| Index: net/quic/crypto/strike_register.cc
|
| diff --git a/net/quic/crypto/strike_register.cc b/net/quic/crypto/strike_register.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..565d5c8e8fbb2fa53882ed5a82ad0a7c7921da70
|
| --- /dev/null
|
| +++ b/net/quic/crypto/strike_register.cc
|
| @@ -0,0 +1,465 @@
|
| +// Copyright (c) 2013 The Chromium Authors. All rights reserved.
|
| +// Use of this source code is governed by a BSD-style license that can be
|
| +// found in the LICENSE file.
|
| +
|
| +#include "net/quic/crypto/strike_register.h"
|
| +
|
| +#include "base/logging.h"
|
| +
|
| +using std::pair;
|
| +using std::set;
|
| +using std::vector;
|
| +
|
| +namespace net {
|
| +
|
| +// static
|
| +const uint32 StrikeRegister::kExternalNodeSize = 24;
|
| +// static
|
| +const uint32 StrikeRegister::kNil = (1 << 31) | 1;
|
| +// static
|
| +const uint32 StrikeRegister::kExternalFlag = 1 << 23;
|
| +
|
| +// InternalNode represents a non-leaf node in the critbit tree. See the comment
|
| +// in the .h file for details.
|
| +class StrikeRegister::InternalNode {
|
| + public:
|
| + void SetChild(unsigned direction, uint32 child) {
|
| + data_[direction] = (data_[direction] & 0xff) | (child << 8);
|
| + }
|
| +
|
| + void SetCritByte(uint8 critbyte) {
|
| + data_[0] &= 0xffffff00;
|
| + data_[0] |= critbyte;
|
| + }
|
| +
|
| + void SetOtherBits(uint8 otherbits) {
|
| + data_[1] &= 0xffffff00;
|
| + data_[1] |= otherbits;
|
| + }
|
| +
|
| + void SetNextPtr(uint32 next) {
|
| + data_[0] = next;
|
| + }
|
| +
|
| + uint32 next() const {
|
| + return data_[0];
|
| + }
|
| +
|
| + uint32 child(unsigned n) const {
|
| + return data_[n] >> 8;
|
| + }
|
| +
|
| + uint8 critbyte() const {
|
| + return data_[0];
|
| + }
|
| +
|
| + uint8 otherbits() const {
|
| + return data_[1];
|
| + }
|
| +
|
| + // These bytes are organised thus:
|
| + // <24 bits> left child
|
| + // <8 bits> crit-byte
|
| + // <24 bits> right child
|
| + // <8 bits> other-bits
|
| + uint32 data_[2];
|
| +};
|
| +
|
| +StrikeRegister::StrikeRegister(unsigned max_entries,
|
| + uint32 current_time,
|
| + uint32 window_secs,
|
| + const uint8 orbit[8])
|
| + : max_entries_(max_entries),
|
| + window_secs_(window_secs),
|
| + // The horizon is initially set |window_secs| into the future because, if
|
| + // we just crashed, then we may have accepted nonces in the span
|
| + // [current_time...current_time+window_secs) and so we conservatively
|
| + // reject the whole timespan.
|
| + horizon_(current_time + window_secs) {
|
| + memcpy(orbit_, orbit, sizeof(orbit_));
|
| +
|
| + // We only have 23 bits of index available.
|
| + CHECK_LT(max_entries, 1u << 23);
|
| + CHECK_GT(max_entries, 1u); // There must be at least two entries.
|
| + CHECK_EQ(sizeof(InternalNode), 8u); // in case of compiler changes.
|
| + internal_nodes_ = new InternalNode[max_entries];
|
| + external_nodes_.reset(new uint8[kExternalNodeSize * max_entries]);
|
| +
|
| + Reset();
|
| +}
|
| +
|
| +StrikeRegister::~StrikeRegister() {
|
| + delete[] internal_nodes_;
|
| +}
|
| +
|
| +void StrikeRegister::Reset() {
|
| + // Thread a free list through all of the internal nodes.
