| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 * Copyright 2011 Google Inc. | |
| 3 * | |
| 4 * Use of this source code is governed by a BSD-style license that can be | |
| 5 * found in the LICENSE file. | |
| 6 */ | |
| 7 | |
| 8 #include "GrAAHairLinePathRenderer.h" | |
| 9 | |
| 10 #include "GrBatchFlushState.h" | |
| 11 #include "GrBatchTest.h" | |
| 12 #include "GrCaps.h" | |
| 13 #include "GrContext.h" | |
| 14 #include "GrDefaultGeoProcFactory.h" | |
| 15 #include "GrIndexBuffer.h" | |
| 16 #include "GrPathUtils.h" | |
| 17 #include "GrPipelineBuilder.h" | |
| 18 #include "GrProcessor.h" | |
| 19 #include "GrResourceProvider.h" | |
| 20 #include "GrVertexBuffer.h" | |
| 21 #include "SkGeometry.h" | |
| 22 #include "SkStroke.h" | |
| 23 #include "SkTemplates.h" | |
| 24 | |
| 25 #include "batches/GrVertexBatch.h" | |
| 26 | |
| 27 #include "effects/GrBezierEffect.h" | |
| 28 | |
| 29 #define PREALLOC_PTARRAY(N) SkSTArray<(N),SkPoint, true> | |
| 30 | |
| 31 // quadratics are rendered as 5-sided polys in order to bound the | |
| 32 // AA stroke around the center-curve. See comments in push_quad_index_buffer and | |
| 33 // bloat_quad. Quadratics and conics share an index buffer | |
| 34 | |
| 35 // lines are rendered as: | |
| 36 // *______________* | |
| 37 // |\ -_______ /| | |
| 38 // | \ \ / | | |
| 39 // | *--------* | | |
| 40 // | / ______/ \ | | |
| 41 // */_-__________\* | |
| 42 // For: 6 vertices and 18 indices (for 6 triangles) | |
| 43 | |
| 44 // Each quadratic is rendered as a five sided polygon. This poly bounds | |
| 45 // the quadratic's bounding triangle but has been expanded so that the | |
| 46 // 1-pixel wide area around the curve is inside the poly. | |
| 47 // If a,b,c are the original control points then the poly a0,b0,c0,c1,a1 | |
| 48 // that is rendered would look like this: | |
| 49 // b0 | |
| 50 // b | |
| 51 // | |
| 52 // a0 c0 | |
| 53 // a c | |
| 54 // a1 c1 | |
| 55 // Each is drawn as three triangles ((a0,a1,b0), (b0,c1,c0), (a1,c1,b0)) | |
| 56 // specified by these 9 indices: | |
| 57 static const uint16_t kQuadIdxBufPattern[] = { | |
| 58 0, 1, 2, | |
| 59 2, 4, 3, | |
| 60 1, 4, 2 | |
| 61 }; | |
| 62 | |
| 63 static const int kIdxsPerQuad = SK_ARRAY_COUNT(kQuadIdxBufPattern); | |
| 64 static const int kQuadNumVertices = 5; | |
| 65 static const int kQuadsNumInIdxBuffer = 256; | |
| 66 GR_DECLARE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey); | |
| 67 | |
| 68 static const GrIndexBuffer* ref_quads_index_buffer(GrResourceProvider* resourceP
rovider) { | |
| 69 GR_DEFINE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey); | |
| 70 return resourceProvider->findOrCreateInstancedIndexBuffer( | |
| 71 kQuadIdxBufPattern, kIdxsPerQuad, kQuadsNumInIdxBuffer, kQuadNumVertices
, | |
| 72 gQuadsIndexBufferKey); | |
| 73 } | |
| 74 | |
| 75 | |
| 76 // Each line segment is rendered as two quads and two triangles. | |
| 77 // p0 and p1 have alpha = 1 while all other points have alpha = 0. | |
| 78 // The four external points are offset 1 pixel perpendicular to the | |
| 79 // line and half a pixel parallel to the line. | |
| 80 // | |
| 81 // p4 p5 | |
| 82 // p0 p1 | |
| 83 // p2 p3 | |
| 84 // | |
| 85 // Each is drawn as six triangles specified by these 18 indices: | |
| 86 | |
| 87 static const uint16_t kLineSegIdxBufPattern[] = { | |
| 88 0, 1, 3, | |
| 89 0, 3, 2, | |
| 90 0, 4, 5, | |
| 91 0, 5, 1, | |
| 92 0, 2, 4, | |
| 93 1, 5, 3 | |
| 94 }; | |
| 95 | |
| 96 static const int kIdxsPerLineSeg = SK_ARRAY_COUNT(kLineSegIdxBufPattern); | |
| 97 static const int kLineSegNumVertices = 6; | |
| 98 static const int kLineSegsNumInIdxBuffer = 256; | |
| 99 | |
| 100 GR_DECLARE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey); | |
| 101 | |
| 102 static const GrIndexBuffer* ref_lines_index_buffer(GrResourceProvider* resourceP
rovider) { | |
| 103 GR_DEFINE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey); | |
| 104 return resourceProvider->findOrCreateInstancedIndexBuffer( | |
| 105 kLineSegIdxBufPattern, kIdxsPerLineSeg, kLineSegsNumInIdxBuffer, kLineS
egNumVertices, | |
| 106 gLinesIndexBufferKey); | |
| 107 } | |
| 108 | |
| 109 // Takes 178th time of logf on Z600 / VC2010 | |
| 110 static int get_float_exp(float x) { | |
| 111 GR_STATIC_ASSERT(sizeof(int) == sizeof(float)); | |
| 112 #ifdef SK_DEBUG | |
| 113 static bool tested; | |
| 114 if (!tested) { | |
| 115 tested = true; | |
| 116 SkASSERT(get_float_exp(0.25f) == -2); | |
| 117 SkASSERT(get_float_exp(0.3f) == -2); | |
| 118 SkASSERT(get_float_exp(0.5f) == -1); | |
| 119 SkASSERT(get_float_exp(1.f) == 0); | |
| 120 SkASSERT(get_float_exp(2.f) == 1); | |
| 121 SkASSERT(get_float_exp(2.5f) == 1); | |
