Index: src/gpu/GrAAHairLinePathRenderer.cpp |
diff --git a/src/gpu/GrAAHairLinePathRenderer.cpp b/src/gpu/GrAAHairLinePathRenderer.cpp |
deleted file mode 100644 |
index e102db27a09c22e3a4cb7b3ef90d8cff6150d170..0000000000000000000000000000000000000000 |
--- a/src/gpu/GrAAHairLinePathRenderer.cpp |
+++ /dev/null |
@@ -1,998 +0,0 @@ |
-/* |
- * Copyright 2011 Google Inc. |
- * |
- * Use of this source code is governed by a BSD-style license that can be |
- * found in the LICENSE file. |
- */ |
- |
-#include "GrAAHairLinePathRenderer.h" |
- |
-#include "GrBatchFlushState.h" |
-#include "GrBatchTest.h" |
-#include "GrCaps.h" |
-#include "GrContext.h" |
-#include "GrDefaultGeoProcFactory.h" |
-#include "GrIndexBuffer.h" |
-#include "GrPathUtils.h" |
-#include "GrPipelineBuilder.h" |
-#include "GrProcessor.h" |
-#include "GrResourceProvider.h" |
-#include "GrVertexBuffer.h" |
-#include "SkGeometry.h" |
-#include "SkStroke.h" |
-#include "SkTemplates.h" |
- |
-#include "batches/GrVertexBatch.h" |
- |
-#include "effects/GrBezierEffect.h" |
- |
-#define PREALLOC_PTARRAY(N) SkSTArray<(N),SkPoint, true> |
- |
-// quadratics are rendered as 5-sided polys in order to bound the |
-// AA stroke around the center-curve. See comments in push_quad_index_buffer and |
-// bloat_quad. Quadratics and conics share an index buffer |
- |
-// lines are rendered as: |
-// *______________* |
-// |\ -_______ /| |
-// | \ \ / | |
-// | *--------* | |
-// | / ______/ \ | |
-// */_-__________\* |
-// For: 6 vertices and 18 indices (for 6 triangles) |
- |
-// Each quadratic is rendered as a five sided polygon. This poly bounds |
-// the quadratic's bounding triangle but has been expanded so that the |
-// 1-pixel wide area around the curve is inside the poly. |
-// If a,b,c are the original control points then the poly a0,b0,c0,c1,a1 |
-// that is rendered would look like this: |
-// b0 |
-// b |
-// |
-// a0 c0 |
-// a c |
-// a1 c1 |
-// Each is drawn as three triangles ((a0,a1,b0), (b0,c1,c0), (a1,c1,b0)) |
-// specified by these 9 indices: |
-static const uint16_t kQuadIdxBufPattern[] = { |
- 0, 1, 2, |
- 2, 4, 3, |
- 1, 4, 2 |
-}; |
- |
-static const int kIdxsPerQuad = SK_ARRAY_COUNT(kQuadIdxBufPattern); |
-static const int kQuadNumVertices = 5; |
-static const int kQuadsNumInIdxBuffer = 256; |
-GR_DECLARE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey); |
- |
-static const GrIndexBuffer* ref_quads_index_buffer(GrResourceProvider* resourceProvider) { |
- GR_DEFINE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey); |
- return resourceProvider->findOrCreateInstancedIndexBuffer( |
- kQuadIdxBufPattern, kIdxsPerQuad, kQuadsNumInIdxBuffer, kQuadNumVertices, |
- gQuadsIndexBufferKey); |
-} |
- |
- |
-// Each line segment is rendered as two quads and two triangles. |
-// p0 and p1 have alpha = 1 while all other points have alpha = 0. |
-// The four external points are offset 1 pixel perpendicular to the |
-// line and half a pixel parallel to the line. |
-// |
-// p4 p5 |
-// p0 p1 |
-// p2 p3 |
-// |
-// Each is drawn as six triangles specified by these 18 indices: |
- |
-static const uint16_t kLineSegIdxBufPattern[] = { |
- 0, 1, 3, |
- 0, 3, 2, |
- 0, 4, 5, |
- 0, 5, 1, |
- 0, 2, 4, |
- 1, 5, 3 |
-}; |
- |
-static const int kIdxsPerLineSeg = SK_ARRAY_COUNT(kLineSegIdxBufPattern); |
-static const int kLineSegNumVertices = 6; |
-static const int kLineSegsNumInIdxBuffer = 256; |
- |
-GR_DECLARE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey); |
- |
-static const GrIndexBuffer* ref_lines_index_buffer(GrResourceProvider* resourceProvider) { |
- GR_DEFINE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey); |
- return resourceProvider->findOrCreateInstancedIndexBuffer( |
