| Index: src/gpu/GrAAHairLinePathRenderer.cpp
|
| diff --git a/src/gpu/GrAAHairLinePathRenderer.cpp b/src/gpu/GrAAHairLinePathRenderer.cpp
|
| deleted file mode 100644
|
| index e102db27a09c22e3a4cb7b3ef90d8cff6150d170..0000000000000000000000000000000000000000
|
| --- a/src/gpu/GrAAHairLinePathRenderer.cpp
|
| +++ /dev/null
|
| @@ -1,998 +0,0 @@
|
| -/*
|
| - * Copyright 2011 Google Inc.
|
| - *
|
| - * Use of this source code is governed by a BSD-style license that can be
|
| - * found in the LICENSE file.
|
| - */
|
| -
|
| -#include "GrAAHairLinePathRenderer.h"
|
| -
|
| -#include "GrBatchFlushState.h"
|
| -#include "GrBatchTest.h"
|
| -#include "GrCaps.h"
|
| -#include "GrContext.h"
|
| -#include "GrDefaultGeoProcFactory.h"
|
| -#include "GrIndexBuffer.h"
|
| -#include "GrPathUtils.h"
|
| -#include "GrPipelineBuilder.h"
|
| -#include "GrProcessor.h"
|
| -#include "GrResourceProvider.h"
|
| -#include "GrVertexBuffer.h"
|
| -#include "SkGeometry.h"
|
| -#include "SkStroke.h"
|
| -#include "SkTemplates.h"
|
| -
|
| -#include "batches/GrVertexBatch.h"
|
| -
|
| -#include "effects/GrBezierEffect.h"
|
| -
|
| -#define PREALLOC_PTARRAY(N) SkSTArray<(N),SkPoint, true>
|
| -
|
| -// quadratics are rendered as 5-sided polys in order to bound the
|
| -// AA stroke around the center-curve. See comments in push_quad_index_buffer and
|
| -// bloat_quad. Quadratics and conics share an index buffer
|
| -
|
| -// lines are rendered as:
|
| -// *______________*
|
| -// |\ -_______ /|
|
| -// | \ \ / |
|
| -// | *--------* |
|
| -// | / ______/ \ |
|
| -// */_-__________\*
|
| -// For: 6 vertices and 18 indices (for 6 triangles)
|
| -
|
| -// Each quadratic is rendered as a five sided polygon. This poly bounds
|
| -// the quadratic's bounding triangle but has been expanded so that the
|
| -// 1-pixel wide area around the curve is inside the poly.
|
| -// If a,b,c are the original control points then the poly a0,b0,c0,c1,a1
|
| -// that is rendered would look like this:
|
| -// b0
|
| -// b
|
| -//
|
| -// a0 c0
|
| -// a c
|
| -// a1 c1
|
| -// Each is drawn as three triangles ((a0,a1,b0), (b0,c1,c0), (a1,c1,b0))
|
| -// specified by these 9 indices:
|
| -static const uint16_t kQuadIdxBufPattern[] = {
|
| - 0, 1, 2,
|
| - 2, 4, 3,
|
| - 1, 4, 2
|
| -};
|
| -
|
| -static const int kIdxsPerQuad = SK_ARRAY_COUNT(kQuadIdxBufPattern);
|
| -static const int kQuadNumVertices = 5;
|
| -static const int kQuadsNumInIdxBuffer = 256;
|
| -GR_DECLARE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey);
|
| -
|
| -static const GrIndexBuffer* ref_quads_index_buffer(GrResourceProvider* resourceProvider) {
|
| - GR_DEFINE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey);
|
| - return resourceProvider->findOrCreateInstancedIndexBuffer(
|
| - kQuadIdxBufPattern, kIdxsPerQuad, kQuadsNumInIdxBuffer, kQuadNumVertices,
|
| - gQuadsIndexBufferKey);
|
| -}
|
| -
|
| -
|
| -// Each line segment is rendered as two quads and two triangles.
|
| -// p0 and p1 have alpha = 1 while all other points have alpha = 0.
|
| -// The four external points are offset 1 pixel perpendicular to the
|
| -// line and half a pixel parallel to the line.
|
| -//
|
| -// p4 p5
|
| -// p0 p1
|
| -// p2 p3
|
| -//
|
| -// Each is drawn as six triangles specified by these 18 indices:
|
| -
|
| -static const uint16_t kLineSegIdxBufPattern[] = {
|
| - 0, 1, 3,
|
| - 0, 3, 2,
|
| - 0, 4, 5,
|
| - 0, 5, 1,
|
| - 0, 2, 4,
|
| - 1, 5, 3
|
| -};
|
| -
|
| -static const int kIdxsPerLineSeg = SK_ARRAY_COUNT(kLineSegIdxBufPattern);
|
| -static const int kLineSegNumVertices = 6;
|
| -static const int kLineSegsNumInIdxBuffer = 256;
|
| -
|
| -GR_DECLARE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey);
|
| -
|
| -static const GrIndexBuffer* ref_lines_index_buffer(GrResourceProvider* resourceProvider) {
|
| - GR_DEFINE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey);
|
| - return resourceProvider->findOrCreateInstancedIndexBuffer(
|
| - kLineSegIdxBufPattern, kIdxsPerLineSeg, kLineSegsNumInIdxBuffer, kLineSegNumVertices,
|
| - gLinesIndexBufferKey);
|
| -}
|
| -
|
| -// Takes 178th time of logf on Z600 / VC2010
|
| -static int get_float_exp(float x) {
|
| - GR_STATIC_ASSERT(sizeof(int) == sizeof(float));
|
| -#ifdef SK_DEBUG
|
| - static bool tested;
|
| - if (!tested) {
|
| - tested = true;
|
| - SkASSERT(get_float_exp(0.25f) == -2);
|
| - SkASSERT(get_float_exp(0.3f) == -2);
|
| - SkASSERT(get_float_exp(0.5f) == -1);
|
| - SkASSERT(get_float_exp(1.f) == 0);
|
| - SkASSERT(get_float_exp(2.f) == 1);
|
| - SkASSERT(get_float_exp(2.5f) == 1);
|
| - SkASSERT(get_float_exp(8.f) == 3);
|
| - SkASSERT(get_float_exp(100.f) == 6);
|
| - SkASSERT(get_float_exp(1000.f) == 9);
|
| - SkASSERT(get_float_exp(1024.f) == 10);
|
| - SkASSERT(get_float_exp(3000000.f) == 21);
|
| - }
|
| -#endif
|
| - const int* iptr = (const int*)&x;
|
| - return (((*iptr) & 0x7f800000) >> 23) - 127;
|
| -}
|
| -
|
| -// Uses the max curvature function for quads to estimate
|
| -// where to chop the conic. If the max curvature is not
|
| -// found along the curve segment it will return 1 and
|
| -// dst[0] is the original conic. If it returns 2 the dst[0]
|
| -// and dst[1] are the two new conics.