| 122 SkASSERT(get_float_exp(8.f) == 3); | |
| 123 SkASSERT(get_float_exp(100.f) == 6); | |
| 124 SkASSERT(get_float_exp(1000.f) == 9); | |
| 125 SkASSERT(get_float_exp(1024.f) == 10); | |
| 126 SkASSERT(get_float_exp(3000000.f) == 21); | |
| 127 } | |
| 128 #endif | |
| 129 const int* iptr = (const int*)&x; | |
| 130 return (((*iptr) & 0x7f800000) >> 23) - 127; | |
| 131 } | |
| 132 | |
| 133 // Uses the max curvature function for quads to estimate | |
| 134 // where to chop the conic. If the max curvature is not | |
| 135 // found along the curve segment it will return 1 and | |
| 136 // dst[0] is the original conic. If it returns 2 the dst[0] | |
| 137 // and dst[1] are the two new conics. | |
| 138 static int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weig
ht) { | |
| 139 SkScalar t = SkFindQuadMaxCurvature(src); | |
| 140 if (t == 0) { | |
| 141 if (dst) { | |
| 142 dst[0].set(src, weight); | |
| 143 } | |
| 144 return 1; | |
| 145 } else { | |
| 146 if (dst) { | |
| 147 SkConic conic; | |
| 148 conic.set(src, weight); | |
| 149 conic.chopAt(t, dst); | |
| 150 } | |
| 151 return 2; | |
| 152 } | |
| 153 } | |
| 154 | |
| 155 // Calls split_conic on the entire conic and then once more on each subsection. | |
| 156 // Most cases will result in either 1 conic (chop point is not within t range) | |
| 157 // or 3 points (split once and then one subsection is split again). | |
| 158 static int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weigh
t) { | |
| 159 SkConic dstTemp[2]; | |
| 160 int conicCnt = split_conic(src, dstTemp, weight); | |
| 161 if (2 == conicCnt) { | |
| 162 int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW); | |
| 163 conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dst
Temp[1].fW); | |
| 164 } else { | |
| 165 dst[0] = dstTemp[0]; | |
| 166 } | |
| 167 return conicCnt; | |
| 168 } | |
| 169 | |
| 170 // returns 0 if quad/conic is degen or close to it | |
| 171 // in this case approx the path with lines | |
| 172 // otherwise returns 1 | |
| 173 static int is_degen_quad_or_conic(const SkPoint p[3], SkScalar* dsqd) { | |
| 174 static const SkScalar gDegenerateToLineTol = GrPathUtils::kDefaultTolerance; | |
| 175 static const SkScalar gDegenerateToLineTolSqd = | |
| 176 SkScalarMul(gDegenerateToLineTol, gDegenerateToLineTol); | |
| 177 | |
| 178 if (p[0].distanceToSqd(p[1]) < gDegenerateToLineTolSqd || | |
| 179 p[1].distanceToSqd(p[2]) < gDegenerateToLineTolSqd) { | |
| 180 return 1; | |
| 181 } | |
| 182 | |
| 183 *dsqd = p[1].distanceToLineBetweenSqd(p[0], p[2]); | |
| 184 if (*dsqd < gDegenerateToLineTolSqd) { | |
| 185 return 1; | |
| 186 } | |
| 187 | |
| 188 if (p[2].distanceToLineBetweenSqd(p[1], p[0]) < gDegenerateToLineTolSqd) { | |
| 189 return 1; | |
| 190 } | |
| 191 return 0; | |
| 192 } | |
| 193 | |
| 194 static int is_degen_quad_or_conic(const SkPoint p[3]) { | |
| 195 SkScalar dsqd; | |
| 196 return is_degen_quad_or_conic(p, &dsqd); | |
| 197 } | |
| 198 | |
| 199 // we subdivide the quads to avoid huge overfill | |
| 200 // if it returns -1 then should be drawn as lines | |
| 201 static int num_quad_subdivs(const SkPoint p[3]) { | |
| 202 SkScalar dsqd; | |
| 203 if (is_degen_quad_or_conic(p, &dsqd)) { | |
| 204 return -1; | |
| 205 } | |
| 206 | |
| 207 // tolerance of triangle height in pixels | |
| 208 // tuned on windows Quadro FX 380 / Z600 | |
| 209 // trade off of fill vs cpu time on verts | |
| 210 // maybe different when do this using gpu (geo or tess shaders) | |
| 211 static const SkScalar gSubdivTol = 175 * SK_Scalar1; | |
| 212 | |
| 213 if (dsqd <= SkScalarMul(gSubdivTol, gSubdivTol)) { | |
| 214 return 0; | |
| 215 } else { | |
| 216 static const int kMaxSub = 4; | |
| 217 // subdividing the quad reduces d by 4. so we want x = log4(d/tol) | |
| 218 // = log4(d*d/tol*tol)/2 | |
| 219 // = log2(d*d/tol*tol) | |
| 220 | |
| 221 // +1 since we're ignoring the mantissa contribution. | |
| 222 int log = get_float_exp(dsqd/(gSubdivTol*gSubdivTol)) + 1; | |
| 223 log = SkTMin(SkTMax(0, log), kMaxSub); | |
| 224 return log; | |
| 225 } | |
| 226 } | |
| 227 | |
| 228 /** | |
| 229 * Generates the lines and quads to be rendered. Lines are always recorded in | |
| 230 * device space. We will do a device space bloat to account for the 1pixel | |
| 231 * thickness. | |
| 232 * Quads are recorded in device space unless m contains | |
| 233 * perspective, then in they are in src space. We do this because we will | |
| 234 * subdivide large quads to reduce over-fill. This subdivision has to be | |
| 235 * performed before applying the perspective matrix. | |
| 236 */ | |
| 237 static int gather_lines_and_quads(const SkPath& path, | |
| 238 const SkMatrix& m, | |