|
| + internal_node_free_head_ = 0;
|
| + for (unsigned i = 0; i < max_entries_ - 1; i++)
|
| + internal_nodes_[i].SetNextPtr(i + 1);
|
| + internal_nodes_[max_entries_ - 1].SetNextPtr(kNil);
|
| +
|
| + // Also thread a free list through the external nodes.
|
| + external_node_free_head_ = 0;
|
| + for (unsigned i = 0; i < max_entries_ - 1; i++)
|
| + external_node_next_ptr(i) = i + 1;
|
| + external_node_next_ptr(max_entries_ - 1) = kNil;
|
| +
|
| + // This is the root of the tree.
|
| + internal_node_head_ = kNil;
|
| +}
|
| +
|
| +bool StrikeRegister::Insert(const uint8 nonce[32],
|
| + const uint32 current_time) {
|
| + // If current_time is very small or very large then we assume that we have
|
| + // just rolled over / are about to roll over and it's 2038 or 2106. Since
|
| + // we don't deal with this situation we flush everything and start over.
|
| + // This means that we reject everything for 2 * |window_secs_| every 68
|
| + // years.
|
| + if (current_time < window_secs_ ||
|
| + current_time + window_secs_ < current_time) {
|
| + if (internal_node_head_ != kNil) {
|
| + Reset();
|
| + }
|
| + horizon_ = current_time;
|
| + return false;
|
| + }
|
| +
|
| + // Check to see if the orbit is correct.
|
| + if (memcmp(nonce + sizeof(current_time), orbit_, sizeof(orbit_))) {
|
| + return false;
|
| + }
|
| + const uint32 nonce_time = TimeFromBytes(nonce);
|
| + // We have dropped one or more nonces with a time value of |horizon_|, so
|
| + // we have to reject anything with a timestamp less than or equal to that.
|
| + if (nonce_time <= horizon_) {
|
| + return false;
|
| + }
|
| +
|
| + // Check that the timestamp is in the current window.
|
| + if (nonce_time < (current_time - window_secs_) ||
|
| + nonce_time > (current_time + window_secs_)) {
|
| + return false;
|
| + }
|
| +
|
| + // We strip the orbit out of the nonce.
|
| + uint8 value[24];
|
| + memcpy(value, nonce, sizeof(current_time));
|
| + memcpy(value + sizeof(current_time),
|
| + nonce + sizeof(current_time) + sizeof(orbit_),
|
| + sizeof(value) - sizeof(current_time));
|
| +
|
| + // Find the best match to |value| in the crit-bit tree. The best match is
|
| + // simply the value which /could/ match |value|, if any does, so we still
|
| + // need a memcmp to check.
|
| + uint32 best_match_index = BestMatch(value);
|
| + if (best_match_index == kNil) {
|
| + // Empty tree. Just insert the new value at the root.
|
| + uint32 index = GetFreeExternalNode();
|
| + memcpy(external_node(index), value, sizeof(value));
|
| + internal_node_head_ = (index | kExternalFlag) << 8;
|
| + return true;
|
| + }
|
| +
|
| + const uint8* best_match = external_node(best_match_index);
|
| + if (memcmp(best_match, value, sizeof(value)) == 0) {
|
| + // We found the value in the tree.
|
| + return false;
|
| + }
|
| +
|
| + // We are going to insert a new entry into the tree, so get the nodes now.
|
| + uint32 internal_node_index = GetFreeInternalNode();
|
| + uint32 external_node_index = GetFreeExternalNode();
|
| +
|
| + // If we just evicted the best match, then we have to try and match again.
|
| + // We know that we didn't just empty the tree because we require that
|
| + // max_entries_ >= 2. Also, we know that it doesn't match because, if it
|
| + // did, it would have been returned previously.
|
| + if (external_node_index == best_match_index) {
|
| + best_match_index = BestMatch(value);
|
| + best_match = external_node(best_match_index);
|
| + }
|
| +
|
| + // Now we need to find the first bit where we differ from |best_match|.
