SkChunkAlloc& alloc) {
|
|
|
| // This is a driver function which calls stages 2-5 in turn.
|
|
|
| -Poly* contours_to_polys(Vertex** contours, int contourCnt, Comparator& c, SkChunkAlloc& alloc) {
|
| +Poly* contours_to_polys(Vertex** contours, int contourCnt, const SkRect& pathBounds,
|
| + SkChunkAlloc& alloc) {
|
| + Comparator c;
|
| + if (pathBounds.width() > pathBounds.height()) {
|
| + c.sweep_lt = sweep_lt_horiz;
|
| + c.sweep_gt = sweep_gt_horiz;
|
| + } else {
|
| + c.sweep_lt = sweep_lt_vert;
|
| + c.sweep_gt = sweep_gt_vert;
|
| + }
|
| #if LOGGING_ENABLED
|
| for (int i = 0; i < contourCnt; ++i) {
|
| Vertex* v = contours[i];
|
| @@ -1323,349 +1327,144 @@ Poly* contours_to_polys(Vertex** contours, int contourCnt, Comparator& c, SkChun
|
| return tessellate(vertices, alloc);
|
| }
|
|
|
| -// Stage 6: Triangulate the monotone polygons into a vertex buffer.
|
| -
|
| -SkPoint* polys_to_triangles(Poly* polys, SkPath::FillType fillType, SkPoint* data) {
|
| - SkPoint* d = data;
|
| - for (Poly* poly = polys; poly; poly = poly->fNext) {
|
| - if (apply_fill_type(fillType, poly->fWinding)) {
|
| - d = poly->emit(d);
|
| - }
|
| +Poly* path_to_polys(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
|
| + int contourCnt, SkChunkAlloc& alloc, bool* isLinear) {
|
| + SkPath::FillType fillType = path.getFillType();
|
| + if (SkPath::IsInverseFillType(fillType)) {
|
| + contourCnt++;
|
| }
|
| - return d;
|
| -}
|
| + SkAutoTDeleteArray<Vertex*> contours(new Vertex* [contourCnt]);
|
|
|
| -struct TessInfo {
|
| - SkScalar fTolerance;
|
| - int fCount;
|
| -};
|
| + path_to_contours(path, tolerance, clipBounds, contours.get(), alloc, isLinear);
|
| + return contours_to_polys(contours.get(), contourCnt, path.getBounds(), alloc);
|
| +}
|
|
|
| -bool cache_match(GrVertexBuffer* vertexBuffer, SkScalar tol, int* actualCount) {
|
| - if (!vertexBuffer) {
|
| - return false;
|
| +void get_contour_count_and_size_estimate(const SkPath& path, SkScalar tolerance, int* contourCnt,
|
| + int* sizeEstimate) {
|
| + int maxPts = GrPathUtils::worstCasePointCount(path, contourCnt, tolerance);
|
| + if (maxPts <= 0) {
|
| + *contourCnt = 0;
|
| + return;
|
| }
|
| - const SkData* data = vertexBuffer->getUniqueKey().getCustomData();
|
| - SkASSERT(data);
|
| - const TessInfo* info = static_cast<const TessInfo*>(data->data());
|
| - if (info->fTolerance == 0 || info->fTolerance < 3.0f * tol) {
|
| - *actualCount = info->fCount;
|
| - return true;
|
| + if (maxPts > ((int)SK_MaxU16 + 1)) {
|
| + SkDebugf("Path not rendered, too many verts (%d)\n", maxPts);
|
| + *contourCnt = 0;
|
| + return;
|
| }
|
| - return false;
|
| -}
|
| -
|
| -};
|
| -
|
| -GrTessellatingPathRenderer::GrTessellatingPathRenderer() {
|
| + // For the initial size of the chunk allocator, estimate based on the point count:
|
| + // one vertex per point for the initial passes, plus two for the vertices in the
|
| + // resulting Polys, since the same point may end up in two Polys. Assume minimal
|
| + // connectivity of one Edge per Vertex (will grow for intersections).