| 239 const SkIRect& devClipBounds, | |
| 240 GrAAHairLinePathRenderer::PtArray* lines, | |
| 241 GrAAHairLinePathRenderer::PtArray* quads, | |
| 242 GrAAHairLinePathRenderer::PtArray* conics, | |
| 243 GrAAHairLinePathRenderer::IntArray* quadSubdiv
Cnts, | |
| 244 GrAAHairLinePathRenderer::FloatArray* conicWei
ghts) { | |
| 245 SkPath::Iter iter(path, false); | |
| 246 | |
| 247 int totalQuadCount = 0; | |
| 248 SkRect bounds; | |
| 249 SkIRect ibounds; | |
| 250 | |
| 251 bool persp = m.hasPerspective(); | |
| 252 | |
| 253 for (;;) { | |
| 254 SkPoint pathPts[4]; | |
| 255 SkPoint devPts[4]; | |
| 256 SkPath::Verb verb = iter.next(pathPts); | |
| 257 switch (verb) { | |
| 258 case SkPath::kConic_Verb: { | |
| 259 SkConic dst[4]; | |
| 260 // We chop the conics to create tighter clipping to hide error | |
| 261 // that appears near max curvature of very thin conics. Thin | |
| 262 // hyperbolas with high weight still show error. | |
| 263 int conicCnt = chop_conic(pathPts, dst, iter.conicWeight()); | |
| 264 for (int i = 0; i < conicCnt; ++i) { | |
| 265 SkPoint* chopPnts = dst[i].fPts; | |
| 266 m.mapPoints(devPts, chopPnts, 3); | |
| 267 bounds.setBounds(devPts, 3); | |
| 268 bounds.outset(SK_Scalar1, SK_Scalar1); | |
| 269 bounds.roundOut(&ibounds); | |
| 270 if (SkIRect::Intersects(devClipBounds, ibounds)) { | |
| 271 if (is_degen_quad_or_conic(devPts)) { | |
| 272 SkPoint* pts = lines->push_back_n(4); | |
| 273 pts[0] = devPts[0]; | |
| 274 pts[1] = devPts[1]; | |
| 275 pts[2] = devPts[1]; | |
| 276 pts[3] = devPts[2]; | |
| 277 } else { | |
| 278 // when in perspective keep conics in src space | |
| 279 SkPoint* cPts = persp ? chopPnts : devPts; | |
| 280 SkPoint* pts = conics->push_back_n(3); | |
| 281 pts[0] = cPts[0]; | |
| 282 pts[1] = cPts[1]; | |
| 283 pts[2] = cPts[2]; | |
| 284 conicWeights->push_back() = dst[i].fW; | |
| 285 } | |
| 286 } | |
| 287 } | |
| 288 break; | |
| 289 } | |
| 290 case SkPath::kMove_Verb: | |
| 291 break; | |
| 292 case SkPath::kLine_Verb: | |
| 293 m.mapPoints(devPts, pathPts, 2); | |
| 294 bounds.setBounds(devPts, 2); | |
| 295 bounds.outset(SK_Scalar1, SK_Scalar1); | |
| 296 bounds.roundOut(&ibounds); | |
| 297 if (SkIRect::Intersects(devClipBounds, ibounds)) { | |
| 298 SkPoint* pts = lines->push_back_n(2); | |
| 299 pts[0] = devPts[0]; | |
| 300 pts[1] = devPts[1]; | |
| 301 } | |
| 302 break; | |
| 303 case SkPath::kQuad_Verb: { | |
| 304 SkPoint choppedPts[5]; | |
| 305 // Chopping the quad helps when the quad is either degenerate or
nearly degenerate. | |
| 306 // When it is degenerate it allows the approximation with lines
to work since the | |
| 307 // chop point (if there is one) will be at the parabola's vertex
. In the nearly | |
| 308 // degenerate the QuadUVMatrix computed for the points is almost
singular which | |
| 309 // can cause rendering artifacts. | |
| 310 int n = SkChopQuadAtMaxCurvature(pathPts, choppedPts); | |
| 311 for (int i = 0; i < n; ++i) { | |
| 312 SkPoint* quadPts = choppedPts + i * 2; | |
| 313 m.mapPoints(devPts, quadPts, 3); | |
| 314 bounds.setBounds(devPts, 3); | |
| 315 bounds.outset(SK_Scalar1, SK_Scalar1); | |
| 316 bounds.roundOut(&ibounds); | |
| 317 | |
| 318 if (SkIRect::Intersects(devClipBounds, ibounds)) { | |
| 319 int subdiv = num_quad_subdivs(devPts); | |
| 320 SkASSERT(subdiv >= -1); | |
| 321 if (-1 == subdiv) { | |
| 322 SkPoint* pts = lines->push_back_n(4); | |
| 323 pts[0] = devPts[0]; | |
| 324 pts[1] = devPts[1]; | |
| 325 pts[2] = devPts[1]; | |
| 326 pts[3] = devPts[2]; | |
| 327 } else { | |
| 328 // when in perspective keep quads in src space | |
| 329 SkPoint* qPts = persp ? quadPts : devPts; | |
| 330 SkPoint* pts = quads->push_back_n(3); | |
| 331 pts[0] = qPts[0]; | |
| 332 pts[1] = qPts[1]; | |
| 333 pts[2] = qPts[2]; | |
| 334 quadSubdivCnts->push_back() = subdiv; | |
| 335 totalQuadCount += 1 << subdiv; | |
| 336 } | |
| 337 } | |
| 338 } | |
| 339 break; | |
| 340 } | |
| 341 case SkPath::kCubic_Verb: | |
| 342 m.mapPoints(devPts, pathPts, 4); | |
| 343 bounds.setBounds(devPts, 4); | |
| 344 bounds.outset(SK_Scalar1, SK_Scalar1); | |
| 345 bounds.roundOut(&ibounds); | |
| 346 if (SkIRect::Intersects(devClipBounds, ibounds)) { | |
| 347 PREALLOC_PTARRAY(32) q; | |
| 348 // we don't need a direction if we aren't constraining the s
ubdivision | |
| 349 const SkPathPriv::FirstDirection kDummyDir = SkPathPriv::kCC
W_FirstDirection; | |
| 350 // We convert cubics to quadratics (for now). | |
| 351 // In perspective have to do conversion in src space. | |
| 352 if (persp) { | |
| 353 SkScalar tolScale = | |
| 354 GrPathUtils::scaleToleranceToSrc(SK_Scalar1, m, | |
| 355 path.getBounds()); | |
