OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * Copyright 2014 Google Inc. |
| 3 * |
| 4 * Use of this source code is governed by a BSD-style license that can be |
| 5 * found in the LICENSE file. |
| 6 */ |
| 7 |
| 8 #ifndef SkLazyPtr_DEFINED |
| 9 #define SkLazyPtr_DEFINED |
| 10 |
| 11 /** Declare a lazily-chosen static pointer (or array of pointers) of type T. |
| 12 * |
| 13 * Example usage: |
| 14 * |
| 15 * Foo* GetSingletonFoo() { |
| 16 * SK_DECLARE_STATIC_LAZY_PTR(Foo, singleton); // Created with new, destro
yed with delete. |
| 17 * return singleton.get(); |
| 18 * } |
| 19 * |
| 20 * These macros take an optional T* (*Create)() and void (*Destroy)(T*) at the
end. |
| 21 * If not given, we'll use new and delete. |
| 22 * These options are most useful when T doesn't have a public constructor or de
structor. |
| 23 * Create comes first, so you may use a custom Create with a default Destroy, b
ut not vice versa. |
| 24 * |
| 25 * Foo* CustomCreate() { return ...; } |
| 26 * void CustomDestroy(Foo* ptr) { ... } |
| 27 * Foo* GetSingletonFooWithCustomCleanup() { |
| 28 * SK_DECLARE_STATIC_LAZY_PTR(Foo, singleton, CustomCreate, CustomDestroy); |
| 29 * return singleton.get(); |
| 30 * } |
| 31 * |
| 32 * If you have a bunch of related static pointers of the same type, you can |
| 33 * declare an array of lazy pointers together, and we'll pass the index to Crea
te(). |
| 34 * |
| 35 * Foo* CreateFoo(int i) { return ...; } |
| 36 * Foo* GetCachedFoo(Foo::Enum enumVal) { |
| 37 * SK_DECLARE_STATIC_LAZY_PTR_ARRAY(Foo, Foo::kEnumCount, cachedFoos, Creat
eFoo); |
| 38 * return cachedFoos[enumVal]; |
| 39 * } |
| 40 * |
| 41 * |
| 42 * You can think of SK_DECLARE_STATIC_LAZY_PTR as a cheaper specialization of |
| 43 * SkOnce. There is no mutex or extra storage used past the pointer itself. |
| 44 * |
| 45 * We may call Create more than once, but all threads will see the same pointer |
| 46 * returned from get(). Any extra calls to Create will be cleaned up. |
| 47 * |
| 48 * These macros must be used in a global scope, not in function scope or as a c
lass member. |
| 49 */ |
| 50 |
| 51 #define SK_DECLARE_STATIC_LAZY_PTR(T, name, ...) \ |
| 52 namespace {} static Private::SkStaticLazyPtr<T, ##__VA_ARGS__> name |
| 53 |
| 54 #define SK_DECLARE_STATIC_LAZY_PTR_ARRAY(T, name, N, ...) \ |
| 55 namespace {} static Private::SkStaticLazyPtrArray<T, N, ##__VA_ARGS__> name |
| 56 |
| 57 // namespace {} forces these macros to only be legal in global scopes. Chrome h
as thread-safety |
| 58 // problems with them in function-local statics because it uses -fno-threadsafe-
statics, and even |
| 59 // in builds with threadsafe statics, those threadsafe statics are just unnecess
ary overhead. |
| 60 |
| 61 // Everything below here is private implementation details. Don't touch, don't
even look. |
| 62 |
| 63 #include "SkAtomics.h" |
| 64 |
| 65 // See FIXME below. |
| 66 class SkFontConfigInterfaceDirect; |
| 67 |
| 68 namespace Private { |
| 69 |
| 70 // Set *dst to ptr if *dst is NULL. Returns value of *dst, destroying ptr if no
t swapped in. |
| 71 // Issues acquire memory barrier on failure, release on success. |
| 72 template <typename P, void (*Destroy)(P)> |
| 73 static P try_cas(P* dst, P ptr) { |
| 74 P prev = NULL; |
| 75 if (sk_atomic_compare_exchange(dst, &prev, ptr, |
| 76 sk_memory_order_release/*on success*/, |
| 77 sk_memory_order_acquire/*on failure*/)) { |
| 78 // We need a release barrier before returning ptr. The compare_exchange
provides it. |
| 79 SkASSERT(!prev); |
| 80 return ptr; |
| 81 } else { |
| 82 Destroy(ptr); |
| 83 // We need an acquire barrier before returning prev. The compare_exchan
ge provided it. |
| 84 SkASSERT(prev); |
| 85 return prev; |
| 86 } |
| 87 } |
| 88 |
| 89 template <typename T> |
| 90 T* sk_new() { |
| 91 return new T; |
| 92 } |
| 93 template <typename T> |
