Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(101)

Side by Side Diff: net/quic/crypto/strike_register.cc

Issue 13520010: Merge QUIC StrikeRegister code to chromium. (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/src
Patch Set: Changed DCHECK_EQ to CHECK_EQ Created 7 years, 8 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « net/quic/crypto/strike_register.h ('k') | net/quic/crypto/strike_register_test.cc » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Copyright (c) 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "net/quic/crypto/strike_register.h"
6
7 #include "base/logging.h"
8
9 using std::pair;
10 using std::set;
11 using std::vector;
12
13 namespace net {
14
15 // static
16 const uint32 StrikeRegister::kExternalNodeSize = 24;
17 // static
18 const uint32 StrikeRegister::kNil = (1 << 31) | 1;
19 // static
20 const uint32 StrikeRegister::kExternalFlag = 1 << 23;
21
22 // InternalNode represents a non-leaf node in the critbit tree. See the comment
23 // in the .h file for details.
24 class StrikeRegister::InternalNode {
25 public:
26 void SetChild(unsigned direction, uint32 child) {
27 data_[direction] = (data_[direction] & 0xff) | (child << 8);
28 }
29
30 void SetCritByte(uint8 critbyte) {
31 data_[0] &= 0xffffff00;
32 data_[0] |= critbyte;
33 }
34
35 void SetOtherBits(uint8 otherbits) {
36 data_[1] &= 0xffffff00;
37 data_[1] |= otherbits;
38 }
39
40 void SetNextPtr(uint32 next) {
41 data_[0] = next;
42 }
43
44 uint32 next() const {
45 return data_[0];
46 }
47
48 uint32 child(unsigned n) const {
49 return data_[n] >> 8;
50 }
51
52 uint8 critbyte() const {
53 return data_[0];
54 }
55
56 uint8 otherbits() const {
57 return data_[1];
58 }
59
60 // These bytes are organised thus:
61 // <24 bits> left child
62 // <8 bits> crit-byte
63 // <24 bits> right child
64 // <8 bits> other-bits
65 uint32 data_[2];
66 };
67
68 StrikeRegister::StrikeRegister(unsigned max_entries,
69 uint32 current_time,
70 uint32 window_secs,
71 const uint8 orbit[8])
72 : max_entries_(max_entries),
73 window_secs_(window_secs),
74 // The horizon is initially set |window_secs| into the future because, if
75 // we just crashed, then we may have accepted nonces in the span
76 // [current_time...current_time+window_secs) and so we conservatively
77 // reject the whole timespan.
78 horizon_(current_time + window_secs) {
79 memcpy(orbit_, orbit, sizeof(orbit_));
80
81 // We only have 23 bits of index available.
82 CHECK_LT(max_entries, 1u << 23);
83 CHECK_GT(max_entries, 1u); // There must be at least two entries.
84 CHECK_EQ(sizeof(InternalNode), 8u); // in case of compiler changes.
85 internal_nodes_ = new InternalNode[max_entries];
86 external_nodes_.reset(new uint8[kExternalNodeSize * max_entries]);
87
88 Reset();
89 }
90
91 StrikeRegister::~StrikeRegister() {
92 delete[] internal_nodes_;
93 }
94
95 void StrikeRegister::Reset() {
96 // Thread a free list through all of the internal nodes.
97 internal_node_free_head_ = 0;
98 for (unsigned i = 0; i < max_entries_ - 1; i++)
99 internal_nodes_[i].SetNextPtr(i + 1);
100 internal_nodes_[max_entries_ - 1].SetNextPtr(kNil);
101
102 // Also thread a free list through the external nodes.
103 external_node_free_head_ = 0;
104 for (unsigned i = 0; i < max_entries_ - 1; i++)
105 external_node_next_ptr(i) = i + 1;
106 external_node_next_ptr(max_entries_ - 1) = kNil;
107
108 // This is the root of the tree.
109 internal_node_head_ = kNil;
110 }
111
112 bool StrikeRegister::Insert(const uint8 nonce[32],
113 const uint32 current_time) {
114 // If current_time is very small or very large then we assume that we have
115 // just rolled over / are about to roll over and it's 2038 or 2106. Since
116 // we don't deal with this situation we flush everything and start over.
117 // This means that we reject everything for 2 * |window_secs_| every 68
118 // years.
119 if (current_time < window_secs_ ||
120 current_time + window_secs_ < current_time) {
121 if (internal_node_head_ != kNil) {
122 Reset();
123 }
124 horizon_ = current_time;
125 return false;
126 }
127
128 // Check to see if the orbit is correct.
