Index: net/quic/crypto/strike_register.cc |
diff --git a/net/quic/crypto/strike_register.cc b/net/quic/crypto/strike_register.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..565d5c8e8fbb2fa53882ed5a82ad0a7c7921da70 |
--- /dev/null |
+++ b/net/quic/crypto/strike_register.cc |
@@ -0,0 +1,465 @@ |
+// Copyright (c) 2013 The Chromium Authors. All rights reserved. |
+// Use of this source code is governed by a BSD-style license that can be |
+// found in the LICENSE file. |
+ |
+#include "net/quic/crypto/strike_register.h" |
+ |
+#include "base/logging.h" |
+ |
+using std::pair; |
+using std::set; |
+using std::vector; |
+ |
+namespace net { |
+ |
+// static |
+const uint32 StrikeRegister::kExternalNodeSize = 24; |
+// static |
+const uint32 StrikeRegister::kNil = (1 << 31) | 1; |
+// static |
+const uint32 StrikeRegister::kExternalFlag = 1 << 23; |
+ |
+// InternalNode represents a non-leaf node in the critbit tree. See the comment |
+// in the .h file for details. |
+class StrikeRegister::InternalNode { |
+ public: |
+ void SetChild(unsigned direction, uint32 child) { |
+ data_[direction] = (data_[direction] & 0xff) | (child << 8); |
+ } |
+ |
+ void SetCritByte(uint8 critbyte) { |
+ data_[0] &= 0xffffff00; |
+ data_[0] |= critbyte; |
+ } |
+ |
+ void SetOtherBits(uint8 otherbits) { |
+ data_[1] &= 0xffffff00; |
+ data_[1] |= otherbits; |
+ } |
+ |
+ void SetNextPtr(uint32 next) { |
+ data_[0] = next; |
+ } |
+ |
+ uint32 next() const { |
+ return data_[0]; |
+ } |
+ |
+ uint32 child(unsigned n) const { |
+ return data_[n] >> 8; |
+ } |
+ |
+ uint8 critbyte() const { |
+ return data_[0]; |
+ } |
+ |
+ uint8 otherbits() const { |
+ return data_[1]; |
+ } |
+ |
+ // These bytes are organised thus: |
+ // <24 bits> left child |
+ // <8 bits> crit-byte |
+ // <24 bits> right child |
+ // <8 bits> other-bits |
+ uint32 data_[2]; |
+}; |
+ |
+StrikeRegister::StrikeRegister(unsigned max_entries, |
+ uint32 current_time, |
+ uint32 window_secs, |
+ const uint8 orbit[8]) |
+ : max_entries_(max_entries), |
+ window_secs_(window_secs), |
+ // The horizon is initially set |window_secs| into the future because, if |
+ // we just crashed, then we may have accepted nonces in the span |
+ // [current_time...current_time+window_secs) and so we conservatively |
+ // reject the whole timespan. |
+ horizon_(current_time + window_secs) { |
+ memcpy(orbit_, orbit, sizeof(orbit_)); |
+ |
+ // We only have 23 bits of index available. |
+ CHECK_LT(max_entries, 1u << 23); |
+ CHECK_GT(max_entries, 1u); // There must be at least two entries. |
+ CHECK_EQ(sizeof(InternalNode), 8u); // in case of compiler changes. |
+ internal_nodes_ = new InternalNode[max_entries]; |
+ external_nodes_.reset(new uint8[kExternalNodeSize * max_entries]); |
+ |
+ Reset(); |
+} |
+ |
+StrikeRegister::~StrikeRegister() { |
+ delete[] internal_nodes_; |
+} |
+ |
+void StrikeRegister::Reset() { |
+ // Thread a free list through all of the internal nodes. |
+ internal_node_free_head_ = 0; |
+ for (unsigned i = 0; i < max_entries_ - 1; i++) |
+ internal_nodes_[i].SetNextPtr(i + 1); |
+ internal_nodes_[max_entries_ - 1].SetNextPtr(kNil); |
+ |
+ // Also thread a free list through the external nodes. |
+ external_node_free_head_ = 0; |
+ for (unsigned i = 0; i < max_entries_ - 1; i++) |
+ external_node_next_ptr(i) = i + 1; |
+ external_node_next_ptr(max_entries_ - 1) = kNil; |
+ |
+ // This is the root of the tree. |
+ internal_node_head_ = kNil; |
+} |
+ |
+bool StrikeRegister::Insert(const uint8 nonce[32], |
+ const uint32 current_time) { |
+ // If current_time is very small or very large then we assume that we have |
+ // just rolled over / are about to roll over and it's 2038 or 2106. Since |
+ // we don't deal with this situation we flush everything and start over. |
+ // This means that we reject everything for 2 * |window_secs_| every 68 |
+ // years. |
