OLD | NEW |
(Empty) | |
| 1 // Copyright (c) 2013 The Chromium Authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. |
| 4 |
| 5 #include "net/quic/crypto/strike_register.h" |
| 6 |
| 7 #include "base/logging.h" |
| 8 |
| 9 using std::pair; |
| 10 using std::set; |
| 11 using std::vector; |
| 12 |
| 13 namespace net { |
| 14 |
| 15 // static |
| 16 const uint32 StrikeRegister::kExternalNodeSize = 24; |
| 17 // static |
| 18 const uint32 StrikeRegister::kNil = (1 << 31) | 1; |
| 19 // static |
| 20 const uint32 StrikeRegister::kExternalFlag = 1 << 23; |
| 21 |
| 22 // InternalNode represents a non-leaf node in the critbit tree. See the comment |
| 23 // in the .h file for details. |
| 24 class StrikeRegister::InternalNode { |
| 25 public: |
| 26 void SetChild(unsigned direction, uint32 child) { |
| 27 data_[direction] = (data_[direction] & 0xff) | (child << 8); |
| 28 } |
| 29 |
| 30 void SetCritByte(uint8 critbyte) { |
| 31 data_[0] &= 0xffffff00; |
| 32 data_[0] |= critbyte; |
| 33 } |
| 34 |
| 35 void SetOtherBits(uint8 otherbits) { |
| 36 data_[1] &= 0xffffff00; |
| 37 data_[1] |= otherbits; |
| 38 } |
| 39 |
| 40 void SetNextPtr(uint32 next) { |
| 41 data_[0] = next; |
| 42 } |
| 43 |
| 44 uint32 next() const { |
| 45 return data_[0]; |
| 46 } |
| 47 |
| 48 uint32 child(unsigned n) const { |
| 49 return data_[n] >> 8; |
| 50 } |
| 51 |
| 52 uint8 critbyte() const { |
| 53 return data_[0]; |
| 54 } |
| 55 |
| 56 uint8 otherbits() const { |
| 57 return data_[1]; |
| 58 } |
| 59 |
| 60 // These bytes are organised thus: |
| 61 // <24 bits> left child |
| 62 // <8 bits> crit-byte |
| 63 // <24 bits> right child |
| 64 // <8 bits> other-bits |
| 65 uint32 data_[2]; |
| 66 }; |
| 67 |
| 68 StrikeRegister::StrikeRegister(unsigned max_entries, |
| 69 uint32 current_time, |
| 70 uint32 window_secs, |
| 71 const uint8 orbit[8]) |
| 72 : max_entries_(max_entries), |
| 73 window_secs_(window_secs), |
| 74 // The horizon is initially set |window_secs| into the future because, if |
| 75 // we just crashed, then we may have accepted nonces in the span |
| 76 // [current_time...current_time+window_secs) and so we conservatively |
| 77 // reject the whole timespan. |
| 78 horizon_(current_time + window_secs) { |
| 79 memcpy(orbit_, orbit, sizeof(orbit_)); |
| 80 |
| 81 // We only have 23 bits of index available. |
| 82 CHECK_LT(max_entries, 1u << 23); |
| 83 CHECK_GT(max_entries, 1u); // There must be at least two entries. |
| 84 CHECK_EQ(sizeof(InternalNode), 8u); // in case of compiler changes. |
| 85 internal_nodes_ = new InternalNode[max_entries]; |
| 86 external_nodes_.reset(new uint8[kExternalNodeSize * max_entries]); |
| 87 |
| 88 Reset(); |
| 89 } |
| 90 |
| 91 StrikeRegister::~StrikeRegister() { |
| 92 delete[] internal_nodes_; |
| 93 } |
| 94 |
| 95 void StrikeRegister::Reset() { |
| 96 // Thread a free list through all of the internal nodes. |
| 97 internal_node_free_head_ = 0; |
| 98 for (unsigned i = 0; i < max_entries_ - 1; i++) |
| 99 internal_nodes_[i].SetNextPtr(i + 1); |
| 100 internal_nodes_[max_entries_ - 1].SetNextPtr(kNil); |
| 101 |
| 102 // Also thread a free list through the external nodes. |
| 103 external_node_free_head_ = 0; |
| 104 for (unsigned i = 0; i < max_entries_ - 1; i++) |
| 105 external_node_next_ptr(i) = i + 1; |
| 106 external_node_next_ptr(max_entries_ - 1) = kNil; |
| 107 |
| 108 // This is the root of the tree. |