129 if (memcmp(nonce + sizeof(current_time), orbit_, sizeof(orbit_))) {
130 return false;
131 }
132 const uint32 nonce_time = TimeFromBytes(nonce);
133 // We have dropped one or more nonces with a time value of |horizon_|, so
134 // we have to reject anything with a timestamp less than or equal to that.
135 if (nonce_time <= horizon_) {
136 return false;
137 }
138
139 // Check that the timestamp is in the current window.
140 if (nonce_time < (current_time - window_secs_) ||
141 nonce_time > (current_time + window_secs_)) {
142 return false;
143 }
144
145 // We strip the orbit out of the nonce.
146 uint8 value[24];
147 memcpy(value, nonce, sizeof(current_time));
148 memcpy(value + sizeof(current_time),
149 nonce + sizeof(current_time) + sizeof(orbit_),
150 sizeof(value) - sizeof(current_time));
151
152 // Find the best match to |value| in the crit-bit tree. The best match is
153 // simply the value which /could/ match |value|, if any does, so we still
154 // need a memcmp to check.
155 uint32 best_match_index = BestMatch(value);
156 if (best_match_index == kNil) {
157 // Empty tree. Just insert the new value at the root.
158 uint32 index = GetFreeExternalNode();
159 memcpy(external_node(index), value, sizeof(value));
160 internal_node_head_ = (index | kExternalFlag) << 8;
161 return true;
162 }
163
164 const uint8* best_match = external_node(best_match_index);
165 if (memcmp(best_match, value, sizeof(value)) == 0) {
166 // We found the value in the tree.
167 return false;
168 }
169
170 // We are going to insert a new entry into the tree, so get the nodes now.
171 uint32 internal_node_index = GetFreeInternalNode();
172 uint32 external_node_index = GetFreeExternalNode();
173
174 // If we just evicted the best match, then we have to try and match again.
175 // We know that we didn't just empty the tree because we require that
176 // max_entries_ >= 2. Also, we know that it doesn't match because, if it
177 // did, it would have been returned previously.
178 if (external_node_index == best_match_index) {
179 best_match_index = BestMatch(value);
180 best_match = external_node(best_match_index);
181 }
182
183 // Now we need to find the first bit where we differ from |best_match|.
184 unsigned differing_byte;
185 uint8 new_other_bits;
186 for (differing_byte = 0; differing_byte < sizeof(value); differing_byte++) {
187 new_other_bits = value[differing_byte] ^ best_match[differing_byte];
188 if (new_other_bits) {
189 break;
190 }
191 }
192
193 // Once we have the XOR the of first differing byte in new_other_bits we need
194 // to find the most significant differing bit. We could do this with a simple
195 // for loop, testing bits 7..0. Instead we fold the bits so that we end up
196 // with a byte where all the bits below the most significant one, are set.
197 new_other_bits |= new_other_bits >> 1;
198 new_other_bits |= new_other_bits >> 2;
199 new_other_bits |= new_other_bits >> 4;
200 // Now this bit trick results in all the bits set, except the original
201 // most-significant one.
202 new_other_bits = (new_other_bits & ~(new_other_bits >> 1)) ^ 255;
203
204 // Consider the effect of ORing against |new_other_bits|. If |value| did not
205 // have the critical bit set, the result is the same as |new_other_bits|. If
206 // it did, the result is all ones.
207
208 unsigned newdirection;
209 if ((new_other_bits | value[differing_byte]) == 0xff) {
210 newdirection = 1;
211 } else {
212 newdirection = 0;
213 }
214
215 memcpy(external_node(external_node_index), value, sizeof(value));
216 InternalNode* inode = &internal_nodes_[internal_node_index];
217
218 inode->SetChild(newdirection, external_node_index | kExternalFlag);
219 inode->SetCritByte(differing_byte);
220 inode->SetOtherBits(new_other_bits);
221
222 // |where_index| is a pointer to the uint32 which needs to be updated in
223 // order to insert the new internal node into the tree. The internal nodes
224 // store the child indexes in the top 24-bits of a 32-bit word and, to keep
225 // the code simple, we define that |internal_node_head_| is organised the
226 // same way.