+ if (current_time < window_secs_ || |
+ current_time + window_secs_ < current_time) { |
+ if (internal_node_head_ != kNil) { |
+ Reset(); |
+ } |
+ horizon_ = current_time; |
+ return false; |
+ } |
+ |
+ // Check to see if the orbit is correct. |
+ if (memcmp(nonce + sizeof(current_time), orbit_, sizeof(orbit_))) { |
+ return false; |
+ } |
+ const uint32 nonce_time = TimeFromBytes(nonce); |
+ // We have dropped one or more nonces with a time value of |horizon_|, so |
+ // we have to reject anything with a timestamp less than or equal to that. |
+ if (nonce_time <= horizon_) { |
+ return false; |
+ } |
+ |
+ // Check that the timestamp is in the current window. |
+ if (nonce_time < (current_time - window_secs_) || |
+ nonce_time > (current_time + window_secs_)) { |
+ return false; |
+ } |
+ |
+ // We strip the orbit out of the nonce. |
+ uint8 value[24]; |
+ memcpy(value, nonce, sizeof(current_time)); |
+ memcpy(value + sizeof(current_time), |
+ nonce + sizeof(current_time) + sizeof(orbit_), |
+ sizeof(value) - sizeof(current_time)); |
+ |
+ // Find the best match to |value| in the crit-bit tree. The best match is |
+ // simply the value which /could/ match |value|, if any does, so we still |
+ // need a memcmp to check. |
+ uint32 best_match_index = BestMatch(value); |
+ if (best_match_index == kNil) { |
+ // Empty tree. Just insert the new value at the root. |
+ uint32 index = GetFreeExternalNode(); |
+ memcpy(external_node(index), value, sizeof(value)); |
+ internal_node_head_ = (index | kExternalFlag) << 8; |
+ return true; |
+ } |
+ |
+ const uint8* best_match = external_node(best_match_index); |
+ if (memcmp(best_match, value, sizeof(value)) == 0) { |
+ // We found the value in the tree. |
+ return false; |
+ } |
+ |
+ // We are going to insert a new entry into the tree, so get the nodes now. |
+ uint32 internal_node_index = GetFreeInternalNode(); |
+ uint32 external_node_index = GetFreeExternalNode(); |
+ |
+ // If we just evicted the best match, then we have to try and match again. |
+ // We know that we didn't just empty the tree because we require that |
+ // max_entries_ >= 2. Also, we know that it doesn't match because, if it |
+ // did, it would have been returned previously. |
+ if (external_node_index == best_match_index) { |
+ best_match_index = BestMatch(value); |
+ best_match = external_node(best_match_index); |
+ } |
+ |
+ // Now we need to find the first bit where we differ from |best_match|. |
+ unsigned differing_byte; |
+ uint8 new_other_bits; |
+ for (differing_byte = 0; differing_byte < sizeof(value); differing_byte++) { |
+ new_other_bits = value[differing_byte] ^ best_match[differing_byte]; |
+ if (new_other_bits) { |
+ break; |
+ } |
+ } |
+ |
+ // Once we have the XOR the of first differing byte in new_other_bits we need |
+ // to find the most significant differing bit. We could do this with a simple |
+ // for loop, testing bits 7..0. Instead we fold the bits so that we end up |
+ // with a byte where all the bits below the most significant one, are set. |
+ new_other_bits |= new_other_bits >> 1; |
+ new_other_bits |= new_other_bits >> 2; |
+ new_other_bits |= new_other_bits >> 4; |
+ // Now this bit trick results in all the bits set, except the original |
+ // most-significant one. |
+ new_other_bits = (new_other_bits & ~(new_other_bits >> 1)) ^ 255; |
+ |
+ // Consider the effect of ORing against |new_other_bits|. If |value| did not |
+ // have the critical bit set, the result is the same as |new_other_bits|. If |
+ // it did, the result is all ones. |
+ |
+ unsigned newdirection; |
+ if ((new_other_bits | value[differing_byte]) == 0xff) { |
+ newdirection = 1; |
+ } else { |
+ newdirection = 0; |
+ } |
+ |
+ memcpy(external_node(external_node_index), value, sizeof(value)); |
+ InternalNode* inode = &internal_nodes_[internal_node_index]; |
+ |
+ inode->SetChild(newdirection, external_node_index | kExternalFlag); |