|
| -static int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) {
|
| - SkScalar t = SkFindQuadMaxCurvature(src);
|
| - if (t == 0) {
|
| - if (dst) {
|
| - dst[0].set(src, weight);
|
| - }
|
| - return 1;
|
| - } else {
|
| - if (dst) {
|
| - SkConic conic;
|
| - conic.set(src, weight);
|
| - conic.chopAt(t, dst);
|
| - }
|
| - return 2;
|
| - }
|
| -}
|
| -
|
| -// Calls split_conic on the entire conic and then once more on each subsection.
|
| -// Most cases will result in either 1 conic (chop point is not within t range)
|
| -// or 3 points (split once and then one subsection is split again).
|
| -static int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) {
|
| - SkConic dstTemp[2];
|
| - int conicCnt = split_conic(src, dstTemp, weight);
|
| - if (2 == conicCnt) {
|
| - int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW);
|
| - conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW);
|
| - } else {
|
| - dst[0] = dstTemp[0];
|
| - }
|
| - return conicCnt;
|
| -}
|
| -
|
| -// returns 0 if quad/conic is degen or close to it
|
| -// in this case approx the path with lines
|
| -// otherwise returns 1
|
| -static int is_degen_quad_or_conic(const SkPoint p[3], SkScalar* dsqd) {
|
| - static const SkScalar gDegenerateToLineTol = GrPathUtils::kDefaultTolerance;
|
| - static const SkScalar gDegenerateToLineTolSqd =
|
| - SkScalarMul(gDegenerateToLineTol, gDegenerateToLineTol);
|
| -
|
| - if (p[0].distanceToSqd(p[1]) < gDegenerateToLineTolSqd ||
|
| - p[1].distanceToSqd(p[2]) < gDegenerateToLineTolSqd) {
|
| - return 1;
|
| - }
|
| -
|
| - *dsqd = p[1].distanceToLineBetweenSqd(p[0], p[2]);
|
| - if (*dsqd < gDegenerateToLineTolSqd) {
|
| - return 1;
|
| - }
|
| -
|
| - if (p[2].distanceToLineBetweenSqd(p[1], p[0]) < gDegenerateToLineTolSqd) {
|
| - return 1;
|
| - }
|
| - return 0;
|
| -}
|
| -
|
| -static int is_degen_quad_or_conic(const SkPoint p[3]) {
|
| - SkScalar dsqd;
|
| - return is_degen_quad_or_conic(p, &dsqd);
|
| -}
|
| -
|
| -// we subdivide the quads to avoid huge overfill
|
| -// if it returns -1 then should be drawn as lines
|
| -static int num_quad_subdivs(const SkPoint p[3]) {
|
| - SkScalar dsqd;
|
| - if (is_degen_quad_or_conic(p, &dsqd)) {
|
| - return -1;
|
| - }
|
| -
|
| - // tolerance of triangle height in pixels
|
| - // tuned on windows Quadro FX 380 / Z600
|
| - // trade off of fill vs cpu time on verts
|
| - // maybe different when do this using gpu (geo or tess shaders)
|
| - static const SkScalar gSubdivTol = 175 * SK_Scalar1;
|
| -
|
| - if (dsqd <= SkScalarMul(gSubdivTol, gSubdivTol)) {
|
| - return 0;
|
| - } else {
|
| - static const int kMaxSub = 4;
|
| - // subdividing the quad reduces d by 4. so we want x = log4(d/tol)
|
| - // = log4(d*d/tol*tol)/2
|
| - // = log2(d*d/tol*tol)
|
| -
|
| - // +1 since we're ignoring the mantissa contribution.
|
| - int log = get_float_exp(dsqd/(gSubdivTol*gSubdivTol)) + 1;
|
| - log = SkTMin(SkTMax(0, log), kMaxSub);
|
| - return log;
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * Generates the lines and quads to be rendered. Lines are always recorded in
|
| - * device space. We will do a device space bloat to account for the 1pixel
|
| - * thickness.
|
| - * Quads are recorded in device space unless m contains
|
| - * perspective, then in they are in src space. We do this because we will
|
| - * subdivide large quads to reduce over-fill. This subdivision has to be
|
| - * performed before applying the perspective matrix.
