Index: include/core/SkLazyPtr.h |
diff --git a/include/core/SkLazyPtr.h b/include/core/SkLazyPtr.h |
new file mode 100644 |
index 0000000000000000000000000000000000000000..b0cd2ff559d6061de52f72c5c8882be8f5087376 |
--- /dev/null |
+++ b/include/core/SkLazyPtr.h |
@@ -0,0 +1,188 @@ |
+/* |
+ * Copyright 2014 Google Inc. |
+ * |
+ * Use of this source code is governed by a BSD-style license that can be |
+ * found in the LICENSE file. |
+ */ |
+ |
+#ifndef SkLazyPtr_DEFINED |
+#define SkLazyPtr_DEFINED |
+ |
+/** Declare a lazily-chosen static pointer (or array of pointers) of type T. |
+ * |
+ * Example usage: |
+ * |
+ * Foo* GetSingletonFoo() { |
+ * SK_DECLARE_STATIC_LAZY_PTR(Foo, singleton); // Created with new, destroyed with delete. |
+ * return singleton.get(); |
+ * } |
+ * |
+ * These macros take an optional T* (*Create)() and void (*Destroy)(T*) at the end. |
+ * If not given, we'll use new and delete. |
+ * These options are most useful when T doesn't have a public constructor or destructor. |
+ * Create comes first, so you may use a custom Create with a default Destroy, but not vice versa. |
+ * |
+ * Foo* CustomCreate() { return ...; } |
+ * void CustomDestroy(Foo* ptr) { ... } |
+ * Foo* GetSingletonFooWithCustomCleanup() { |
+ * SK_DECLARE_STATIC_LAZY_PTR(Foo, singleton, CustomCreate, CustomDestroy); |
+ * return singleton.get(); |
+ * } |
+ * |
+ * If you have a bunch of related static pointers of the same type, you can |
+ * declare an array of lazy pointers together, and we'll pass the index to Create(). |
+ * |
+ * Foo* CreateFoo(int i) { return ...; } |
+ * Foo* GetCachedFoo(Foo::Enum enumVal) { |
+ * SK_DECLARE_STATIC_LAZY_PTR_ARRAY(Foo, Foo::kEnumCount, cachedFoos, CreateFoo); |
+ * return cachedFoos[enumVal]; |
+ * } |
+ * |
+ * |
+ * You can think of SK_DECLARE_STATIC_LAZY_PTR as a cheaper specialization of |
+ * SkOnce. There is no mutex or extra storage used past the pointer itself. |
+ * |
+ * We may call Create more than once, but all threads will see the same pointer |
+ * returned from get(). Any extra calls to Create will be cleaned up. |
+ * |
+ * These macros must be used in a global scope, not in function scope or as a class member. |
+ */ |
+ |
+#define SK_DECLARE_STATIC_LAZY_PTR(T, name, ...) \ |
+ namespace {} static Private::SkStaticLazyPtr<T, ##__VA_ARGS__> name |
+ |
+#define SK_DECLARE_STATIC_LAZY_PTR_ARRAY(T, name, N, ...) \ |
+ namespace {} static Private::SkStaticLazyPtrArray<T, N, ##__VA_ARGS__> name |
+ |
+// namespace {} forces these macros to only be legal in global scopes. Chrome has thread-safety |
+// problems with them in function-local statics because it uses -fno-threadsafe-statics, and even |
+// in builds with threadsafe statics, those threadsafe statics are just unnecessary overhead. |
+ |
+// Everything below here is private implementation details. Don't touch, don't even look. |
+ |
+#include "SkAtomics.h" |
+ |
+// See FIXME below. |
+class SkFontConfigInterfaceDirect; |
+ |
+namespace Private { |
+ |
+// Set *dst to ptr if *dst is NULL. Returns value of *dst, destroying ptr if not swapped in. |
+// Issues acquire memory barrier on failure, release on success. |
+template <typename P, void (*Destroy)(P)> |
+static P try_cas(P* dst, P ptr) { |
+ P prev = NULL; |
+ if (sk_atomic_compare_exchange(dst, &prev, ptr, |
+ sk_memory_order_release/*on success*/, |
+ sk_memory_order_acquire/*on failure*/)) { |
+ // We need a release barrier before returning ptr. The compare_exchange provides it. |
+ SkASSERT(!prev); |
+ return ptr; |
+ } else { |
+ Destroy(ptr); |