| 356 GrPathUtils::convertCubicToQuads(pathPts, tolScale, fals
e, kDummyDir, &q); | |
| 357 } else { | |
| 358 GrPathUtils::convertCubicToQuads(devPts, SK_Scalar1, fal
se, kDummyDir, &q); | |
| 359 } | |
| 360 for (int i = 0; i < q.count(); i += 3) { | |
| 361 SkPoint* qInDevSpace; | |
| 362 // bounds has to be calculated in device space, but q is | |
| 363 // in src space when there is perspective. | |
| 364 if (persp) { | |
| 365 m.mapPoints(devPts, &q[i], 3); | |
| 366 bounds.setBounds(devPts, 3); | |
| 367 qInDevSpace = devPts; | |
| 368 } else { | |
| 369 bounds.setBounds(&q[i], 3); | |
| 370 qInDevSpace = &q[i]; | |
| 371 } | |
| 372 bounds.outset(SK_Scalar1, SK_Scalar1); | |
| 373 bounds.roundOut(&ibounds); | |
| 374 if (SkIRect::Intersects(devClipBounds, ibounds)) { | |
| 375 int subdiv = num_quad_subdivs(qInDevSpace); | |
| 376 SkASSERT(subdiv >= -1); | |
| 377 if (-1 == subdiv) { | |
| 378 SkPoint* pts = lines->push_back_n(4); | |
| 379 // lines should always be in device coords | |
| 380 pts[0] = qInDevSpace[0]; | |
| 381 pts[1] = qInDevSpace[1]; | |
| 382 pts[2] = qInDevSpace[1]; | |
| 383 pts[3] = qInDevSpace[2]; | |
| 384 } else { | |
| 385 SkPoint* pts = quads->push_back_n(3); | |
| 386 // q is already in src space when there is no | |
| 387 // perspective and dev coords otherwise. | |
| 388 pts[0] = q[0 + i]; | |
| 389 pts[1] = q[1 + i]; | |
| 390 pts[2] = q[2 + i]; | |
| 391 quadSubdivCnts->push_back() = subdiv; | |
| 392 totalQuadCount += 1 << subdiv; | |
| 393 } | |
| 394 } | |
| 395 } | |
| 396 } | |
| 397 break; | |
| 398 case SkPath::kClose_Verb: | |
| 399 break; | |
| 400 case SkPath::kDone_Verb: | |
| 401 return totalQuadCount; | |
| 402 } | |
| 403 } | |
| 404 } | |
| 405 | |
| 406 struct LineVertex { | |
| 407 SkPoint fPos; | |
| 408 float fCoverage; | |
| 409 }; | |
| 410 | |
| 411 struct BezierVertex { | |
| 412 SkPoint fPos; | |
| 413 union { | |
| 414 struct { | |
| 415 SkScalar fK; | |
| 416 SkScalar fL; | |
| 417 SkScalar fM; | |
| 418 } fConic; | |
| 419 SkVector fQuadCoord; | |
| 420 struct { | |
| 421 SkScalar fBogus[4]; | |
| 422 }; | |
| 423 }; | |
| 424 }; | |
| 425 | |
| 426 GR_STATIC_ASSERT(sizeof(BezierVertex) == 3 * sizeof(SkPoint)); | |
| 427 | |
| 428 static void intersect_lines(const SkPoint& ptA, const SkVector& normA, | |
| 429 const SkPoint& ptB, const SkVector& normB, | |
| 430 SkPoint* result) { | |
| 431 | |
| 432 SkScalar lineAW = -normA.dot(ptA); | |
| 433 SkScalar lineBW = -normB.dot(ptB); | |
| 434 | |
| 435 SkScalar wInv = SkScalarMul(normA.fX, normB.fY) - | |
| 436 SkScalarMul(normA.fY, normB.fX); | |
| 437 wInv = SkScalarInvert(wInv); | |
| 438 | |
| 439 result->fX = SkScalarMul(normA.fY, lineBW) - SkScalarMul(lineAW, normB.fY); | |
| 440 result->fX = SkScalarMul(result->fX, wInv); | |
| 441 | |
| 442 result->fY = SkScalarMul(lineAW, normB.fX) - SkScalarMul(normA.fX, lineBW); | |
| 443 result->fY = SkScalarMul(result->fY, wInv); | |
| 444 } | |
| 445 | |
| 446 static void set_uv_quad(const SkPoint qpts[3], BezierVertex verts[kQuadNumVertic
es]) { | |
| 447 // this should be in the src space, not dev coords, when we have perspective | |
| 448 GrPathUtils::QuadUVMatrix DevToUV(qpts); | |
| 449 DevToUV.apply<kQuadNumVertices, sizeof(BezierVertex), sizeof(SkPoint)>(verts
); | |
| 450 } | |
| 451 | |
| 452 static void bloat_quad(const SkPoint qpts[3], const SkMatrix* toDevice, | |
| 453 const SkMatrix* toSrc, BezierVertex verts[kQuadNumVertice
s]) { | |
| 454 SkASSERT(!toDevice == !toSrc); | |
| 455 // original quad is specified by tri a,b,c | |
| 456 SkPoint a = qpts[0]; | |
| 457 SkPoint b = qpts[1]; | |
| 458 SkPoint c = qpts[2]; | |
| 459 | |
| 460 if (toDevice) { | |
| 461 toDevice->mapPoints(&a, 1); | |
| 462 toDevice->mapPoints(&b, 1); | |
| 463 toDevice->mapPoints(&c, 1); | |
| 464 } | |
| 465 // make a new poly where we replace a and c by a 1-pixel wide edges orthog | |
| 466 // to edges ab and bc: | |
| 467 // | |
| 468 // before | after | |
| 469 // | b0 | |
| 470 // b | | |
| 471 // | | |
| 472 // | a0 c0 | |
| 473 // a c | a1 c1 | |
| 474 // | |
| 475 // edges a0->b0 and b0->c0 are parallel to original edges a->b and b->c, | |
| 476 // respectively. | |
| 477 BezierVertex& a0 = verts[0]; | |
| 478 BezierVertex& a1 = verts[1]; | |
| 479 BezierVertex& b0 = verts[2]; | |
| 480 BezierVertex& c0 = verts[3]; | |
| 481 BezierVertex& c1 = verts[4]; | |
| 482 | |
| 483 SkVector ab = b; | |
| 484 ab -= a; | |
| 485 SkVector ac = c; | |
| 486 ac -= a; | |
| 487 SkVector cb = b; | |
| 488 cb -= c; | |
| 489 | |
| 490 // We should have already handled degenerates | |
| 491 SkASSERT(ab.length() > 0 && cb.length() > 0); | |
| 492 | |
| 493 ab.normalize(); | |
| 494 SkVector abN; | |