|
| - */
|
| -static int gather_lines_and_quads(const SkPath& path,
|
| - const SkMatrix& m,
|
| - const SkIRect& devClipBounds,
|
| - GrAAHairLinePathRenderer::PtArray* lines,
|
| - GrAAHairLinePathRenderer::PtArray* quads,
|
| - GrAAHairLinePathRenderer::PtArray* conics,
|
| - GrAAHairLinePathRenderer::IntArray* quadSubdivCnts,
|
| - GrAAHairLinePathRenderer::FloatArray* conicWeights) {
|
| - SkPath::Iter iter(path, false);
|
| -
|
| - int totalQuadCount = 0;
|
| - SkRect bounds;
|
| - SkIRect ibounds;
|
| -
|
| - bool persp = m.hasPerspective();
|
| -
|
| - for (;;) {
|
| - SkPoint pathPts[4];
|
| - SkPoint devPts[4];
|
| - SkPath::Verb verb = iter.next(pathPts);
|
| - switch (verb) {
|
| - case SkPath::kConic_Verb: {
|
| - SkConic dst[4];
|
| - // We chop the conics to create tighter clipping to hide error
|
| - // that appears near max curvature of very thin conics. Thin
|
| - // hyperbolas with high weight still show error.
|
| - int conicCnt = chop_conic(pathPts, dst, iter.conicWeight());
|
| - for (int i = 0; i < conicCnt; ++i) {
|
| - SkPoint* chopPnts = dst[i].fPts;
|
| - m.mapPoints(devPts, chopPnts, 3);
|
| - bounds.setBounds(devPts, 3);
|
| - bounds.outset(SK_Scalar1, SK_Scalar1);
|
| - bounds.roundOut(&ibounds);
|
| - if (SkIRect::Intersects(devClipBounds, ibounds)) {
|
| - if (is_degen_quad_or_conic(devPts)) {
|
| - SkPoint* pts = lines->push_back_n(4);
|
| - pts[0] = devPts[0];
|
| - pts[1] = devPts[1];
|
| - pts[2] = devPts[1];
|
| - pts[3] = devPts[2];
|
| - } else {
|
| - // when in perspective keep conics in src space
|
| - SkPoint* cPts = persp ? chopPnts : devPts;
|
| - SkPoint* pts = conics->push_back_n(3);
|
| - pts[0] = cPts[0];
|
| - pts[1] = cPts[1];
|
| - pts[2] = cPts[2];
|
| - conicWeights->push_back() = dst[i].fW;
|
| - }
|
| - }
|
| - }
|
| - break;
|
| - }
|
| - case SkPath::kMove_Verb:
|
| - break;
|
| - case SkPath::kLine_Verb:
|
| - m.mapPoints(devPts, pathPts, 2);
|
| - bounds.setBounds(devPts, 2);
|
| - bounds.outset(SK_Scalar1, SK_Scalar1);
|
| - bounds.roundOut(&ibounds);
|
| - if (SkIRect::Intersects(devClipBounds, ibounds)) {
|
| - SkPoint* pts = lines->push_back_n(2);
|
| - pts[0] = devPts[0];
|
| - pts[1] = devPts[1];
|
| - }
|
| - break;
|
| - case SkPath::kQuad_Verb: {
|
| - SkPoint choppedPts[5];
|
| - // Chopping the quad helps when the quad is either degenerate or nearly degenerate.
|
| - // When it is degenerate it allows the approximation with lines to work since the
|
| - // chop point (if there is one) will be at the parabola's vertex. In the nearly
|
| - // degenerate the QuadUVMatrix computed for the points is almost singular which
|
| - // can cause rendering artifacts.
|
| - int n = SkChopQuadAtMaxCurvature(pathPts, choppedPts);
|
| - for (int i = 0; i < n; ++i) {
|
| - SkPoint* quadPts = choppedPts + i * 2;
|
| - m.mapPoints(devPts, quadPts, 3);
|
| - bounds.setBounds(devPts, 3);
|
| - bounds.outset(SK_Scalar1, SK_Scalar1);
|
| - bounds.roundOut(&ibounds);
|
| -
|
| - if (SkIRect::Intersects(devClipBounds, ibounds)) {
|
| - int subdiv = num_quad_subdivs(devPts);
|
| - SkASSERT(subdiv >= -1);
|
| - if (-1 == subdiv) {
|
| - SkPoint* pts = lines->push_back_n(4);
|
| - pts[0] = devPts[0];
|
| - pts[1] = devPts[1];
|
| - pts[2] = devPts[1];
|
| - pts[3] = devPts[2];
|
| - } else {
|
| - // when in perspective keep quads in src space
|
| - SkPoint* qPts = persp ? quadPts : devPts;
|
| - SkPoint* pts = quads->push_back_n(3);
|
| - pts[0] = qPts[0];
|
| - pts[1] = qPts[1];
|
| - pts[2] = qPts[2];
|
| - quadSubdivCnts->push_back() = subdiv;
|
| - totalQuadCount += 1 << subdiv;
|
| - }
|
| - }
|
| - }
|
| - break;
|
| - }
|
| - case SkPath::kCubic_Verb:
|
| - m.mapPoints(devPts, pathPts, 4);
|
| - bounds.setBounds(devPts, 4);
|
| - bounds.outset(SK_Scalar1, SK_Scalar1);
|
| - bounds.roundOut(&ibounds);
|
| - if (SkIRect::Intersects(devClipBounds, ibounds)) {
|
| - PREALLOC_PTARRAY(32) q;
|
| - // we don't need a direction if we aren't constraining the subdivision
|
| - const SkPathPriv::FirstDirection kDummyDir = SkPathPriv::kCCW_FirstDirection;
|
| - // We convert cubics to quadratics (for now).
|
| - // In perspective have to do conversion in src space.