|
| + *sizeEstimate = maxPts * (3 * sizeof(Vertex) + sizeof(Edge));
|
| }
|
|
|
| -namespace {
|
| -
|
| -// When the SkPathRef genID changes, invalidate a corresponding GrResource described by key.
|
| -class PathInvalidator : public SkPathRef::GenIDChangeListener {
|
| -public:
|
| - explicit PathInvalidator(const GrUniqueKey& key) : fMsg(key) {}
|
| -private:
|
| - GrUniqueKeyInvalidatedMessage fMsg;
|
| -
|
| - void onChange() override {
|
| - SkMessageBus<GrUniqueKeyInvalidatedMessage>::Post(fMsg);
|
| +int count_points(Poly* polys, SkPath::FillType fillType) {
|
| + int count = 0;
|
| + for (Poly* poly = polys; poly; poly = poly->fNext) {
|
| + if (apply_fill_type(fillType, poly->fWinding) && poly->fCount >= 3) {
|
| + count += (poly->fCount - 2) * (TESSELLATOR_WIREFRAME ? 6 : 3);
|
| + }
|
| }
|
| -};
|
| -
|
| -} // namespace
|
| -
|
| -bool GrTessellatingPathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const {
|
| - // This path renderer can draw all fill styles, all stroke styles except hairlines, but does
|
| - // not do antialiasing. It can do convex and concave paths, but we'll leave the convex ones to
|
| - // simpler algorithms.
|
| - return !IsStrokeHairlineOrEquivalent(*args.fStroke, *args.fViewMatrix, nullptr) &&
|
| - !args.fAntiAlias && !args.fPath->isConvex();
|
| + return count;
|
| }
|
|
|
| -class TessellatingPathBatch : public GrVertexBatch {
|
| -public:
|
| - DEFINE_BATCH_CLASS_ID
|
| +} // namespace
|
|
|
| - static GrDrawBatch* Create(const GrColor& color,
|
| - const SkPath& path,
|
| - const GrStrokeInfo& stroke,
|
| - const SkMatrix& viewMatrix,
|
| - SkRect clipBounds) {
|
| - return new TessellatingPathBatch(color, path, stroke, viewMatrix, clipBounds);
|
| - }
|
| +namespace GrTessellator {
|
|
|
| - const char* name() const override { return "TessellatingPathBatch"; }
|
| +// Stage 6: Triangulate the monotone polygons into a vertex buffer.
|
|
|
| - void computePipelineOptimizations(GrInitInvariantOutput* color,
|
| - GrInitInvariantOutput* coverage,
|
| - GrBatchToXPOverrides* overrides) const override {
|
| - color->setKnownFourComponents(fColor);
|
| - coverage->setUnknownSingleComponent();
|
| - overrides->fUsePLSDstRead = false;
|
| +int PathToTriangles(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
|
| + GrResourceProvider* resourceProvider,
|
| + SkAutoTUnref<GrVertexBuffer>& vertexBuffer, bool canMapVB, bool* isLinear) {
|
| + int contourCnt;
|
| + int sizeEstimate;
|
| + get_contour_count_and_size_estimate(path, tolerance, &contourCnt, &sizeEstimate);
|
| + if (contourCnt <= 0) {
|
| + *isLinear = true;
|
| + return 0;
|
| + }
|
| + SkChunkAlloc alloc(sizeEstimate);
|
| + Poly* polys = path_to_polys(path, tolerance, clipBounds, contourCnt, alloc, isLinear);
|
| + SkPath::FillType fillType = path.getFillType();
|