227 DCHECK_EQ(internal_node_head_ & 0xff, 0u);
228 uint32* where_index = &internal_node_head_;
229 while (((*where_index >> 8) & kExternalFlag) == 0) {
230 InternalNode* node = &internal_nodes_[*where_index >> 8];
231 if (node->critbyte() > differing_byte) {
232 break;
233 }
234 if (node->critbyte() == differing_byte &&
235 node->otherbits() > new_other_bits) {
236 break;
237 }
238 if (node->critbyte() == differing_byte &&
239 node->otherbits() == new_other_bits) {
240 CHECK(false);
241 }
242
243 uint8 c = value[node->critbyte()];
244 const int direction =
245 (1 + static_cast<unsigned>(node->otherbits() | c)) >> 8;
246 where_index = &node->data_[direction];
247 }
248
249 inode->SetChild(newdirection ^ 1, *where_index >> 8);
250 *where_index = (*where_index & 0xff) | (internal_node_index << 8);
251
252 return true;
253 }
254
255 void StrikeRegister::Validate() {
256 set<uint32> free_internal_nodes;
257 for (uint32 i = internal_node_free_head_; i != kNil;
258 i = internal_nodes_[i].next()) {
259 CHECK_LT(i, max_entries_);
260 CHECK_EQ(free_internal_nodes.count(i), 0u);
261 free_internal_nodes.insert(i);
262 }
263
264 set<uint32> free_external_nodes;
265 for (uint32 i = external_node_free_head_; i != kNil;
266 i = external_node_next_ptr(i)) {
267 CHECK_LT(i, max_entries_);
268 CHECK_EQ(free_external_nodes.count(i), 0u);
269 free_external_nodes.insert(i);
270 }
271
272 set<uint32> used_external_nodes;
273 set<uint32> used_internal_nodes;
274
275 if (internal_node_head_ != kNil &&
276 ((internal_node_head_ >> 8) & kExternalFlag) == 0) {
277 vector<pair<unsigned, bool> > bits;
278 ValidateTree(internal_node_head_ >> 8, -1, bits, free_internal_nodes,
279 free_external_nodes, &used_internal_nodes,
280 &used_external_nodes);
281 }
282 }
283
284 // static
285 uint32 StrikeRegister::TimeFromBytes(const uint8 d[4]) {
286 return static_cast<uint32>(d[0]) << 24 |
287 static_cast<uint32>(d[1]) << 16 |
288 static_cast<uint32>(d[2]) << 8 |
289 static_cast<uint32>(d[3]);
290 }
291
292 uint32 StrikeRegister::BestMatch(const uint8 v[24]) const {
293 if (internal_node_head_ == kNil) {
294 return kNil;
295 }
296
297 uint32 next = internal_node_head_ >> 8;
298 while ((next & kExternalFlag) == 0) {
299 InternalNode* node = &internal_nodes_[next];
300 uint8 b = v[node->critbyte()];
301 unsigned direction =
302 (1 + static_cast<unsigned>(node->otherbits() | b)) >> 8;
303 next = node->child(direction);
304 }
305
306 return next & ~kExternalFlag;
307 }
308
309 uint32& StrikeRegister::external_node_next_ptr(unsigned i) {
310 return *reinterpret_cast<uint32*>(&external_nodes_[i * kExternalNodeSize]);
311 }
312
313 uint8* StrikeRegister::external_node(unsigned i) {
314 return &external_nodes_[i * kExternalNodeSize];
315 }
316
317 uint32 StrikeRegister::GetFreeExternalNode() {
318 uint32 index = external_node_free_head_;
319 if (index == kNil) {
320 DropNode();
321 return GetFreeExternalNode();
322 }
323
324 external_node_free_head_ = external_node_next_ptr(index);
325 return index;
326 }
327
328 uint32 StrikeRegister::GetFreeInternalNode() {
329 uint32 index = internal_node_free_head_;
330 if (index == kNil) {
331 DropNode();
332 return GetFreeInternalNode();
333 }
334
335 internal_node_free_head_ = internal_nodes_[index].next();
336 return index;
337 }
338
339 void StrikeRegister::DropNode() {
340 // DropNode should never be called on an empty tree.
341 DCHECK(internal_node_head_ != kNil);
342
343 // An internal node in a crit-bit tree always has exactly two children.
344 // This means that, if we are removing an external node (which is one of
345 // those children), then we also need to remove an internal node. In order
346 // to do that we keep pointers to the parent (wherep) and grandparent
347 // (whereq) when walking down the tree.