| 109 internal_node_head_ = kNil; |
| 110 } |
| 111 |
| 112 bool StrikeRegister::Insert(const uint8 nonce[32], |
| 113 const uint32 current_time) { |
| 114 // If current_time is very small or very large then we assume that we have |
| 115 // just rolled over / are about to roll over and it's 2038 or 2106. Since |
| 116 // we don't deal with this situation we flush everything and start over. |
| 117 // This means that we reject everything for 2 * |window_secs_| every 68 |
| 118 // years. |
| 119 if (current_time < window_secs_ || |
| 120 current_time + window_secs_ < current_time) { |
| 121 if (internal_node_head_ != kNil) { |
| 122 Reset(); |
| 123 } |
| 124 horizon_ = current_time; |
| 125 return false; |
| 126 } |
| 127 |
| 128 // Check to see if the orbit is correct. |
| 129 if (memcmp(nonce + sizeof(current_time), orbit_, sizeof(orbit_))) { |
| 130 return false; |
| 131 } |
| 132 const uint32 nonce_time = TimeFromBytes(nonce); |
| 133 // We have dropped one or more nonces with a time value of |horizon_|, so |
| 134 // we have to reject anything with a timestamp less than or equal to that. |
| 135 if (nonce_time <= horizon_) { |
| 136 return false; |
| 137 } |
| 138 |
| 139 // Check that the timestamp is in the current window. |
| 140 if (nonce_time < (current_time - window_secs_) || |
| 141 nonce_time > (current_time + window_secs_)) { |
| 142 return false; |
| 143 } |
| 144 |
| 145 // We strip the orbit out of the nonce. |
| 146 uint8 value[24]; |
| 147 memcpy(value, nonce, sizeof(current_time)); |
| 148 memcpy(value + sizeof(current_time), |
| 149 nonce + sizeof(current_time) + sizeof(orbit_), |
| 150 sizeof(value) - sizeof(current_time)); |
| 151 |
| 152 // Find the best match to |value| in the crit-bit tree. The best match is |
| 153 // simply the value which /could/ match |value|, if any does, so we still |
| 154 // need a memcmp to check. |
| 155 uint32 best_match_index = BestMatch(value); |
| 156 if (best_match_index == kNil) { |
| 157 // Empty tree. Just insert the new value at the root. |
| 158 uint32 index = GetFreeExternalNode(); |
| 159 memcpy(external_node(index), value, sizeof(value)); |
| 160 internal_node_head_ = (index | kExternalFlag) << 8; |
| 161 return true; |
| 162 } |
| 163 |
| 164 const uint8* best_match = external_node(best_match_index); |
| 165 if (memcmp(best_match, value, sizeof(value)) == 0) { |
| 166 // We found the value in the tree. |
| 167 return false; |
| 168 } |
| 169 |
| 170 // We are going to insert a new entry into the tree, so get the nodes now. |
| 171 uint32 internal_node_index = GetFreeInternalNode(); |
| 172 uint32 external_node_index = GetFreeExternalNode(); |
| 173 |
| 174 // If we just evicted the best match, then we have to try and match again. |
| 175 // We know that we didn't just empty the tree because we require that |
| 176 // max_entries_ >= 2. Also, we know that it doesn't match because, if it |
| 177 // did, it would have been returned previously. |
| 178 if (external_node_index == best_match_index) { |
| 179 best_match_index = BestMatch(value); |
| 180 best_match = external_node(best_match_index); |
| 181 } |
| 182 |
| 183 // Now we need to find the first bit where we differ from |best_match|. |
| 184 unsigned differing_byte; |
| 185 uint8 new_other_bits; |
| 186 for (differing_byte = 0; differing_byte < sizeof(value); differing_byte++) { |
| 187 new_other_bits = value[differing_byte] ^ best_match[differing_byte]; |