| + int count = count_points(polys, fillType);
|
| + if (0 == count) {
|
| + return 0;
|
| + }
|
| +
|
| + size_t size = count * sizeof(SkPoint);
|
| + if (!vertexBuffer.get() || vertexBuffer->gpuMemorySize() < size) {
|
| + vertexBuffer.reset(resourceProvider->createVertexBuffer(
|
| + size, GrResourceProvider::kStatic_BufferUsage, 0));
|
| + }
|
| + if (!vertexBuffer.get()) {
|
| + SkDebugf("Could not allocate vertices\n");
|
| + return 0;
|
| + }
|
| + SkPoint* verts;
|
| + if (canMapVB) {
|
| + verts = static_cast<SkPoint*>(vertexBuffer->map());
|
| + } else {
|
| + verts = new SkPoint[count];
|
| }
|
| -
|
| -private:
|
| - void initBatchTracker(const GrXPOverridesForBatch& overrides) override {
|
| - // Handle any color overrides
|
| - if (!overrides.readsColor()) {
|
| - fColor = GrColor_ILLEGAL;
|
| - }
|
| - overrides.getOverrideColorIfSet(&fColor);
|
| - fPipelineInfo = overrides;
|
| - }
|
| -
|
| - int tessellate(GrUniqueKey* key,
|
| - GrResourceProvider* resourceProvider,
|
| - SkAutoTUnref<GrVertexBuffer>& vertexBuffer,
|
| - bool canMapVB) const {
|
| - SkPath path;
|
| - GrStrokeInfo stroke(fStroke);
|
| - if (stroke.isDashed()) {
|
| - if (!stroke.applyDashToPath(&path, &stroke, fPath)) {
|
| - return 0;
|
| - }
|
| - } else {
|
| - path = fPath;
|
| - }
|
| - if (!stroke.isFillStyle()) {
|
| - stroke.setResScale(SkScalarAbs(fViewMatrix.getMaxScale()));
|
| - if (!stroke.applyToPath(&path, path)) {
|
| - return 0;
|
| - }
|
| - stroke.setFillStyle();
|
| - }
|
| - SkRect pathBounds = path.getBounds();
|
| - Comparator c;
|
| - if (pathBounds.width() > pathBounds.height()) {
|
| - c.sweep_lt = sweep_lt_horiz;
|
| - c.sweep_gt = sweep_gt_horiz;
|
| - } else {
|
| - c.sweep_lt = sweep_lt_vert;
|
| - c.sweep_gt = sweep_gt_vert;
|
| - }
|
| - SkScalar screenSpaceTol = GrPathUtils::kDefaultTolerance;
|
| - SkScalar tol = GrPathUtils::scaleToleranceToSrc(screenSpaceTol, fViewMatrix, pathBounds);
|
| - int contourCnt;
|
| - int maxPts = GrPathUtils::worstCasePointCount(path, &contourCnt, tol);
|
| - if (maxPts <= 0) {
|
| - return 0;
|
| - }
|
| - if (maxPts > ((int)SK_MaxU16 + 1)) {
|
| - SkDebugf("Path not rendered, too many verts (%d)\n", maxPts);
|
| - return 0;
|
| - }
|
| - SkPath::FillType fillType = path.getFillType();
|
| - if (SkPath::IsInverseFillType(fillType)) {
|
| - contourCnt++;
|
| - }
|
| -
|
| - LOG("got %d pts, %d contours\n", maxPts, contourCnt);
|
| - SkAutoTDeleteArray<Vertex*> contours(new Vertex* [contourCnt]);
|
| -
|
| - // For the initial size of the chunk allocator, estimate based on the point count:
|
| - // one vertex per point for the initial passes, plus two for the vertices in the
|
| - // resulting Polys, since the same point may end up in two Polys. Assume minimal
|
| - // connectivity of one Edge per Vertex (will grow for intersections).