|
| + unsigned differing_byte;
|
| + uint8 new_other_bits;
|
| + for (differing_byte = 0; differing_byte < sizeof(value); differing_byte++) {
|
| + new_other_bits = value[differing_byte] ^ best_match[differing_byte];
|
| + if (new_other_bits) {
|
| + break;
|
| + }
|
| + }
|
| +
|
| + // Once we have the XOR the of first differing byte in new_other_bits we need
|
| + // to find the most significant differing bit. We could do this with a simple
|
| + // for loop, testing bits 7..0. Instead we fold the bits so that we end up
|
| + // with a byte where all the bits below the most significant one, are set.
|
| + new_other_bits |= new_other_bits >> 1;
|
| + new_other_bits |= new_other_bits >> 2;
|
| + new_other_bits |= new_other_bits >> 4;
|
| + // Now this bit trick results in all the bits set, except the original
|
| + // most-significant one.
|
| + new_other_bits = (new_other_bits & ~(new_other_bits >> 1)) ^ 255;
|
| +
|
| + // Consider the effect of ORing against |new_other_bits|. If |value| did not
|
| + // have the critical bit set, the result is the same as |new_other_bits|. If
|
| + // it did, the result is all ones.
|
| +
|
| + unsigned newdirection;
|
| + if ((new_other_bits | value[differing_byte]) == 0xff) {
|
| + newdirection = 1;
|
| + } else {
|
| + newdirection = 0;
|
| + }
|
| +
|
| + memcpy(external_node(external_node_index), value, sizeof(value));
|
| + InternalNode* inode = &internal_nodes_[internal_node_index];
|
| +
|
| + inode->SetChild(newdirection, external_node_index | kExternalFlag);
|
| + inode->SetCritByte(differing_byte);
|
| + inode->SetOtherBits(new_other_bits);
|
| +
|
| + // |where_index| is a pointer to the uint32 which needs to be updated in
|
| + // order to insert the new internal node into the tree. The internal nodes
|
| + // store the child indexes in the top 24-bits of a 32-bit word and, to keep
|
| + // the code simple, we define that |internal_node_head_| is organised the
|
| + // same way.
|
| + DCHECK_EQ(internal_node_head_ & 0xff, 0u);
|
| + uint32* where_index = &internal_node_head_;
|
| + while (((*where_index >> 8) & kExternalFlag) == 0) {
|
| + InternalNode* node = &internal_nodes_[*where_index >> 8];
|
| + if (node->critbyte() > differing_byte) {
|
| + break;
|
| + }
|
| + if (node->critbyte() == differing_byte &&
|
| + node->otherbits() > new_other_bits) {
|
| + break;
|
| + }
|
| + if (node->critbyte() == differing_byte &&
|
| + node->otherbits() == new_other_bits) {
|
| + CHECK(false);
|
| + }
|
| +
|
| + uint8 c = value[node->critbyte()];
|
| + const int direction =
|
| + (1 + static_cast<unsigned>(node->otherbits() | c)) >> 8;
|
| + where_index = &node->data_[direction];
|
| + }
|
| +
|
| + inode->SetChild(newdirection ^ 1, *where_index >> 8);
|
| + *where_index = (*where_index & 0xff) | (internal_node_index << 8);
|
| +
|
| + return true;
|
| +}
|
| +
|
| +void StrikeRegister::Validate() {
|
| + set<uint32> free_internal_nodes;
|
| + for (uint32 i = internal_node_free_head_; i != kNil;
|
| + i = internal_nodes_[i].next()) {
|
| + CHECK_LT(i, max_entries_);
|
| + CHECK_EQ(free_internal_nodes.count(i), 0u);
|
| + free_internal_nodes.insert(i);
|
| + }
|
| +
|
| + set<uint32> free_external_nodes;
|
| + for (uint32 i = external_node_free_head_; i != kNil;
|
| + i = external_node_next_ptr(i)) {
|
| + CHECK_LT(i, max_entries_);
|
| + CHECK_EQ(free_external_nodes.count(i), 0u);
|
| + free_external_nodes.insert(i);
|
| + }
|