|
| - if (persp) {
|
| - SkScalar tolScale =
|
| - GrPathUtils::scaleToleranceToSrc(SK_Scalar1, m,
|
| - path.getBounds());
|
| - GrPathUtils::convertCubicToQuads(pathPts, tolScale, false, kDummyDir, &q);
|
| - } else {
|
| - GrPathUtils::convertCubicToQuads(devPts, SK_Scalar1, false, kDummyDir, &q);
|
| - }
|
| - for (int i = 0; i < q.count(); i += 3) {
|
| - SkPoint* qInDevSpace;
|
| - // bounds has to be calculated in device space, but q is
|
| - // in src space when there is perspective.
|
| - if (persp) {
|
| - m.mapPoints(devPts, &q[i], 3);
|
| - bounds.setBounds(devPts, 3);
|
| - qInDevSpace = devPts;
|
| - } else {
|
| - bounds.setBounds(&q[i], 3);
|
| - qInDevSpace = &q[i];
|
| - }
|
| - bounds.outset(SK_Scalar1, SK_Scalar1);
|
| - bounds.roundOut(&ibounds);
|
| - if (SkIRect::Intersects(devClipBounds, ibounds)) {
|
| - int subdiv = num_quad_subdivs(qInDevSpace);
|
| - SkASSERT(subdiv >= -1);
|
| - if (-1 == subdiv) {
|
| - SkPoint* pts = lines->push_back_n(4);
|
| - // lines should always be in device coords
|
| - pts[0] = qInDevSpace[0];
|
| - pts[1] = qInDevSpace[1];
|
| - pts[2] = qInDevSpace[1];
|
| - pts[3] = qInDevSpace[2];
|
| - } else {
|
| - SkPoint* pts = quads->push_back_n(3);
|
| - // q is already in src space when there is no
|
| - // perspective and dev coords otherwise.
|
| - pts[0] = q[0 + i];
|
| - pts[1] = q[1 + i];
|
| - pts[2] = q[2 + i];
|
| - quadSubdivCnts->push_back() = subdiv;
|
| - totalQuadCount += 1 << subdiv;
|
| - }
|
| - }
|
| - }
|
| - }
|
| - break;
|
| - case SkPath::kClose_Verb:
|
| - break;
|
| - case SkPath::kDone_Verb:
|
| - return totalQuadCount;
|
| - }
|
| - }
|
| -}
|
| -
|
| -struct LineVertex {
|
| - SkPoint fPos;
|
| - float fCoverage;
|
| -};
|
| -
|
| -struct BezierVertex {
|
| - SkPoint fPos;
|
| - union {
|
| - struct {
|
| - SkScalar fK;
|
| - SkScalar fL;
|
| - SkScalar fM;
|
| - } fConic;
|
| - SkVector fQuadCoord;
|
| - struct {
|
| - SkScalar fBogus[4];
|
| - };
|
| - };
|
| -};
|
| -
|
| -GR_STATIC_ASSERT(sizeof(BezierVertex) == 3 * sizeof(SkPoint));
|
| -
|
| -static void intersect_lines(const SkPoint& ptA, const SkVector& normA,
|
| - const SkPoint& ptB, const SkVector& normB,
|
| - SkPoint* result) {
|
| -
|
| - SkScalar lineAW = -normA.dot(ptA);
|
| - SkScalar lineBW = -normB.dot(ptB);
|
| -
|
| - SkScalar wInv = SkScalarMul(normA.fX, normB.fY) -
|
| - SkScalarMul(normA.fY, normB.fX);
|
| - wInv = SkScalarInvert(wInv);
|
| -
|
| - result->fX = SkScalarMul(normA.fY, lineBW) - SkScalarMul(lineAW, normB.fY);
|
| - result->fX = SkScalarMul(result->fX, wInv);
|
| -
|
| - result->fY = SkScalarMul(lineAW, normB.fX) - SkScalarMul(normA.fX, lineBW);
|
| - result->fY = SkScalarMul(result->fY, wInv);
|
| -}
|
| -
|
| -static void set_uv_quad(const SkPoint qpts[3], BezierVertex verts[kQuadNumVertices]) {
|
| - // this should be in the src space, not dev coords, when we have perspective
|
| - GrPathUtils::QuadUVMatrix DevToUV(qpts);
|
| - DevToUV.apply<kQuadNumVertices, sizeof(BezierVertex), sizeof(SkPoint)>(verts);
|
| -}
|
| -
|
| -static void bloat_quad(const SkPoint qpts[3], const SkMatrix* toDevice,
|
| - const SkMatrix* toSrc, BezierVertex verts[kQuadNumVertices]) {
|
| - SkASSERT(!toDevice == !toSrc);
|
| - // original quad is specified by tri a,b,c
|
| - SkPoint a = qpts[0];
|
| - SkPoint b = qpts[1];
|
| - SkPoint c = qpts[2];
|
| -
|
| - if (toDevice) {
|
| - toDevice->mapPoints(&a, 1);
|
| - toDevice->mapPoints(&b, 1);
|
| - toDevice->mapPoints(&c, 1);
|
| - }
|
| - // make a new poly where we replace a and c by a 1-pixel wide edges orthog
|
| - // to edges ab and bc:
|
| - //
|
| - // before | after
|
| - // | b0
|
| - // b |
|
| - // |
|
| - // | a0 c0
|
| - // a c | a1 c1
|
| - //
|
| - // edges a0->b0 and b0->c0 are parallel to original edges a->b and b->c,
|
| - // respectively.