|
| - SkChunkAlloc alloc(maxPts * (3 * sizeof(Vertex) + sizeof(Edge)));
|
| - bool isLinear;
|
| - path_to_contours(path, tol, fClipBounds, contours.get(), alloc, &isLinear);
|
| - Poly* polys;
|
| - polys = contours_to_polys(contours.get(), contourCnt, c, alloc);
|
| - int count = 0;
|
| - for (Poly* poly = polys; poly; poly = poly->fNext) {
|
| - if (apply_fill_type(fillType, poly->fWinding) && poly->fCount >= 3) {
|
| - count += (poly->fCount - 2) * (WIREFRAME ? 6 : 3);
|
| - }
|
| - }
|
| - if (0 == count) {
|
| - return 0;
|
| - }
|
| -
|
| - size_t size = count * sizeof(SkPoint);
|
| - if (!vertexBuffer.get() || vertexBuffer->gpuMemorySize() < size) {
|
| - vertexBuffer.reset(resourceProvider->createVertexBuffer(
|
| - size, GrResourceProvider::kStatic_BufferUsage, 0));
|
| - }
|
| - if (!vertexBuffer.get()) {
|
| - SkDebugf("Could not allocate vertices\n");
|
| - return 0;
|
| - }
|
| - SkPoint* verts;
|
| - if (canMapVB) {
|
| - verts = static_cast<SkPoint*>(vertexBuffer->map());
|
| - } else {
|
| - verts = new SkPoint[count];
|
| - }
|
| - SkPoint* end = polys_to_triangles(polys, fillType, verts);
|
| - int actualCount = static_cast<int>(end - verts);
|
| - LOG("actual count: %d\n", actualCount);
|
| - SkASSERT(actualCount <= count);
|
| - if (canMapVB) {
|
| - vertexBuffer->unmap();
|
| - } else {
|
| - vertexBuffer->updateData(verts, actualCount * sizeof(SkPoint));
|
| - delete[] verts;
|
| - }
|
| -
|
| -
|
| - if (!fPath.isVolatile()) {
|
| - TessInfo info;
|
| - info.fTolerance = isLinear ? 0 : tol;
|
| - info.fCount = actualCount;
|
| - SkAutoTUnref<SkData> data(SkData::NewWithCopy(&info, sizeof(info)));
|
| - key->setCustomData(data.get());
|
| - resourceProvider->assignUniqueKeyToResource(*key, vertexBuffer.get());
|
| - SkPathPriv::AddGenIDChangeListener(fPath, new PathInvalidator(*key));
|
| - }
|
| - return actualCount;
|
| - }
|
| -
|
| - void onPrepareDraws(Target* target) const override {
|
| - // construct a cache key from the path's genID and the view matrix
|
| - static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
|
| - GrUniqueKey key;
|
| - int clipBoundsSize32 =
|
| - fPath.isInverseFillType() ? sizeof(fClipBounds) / sizeof(uint32_t) : 0;
|
| - int strokeDataSize32 = fStroke.computeUniqueKeyFragmentData32Cnt();
|
| - GrUniqueKey::Builder builder(&key, kDomain, 2 + clipBoundsSize32 + strokeDataSize32);
|
| - builder[0] = fPath.getGenerationID();
|
| - builder[1] = fPath.getFillType();
|
| - // For inverse fills, the tessellation is dependent on clip bounds.
|
| - if (fPath.isInverseFillType()) {
|
| - memcpy(&builder[2], &fClipBounds, sizeof(fClipBounds));
|
| - }
|
| - fStroke.asUniqueKeyFragment(&builder[2 + clipBoundsSize32]);
|
| - builder.finish();
|
| - GrResourceProvider* rp = target->resourceProvider();
|
| - SkAutoTUnref<GrVertexBuffer> vertexBuffer(rp->findAndRefTByUniqueKey<GrVertexBuffer>(key));
|
| - int actualCount;
|
| - SkScalar screenSpaceTol = GrPathUtils::kDefaultTolerance;
|
| - SkScalar tol = GrPathUtils::scaleToleranceToSrc(
|
| - screenSpaceTol, fViewMatrix, fPath.getBounds());
|
| - if (!cache_match(vertexBuffer.get(), tol, &actualCount)) {
|
| - bool canMapVB = GrCaps::kNone_MapFlags != target->caps().mapBufferFlags();
|
| - actualCount = this->tessellate(&key, rp, vertexBuffer, canMapVB);
|
| - }
|
| -
|
| - if (actualCount == 0) {
|
| - return;
|
| - }
|
| -
|
| - SkAutoTUnref<const GrGeometryProcessor> gp;
|
| - {
|
| - using namespace GrDefaultGeoProcFactory;
|
| -
|
| - Color color(fColor);
|
| - LocalCoords localCoords(fPipelineInfo.readsLocalCoords() ?