| 188 if (new_other_bits) { |
| 189 break; |
| 190 } |
| 191 } |
| 192 |
| 193 // Once we have the XOR the of first differing byte in new_other_bits we need |
| 194 // to find the most significant differing bit. We could do this with a simple |
| 195 // for loop, testing bits 7..0. Instead we fold the bits so that we end up |
| 196 // with a byte where all the bits below the most significant one, are set. |
| 197 new_other_bits |= new_other_bits >> 1; |
| 198 new_other_bits |= new_other_bits >> 2; |
| 199 new_other_bits |= new_other_bits >> 4; |
| 200 // Now this bit trick results in all the bits set, except the original |
| 201 // most-significant one. |
| 202 new_other_bits = (new_other_bits & ~(new_other_bits >> 1)) ^ 255; |
| 203 |
| 204 // Consider the effect of ORing against |new_other_bits|. If |value| did not |
| 205 // have the critical bit set, the result is the same as |new_other_bits|. If |
| 206 // it did, the result is all ones. |
| 207 |
| 208 unsigned newdirection; |
| 209 if ((new_other_bits | value[differing_byte]) == 0xff) { |
| 210 newdirection = 1; |
| 211 } else { |
| 212 newdirection = 0; |
| 213 } |
| 214 |
| 215 memcpy(external_node(external_node_index), value, sizeof(value)); |
| 216 InternalNode* inode = &internal_nodes_[internal_node_index]; |
| 217 |
| 218 inode->SetChild(newdirection, external_node_index | kExternalFlag); |
| 219 inode->SetCritByte(differing_byte); |
| 220 inode->SetOtherBits(new_other_bits); |
| 221 |
| 222 // |where_index| is a pointer to the uint32 which needs to be updated in |
| 223 // order to insert the new internal node into the tree. The internal nodes |
| 224 // store the child indexes in the top 24-bits of a 32-bit word and, to keep |
| 225 // the code simple, we define that |internal_node_head_| is organised the |
| 226 // same way. |
| 227 DCHECK_EQ(internal_node_head_ & 0xff, 0u); |
| 228 uint32* where_index = &internal_node_head_; |
| 229 while (((*where_index >> 8) & kExternalFlag) == 0) { |
| 230 InternalNode* node = &internal_nodes_[*where_index >> 8]; |
| 231 if (node->critbyte() > differing_byte) { |
| 232 break; |
| 233 } |
| 234 if (node->critbyte() == differing_byte && |
| 235 node->otherbits() > new_other_bits) { |
| 236 break; |
| 237 } |
| 238 if (node->critbyte() == differing_byte && |
| 239 node->otherbits() == new_other_bits) { |
| 240 CHECK(false); |
| 241 } |
| 242 |
| 243 uint8 c = value[node->critbyte()]; |
| 244 const int direction = |
| 245 (1 + static_cast<unsigned>(node->otherbits() | c)) >> 8; |
| 246 where_index = &node->data_[direction]; |
| 247 } |
| 248 |
| 249 inode->SetChild(newdirection ^ 1, *where_index >> 8); |
| 250 *where_index = (*where_index & 0xff) | (internal_node_index << 8); |
| 251 |
| 252 return true; |
| 253 } |
| 254 |
| 255 void StrikeRegister::Validate() { |
| 256 set<uint32> free_internal_nodes; |
| 257 for (uint32 i = internal_node_free_head_; i != kNil; |
| 258 i = internal_nodes_[i].next()) { |
| 259 CHECK_LT(i, max_entries_); |
| 260 CHECK_EQ(free_internal_nodes.count(i), 0u); |
| 261 free_internal_nodes.insert(i); |
| 262 } |
| 263 |
| 264 set<uint32> free_external_nodes; |
| 265 for (uint32 i = external_node_free_head_; i != kNil; |
| 266 i = external_node_next_ptr(i)) { |
| 267 CHECK_LT(i, max_entries_); |
| 268 CHECK_EQ(free_external_nodes.count(i), 0u); |
| 269 free_external_nodes.insert(i); |