|
| - BezierVertex& a0 = verts[0];
|
| - BezierVertex& a1 = verts[1];
|
| - BezierVertex& b0 = verts[2];
|
| - BezierVertex& c0 = verts[3];
|
| - BezierVertex& c1 = verts[4];
|
| -
|
| - SkVector ab = b;
|
| - ab -= a;
|
| - SkVector ac = c;
|
| - ac -= a;
|
| - SkVector cb = b;
|
| - cb -= c;
|
| -
|
| - // We should have already handled degenerates
|
| - SkASSERT(ab.length() > 0 && cb.length() > 0);
|
| -
|
| - ab.normalize();
|
| - SkVector abN;
|
| - abN.setOrthog(ab, SkVector::kLeft_Side);
|
| - if (abN.dot(ac) > 0) {
|
| - abN.negate();
|
| - }
|
| -
|
| - cb.normalize();
|
| - SkVector cbN;
|
| - cbN.setOrthog(cb, SkVector::kLeft_Side);
|
| - if (cbN.dot(ac) < 0) {
|
| - cbN.negate();
|
| - }
|
| -
|
| - a0.fPos = a;
|
| - a0.fPos += abN;
|
| - a1.fPos = a;
|
| - a1.fPos -= abN;
|
| -
|
| - c0.fPos = c;
|
| - c0.fPos += cbN;
|
| - c1.fPos = c;
|
| - c1.fPos -= cbN;
|
| -
|
| - intersect_lines(a0.fPos, abN, c0.fPos, cbN, &b0.fPos);
|
| -
|
| - if (toSrc) {
|
| - toSrc->mapPointsWithStride(&verts[0].fPos, sizeof(BezierVertex), kQuadNumVertices);
|
| - }
|
| -}
|
| -
|
| -// Equations based off of Loop-Blinn Quadratic GPU Rendering
|
| -// Input Parametric:
|
| -// P(t) = (P0*(1-t)^2 + 2*w*P1*t*(1-t) + P2*t^2) / (1-t)^2 + 2*w*t*(1-t) + t^2)
|
| -// Output Implicit:
|
| -// f(x, y, w) = f(P) = K^2 - LM
|
| -// K = dot(k, P), L = dot(l, P), M = dot(m, P)
|
| -// k, l, m are calculated in function GrPathUtils::getConicKLM
|
| -static void set_conic_coeffs(const SkPoint p[3], BezierVertex verts[kQuadNumVertices],
|
| - const SkScalar weight) {
|
| - SkScalar klm[9];
|
| -
|
| - GrPathUtils::getConicKLM(p, weight, klm);
|
| -
|
| - for (int i = 0; i < kQuadNumVertices; ++i) {
|
| - const SkPoint pnt = verts[i].fPos;
|
| - verts[i].fConic.fK = pnt.fX * klm[0] + pnt.fY * klm[1] + klm[2];
|
| - verts[i].fConic.fL = pnt.fX * klm[3] + pnt.fY * klm[4] + klm[5];
|
| - verts[i].fConic.fM = pnt.fX * klm[6] + pnt.fY * klm[7] + klm[8];
|
| - }
|
| -}
|
| -
|
| -static void add_conics(const SkPoint p[3],
|
| - const SkScalar weight,
|
| - const SkMatrix* toDevice,
|
| - const SkMatrix* toSrc,
|
| - BezierVertex** vert) {
|
| - bloat_quad(p, toDevice, toSrc, *vert);
|
| - set_conic_coeffs(p, *vert, weight);
|
| - *vert += kQuadNumVertices;
|
| -}
|
| -
|
| -static void add_quads(const SkPoint p[3],
|
| - int subdiv,
|
| - const SkMatrix* toDevice,
|
| - const SkMatrix* toSrc,
|
| - BezierVertex** vert) {
|
| - SkASSERT(subdiv >= 0);
|
| - if (subdiv) {
|
| - SkPoint newP[5];
|
| - SkChopQuadAtHalf(p, newP);
|
| - add_quads(newP + 0, subdiv-1, toDevice, toSrc, vert);
|
| - add_quads(newP + 2, subdiv-1, toDevice, toSrc, vert);
|
| - } else {
|
| - bloat_quad(p, toDevice, toSrc, *vert);
|
| - set_uv_quad(p, *vert);
|
| - *vert += kQuadNumVertices;
|
| - }
|
| -}
|
| -
|
| -static void add_line(const SkPoint p[2],
|
| - const SkMatrix* toSrc,
|
| - uint8_t coverage,
|
| - LineVertex** vert) {
|
| - const SkPoint& a = p[0];
|
| - const SkPoint& b = p[1];
|
| -
|
| - SkVector ortho, vec = b;
|
| - vec -= a;
|
| -
|
| - if (vec.setLength(SK_ScalarHalf)) {
|
| - // Create a vector orthogonal to 'vec' and of unit length
|
| - ortho.fX = 2.0f * vec.fY;
|
| - ortho.fY = -2.0f * vec.fX;
|
| -
|
| - float floatCoverage = GrNormalizeByteToFloat(coverage);
|
| -
|
| - (*vert)[0].fPos = a;
|
| - (*vert)[0].fCoverage = floatCoverage;
|
| - (*vert)[1].fPos = b;
|
| - (*vert)[1].fCoverage = floatCoverage;
|
| - (*vert)[2].fPos = a - vec + ortho;
|
| - (*vert)[2].fCoverage = 0;
|
| - (*vert)[3].fPos = b + vec + ortho;
|
| - (*vert)[3].fCoverage = 0;
|
| - (*vert)[4].fPos = a - vec - ortho;
|
| - (*vert)[4].fCoverage = 0;
|
| - (*vert)[5].fPos = b + vec - ortho;
|
| - (*vert)[5].fCoverage = 0;
|
| -
|
| - if (toSrc) {
|
| - toSrc->mapPointsWithStride(&(*vert)->fPos,
|
| - sizeof(LineVertex),
|
| - kLineSegNumVertices);
|
| - }
|
| - } else {
|
| - // just make it degenerate and likely offscreen
|
| - for (int i = 0; i < kLineSegNumVertices; ++i) {
|
| - (*vert)[i].fPos.set(SK_ScalarMax, SK_ScalarMax);
|
| - }
|
| - }
|
| -
|
| - *vert += kLineSegNumVertices;
|
| -}
|
| -
|
| -///////////////////////////////////////////////////////////////////////////////
|
| -
|
| -bool GrAAHairLinePathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const {
|
| - if (!args.fAntiAlias) {
|
| - return false;
|
| - }
|
| -
|
| - if (!IsStrokeHairlineOrEquivalent(*args.fStroke, *args.fViewMatrix, nullptr)) {
|
| - return false;
|
| - }
|
| -
|
| - if (SkPath::kLine_SegmentMask == args.fPath->getSegmentMasks() ||
|
| - args.fShaderCaps->shaderDerivativeSupport()) {
|
| - return true;
|
| - }
|
| - return false;
|
| -}
|
| -
|
| -template <class VertexType>
|
| -bool check_bounds(const SkMatrix& viewMatrix, const SkRect& devBounds, void* vertices, int vCount)
|
| -{
|
| - SkRect tolDevBounds = devBounds;
|
| - // The bounds ought to be tight, but in perspective the below code runs the verts
|
| - // through the view matrix to get back to dev coords, which can introduce imprecision.