|
| - LocalCoords::kUsePosition_Type :
|
| - LocalCoords::kUnused_Type);
|
| - Coverage::Type coverageType;
|
| - if (fPipelineInfo.readsCoverage()) {
|
| - coverageType = Coverage::kSolid_Type;
|
| - } else {
|
| - coverageType = Coverage::kNone_Type;
|
| - }
|
| - Coverage coverage(coverageType);
|
| - gp.reset(GrDefaultGeoProcFactory::Create(color, coverage, localCoords,
|
| - fViewMatrix));
|
| - }
|
| -
|
| - target->initDraw(gp, this->pipeline());
|
| - SkASSERT(gp->getVertexStride() == sizeof(SkPoint));
|
| -
|
| - GrPrimitiveType primitiveType = WIREFRAME ? kLines_GrPrimitiveType
|
| - : kTriangles_GrPrimitiveType;
|
| - GrVertices vertices;
|
| - vertices.init(primitiveType, vertexBuffer.get(), 0, actualCount);
|
| - target->draw(vertices);
|
| - }
|
| -
|
| - bool onCombineIfPossible(GrBatch*, const GrCaps&) override { return false; }
|
| -
|
| - TessellatingPathBatch(const GrColor& color,
|
| - const SkPath& path,
|
| - const GrStrokeInfo& stroke,
|
| - const SkMatrix& viewMatrix,
|
| - const SkRect& clipBounds)
|
| - : INHERITED(ClassID())
|
| - , fColor(color)
|
| - , fPath(path)
|
| - , fStroke(stroke)
|
| - , fViewMatrix(viewMatrix) {
|
| - const SkRect& pathBounds = path.getBounds();
|
| - fClipBounds = clipBounds;
|
| - // Because the clip bounds are used to add a contour for inverse fills, they must also
|
| - // include the path bounds.
|
| - fClipBounds.join(pathBounds);
|
| - if (path.isInverseFillType()) {
|
| - fBounds = fClipBounds;
|
| - } else {
|
| - fBounds = path.getBounds();
|
| - }
|
| - if (!stroke.isFillStyle()) {
|
| - SkScalar radius = SkScalarHalf(stroke.getWidth());
|
| - if (stroke.getJoin() == SkPaint::kMiter_Join) {
|
| - SkScalar scale = stroke.getMiter();
|
| - if (scale > SK_Scalar1) {
|
| - radius = SkScalarMul(radius, scale);
|
| - }
|
| - }
|
| - fBounds.outset(radius, radius);
|
| + SkPoint* end = verts;
|
| + for (Poly* poly = polys; poly; poly = poly->fNext) {
|
| + if (apply_fill_type(fillType, poly->fWinding)) {
|
| + end = poly->emit(end);
|
| }
|
| - viewMatrix.mapRect(&fBounds);
|
| - }
|
| -
|
| - GrColor fColor;
|
| - SkPath fPath;
|
| - GrStrokeInfo fStroke;
|
| - SkMatrix fViewMatrix;
|
| - SkRect fClipBounds; // in source space
|
| - GrXPOverridesForBatch fPipelineInfo;
|
| -
|
| - typedef GrVertexBatch INHERITED;
|
| -};
|
| -
|
| -bool GrTessellatingPathRenderer::onDrawPath(const DrawPathArgs& args) {
|
| - SkASSERT(!args.fAntiAlias);
|
| - const GrRenderTarget* rt = args.fPipelineBuilder->getRenderTarget();
|
| - if (nullptr == rt) {
|
| - return false;
|
| }
|
| -
|
| - SkIRect clipBoundsI;
|
| - args.fPipelineBuilder->clip().getConservativeBounds(rt->width(), rt->height(), &clipBoundsI);
|
| - SkRect clipBounds = SkRect::Make(clipBoundsI);
|
| - SkMatrix vmi;
|
| - if (!args.fViewMatrix->invert(&vmi)) {