| +
|
| + set<uint32> used_external_nodes;
|
| + set<uint32> used_internal_nodes;
|
| +
|
| + if (internal_node_head_ != kNil &&
|
| + ((internal_node_head_ >> 8) & kExternalFlag) == 0) {
|
| + vector<pair<unsigned, bool> > bits;
|
| + ValidateTree(internal_node_head_ >> 8, -1, bits, free_internal_nodes,
|
| + free_external_nodes, &used_internal_nodes,
|
| + &used_external_nodes);
|
| + }
|
| +}
|
| +
|
| +// static
|
| +uint32 StrikeRegister::TimeFromBytes(const uint8 d[4]) {
|
| + return static_cast<uint32>(d[0]) << 24 |
|
| + static_cast<uint32>(d[1]) << 16 |
|
| + static_cast<uint32>(d[2]) << 8 |
|
| + static_cast<uint32>(d[3]);
|
| +}
|
| +
|
| +uint32 StrikeRegister::BestMatch(const uint8 v[24]) const {
|
| + if (internal_node_head_ == kNil) {
|
| + return kNil;
|
| + }
|
| +
|
| + uint32 next = internal_node_head_ >> 8;
|
| + while ((next & kExternalFlag) == 0) {
|
| + InternalNode* node = &internal_nodes_[next];
|
| + uint8 b = v[node->critbyte()];
|
| + unsigned direction =
|
| + (1 + static_cast<unsigned>(node->otherbits() | b)) >> 8;
|
| + next = node->child(direction);
|
| + }
|
| +
|
| + return next & ~kExternalFlag;
|
| +}
|
| +
|
| +uint32& StrikeRegister::external_node_next_ptr(unsigned i) {
|
| + return *reinterpret_cast<uint32*>(&external_nodes_[i * kExternalNodeSize]);
|
| +}
|
| +
|
| +uint8* StrikeRegister::external_node(unsigned i) {
|
| + return &external_nodes_[i * kExternalNodeSize];
|
| +}
|
| +
|
| +uint32 StrikeRegister::GetFreeExternalNode() {
|
| + uint32 index = external_node_free_head_;
|
| + if (index == kNil) {
|
| + DropNode();
|
| + return GetFreeExternalNode();
|
| + }
|
| +
|
| + external_node_free_head_ = external_node_next_ptr(index);
|
| + return index;
|
| +}
|
| +
|
| +uint32 StrikeRegister::GetFreeInternalNode() {
|
| + uint32 index = internal_node_free_head_;
|
| + if (index == kNil) {
|
| + DropNode();
|
| + return GetFreeInternalNode();
|
| + }
|
| +
|
| + internal_node_free_head_ = internal_nodes_[index].next();
|
| + return index;
|
| +}
|
| +
|
| +void StrikeRegister::DropNode() {
|
| + // DropNode should never be called on an empty tree.
|
| + DCHECK(internal_node_head_ != kNil);
|
| +
|
| + // An internal node in a crit-bit tree always has exactly two children.
|
| + // This means that, if we are removing an external node (which is one of
|
| + // those children), then we also need to remove an internal node. In order
|
| + // to do that we keep pointers to the parent (wherep) and grandparent
|
| + // (whereq) when walking down the tree.
|
| +
|
| + uint32 p = internal_node_head_ >> 8, *wherep = &internal_node_head_,
|
| + *whereq = NULL;
|
| + while ((p & kExternalFlag) == 0) {
|
| + whereq = wherep;
|
| + InternalNode* inode = &internal_nodes_[p];
|
| + // We always go left, towards the smallest element, exploiting the fact
|
| + // that the timestamp is big-endian and at the start of the value.
|
| + wherep = &inode->data_[0];
|
| + p = (*wherep) >> 8;
|
| + }
|
| +
|
| + const uint32 ext_index = p & ~kExternalFlag;
|
| + const uint8* ext_node = external_node(ext_index);
|
| + horizon_ = TimeFromBytes(ext_node);
|
| +
|
| + if (!whereq) {
|
| + // We are removing the last element in a tree.
|
| + internal_node_head_ = kNil;
|
| + FreeExternalNode(ext_index);
|
| + return;
|
| + }
|
| +
|
| + // |wherep| points to the left child pointer in the parent so we can add
|
| + // one and dereference to get the right child.