| 270 } |
| 271 |
| 272 set<uint32> used_external_nodes; |
| 273 set<uint32> used_internal_nodes; |
| 274 |
| 275 if (internal_node_head_ != kNil && |
| 276 ((internal_node_head_ >> 8) & kExternalFlag) == 0) { |
| 277 vector<pair<unsigned, bool> > bits; |
| 278 ValidateTree(internal_node_head_ >> 8, -1, bits, free_internal_nodes, |
| 279 free_external_nodes, &used_internal_nodes, |
| 280 &used_external_nodes); |
| 281 } |
| 282 } |
| 283 |
| 284 // static |
| 285 uint32 StrikeRegister::TimeFromBytes(const uint8 d[4]) { |
| 286 return static_cast<uint32>(d[0]) << 24 | |
| 287 static_cast<uint32>(d[1]) << 16 | |
| 288 static_cast<uint32>(d[2]) << 8 | |
| 289 static_cast<uint32>(d[3]); |
| 290 } |
| 291 |
| 292 uint32 StrikeRegister::BestMatch(const uint8 v[24]) const { |
| 293 if (internal_node_head_ == kNil) { |
| 294 return kNil; |
| 295 } |
| 296 |
| 297 uint32 next = internal_node_head_ >> 8; |
| 298 while ((next & kExternalFlag) == 0) { |
| 299 InternalNode* node = &internal_nodes_[next]; |
| 300 uint8 b = v[node->critbyte()]; |
| 301 unsigned direction = |
| 302 (1 + static_cast<unsigned>(node->otherbits() | b)) >> 8; |
| 303 next = node->child(direction); |
| 304 } |
| 305 |
| 306 return next & ~kExternalFlag; |
| 307 } |
| 308 |
| 309 uint32& StrikeRegister::external_node_next_ptr(unsigned i) { |
| 310 return *reinterpret_cast<uint32*>(&external_nodes_[i * kExternalNodeSize]); |
| 311 } |
| 312 |
| 313 uint8* StrikeRegister::external_node(unsigned i) { |
| 314 return &external_nodes_[i * kExternalNodeSize]; |
| 315 } |
| 316 |
| 317 uint32 StrikeRegister::GetFreeExternalNode() { |
| 318 uint32 index = external_node_free_head_; |
| 319 if (index == kNil) { |
| 320 DropNode(); |
| 321 return GetFreeExternalNode(); |
| 322 } |
| 323 |
| 324 external_node_free_head_ = external_node_next_ptr(index); |
| 325 return index; |
| 326 } |
| 327 |
| 328 uint32 StrikeRegister::GetFreeInternalNode() { |
| 329 uint32 index = internal_node_free_head_; |
| 330 if (index == kNil) { |
| 331 DropNode(); |
| 332 return GetFreeInternalNode(); |
| 333 } |
| 334 |
| 335 internal_node_free_head_ = internal_nodes_[index].next(); |
| 336 return index; |
| 337 } |
| 338 |
| 339 void StrikeRegister::DropNode() { |
| 340 // DropNode should never be called on an empty tree. |
| 341 DCHECK(internal_node_head_ != kNil); |
| 342 |
| 343 // An internal node in a crit-bit tree always has exactly two children. |
| 344 // This means that, if we are removing an external node (which is one of |
| 345 // those children), then we also need to remove an internal node. In order |
| 346 // to do that we keep pointers to the parent (wherep) and grandparent |
| 347 // (whereq) when walking down the tree. |
| 348 |
| 349 uint32 p = internal_node_head_ >> 8, *wherep = &internal_node_head_, |
| 350 *whereq = NULL; |
| 351 while ((p & kExternalFlag) == 0) { |
| 352 whereq = wherep; |
| 353 InternalNode* inode = &internal_nodes_[p]; |
| 354 // We always go left, towards the smallest element, exploiting the fact |
| 355 // that the timestamp is big-endian and at the start of the value. |
| 356 wherep = &inode->data_[0]; |
| 357 p = (*wherep) >> 8; |
| 358 } |
| 359 |
| 360 const uint32 ext_index = p & ~kExternalFlag; |
| 361 const uint8* ext_node = external_node(ext_index); |
| 362 horizon_ = TimeFromBytes(ext_node); |
| 363 |
| 364 if (!whereq) { |
| 365 // We are removing the last element in a tree. |