| 495 abN.setOrthog(ab, SkVector::kLeft_Side); | |
| 496 if (abN.dot(ac) > 0) { | |
| 497 abN.negate(); | |
| 498 } | |
| 499 | |
| 500 cb.normalize(); | |
| 501 SkVector cbN; | |
| 502 cbN.setOrthog(cb, SkVector::kLeft_Side); | |
| 503 if (cbN.dot(ac) < 0) { | |
| 504 cbN.negate(); | |
| 505 } | |
| 506 | |
| 507 a0.fPos = a; | |
| 508 a0.fPos += abN; | |
| 509 a1.fPos = a; | |
| 510 a1.fPos -= abN; | |
| 511 | |
| 512 c0.fPos = c; | |
| 513 c0.fPos += cbN; | |
| 514 c1.fPos = c; | |
| 515 c1.fPos -= cbN; | |
| 516 | |
| 517 intersect_lines(a0.fPos, abN, c0.fPos, cbN, &b0.fPos); | |
| 518 | |
| 519 if (toSrc) { | |
| 520 toSrc->mapPointsWithStride(&verts[0].fPos, sizeof(BezierVertex), kQuadNu
mVertices); | |
| 521 } | |
| 522 } | |
| 523 | |
| 524 // Equations based off of Loop-Blinn Quadratic GPU Rendering | |
| 525 // Input Parametric: | |
| 526 // P(t) = (P0*(1-t)^2 + 2*w*P1*t*(1-t) + P2*t^2) / (1-t)^2 + 2*w*t*(1-t) + t^2) | |
| 527 // Output Implicit: | |
| 528 // f(x, y, w) = f(P) = K^2 - LM | |
| 529 // K = dot(k, P), L = dot(l, P), M = dot(m, P) | |
| 530 // k, l, m are calculated in function GrPathUtils::getConicKLM | |
| 531 static void set_conic_coeffs(const SkPoint p[3], BezierVertex verts[kQuadNumVert
ices], | |
| 532 const SkScalar weight) { | |
| 533 SkScalar klm[9]; | |
| 534 | |
| 535 GrPathUtils::getConicKLM(p, weight, klm); | |
| 536 | |
| 537 for (int i = 0; i < kQuadNumVertices; ++i) { | |
| 538 const SkPoint pnt = verts[i].fPos; | |
| 539 verts[i].fConic.fK = pnt.fX * klm[0] + pnt.fY * klm[1] + klm[2]; | |
| 540 verts[i].fConic.fL = pnt.fX * klm[3] + pnt.fY * klm[4] + klm[5]; | |
| 541 verts[i].fConic.fM = pnt.fX * klm[6] + pnt.fY * klm[7] + klm[8]; | |
| 542 } | |
| 543 } | |
| 544 | |
| 545 static void add_conics(const SkPoint p[3], | |
| 546 const SkScalar weight, | |
| 547 const SkMatrix* toDevice, | |
| 548 const SkMatrix* toSrc, | |
| 549 BezierVertex** vert) { | |
| 550 bloat_quad(p, toDevice, toSrc, *vert); | |
| 551 set_conic_coeffs(p, *vert, weight); | |
| 552 *vert += kQuadNumVertices; | |
| 553 } | |
| 554 | |
| 555 static void add_quads(const SkPoint p[3], | |
| 556 int subdiv, | |
| 557 const SkMatrix* toDevice, | |
| 558 const SkMatrix* toSrc, | |
| 559 BezierVertex** vert) { | |
| 560 SkASSERT(subdiv >= 0); | |
| 561 if (subdiv) { | |
| 562 SkPoint newP[5]; | |
| 563 SkChopQuadAtHalf(p, newP); | |
| 564 add_quads(newP + 0, subdiv-1, toDevice, toSrc, vert); | |
| 565 add_quads(newP + 2, subdiv-1, toDevice, toSrc, vert); | |
| 566 } else { | |
| 567 bloat_quad(p, toDevice, toSrc, *vert); | |
| 568 set_uv_quad(p, *vert); | |
| 569 *vert += kQuadNumVertices; | |
| 570 } | |
| 571 } | |
| 572 | |
| 573 static void add_line(const SkPoint p[2], | |
| 574 const SkMatrix* toSrc, | |
| 575 uint8_t coverage, | |
| 576 LineVertex** vert) { | |
| 577 const SkPoint& a = p[0]; | |
| 578 const SkPoint& b = p[1]; | |
| 579 | |
| 580 SkVector ortho, vec = b; | |
| 581 vec -= a; | |
| 582 | |
| 583 if (vec.setLength(SK_ScalarHalf)) { | |
| 584 // Create a vector orthogonal to 'vec' and of unit length | |
| 585 ortho.fX = 2.0f * vec.fY; | |
| 586 ortho.fY = -2.0f * vec.fX; | |
| 587 | |
| 588 float floatCoverage = GrNormalizeByteToFloat(coverage); | |
| 589 | |
| 590 (*vert)[0].fPos = a; | |
| 591 (*vert)[0].fCoverage = floatCoverage; | |
| 592 (*vert)[1].fPos = b; | |
| 593 (*vert)[1].fCoverage = floatCoverage; | |
| 594 (*vert)[2].fPos = a - vec + ortho; | |
| 595 (*vert)[2].fCoverage = 0; | |
| 596 (*vert)[3].fPos = b + vec + ortho; | |
| 597 (*vert)[3].fCoverage = 0; | |
| 598 (*vert)[4].fPos = a - vec - ortho; | |
| 599 (*vert)[4].fCoverage = 0; | |
| 600 (*vert)[5].fPos = b + vec - ortho; | |
| 601 (*vert)[5].fCoverage = 0; | |
| 602 | |
| 603 if (toSrc) { | |
| 604 toSrc->mapPointsWithStride(&(*vert)->fPos, | |
| 605 sizeof(LineVertex), | |
| 606 kLineSegNumVertices); | |
| 607 } | |
| 608 } else { | |
| 609 // just make it degenerate and likely offscreen | |
| 610 for (int i = 0; i < kLineSegNumVertices; ++i) { | |
| 611 (*vert)[i].fPos.set(SK_ScalarMax, SK_ScalarMax); | |
| 612 } | |
| 613 } | |
| 614 | |
| 615 *vert += kLineSegNumVertices; | |
| 616 } | |
| 617 | |
| 618 /////////////////////////////////////////////////////////////////////////////// | |
| 619 | |
| 620 bool GrAAHairLinePathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const
{ | |
| 621 if (!args.fAntiAlias) { | |
| 622 return false; | |
| 623 } | |
| 624 | |
| 625 if (!IsStrokeHairlineOrEquivalent(*args.fStroke, *args.fViewMatrix, nullptr)
) { | |
| 626 return false; | |
| 627 } | |
| 628 | |
| 629 if (SkPath::kLine_SegmentMask == args.fPath->getSegmentMasks() || | |
| 630 args.fShaderCaps->shaderDerivativeSupport()) { | |