348
349 uint32 p = internal_node_head_ >> 8, *wherep = &internal_node_head_,
350 *whereq = NULL;
351 while ((p & kExternalFlag) == 0) {
352 whereq = wherep;
353 InternalNode* inode = &internal_nodes_[p];
354 // We always go left, towards the smallest element, exploiting the fact
355 // that the timestamp is big-endian and at the start of the value.
356 wherep = &inode->data_[0];
357 p = (*wherep) >> 8;
358 }
359
360 const uint32 ext_index = p & ~kExternalFlag;
361 const uint8* ext_node = external_node(ext_index);
362 horizon_ = TimeFromBytes(ext_node);
363
364 if (!whereq) {
365 // We are removing the last element in a tree.
366 internal_node_head_ = kNil;
367 FreeExternalNode(ext_index);
368 return;
369 }
370
371 // |wherep| points to the left child pointer in the parent so we can add
372 // one and dereference to get the right child.
373 const uint32 other_child = wherep[1];
374 FreeInternalNode((*whereq) >> 8);
375 *whereq = (*whereq & 0xff) | (other_child & 0xffffff00);
376 FreeExternalNode(ext_index);
377 }
378
379 void StrikeRegister::FreeExternalNode(uint32 index) {
380 external_node_next_ptr(index) = external_node_free_head_;
381 external_node_free_head_ = index;
382 }
383
384 void StrikeRegister::FreeInternalNode(uint32 index) {
385 internal_nodes_[index].SetNextPtr(internal_node_free_head_);
386 internal_node_free_head_ = index;
387 }
388
389 void StrikeRegister::ValidateTree(
390 uint32 internal_node,
391 int last_bit,
392 const vector<pair<unsigned, bool> >& bits,
393 const set<uint32>& free_internal_nodes,
394 const set<uint32>& free_external_nodes,
395 set<uint32>* used_internal_nodes,
396 set<uint32>* used_external_nodes) {
397 CHECK_LT(internal_node, max_entries_);
398 const InternalNode* i = &internal_nodes_[internal_node];
399 unsigned bit = 0;
400 switch (i->otherbits()) {
401 case 0xff & ~(1 << 7):
402 bit = 0;
403 break;
404 case 0xff & ~(1 << 6):
405 bit = 1;
406 break;
407 case 0xff & ~(1 << 5):
408 bit = 2;
409 break;
410 case 0xff & ~(1 << 4):
411 bit = 3;
412 break;
413 case 0xff & ~(1 << 3):
414 bit = 4;
415 break;
416 case 0xff & ~(1 << 2):
417 bit = 5;
418 break;
419 case 0xff & ~(1 << 1):
420 bit = 6;
421 break;
422 case 0xff & ~1:
423 bit = 7;
424 break;
425 default:
426 CHECK(false);
427 }
428
429 bit += 8 * i->critbyte();
430 if (last_bit > -1) {
431 CHECK_GT(bit, static_cast<unsigned>(last_bit));
432 }
433
434 CHECK_EQ(free_internal_nodes.count(internal_node), 0u);
435
436 for (unsigned child = 0; child < 2; child++) {
437 if (i->child(child) & kExternalFlag) {
438 uint32 ext = i->child(child) & ~kExternalFlag;
439 CHECK_EQ(free_external_nodes.count(ext), 0u);
440 CHECK_EQ(used_external_nodes->count(ext), 0u);
441 used_external_nodes->insert(ext);
442 const uint8* bytes = external_node(ext);
443 for (vector<pair<unsigned, bool> >::const_iterator
444 i = bits.begin(); i != bits.end(); i++) {
445 unsigned byte = i->first / 8;
446 DCHECK_LE(byte, 0xffu);
447 unsigned bit = i->first % 8;
448 static const uint8 kMasks[8] =
449 {0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01};
450 CHECK_EQ((bytes[byte] & kMasks[bit]) != 0, i->second);
451 }
452 } else {
453 uint32 inter = i->child(child);
454 vector<pair<unsigned, bool> > new_bits(bits);
455 new_bits.push_back(pair<unsigned, bool>(bit, child != 0));
456 CHECK_EQ(free_internal_nodes.count(inter), 0u);
457 CHECK_EQ(used_internal_nodes->count(inter), 0u);
458 used_internal_nodes->insert(inter);
459 ValidateTree(inter, bit, bits, free_internal_nodes, free_external_nodes,
460 used_internal_nodes, used_external_nodes);
461 }
462 }
463 }
464
465 } // namespace net
OLDNEW
« no previous file with comments | « net/quic/crypto/strike_register.h ('k') | net/quic/crypto/strike_register_test.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698