|
| - if (viewMatrix.hasPerspective()) {
|
| - tolDevBounds.outset(SK_Scalar1 / 1000, SK_Scalar1 / 1000);
|
| - } else {
|
| - // Non-persp matrices cause this path renderer to draw in device space.
|
| - SkASSERT(viewMatrix.isIdentity());
|
| - }
|
| - SkRect actualBounds;
|
| -
|
| - VertexType* verts = reinterpret_cast<VertexType*>(vertices);
|
| - bool first = true;
|
| - for (int i = 0; i < vCount; ++i) {
|
| - SkPoint pos = verts[i].fPos;
|
| - // This is a hack to workaround the fact that we move some degenerate segments offscreen.
|
| - if (SK_ScalarMax == pos.fX) {
|
| - continue;
|
| - }
|
| - viewMatrix.mapPoints(&pos, 1);
|
| - if (first) {
|
| - actualBounds.set(pos.fX, pos.fY, pos.fX, pos.fY);
|
| - first = false;
|
| - } else {
|
| - actualBounds.growToInclude(pos.fX, pos.fY);
|
| - }
|
| - }
|
| - if (!first) {
|
| - return tolDevBounds.contains(actualBounds);
|
| - }
|
| -
|
| - return true;
|
| -}
|
| -
|
| -class AAHairlineBatch : public GrVertexBatch {
|
| -public:
|
| - struct Geometry {
|
| - GrColor fColor;
|
| - uint8_t fCoverage;
|
| - SkMatrix fViewMatrix;
|
| - SkPath fPath;
|
| - SkIRect fDevClipBounds;
|
| - };
|
| -
|
| - static GrDrawBatch* Create(const Geometry& geometry) { return new AAHairlineBatch(geometry); }
|
| -
|
| - const char* name() const override { return "AAHairlineBatch"; }
|
| -
|
| - void getInvariantOutputColor(GrInitInvariantOutput* out) const override {
|
| - // When this is called on a batch, there is only one geometry bundle
|
| - out->setKnownFourComponents(fGeoData[0].fColor);
|
| - }
|
| - void getInvariantOutputCoverage(GrInitInvariantOutput* out) const override {
|
| - out->setUnknownSingleComponent();
|
| - }
|
| -
|
| -private:
|
| - void initBatchTracker(const GrPipelineOptimizations& opt) override {
|
| - // Handle any color overrides
|
| - if (!opt.readsColor()) {
|
| - fGeoData[0].fColor = GrColor_ILLEGAL;
|
| - }
|
| - opt.getOverrideColorIfSet(&fGeoData[0].fColor);
|
| -
|
| - // setup batch properties
|
| - fBatch.fColorIgnored = !opt.readsColor();
|
| - fBatch.fColor = fGeoData[0].fColor;
|
| - fBatch.fUsesLocalCoords = opt.readsLocalCoords();
|
| - fBatch.fCoverageIgnored = !opt.readsCoverage();
|
| - fBatch.fCoverage = fGeoData[0].fCoverage;
|
| - }
|
| -
|
| - SkSTArray<1, Geometry, true>* geoData() { return &fGeoData; }
|
| -
|
| - void onPrepareDraws(Target*) override;
|
| -
|
| - typedef SkTArray<SkPoint, true> PtArray;
|
| - typedef SkTArray<int, true> IntArray;
|
| - typedef SkTArray<float, true> FloatArray;
|
| -
|
| - AAHairlineBatch(const Geometry& geometry) {
|
| - this->initClassID<AAHairlineBatch>();
|
| - fGeoData.push_back(geometry);
|
| -
|
| - // compute bounds
|
| - fBounds = geometry.fPath.getBounds();
|
| - geometry.fViewMatrix.mapRect(&fBounds);
|
| -
|
| - // This is b.c. hairlines are notionally infinitely thin so without expansion
|
| - // two overlapping lines could be reordered even though they hit the same pixels.
|
| - fBounds.outset(0.5f, 0.5f);
|
| - }
|
| -
|
| - bool onCombineIfPossible(GrBatch* t, const GrCaps& caps) override {
|
| - AAHairlineBatch* that = t->cast<AAHairlineBatch>();
|
| -
|
| - if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(),
|
| - that->bounds(), caps)) {
|
| - return false;
|
| - }
|
| -
|
| - if (this->viewMatrix().hasPerspective() != that->viewMatrix().hasPerspective()) {
|
| - return false;
|
| - }
|
| -
|
| - // We go to identity if we don't have perspective
|
| - if (this->viewMatrix().hasPerspective() &&
|
| - !this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
|
| - return false;
|
| - }
|
| -
|
| - // TODO we can actually batch hairlines if they are the same color in a kind of bulk method
|
| - // but we haven't implemented this yet
|
| - // TODO investigate going to vertex color and coverage?