+ // We need an acquire barrier before returning prev. The compare_exchange provided it. |
+ SkASSERT(prev); |
+ return prev; |
+ } |
+} |
+ |
+template <typename T> |
+T* sk_new() { |
+ return new T; |
+} |
+template <typename T> |
+void sk_delete(T* ptr) { |
+ delete ptr; |
+} |
+ |
+// We're basing these implementations here on this article: |
+// http://preshing.com/20140709/the-purpose-of-memory_order_consume-in-cpp11/ |
+// |
+// Because the users of SkLazyPtr and SkLazyPtrArray will read the pointers |
+// _through_ our atomically set pointer, there is a data dependency between our |
+// atomic and the guarded data, and so we only need writer-releases / |
+// reader-consumes memory pairing rather than the more general write-releases / |
+// reader-acquires convention. |
+// |
+// This is nice, because a consume load is free on all our platforms: x86, |
+// ARM, MIPS. In contrast, an acquire load issues a memory barrier on non-x86. |
+ |
+template <typename T> |
+T consume_load(T* ptr) { |
+#if defined(THREAD_SANITIZER) |
+ // TSAN gets anxious if we don't tell it what we're actually doing, a consume load. |
+ return sk_atomic_load(ptr, sk_memory_order_consume); |
+#else |
+ // All current compilers blindly upgrade consume memory order to acquire memory order. |
+ // For our purposes, though, no memory barrier is required, so we lie and use relaxed. |
+ return sk_atomic_load(ptr, sk_memory_order_relaxed); |
+#endif |
+} |
+ |
+// This has no constructor and must be zero-initalized (the macro above does this). |
+template <typename T, T* (*Create)() = sk_new<T>, void (*Destroy)(T*) = sk_delete<T> > |
+class SkStaticLazyPtr { |
+public: |
+ T* get() { |
+ // If fPtr has already been filled, we need a consume barrier when loading it. |
+ // If not, we need a release barrier when setting it. try_cas will do that. |
+ T* ptr = consume_load(&fPtr); |
+ return ptr ? ptr : try_cas<T*, Destroy>(&fPtr, Create()); |
+ } |
+ |
+private: |
+ T* fPtr; |
+}; |
+ |
+template <typename T> |
+T* sk_new_arg(int i) { |
+ return new T(i); |
+} |
+ |
+// This has no constructor and must be zero-initalized (the macro above does this). |
+template <typename T, int N, T* (*Create)(int) = sk_new_arg<T>, void (*Destroy)(T*) = sk_delete<T> > |
+class SkStaticLazyPtrArray { |
+public: |
+ T* operator[](int i) { |
+ SkASSERT(i >= 0 && i < N); |
+ // If fPtr has already been filled, we need an consume barrier when loading it. |
+ // If not, we need a release barrier when setting it. try_cas will do that. |
+ T* ptr = consume_load(&fArray[i]); |
+ return ptr ? ptr : try_cas<T*, Destroy>(&fArray[i], Create(i)); |
+ } |
+ |
+private: |
+ T* fArray[N]; |
+}; |
+ |
+} // namespace Private |
+ |
+// This version is suitable for use as a class member. |
+// It's much the same as above except: |
+// - it has a constructor to zero itself; |
+// - it has a destructor to clean up; |
+// - get() calls SkNew(T) to create the pointer; |
+// - get(functor) calls functor to create the pointer. |
+template <typename T, void (*Destroy)(T*) = Private::sk_delete<T> > |
+class SkLazyPtr : SkNoncopyable { |
+public: |
+ SkLazyPtr() : fPtr(NULL) {} |
+ ~SkLazyPtr() { if (fPtr) { Destroy((T*)fPtr); } } |
+ |
+ T* get() const { |
+ T* ptr = Private::consume_load(&fPtr); |
+ return ptr ? ptr : Private::try_cas<T*, Destroy>(&fPtr, new T); |
+ } |
+ |
+ template <typename Create> |
+ T* get(const Create& create) const { |
+ T* ptr = Private::consume_load(&fPtr); |
+ return ptr ? ptr : Private::try_cas<T*, Destroy>(&fPtr, create()); |
+ } |
+ |
+private: |
+ mutable T* fPtr; |
+}; |
+ |
+ |
+#endif//SkLazyPtr_DEFINED |