|
| - return false;
|
| + int actualCount = static_cast<int>(end - verts);
|
| + LOG("actual count: %d\n", actualCount);
|
| + SkASSERT(actualCount <= count);
|
| + if (canMapVB) {
|
| + vertexBuffer->unmap();
|
| + } else {
|
| + vertexBuffer->updateData(verts, actualCount * sizeof(SkPoint));
|
| + delete[] verts;
|
| }
|
| - vmi.mapRect(&clipBounds);
|
| - SkAutoTUnref<GrDrawBatch> batch(TessellatingPathBatch::Create(args.fColor, *args.fPath,
|
| - *args.fStroke, *args.fViewMatrix,
|
| - clipBounds));
|
| - args.fTarget->drawBatch(*args.fPipelineBuilder, batch);
|
|
|
| - return true;
|
| + return actualCount;
|
| }
|
|
|
| -///////////////////////////////////////////////////////////////////////////////////////////////////
|
| -
|
| -#ifdef GR_TEST_UTILS
|
| -
|
| -DRAW_BATCH_TEST_DEFINE(TesselatingPathBatch) {
|
| - GrColor color = GrRandomColor(random);
|
| - SkMatrix viewMatrix = GrTest::TestMatrixInvertible(random);
|
| - SkPath path = GrTest::TestPath(random);
|
| - SkRect clipBounds = GrTest::TestRect(random);
|
| - SkMatrix vmi;
|
| - bool result = viewMatrix.invert(&vmi);
|
| - if (!result) {
|
| - SkFAIL("Cannot invert matrix\n");
|
| +int PathToVertices(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
|
| + GrTessellator::WindingVertex** verts) {
|
| + int contourCnt;
|
| + int sizeEstimate;
|
| + get_contour_count_and_size_estimate(path, tolerance, &contourCnt, &sizeEstimate);
|
| + if (contourCnt <= 0) {
|
| + return 0;
|
| + }
|
| + SkChunkAlloc alloc(sizeEstimate);
|
| + bool isLinear;
|
| + Poly* polys = path_to_polys(path, tolerance, clipBounds, contourCnt, alloc, &isLinear);
|
| + SkPath::FillType fillType = path.getFillType();
|
| + int count = count_points(polys, fillType);
|
| + if (0 == count) {
|
| + *verts = nullptr;
|
| + return 0;
|
| + }
|
| +
|
| + *verts = new GrTessellator::WindingVertex[count];
|
| + GrTessellator::WindingVertex* vertsEnd = *verts;
|
| + SkPoint* points = new SkPoint[count];
|
| + SkPoint* pointsEnd = points;
|
| + for (Poly* poly = polys; poly; poly = poly->fNext) {
|
| + if (apply_fill_type(fillType, poly->fWinding)) {
|
| + SkPoint* start = pointsEnd;
|
| + pointsEnd = poly->emit(pointsEnd);
|
| + while (start != pointsEnd) {
|
| + vertsEnd->fPos = *start;
|
| + vertsEnd->fWinding = poly->fWinding;
|
| + ++start;
|
| + ++vertsEnd;
|
| + }
|
| + }
|
| }
|
| - vmi.mapRect(&clipBounds);
|
| - GrStrokeInfo strokeInfo = GrTest::TestStrokeInfo(random);
|
| - return TessellatingPathBatch::Create(color, path, strokeInfo, viewMatrix, clipBounds);
|
| + int actualCount = static_cast<int>(vertsEnd - *verts);
|
| + SkASSERT(actualCount <= count);
|
| + SkASSERT(pointsEnd - points == actualCount);
|
| + delete[] points;
|
| + return actualCount;
|
| }
|
|
|
| -#endif
|
| +} // namespace
|
|
|