+ inode->SetCritByte(differing_byte); |
+ inode->SetOtherBits(new_other_bits); |
+ |
+ // |where_index| is a pointer to the uint32 which needs to be updated in |
+ // order to insert the new internal node into the tree. The internal nodes |
+ // store the child indexes in the top 24-bits of a 32-bit word and, to keep |
+ // the code simple, we define that |internal_node_head_| is organised the |
+ // same way. |
+ DCHECK_EQ(internal_node_head_ & 0xff, 0u); |
+ uint32* where_index = &internal_node_head_; |
+ while (((*where_index >> 8) & kExternalFlag) == 0) { |
+ InternalNode* node = &internal_nodes_[*where_index >> 8]; |
+ if (node->critbyte() > differing_byte) { |
+ break; |
+ } |
+ if (node->critbyte() == differing_byte && |
+ node->otherbits() > new_other_bits) { |
+ break; |
+ } |
+ if (node->critbyte() == differing_byte && |
+ node->otherbits() == new_other_bits) { |
+ CHECK(false); |
+ } |
+ |
+ uint8 c = value[node->critbyte()]; |
+ const int direction = |
+ (1 + static_cast<unsigned>(node->otherbits() | c)) >> 8; |
+ where_index = &node->data_[direction]; |
+ } |
+ |
+ inode->SetChild(newdirection ^ 1, *where_index >> 8); |
+ *where_index = (*where_index & 0xff) | (internal_node_index << 8); |
+ |
+ return true; |
+} |
+ |
+void StrikeRegister::Validate() { |
+ set<uint32> free_internal_nodes; |
+ for (uint32 i = internal_node_free_head_; i != kNil; |
+ i = internal_nodes_[i].next()) { |
+ CHECK_LT(i, max_entries_); |
+ CHECK_EQ(free_internal_nodes.count(i), 0u); |
+ free_internal_nodes.insert(i); |
+ } |
+ |
+ set<uint32> free_external_nodes; |
+ for (uint32 i = external_node_free_head_; i != kNil; |
+ i = external_node_next_ptr(i)) { |
+ CHECK_LT(i, max_entries_); |
+ CHECK_EQ(free_external_nodes.count(i), 0u); |
+ free_external_nodes.insert(i); |
+ } |
+ |
+ set<uint32> used_external_nodes; |
+ set<uint32> used_internal_nodes; |
+ |
+ if (internal_node_head_ != kNil && |
+ ((internal_node_head_ >> 8) & kExternalFlag) == 0) { |
+ vector<pair<unsigned, bool> > bits; |
+ ValidateTree(internal_node_head_ >> 8, -1, bits, free_internal_nodes, |
+ free_external_nodes, &used_internal_nodes, |
+ &used_external_nodes); |
+ } |
+} |
+ |
+// static |
+uint32 StrikeRegister::TimeFromBytes(const uint8 d[4]) { |
+ return static_cast<uint32>(d[0]) << 24 | |
+ static_cast<uint32>(d[1]) << 16 | |
+ static_cast<uint32>(d[2]) << 8 | |
+ static_cast<uint32>(d[3]); |
+} |
+ |
+uint32 StrikeRegister::BestMatch(const uint8 v[24]) const { |
+ if (internal_node_head_ == kNil) { |
+ return kNil; |
+ } |
+ |
+ uint32 next = internal_node_head_ >> 8; |
+ while ((next & kExternalFlag) == 0) { |
+ InternalNode* node = &internal_nodes_[next]; |
+ uint8 b = v[node->critbyte()]; |
+ unsigned direction = |
+ (1 + static_cast<unsigned>(node->otherbits() | b)) >> 8; |
+ next = node->child(direction); |
+ } |
+ |
+ return next & ~kExternalFlag; |
+} |
+ |
+uint32& StrikeRegister::external_node_next_ptr(unsigned i) { |
+ return *reinterpret_cast<uint32*>(&external_nodes_[i * kExternalNodeSize]); |
+} |
+ |
+uint8* StrikeRegister::external_node(unsigned i) { |
+ return &external_nodes_[i * kExternalNodeSize]; |
+} |
+ |
+uint32 StrikeRegister::GetFreeExternalNode() { |
+ uint32 index = external_node_free_head_; |
+ if (index == kNil) { |
+ DropNode(); |
+ return GetFreeExternalNode(); |
+ } |
+ |
+ external_node_free_head_ = external_node_next_ptr(index); |
+ return index; |
+} |
+ |
+uint32 StrikeRegister::GetFreeInternalNode() { |
+ uint32 index = internal_node_free_head_; |
+ if (index == kNil) { |
+ DropNode(); |
+ return GetFreeInternalNode(); |
+ } |
+ |
+ internal_node_free_head_ = internal_nodes_[index].next(); |
+ return index; |
+} |
+ |
+void StrikeRegister::DropNode() { |
+ // DropNode should never be called on an empty tree. |
+ DCHECK(internal_node_head_ != kNil); |
+ |
+ // An internal node in a crit-bit tree always has exactly two children. |