|
| - if (this->coverage() != that->coverage()) {
|
| - return false;
|
| - }
|
| -
|
| - if (this->color() != that->color()) {
|
| - return false;
|
| - }
|
| -
|
| - SkASSERT(this->usesLocalCoords() == that->usesLocalCoords());
|
| - if (this->usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
|
| - return false;
|
| - }
|
| -
|
| - fGeoData.push_back_n(that->geoData()->count(), that->geoData()->begin());
|
| - this->joinBounds(that->bounds());
|
| - return true;
|
| - }
|
| -
|
| - GrColor color() const { return fBatch.fColor; }
|
| - uint8_t coverage() const { return fBatch.fCoverage; }
|
| - bool usesLocalCoords() const { return fBatch.fUsesLocalCoords; }
|
| - const SkMatrix& viewMatrix() const { return fGeoData[0].fViewMatrix; }
|
| - bool coverageIgnored() const { return fBatch.fCoverageIgnored; }
|
| -
|
| - struct BatchTracker {
|
| - GrColor fColor;
|
| - uint8_t fCoverage;
|
| - SkRect fDevBounds;
|
| - bool fUsesLocalCoords;
|
| - bool fColorIgnored;
|
| - bool fCoverageIgnored;
|
| - };
|
| -
|
| - BatchTracker fBatch;
|
| - SkSTArray<1, Geometry, true> fGeoData;
|
| -};
|
| -
|
| -void AAHairlineBatch::onPrepareDraws(Target* target) {
|
| - // Setup the viewmatrix and localmatrix for the GrGeometryProcessor.
|
| - SkMatrix invert;
|
| - if (!this->viewMatrix().invert(&invert)) {
|
| - return;
|
| - }
|
| -
|
| - // we will transform to identity space if the viewmatrix does not have perspective
|
| - bool hasPerspective = this->viewMatrix().hasPerspective();
|
| - const SkMatrix* geometryProcessorViewM = &SkMatrix::I();
|
| - const SkMatrix* geometryProcessorLocalM = &invert;
|
| - const SkMatrix* toDevice = nullptr;
|
| - const SkMatrix* toSrc = nullptr;
|
| - if (hasPerspective) {
|
| - geometryProcessorViewM = &this->viewMatrix();
|
| - geometryProcessorLocalM = &SkMatrix::I();
|
| - toDevice = &this->viewMatrix();
|
| - toSrc = &invert;
|
| - }
|
| -
|
| - SkAutoTUnref<const GrGeometryProcessor> lineGP;
|
| - {
|
| - using namespace GrDefaultGeoProcFactory;
|
| -
|
| - Color color(this->color());
|
| - Coverage coverage(Coverage::kAttribute_Type);
|
| - LocalCoords localCoords(this->usesLocalCoords() ? LocalCoords::kUsePosition_Type :
|
| - LocalCoords::kUnused_Type);
|
| - localCoords.fMatrix = geometryProcessorLocalM;
|
| - lineGP.reset(GrDefaultGeoProcFactory::Create(color, coverage, localCoords,
|
| - *geometryProcessorViewM));
|
| - }
|
| -
|
| - SkAutoTUnref<const GrGeometryProcessor> quadGP(
|
| - GrQuadEffect::Create(this->color(),
|
| - *geometryProcessorViewM,
|
| - kHairlineAA_GrProcessorEdgeType,
|
| - target->caps(),
|
| - *geometryProcessorLocalM,
|
| - this->usesLocalCoords(),
|
| - this->coverage()));
|
| -
|
| - SkAutoTUnref<const GrGeometryProcessor> conicGP(
|
| - GrConicEffect::Create(this->color(),
|
| - *geometryProcessorViewM,
|
| - kHairlineAA_GrProcessorEdgeType,
|
| - target->caps(),
|
| - *geometryProcessorLocalM,
|
| - this->usesLocalCoords(),
|
| - this->coverage()));
|
| -
|
| - // This is hand inlined for maximum performance.