| 94 void sk_delete(T* ptr) { |
| 95 delete ptr; |
| 96 } |
| 97 |
| 98 // We're basing these implementations here on this article: |
| 99 // http://preshing.com/20140709/the-purpose-of-memory_order_consume-in-cpp11/ |
| 100 // |
| 101 // Because the users of SkLazyPtr and SkLazyPtrArray will read the pointers |
| 102 // _through_ our atomically set pointer, there is a data dependency between our |
| 103 // atomic and the guarded data, and so we only need writer-releases / |
| 104 // reader-consumes memory pairing rather than the more general write-releases / |
| 105 // reader-acquires convention. |
| 106 // |
| 107 // This is nice, because a consume load is free on all our platforms: x86, |
| 108 // ARM, MIPS. In contrast, an acquire load issues a memory barrier on non-x86. |
| 109 |
| 110 template <typename T> |
| 111 T consume_load(T* ptr) { |
| 112 #if defined(THREAD_SANITIZER) |
| 113 // TSAN gets anxious if we don't tell it what we're actually doing, a consum
e load. |
| 114 return sk_atomic_load(ptr, sk_memory_order_consume); |
| 115 #else |
| 116 // All current compilers blindly upgrade consume memory order to acquire mem
ory order. |
| 117 // For our purposes, though, no memory barrier is required, so we lie and us
e relaxed. |
| 118 return sk_atomic_load(ptr, sk_memory_order_relaxed); |
| 119 #endif |
| 120 } |
| 121 |
| 122 // This has no constructor and must be zero-initalized (the macro above does thi
s). |
| 123 template <typename T, T* (*Create)() = sk_new<T>, void (*Destroy)(T*) = sk_delet
e<T> > |
| 124 class SkStaticLazyPtr { |
| 125 public: |
| 126 T* get() { |
| 127 // If fPtr has already been filled, we need a consume barrier when loadi
ng it. |
| 128 // If not, we need a release barrier when setting it. try_cas will do t
hat. |
| 129 T* ptr = consume_load(&fPtr); |
| 130 return ptr ? ptr : try_cas<T*, Destroy>(&fPtr, Create()); |
| 131 } |
| 132 |
| 133 private: |
| 134 T* fPtr; |
| 135 }; |
| 136 |
| 137 template <typename T> |
| 138 T* sk_new_arg(int i) { |
| 139 return new T(i); |
| 140 } |
| 141 |
| 142 // This has no constructor and must be zero-initalized (the macro above does thi
s). |
| 143 template <typename T, int N, T* (*Create)(int) = sk_new_arg<T>, void (*Destroy)(
T*) = sk_delete<T> > |
| 144 class SkStaticLazyPtrArray { |
| 145 public: |
| 146 T* operator[](int i) { |
| 147 SkASSERT(i >= 0 && i < N); |
| 148 // If fPtr has already been filled, we need an consume barrier when load
ing it. |
| 149 // If not, we need a release barrier when setting it. try_cas will do t
hat. |
| 150 T* ptr = consume_load(&fArray[i]); |
| 151 return ptr ? ptr : try_cas<T*, Destroy>(&fArray[i], Create(i)); |
| 152 } |
| 153 |
| 154 private: |
| 155 T* fArray[N]; |
| 156 }; |
| 157 |
| 158 } // namespace Private |
| 159 |
| 160 // This version is suitable for use as a class member. |
| 161 // It's much the same as above except: |
| 162 // - it has a constructor to zero itself; |
| 163 // - it has a destructor to clean up; |
| 164 // - get() calls SkNew(T) to create the pointer; |
| 165 // - get(functor) calls functor to create the pointer. |
| 166 template <typename T, void (*Destroy)(T*) = Private::sk_delete<T> > |
| 167 class SkLazyPtr : SkNoncopyable { |
| 168 public: |
| 169 SkLazyPtr() : fPtr(NULL) {} |
| 170 ~SkLazyPtr() { if (fPtr) { Destroy((T*)fPtr); } } |
| 171 |
| 172 T* get() const { |
| 173 T* ptr = Private::consume_load(&fPtr); |
| 174 return ptr ? ptr : Private::try_cas<T*, Destroy>(&fPtr, new T); |
| 175 } |
| 176 |
| 177 template <typename Create> |
| 178 T* get(const Create& create) const { |
| 179 T* ptr = Private::consume_load(&fPtr); |
| 180 return ptr ? ptr : Private::try_cas<T*, Destroy>(&fPtr, create()); |
| 181 } |
| 182 |
| 183 private: |
| 184 mutable T* fPtr; |
| 185 }; |
| 186 |
| 187 |
| 188 #endif//SkLazyPtr_DEFINED |
OLD | NEW |