+ // This means that, if we are removing an external node (which is one of |
+ // those children), then we also need to remove an internal node. In order |
+ // to do that we keep pointers to the parent (wherep) and grandparent |
+ // (whereq) when walking down the tree. |
+ |
+ uint32 p = internal_node_head_ >> 8, *wherep = &internal_node_head_, |
+ *whereq = NULL; |
+ while ((p & kExternalFlag) == 0) { |
+ whereq = wherep; |
+ InternalNode* inode = &internal_nodes_[p]; |
+ // We always go left, towards the smallest element, exploiting the fact |
+ // that the timestamp is big-endian and at the start of the value. |
+ wherep = &inode->data_[0]; |
+ p = (*wherep) >> 8; |
+ } |
+ |
+ const uint32 ext_index = p & ~kExternalFlag; |
+ const uint8* ext_node = external_node(ext_index); |
+ horizon_ = TimeFromBytes(ext_node); |
+ |
+ if (!whereq) { |
+ // We are removing the last element in a tree. |
+ internal_node_head_ = kNil; |
+ FreeExternalNode(ext_index); |
+ return; |
+ } |
+ |
+ // |wherep| points to the left child pointer in the parent so we can add |
+ // one and dereference to get the right child. |
+ const uint32 other_child = wherep[1]; |
+ FreeInternalNode((*whereq) >> 8); |
+ *whereq = (*whereq & 0xff) | (other_child & 0xffffff00); |
+ FreeExternalNode(ext_index); |
+} |
+ |
+void StrikeRegister::FreeExternalNode(uint32 index) { |
+ external_node_next_ptr(index) = external_node_free_head_; |
+ external_node_free_head_ = index; |
+} |
+ |
+void StrikeRegister::FreeInternalNode(uint32 index) { |
+ internal_nodes_[index].SetNextPtr(internal_node_free_head_); |
+ internal_node_free_head_ = index; |
+} |
+ |
+void StrikeRegister::ValidateTree( |
+ uint32 internal_node, |
+ int last_bit, |
+ const vector<pair<unsigned, bool> >& bits, |
+ const set<uint32>& free_internal_nodes, |
+ const set<uint32>& free_external_nodes, |
+ set<uint32>* used_internal_nodes, |
+ set<uint32>* used_external_nodes) { |
+ CHECK_LT(internal_node, max_entries_); |
+ const InternalNode* i = &internal_nodes_[internal_node]; |
+ unsigned bit = 0; |
+ switch (i->otherbits()) { |
+ case 0xff & ~(1 << 7): |
+ bit = 0; |
+ break; |
+ case 0xff & ~(1 << 6): |
+ bit = 1; |
+ break; |
+ case 0xff & ~(1 << 5): |
+ bit = 2; |
+ break; |
+ case 0xff & ~(1 << 4): |
+ bit = 3; |
+ break; |
+ case 0xff & ~(1 << 3): |
+ bit = 4; |
+ break; |
+ case 0xff & ~(1 << 2): |
+ bit = 5; |
+ break; |
+ case 0xff & ~(1 << 1): |
+ bit = 6; |
+ break; |
+ case 0xff & ~1: |
+ bit = 7; |
+ break; |
+ default: |
+ CHECK(false); |
+ } |
+ |
+ bit += 8 * i->critbyte(); |
+ if (last_bit > -1) { |
+ CHECK_GT(bit, static_cast<unsigned>(last_bit)); |
+ } |
+ |
+ CHECK_EQ(free_internal_nodes.count(internal_node), 0u); |
+ |
+ for (unsigned child = 0; child < 2; child++) { |
+ if (i->child(child) & kExternalFlag) { |
+ uint32 ext = i->child(child) & ~kExternalFlag; |
+ CHECK_EQ(free_external_nodes.count(ext), 0u); |
+ CHECK_EQ(used_external_nodes->count(ext), 0u); |
+ used_external_nodes->insert(ext); |
+ const uint8* bytes = external_node(ext); |
+ for (vector<pair<unsigned, bool> >::const_iterator |
+ i = bits.begin(); i != bits.end(); i++) { |
+ unsigned byte = i->first / 8; |
+ DCHECK_LE(byte, 0xffu); |
+ unsigned bit = i->first % 8; |
+ static const uint8 kMasks[8] = |
+ {0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01}; |
+ CHECK_EQ((bytes[byte] & kMasks[bit]) != 0, i->second); |
+ } |
+ } else { |
+ uint32 inter = i->child(child); |
+ vector<pair<unsigned, bool> > new_bits(bits); |
+ new_bits.push_back(pair<unsigned, bool>(bit, child != 0)); |
+ CHECK_EQ(free_internal_nodes.count(inter), 0u); |
+ CHECK_EQ(used_internal_nodes->count(inter), 0u); |
+ used_internal_nodes->insert(inter); |
+ ValidateTree(inter, bit, bits, free_internal_nodes, free_external_nodes, |
+ used_internal_nodes, used_external_nodes); |
+ } |
+ } |
+} |
+ |
+} // namespace net |