| 631 return true; | |
| 632 } | |
| 633 return false; | |
| 634 } | |
| 635 | |
| 636 template <class VertexType> | |
| 637 bool check_bounds(const SkMatrix& viewMatrix, const SkRect& devBounds, void* ver
tices, int vCount) | |
| 638 { | |
| 639 SkRect tolDevBounds = devBounds; | |
| 640 // The bounds ought to be tight, but in perspective the below code runs the
verts | |
| 641 // through the view matrix to get back to dev coords, which can introduce im
precision. | |
| 642 if (viewMatrix.hasPerspective()) { | |
| 643 tolDevBounds.outset(SK_Scalar1 / 1000, SK_Scalar1 / 1000); | |
| 644 } else { | |
| 645 // Non-persp matrices cause this path renderer to draw in device space. | |
| 646 SkASSERT(viewMatrix.isIdentity()); | |
| 647 } | |
| 648 SkRect actualBounds; | |
| 649 | |
| 650 VertexType* verts = reinterpret_cast<VertexType*>(vertices); | |
| 651 bool first = true; | |
| 652 for (int i = 0; i < vCount; ++i) { | |
| 653 SkPoint pos = verts[i].fPos; | |
| 654 // This is a hack to workaround the fact that we move some degenerate se
gments offscreen. | |
| 655 if (SK_ScalarMax == pos.fX) { | |
| 656 continue; | |
| 657 } | |
| 658 viewMatrix.mapPoints(&pos, 1); | |
| 659 if (first) { | |
| 660 actualBounds.set(pos.fX, pos.fY, pos.fX, pos.fY); | |
| 661 first = false; | |
| 662 } else { | |
| 663 actualBounds.growToInclude(pos.fX, pos.fY); | |
| 664 } | |
| 665 } | |
| 666 if (!first) { | |
| 667 return tolDevBounds.contains(actualBounds); | |
| 668 } | |
| 669 | |
| 670 return true; | |
| 671 } | |
| 672 | |
| 673 class AAHairlineBatch : public GrVertexBatch { | |
| 674 public: | |
| 675 struct Geometry { | |
| 676 GrColor fColor; | |
| 677 uint8_t fCoverage; | |
| 678 SkMatrix fViewMatrix; | |
| 679 SkPath fPath; | |
| 680 SkIRect fDevClipBounds; | |
| 681 }; | |
| 682 | |
| 683 static GrDrawBatch* Create(const Geometry& geometry) { return new AAHairline
Batch(geometry); } | |
| 684 | |
| 685 const char* name() const override { return "AAHairlineBatch"; } | |
| 686 | |
| 687 void getInvariantOutputColor(GrInitInvariantOutput* out) const override { | |
| 688 // When this is called on a batch, there is only one geometry bundle | |
| 689 out->setKnownFourComponents(fGeoData[0].fColor); | |
| 690 } | |
| 691 void getInvariantOutputCoverage(GrInitInvariantOutput* out) const override { | |
| 692 out->setUnknownSingleComponent(); | |
| 693 } | |
| 694 | |
| 695 private: | |
| 696 void initBatchTracker(const GrPipelineOptimizations& opt) override { | |
| 697 // Handle any color overrides | |
| 698 if (!opt.readsColor()) { | |
| 699 fGeoData[0].fColor = GrColor_ILLEGAL; | |
| 700 } | |
| 701 opt.getOverrideColorIfSet(&fGeoData[0].fColor); | |
| 702 | |
| 703 // setup batch properties | |
| 704 fBatch.fColorIgnored = !opt.readsColor(); | |
| 705 fBatch.fColor = fGeoData[0].fColor; | |
| 706 fBatch.fUsesLocalCoords = opt.readsLocalCoords(); | |
| 707 fBatch.fCoverageIgnored = !opt.readsCoverage(); | |
| 708 fBatch.fCoverage = fGeoData[0].fCoverage; | |
| 709 } | |
| 710 | |
| 711 SkSTArray<1, Geometry, true>* geoData() { return &fGeoData; } | |
| 712 | |
| 713 void onPrepareDraws(Target*) override; | |
| 714 | |
| 715 typedef SkTArray<SkPoint, true> PtArray; | |
| 716 typedef SkTArray<int, true> IntArray; | |
| 717 typedef SkTArray<float, true> FloatArray; | |
| 718 | |
| 719 AAHairlineBatch(const Geometry& geometry) { | |
| 720 this->initClassID<AAHairlineBatch>(); | |
| 721 fGeoData.push_back(geometry); | |
| 722 | |
| 723 // compute bounds | |
| 724 fBounds = geometry.fPath.getBounds(); | |
| 725 geometry.fViewMatrix.mapRect(&fBounds); | |
| 726 | |
| 727 // This is b.c. hairlines are notionally infinitely thin so without expa
nsion | |
| 728 // two overlapping lines could be reordered even though they hit the sam
e pixels. | |
| 729 fBounds.outset(0.5f, 0.5f); | |
| 730 } | |
| 731 | |
| 732 bool onCombineIfPossible(GrBatch* t, const GrCaps& caps) override { | |
| 733 AAHairlineBatch* that = t->cast<AAHairlineBatch>(); | |
| 734 | |
| 735 if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pi
peline(), | |
| 736 that->bounds(), caps)) { | |
| 737 return false; | |
| 738 } | |
| 739 | |
| 740 if (this->viewMatrix().hasPerspective() != that->viewMatrix().hasPerspec
tive()) { | |
| 741 return false; | |
| 742 } | |
| 743 | |
| 744 // We go to identity if we don't have perspective | |
| 745 if (this->viewMatrix().hasPerspective() && | |
| 746 !this->viewMatrix().cheapEqualTo(that->viewMatrix())) { | |
| 747 return false; | |
| 748 } | |
| 749 | |
| 750 // TODO we can actually batch hairlines if they are the same color in a
kind of bulk method | |
| 751 // but we haven't implemented this yet | |
| 752 // TODO investigate going to vertex color and coverage? | |