|
| + const uint32 other_child = wherep[1];
|
| + FreeInternalNode((*whereq) >> 8);
|
| + *whereq = (*whereq & 0xff) | (other_child & 0xffffff00);
|
| + FreeExternalNode(ext_index);
|
| +}
|
| +
|
| +void StrikeRegister::FreeExternalNode(uint32 index) {
|
| + external_node_next_ptr(index) = external_node_free_head_;
|
| + external_node_free_head_ = index;
|
| +}
|
| +
|
| +void StrikeRegister::FreeInternalNode(uint32 index) {
|
| + internal_nodes_[index].SetNextPtr(internal_node_free_head_);
|
| + internal_node_free_head_ = index;
|
| +}
|
| +
|
| +void StrikeRegister::ValidateTree(
|
| + uint32 internal_node,
|
| + int last_bit,
|
| + const vector<pair<unsigned, bool> >& bits,
|
| + const set<uint32>& free_internal_nodes,
|
| + const set<uint32>& free_external_nodes,
|
| + set<uint32>* used_internal_nodes,
|
| + set<uint32>* used_external_nodes) {
|
| + CHECK_LT(internal_node, max_entries_);
|
| + const InternalNode* i = &internal_nodes_[internal_node];
|
| + unsigned bit = 0;
|
| + switch (i->otherbits()) {
|
| + case 0xff & ~(1 << 7):
|
| + bit = 0;
|
| + break;
|
| + case 0xff & ~(1 << 6):
|
| + bit = 1;
|
| + break;
|
| + case 0xff & ~(1 << 5):
|
| + bit = 2;
|
| + break;
|
| + case 0xff & ~(1 << 4):
|
| + bit = 3;
|
| + break;
|
| + case 0xff & ~(1 << 3):
|
| + bit = 4;
|
| + break;
|
| + case 0xff & ~(1 << 2):
|
| + bit = 5;
|
| + break;
|
| + case 0xff & ~(1 << 1):
|
| + bit = 6;
|
| + break;
|
| + case 0xff & ~1:
|
| + bit = 7;
|
| + break;
|
| + default:
|
| + CHECK(false);
|
| + }
|
| +
|
| + bit += 8 * i->critbyte();
|
| + if (last_bit > -1) {
|
| + CHECK_GT(bit, static_cast<unsigned>(last_bit));
|
| + }
|
| +
|
| + CHECK_EQ(free_internal_nodes.count(internal_node), 0u);
|
| +
|
| + for (unsigned child = 0; child < 2; child++) {
|
| + if (i->child(child) & kExternalFlag) {
|
| + uint32 ext = i->child(child) & ~kExternalFlag;
|
| + CHECK_EQ(free_external_nodes.count(ext), 0u);
|
| + CHECK_EQ(used_external_nodes->count(ext), 0u);
|
| + used_external_nodes->insert(ext);
|
| + const uint8* bytes = external_node(ext);
|
| + for (vector<pair<unsigned, bool> >::const_iterator
|
| + i = bits.begin(); i != bits.end(); i++) {
|
| + unsigned byte = i->first / 8;
|
| + DCHECK_LE(byte, 0xffu);
|
| + unsigned bit = i->first % 8;
|
| + static const uint8 kMasks[8] =
|
| + {0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01};
|
| + CHECK_EQ((bytes[byte] & kMasks[bit]) != 0, i->second);
|
| + }
|
| + } else {
|
| + uint32 inter = i->child(child);
|
| + vector<pair<unsigned, bool> > new_bits(bits);
|
| + new_bits.push_back(pair<unsigned, bool>(bit, child != 0));
|
| + CHECK_EQ(free_internal_nodes.count(inter), 0u);
|
| + CHECK_EQ(used_internal_nodes->count(inter), 0u);
|
| + used_internal_nodes->insert(inter);
|
| + ValidateTree(inter, bit, bits, free_internal_nodes, free_external_nodes,
|
| + used_internal_nodes, used_external_nodes);
|
| + }
|
| + }
|
| +}
|
| +
|
| +} // namespace net
|
|
|