|
| - PREALLOC_PTARRAY(128) lines;
|
| - PREALLOC_PTARRAY(128) quads;
|
| - PREALLOC_PTARRAY(128) conics;
|
| - IntArray qSubdivs;
|
| - FloatArray cWeights;
|
| - int quadCount = 0;
|
| -
|
| - int instanceCount = fGeoData.count();
|
| - for (int i = 0; i < instanceCount; i++) {
|
| - const Geometry& args = fGeoData[i];
|
| - quadCount += gather_lines_and_quads(args.fPath, args.fViewMatrix, args.fDevClipBounds,
|
| - &lines, &quads, &conics, &qSubdivs, &cWeights);
|
| - }
|
| -
|
| - int lineCount = lines.count() / 2;
|
| - int conicCount = conics.count() / 3;
|
| -
|
| - // do lines first
|
| - if (lineCount) {
|
| - SkAutoTUnref<const GrIndexBuffer> linesIndexBuffer(
|
| - ref_lines_index_buffer(target->resourceProvider()));
|
| - target->initDraw(lineGP, this->pipeline());
|
| -
|
| - const GrVertexBuffer* vertexBuffer;
|
| - int firstVertex;
|
| -
|
| - size_t vertexStride = lineGP->getVertexStride();
|
| - int vertexCount = kLineSegNumVertices * lineCount;
|
| - LineVertex* verts = reinterpret_cast<LineVertex*>(
|
| - target->makeVertexSpace(vertexStride, vertexCount, &vertexBuffer, &firstVertex));
|
| -
|
| - if (!verts|| !linesIndexBuffer) {
|
| - SkDebugf("Could not allocate vertices\n");
|
| - return;
|
| - }
|
| -
|
| - SkASSERT(lineGP->getVertexStride() == sizeof(LineVertex));
|
| -
|
| - for (int i = 0; i < lineCount; ++i) {
|
| - add_line(&lines[2*i], toSrc, this->coverage(), &verts);
|
| - }
|
| -
|
| - {
|
| - GrVertices vertices;
|
| - vertices.initInstanced(kTriangles_GrPrimitiveType, vertexBuffer, linesIndexBuffer,
|
| - firstVertex, kLineSegNumVertices, kIdxsPerLineSeg, lineCount,
|
| - kLineSegsNumInIdxBuffer);
|
| - target->draw(vertices);
|
| - }
|
| - }
|
| -
|
| - if (quadCount || conicCount) {
|
| - const GrVertexBuffer* vertexBuffer;
|
| - int firstVertex;
|
| -
|
| - SkAutoTUnref<const GrIndexBuffer> quadsIndexBuffer(
|
| - ref_quads_index_buffer(target->resourceProvider()));
|
| -
|
| - size_t vertexStride = sizeof(BezierVertex);
|
| - int vertexCount = kQuadNumVertices * quadCount + kQuadNumVertices * conicCount;
|
| - void *vertices = target->makeVertexSpace(vertexStride, vertexCount,
|
| - &vertexBuffer, &firstVertex);
|
| -
|
| - if (!vertices || !quadsIndexBuffer) {
|
| - SkDebugf("Could not allocate vertices\n");
|
| - return;
|
| - }
|
| -
|
| - // Setup vertices
|
| - BezierVertex* verts = reinterpret_cast<BezierVertex*>(vertices);
|
| -
|
| - int unsubdivQuadCnt = quads.count() / 3;
|
| - for (int i = 0; i < unsubdivQuadCnt; ++i) {
|
| - SkASSERT(qSubdivs[i] >= 0);
|
| - add_quads(&quads[3*i], qSubdivs[i], toDevice, toSrc, &verts);
|
| - }
|
| -
|
| - // Start Conics
|
| - for (int i = 0; i < conicCount; ++i) {
|
| - add_conics(&conics[3*i], cWeights[i], toDevice, toSrc, &verts);
|
| - }
|
| -
|
| - if (quadCount > 0) {
|
| - target->initDraw(quadGP, this->pipeline());
|
| -
|
| - {
|
| - GrVertices verts;
|
| - verts.initInstanced(kTriangles_GrPrimitiveType, vertexBuffer, quadsIndexBuffer,
|
| - firstVertex, kQuadNumVertices, kIdxsPerQuad, quadCount,
|
| - kQuadsNumInIdxBuffer);
|
| - target->draw(verts);
|
| - firstVertex += quadCount * kQuadNumVertices;
|
| - }
|
| - }
|
| -
|
| - if (conicCount > 0) {
|
| - target->initDraw(conicGP, this->pipeline());
|
| -
|
| - {
|
| - GrVertices verts;
|
| - verts.initInstanced(kTriangles_GrPrimitiveType, vertexBuffer, quadsIndexBuffer,
|
| - firstVertex, kQuadNumVertices, kIdxsPerQuad, conicCount,
|
| - kQuadsNumInIdxBuffer);
|
| - target->draw(verts);
|
| - }
|
| - }
|
| - }
|
| -}
|
| -
|
| -static GrDrawBatch* create_hairline_batch(GrColor color,
|
| - const SkMatrix& viewMatrix,
|
| - const SkPath& path,
|
| - const GrStrokeInfo& stroke,
|
| - const SkIRect& devClipBounds) {
|
| - SkScalar hairlineCoverage;
|
| - uint8_t newCoverage = 0xff;
|
| - if (GrPathRenderer::IsStrokeHairlineOrEquivalent(stroke, viewMatrix, &hairlineCoverage)) {
|
| - newCoverage = SkScalarRoundToInt(hairlineCoverage * 0xff);
|
| - }
|
| -
|
| - AAHairlineBatch::Geometry geometry;
|
| - geometry.fColor = color;
|
| - geometry.fCoverage = newCoverage;
|
| - geometry.fViewMatrix = viewMatrix;
|
| - geometry.fPath = path;
|
| - geometry.fDevClipBounds = devClipBounds;
|
| -
|
| - return AAHairlineBatch::Create(geometry);
|
| -}
|
| -
|
| -bool GrAAHairLinePathRenderer::onDrawPath(const DrawPathArgs& args) {
|
| - SkIRect devClipBounds;
|
| - args.fPipelineBuilder->clip().getConservativeBounds(args.fPipelineBuilder->getRenderTarget(),
|
| - &devClipBounds);
|
| -
|
| - SkAutoTUnref<GrDrawBatch> batch(create_hairline_batch(args.fColor, *args.fViewMatrix, *args.fPath,
|
| - *args.fStroke, devClipBounds));
|
| - args.fTarget->drawBatch(*args.fPipelineBuilder, batch);
|
| -
|
| - return true;
|
| -}
|
| -
|
| -///////////////////////////////////////////////////////////////////////////////////////////////////
|
| -
|
| -#ifdef GR_TEST_UTILS
|
| -
|
| -DRAW_BATCH_TEST_DEFINE(AAHairlineBatch) {
|
| - GrColor color = GrRandomColor(random);
|
| - SkMatrix viewMatrix = GrTest::TestMatrix(random);
|
| - GrStrokeInfo stroke(SkStrokeRec::kHairline_InitStyle);
|
| - SkPath path = GrTest::TestPath(random);
|
| - SkIRect devClipBounds;
|
| - devClipBounds.setEmpty();
|
| - return create_hairline_batch(color, viewMatrix, path, stroke, devClipBounds);
|
| -}
|
| -
|
| -#endif
|
|
|