| 753 if (this->coverage() != that->coverage()) { | |
| 754 return false; | |
| 755 } | |
| 756 | |
| 757 if (this->color() != that->color()) { | |
| 758 return false; | |
| 759 } | |
| 760 | |
| 761 SkASSERT(this->usesLocalCoords() == that->usesLocalCoords()); | |
| 762 if (this->usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->vi
ewMatrix())) { | |
| 763 return false; | |
| 764 } | |
| 765 | |
| 766 fGeoData.push_back_n(that->geoData()->count(), that->geoData()->begin())
; | |
| 767 this->joinBounds(that->bounds()); | |
| 768 return true; | |
| 769 } | |
| 770 | |
| 771 GrColor color() const { return fBatch.fColor; } | |
| 772 uint8_t coverage() const { return fBatch.fCoverage; } | |
| 773 bool usesLocalCoords() const { return fBatch.fUsesLocalCoords; } | |
| 774 const SkMatrix& viewMatrix() const { return fGeoData[0].fViewMatrix; } | |
| 775 bool coverageIgnored() const { return fBatch.fCoverageIgnored; } | |
| 776 | |
| 777 struct BatchTracker { | |
| 778 GrColor fColor; | |
| 779 uint8_t fCoverage; | |
| 780 SkRect fDevBounds; | |
| 781 bool fUsesLocalCoords; | |
| 782 bool fColorIgnored; | |
| 783 bool fCoverageIgnored; | |
| 784 }; | |
| 785 | |
| 786 BatchTracker fBatch; | |
| 787 SkSTArray<1, Geometry, true> fGeoData; | |
| 788 }; | |
| 789 | |
| 790 void AAHairlineBatch::onPrepareDraws(Target* target) { | |
| 791 // Setup the viewmatrix and localmatrix for the GrGeometryProcessor. | |
| 792 SkMatrix invert; | |
| 793 if (!this->viewMatrix().invert(&invert)) { | |
| 794 return; | |
| 795 } | |
| 796 | |
| 797 // we will transform to identity space if the viewmatrix does not have persp
ective | |
| 798 bool hasPerspective = this->viewMatrix().hasPerspective(); | |
| 799 const SkMatrix* geometryProcessorViewM = &SkMatrix::I(); | |
| 800 const SkMatrix* geometryProcessorLocalM = &invert; | |
| 801 const SkMatrix* toDevice = nullptr; | |
| 802 const SkMatrix* toSrc = nullptr; | |
| 803 if (hasPerspective) { | |
| 804 geometryProcessorViewM = &this->viewMatrix(); | |
| 805 geometryProcessorLocalM = &SkMatrix::I(); | |
| 806 toDevice = &this->viewMatrix(); | |
| 807 toSrc = &invert; | |
| 808 } | |
| 809 | |
| 810 SkAutoTUnref<const GrGeometryProcessor> lineGP; | |
| 811 { | |
| 812 using namespace GrDefaultGeoProcFactory; | |
| 813 | |
| 814 Color color(this->color()); | |
| 815 Coverage coverage(Coverage::kAttribute_Type); | |
| 816 LocalCoords localCoords(this->usesLocalCoords() ? LocalCoords::kUsePosit
ion_Type : | |
| 817 LocalCoords::kUnused_T
ype); | |
| 818 localCoords.fMatrix = geometryProcessorLocalM; | |
| 819 lineGP.reset(GrDefaultGeoProcFactory::Create(color, coverage, localCoord
s, | |
| 820 *geometryProcessorViewM)); | |
| 821 } | |
| 822 | |
| 823 SkAutoTUnref<const GrGeometryProcessor> quadGP( | |
| 824 GrQuadEffect::Create(this->color(), | |
| 825 *geometryProcessorViewM, | |
| 826 kHairlineAA_GrProcessorEdgeType, | |
| 827 target->caps(), | |
| 828 *geometryProcessorLocalM, | |
| 829 this->usesLocalCoords(), | |
| 830 this->coverage())); | |
| 831 | |
| 832 SkAutoTUnref<const GrGeometryProcessor> conicGP( | |
| 833 GrConicEffect::Create(this->color(), | |
| 834 *geometryProcessorViewM, | |
| 835 kHairlineAA_GrProcessorEdgeType, | |
| 836 target->caps(), | |
| 837 *geometryProcessorLocalM, | |
| 838 this->usesLocalCoords(), | |
| 839 this->coverage())); | |
| 840 | |
| 841 // This is hand inlined for maximum performance. | |
| 842 PREALLOC_PTARRAY(128) lines; | |
| 843 PREALLOC_PTARRAY(128) quads; | |
| 844 PREALLOC_PTARRAY(128) conics; | |
| 845 IntArray qSubdivs; | |
| 846 FloatArray cWeights; | |
| 847 int quadCount = 0; | |
| 848 | |
| 849 int instanceCount = fGeoData.count(); | |
| 850 for (int i = 0; i < instanceCount; i++) { | |
| 851 const Geometry& args = fGeoData[i]; | |
| 852 quadCount += gather_lines_and_quads(args.fPath, args.fViewMatrix, args.f
DevClipBounds, | |
| 853 &lines, &quads, &conics, &qSubdivs,
&cWeights); | |
| 854 } | |
| 855 | |
| 856 int lineCount = lines.count() / 2; | |
| 857 int conicCount = conics.count() / 3; | |
| 858 | |
| 859 // do lines first | |
| 860 if (lineCount) { | |
| 861 SkAutoTUnref<const GrIndexBuffer> linesIndexBuffer( | |
| 862 ref_lines_index_buffer(target->resourceProvider())); | |
| 863 target->initDraw(lineGP, this->pipeline()); | |
| 864 | |
| 865 const GrVertexBuffer* vertexBuffer; | |
| 866 int firstVertex; | |
| 867 | |
| 868 size_t vertexStride = lineGP->getVertexStride(); | |
| 869 int vertexCount = kLineSegNumVertices * lineCount; | |
| 870 LineVertex* verts = reinterpret_cast<LineVertex*>( | |
| 871 target->makeVertexSpace(vertexStride, vertexCount, &vertexBuffer, &f
irstVertex)); | |
| 872 | |