| 366 internal_node_head_ = kNil; |
| 367 FreeExternalNode(ext_index); |
| 368 return; |
| 369 } |
| 370 |
| 371 // |wherep| points to the left child pointer in the parent so we can add |
| 372 // one and dereference to get the right child. |
| 373 const uint32 other_child = wherep[1]; |
| 374 FreeInternalNode((*whereq) >> 8); |
| 375 *whereq = (*whereq & 0xff) | (other_child & 0xffffff00); |
| 376 FreeExternalNode(ext_index); |
| 377 } |
| 378 |
| 379 void StrikeRegister::FreeExternalNode(uint32 index) { |
| 380 external_node_next_ptr(index) = external_node_free_head_; |
| 381 external_node_free_head_ = index; |
| 382 } |
| 383 |
| 384 void StrikeRegister::FreeInternalNode(uint32 index) { |
| 385 internal_nodes_[index].SetNextPtr(internal_node_free_head_); |
| 386 internal_node_free_head_ = index; |
| 387 } |
| 388 |
| 389 void StrikeRegister::ValidateTree( |
| 390 uint32 internal_node, |
| 391 int last_bit, |
| 392 const vector<pair<unsigned, bool> >& bits, |
| 393 const set<uint32>& free_internal_nodes, |
| 394 const set<uint32>& free_external_nodes, |
| 395 set<uint32>* used_internal_nodes, |
| 396 set<uint32>* used_external_nodes) { |
| 397 CHECK_LT(internal_node, max_entries_); |
| 398 const InternalNode* i = &internal_nodes_[internal_node]; |
| 399 unsigned bit = 0; |
| 400 switch (i->otherbits()) { |
| 401 case 0xff & ~(1 << 7): |
| 402 bit = 0; |
| 403 break; |
| 404 case 0xff & ~(1 << 6): |
| 405 bit = 1; |
| 406 break; |
| 407 case 0xff & ~(1 << 5): |
| 408 bit = 2; |
| 409 break; |
| 410 case 0xff & ~(1 << 4): |
| 411 bit = 3; |
| 412 break; |
| 413 case 0xff & ~(1 << 3): |
| 414 bit = 4; |
| 415 break; |
| 416 case 0xff & ~(1 << 2): |
| 417 bit = 5; |
| 418 break; |
| 419 case 0xff & ~(1 << 1): |
| 420 bit = 6; |
| 421 break; |
| 422 case 0xff & ~1: |
| 423 bit = 7; |
| 424 break; |
| 425 default: |
| 426 CHECK(false); |
| 427 } |
| 428 |
| 429 bit += 8 * i->critbyte(); |
| 430 if (last_bit > -1) { |
| 431 CHECK_GT(bit, static_cast<unsigned>(last_bit)); |
| 432 } |
| 433 |
| 434 CHECK_EQ(free_internal_nodes.count(internal_node), 0u); |
| 435 |
| 436 for (unsigned child = 0; child < 2; child++) { |
| 437 if (i->child(child) & kExternalFlag) { |
| 438 uint32 ext = i->child(child) & ~kExternalFlag; |
| 439 CHECK_EQ(free_external_nodes.count(ext), 0u); |
| 440 CHECK_EQ(used_external_nodes->count(ext), 0u); |
| 441 used_external_nodes->insert(ext); |
| 442 const uint8* bytes = external_node(ext); |
| 443 for (vector<pair<unsigned, bool> >::const_iterator |
| 444 i = bits.begin(); i != bits.end(); i++) { |
| 445 unsigned byte = i->first / 8; |
| 446 DCHECK_LE(byte, 0xffu); |
| 447 unsigned bit = i->first % 8; |
| 448 static const uint8 kMasks[8] = |
| 449 {0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01}; |
| 450 CHECK_EQ((bytes[byte] & kMasks[bit]) != 0, i->second); |
| 451 } |
| 452 } else { |
| 453 uint32 inter = i->child(child); |
| 454 vector<pair<unsigned, bool> > new_bits(bits); |
| 455 new_bits.push_back(pair<unsigned, bool>(bit, child != 0)); |
| 456 CHECK_EQ(free_internal_nodes.count(inter), 0u); |
| 457 CHECK_EQ(used_internal_nodes->count(inter), 0u); |
| 458 used_internal_nodes->insert(inter); |
| 459 ValidateTree(inter, bit, bits, free_internal_nodes, free_external_nodes, |
| 460 used_internal_nodes, used_external_nodes); |
| 461 } |
| 462 } |
| 463 } |
| 464 |
| 465 } // namespace net |
OLD | NEW |