| 873 if (!verts|| !linesIndexBuffer) { | |
| 874 SkDebugf("Could not allocate vertices\n"); | |
| 875 return; | |
| 876 } | |
| 877 | |
| 878 SkASSERT(lineGP->getVertexStride() == sizeof(LineVertex)); | |
| 879 | |
| 880 for (int i = 0; i < lineCount; ++i) { | |
| 881 add_line(&lines[2*i], toSrc, this->coverage(), &verts); | |
| 882 } | |
| 883 | |
| 884 { | |
| 885 GrVertices vertices; | |
| 886 vertices.initInstanced(kTriangles_GrPrimitiveType, vertexBuffer, lin
esIndexBuffer, | |
| 887 firstVertex, kLineSegNumVertices, kIdxsPerLin
eSeg, lineCount, | |
| 888 kLineSegsNumInIdxBuffer); | |
| 889 target->draw(vertices); | |
| 890 } | |
| 891 } | |
| 892 | |
| 893 if (quadCount || conicCount) { | |
| 894 const GrVertexBuffer* vertexBuffer; | |
| 895 int firstVertex; | |
| 896 | |
| 897 SkAutoTUnref<const GrIndexBuffer> quadsIndexBuffer( | |
| 898 ref_quads_index_buffer(target->resourceProvider())); | |
| 899 | |
| 900 size_t vertexStride = sizeof(BezierVertex); | |
| 901 int vertexCount = kQuadNumVertices * quadCount + kQuadNumVertices * coni
cCount; | |
| 902 void *vertices = target->makeVertexSpace(vertexStride, vertexCount, | |
| 903 &vertexBuffer, &firstVertex); | |
| 904 | |
| 905 if (!vertices || !quadsIndexBuffer) { | |
| 906 SkDebugf("Could not allocate vertices\n"); | |
| 907 return; | |
| 908 } | |
| 909 | |
| 910 // Setup vertices | |
| 911 BezierVertex* verts = reinterpret_cast<BezierVertex*>(vertices); | |
| 912 | |
| 913 int unsubdivQuadCnt = quads.count() / 3; | |
| 914 for (int i = 0; i < unsubdivQuadCnt; ++i) { | |
| 915 SkASSERT(qSubdivs[i] >= 0); | |
| 916 add_quads(&quads[3*i], qSubdivs[i], toDevice, toSrc, &verts); | |
| 917 } | |
| 918 | |
| 919 // Start Conics | |
| 920 for (int i = 0; i < conicCount; ++i) { | |
| 921 add_conics(&conics[3*i], cWeights[i], toDevice, toSrc, &verts); | |
| 922 } | |
| 923 | |
| 924 if (quadCount > 0) { | |
| 925 target->initDraw(quadGP, this->pipeline()); | |
| 926 | |
| 927 { | |
| 928 GrVertices verts; | |
| 929 verts.initInstanced(kTriangles_GrPrimitiveType, vertexBuffer, qu
adsIndexBuffer, | |
| 930 firstVertex, kQuadNumVertices, kIdxsPerQuad,
quadCount, | |
| 931 kQuadsNumInIdxBuffer); | |
| 932 target->draw(verts); | |
| 933 firstVertex += quadCount * kQuadNumVertices; | |
| 934 } | |
| 935 } | |
| 936 | |
| 937 if (conicCount > 0) { | |
| 938 target->initDraw(conicGP, this->pipeline()); | |
| 939 | |
| 940 { | |
| 941 GrVertices verts; | |
| 942 verts.initInstanced(kTriangles_GrPrimitiveType, vertexBuffer, qu
adsIndexBuffer, | |
| 943 firstVertex, kQuadNumVertices, kIdxsPerQuad,
conicCount, | |
| 944 kQuadsNumInIdxBuffer); | |
| 945 target->draw(verts); | |
| 946 } | |
| 947 } | |
| 948 } | |
| 949 } | |
| 950 | |
| 951 static GrDrawBatch* create_hairline_batch(GrColor color, | |
| 952 const SkMatrix& viewMatrix, | |
| 953 const SkPath& path, | |
| 954 const GrStrokeInfo& stroke, | |
| 955 const SkIRect& devClipBounds) { | |
| 956 SkScalar hairlineCoverage; | |
| 957 uint8_t newCoverage = 0xff; | |
| 958 if (GrPathRenderer::IsStrokeHairlineOrEquivalent(stroke, viewMatrix, &hairli
neCoverage)) { | |
| 959 newCoverage = SkScalarRoundToInt(hairlineCoverage * 0xff); | |
| 960 } | |
| 961 | |
| 962 AAHairlineBatch::Geometry geometry; | |
| 963 geometry.fColor = color; | |
| 964 geometry.fCoverage = newCoverage; | |
| 965 geometry.fViewMatrix = viewMatrix; | |
| 966 geometry.fPath = path; | |
| 967 geometry.fDevClipBounds = devClipBounds; | |
| 968 | |
| 969 return AAHairlineBatch::Create(geometry); | |
| 970 } | |
| 971 | |
| 972 bool GrAAHairLinePathRenderer::onDrawPath(const DrawPathArgs& args) { | |
| 973 SkIRect devClipBounds; | |
| 974 args.fPipelineBuilder->clip().getConservativeBounds(args.fPipelineBuilder->g
etRenderTarget(), | |
| 975 &devClipBounds); | |
| 976 | |
| 977 SkAutoTUnref<GrDrawBatch> batch(create_hairline_batch(args.fColor, *args.fVi
ewMatrix, *args.fPath, | |
| 978 *args.fStroke, devClip
Bounds)); | |
| 979 args.fTarget->drawBatch(*args.fPipelineBuilder, batch); | |
| 980 | |
| 981 return true; | |
| 982 } | |
| 983 | |
| 984 ////////////////////////////////////////////////////////////////////////////////
/////////////////// | |
| 985 | |
| 986 #ifdef GR_TEST_UTILS | |
| 987 | |
| 988 DRAW_BATCH_TEST_DEFINE(AAHairlineBatch) { | |
| 989 GrColor color = GrRandomColor(random); | |
| 990 SkMatrix viewMatrix = GrTest::TestMatrix(random); | |
| 991 GrStrokeInfo stroke(SkStrokeRec::kHairline_InitStyle); | |
| 992 SkPath path = GrTest::TestPath(random); | |
| 993 SkIRect devClipBounds; | |
| 994 devClipBounds.setEmpty(); | |
| 995 return create_hairline_batch(color, viewMatrix, path, stroke, devClipBounds)
; | |
| 996 } | |
| 997 | |
| 998 #endif | |
| OLD | NEW |