- kLineSegIdxBufPattern, kIdxsPerLineSeg, kLineSegsNumInIdxBuffer, kLineSegNumVertices, |
- gLinesIndexBufferKey); |
-} |
- |
-// Takes 178th time of logf on Z600 / VC2010 |
-static int get_float_exp(float x) { |
- GR_STATIC_ASSERT(sizeof(int) == sizeof(float)); |
-#ifdef SK_DEBUG |
- static bool tested; |
- if (!tested) { |
- tested = true; |
- SkASSERT(get_float_exp(0.25f) == -2); |
- SkASSERT(get_float_exp(0.3f) == -2); |
- SkASSERT(get_float_exp(0.5f) == -1); |
- SkASSERT(get_float_exp(1.f) == 0); |
- SkASSERT(get_float_exp(2.f) == 1); |
- SkASSERT(get_float_exp(2.5f) == 1); |
- SkASSERT(get_float_exp(8.f) == 3); |
- SkASSERT(get_float_exp(100.f) == 6); |
- SkASSERT(get_float_exp(1000.f) == 9); |
- SkASSERT(get_float_exp(1024.f) == 10); |
- SkASSERT(get_float_exp(3000000.f) == 21); |
- } |
-#endif |
- const int* iptr = (const int*)&x; |
- return (((*iptr) & 0x7f800000) >> 23) - 127; |
-} |
- |
-// Uses the max curvature function for quads to estimate |
-// where to chop the conic. If the max curvature is not |
-// found along the curve segment it will return 1 and |
-// dst[0] is the original conic. If it returns 2 the dst[0] |
-// and dst[1] are the two new conics. |
-static int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) { |
- SkScalar t = SkFindQuadMaxCurvature(src); |
- if (t == 0) { |
- if (dst) { |
- dst[0].set(src, weight); |
- } |
- return 1; |
- } else { |
- if (dst) { |
- SkConic conic; |
- conic.set(src, weight); |
- conic.chopAt(t, dst); |
- } |
- return 2; |
- } |
-} |
- |
-// Calls split_conic on the entire conic and then once more on each subsection. |
-// Most cases will result in either 1 conic (chop point is not within t range) |
-// or 3 points (split once and then one subsection is split again). |
-static int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) { |
- SkConic dstTemp[2]; |
- int conicCnt = split_conic(src, dstTemp, weight); |
- if (2 == conicCnt) { |
- int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW); |
- conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW); |
- } else { |
- dst[0] = dstTemp[0]; |
- } |
- return conicCnt; |
-} |
- |
-// returns 0 if quad/conic is degen or close to it |
-// in this case approx the path with lines |
-// otherwise returns 1 |
-static int is_degen_quad_or_conic(const SkPoint p[3], SkScalar* dsqd) { |
- static const SkScalar gDegenerateToLineTol = GrPathUtils::kDefaultTolerance; |
- static const SkScalar gDegenerateToLineTolSqd = |
- SkScalarMul(gDegenerateToLineTol, gDegenerateToLineTol); |
- |
- if (p[0].distanceToSqd(p[1]) < gDegenerateToLineTolSqd || |
- p[1].distanceToSqd(p[2]) < gDegenerateToLineTolSqd) { |
- return 1; |
- } |
- |
- *dsqd = p[1].distanceToLineBetweenSqd(p[0], p[2]); |
- if (*dsqd < gDegenerateToLineTolSqd) { |
- return 1; |
- } |
- |
- if (p[2].distanceToLineBetweenSqd(p[1], p[0]) < gDegenerateToLineTolSqd) { |
- return 1; |
- } |
- return 0; |
-} |
- |
-static int is_degen_quad_or_conic(const SkPoint p[3]) { |
- SkScalar dsqd; |
- return is_degen_quad_or_conic(p, &dsqd); |
-} |
- |
-// we subdivide the quads to avoid huge overfill |
-// if it returns -1 then should be drawn as lines |
-static int num_quad_subdivs(const SkPoint p[3]) { |
- SkScalar dsqd; |
- if (is_degen_quad_or_conic(p, &dsqd)) { |
- return -1; |
- } |
- |
- // tolerance of triangle height in pixels |
- // tuned on windows Quadro FX 380 / Z600 |
- // trade off of fill vs cpu time on verts |
- // maybe different when do this using gpu (geo or tess shaders) |
- static const SkScalar gSubdivTol = 175 * SK_Scalar1; |
- |
- if (dsqd <= SkScalarMul(gSubdivTol, gSubdivTol)) { |
- return 0; |
- } else { |
- static const int kMaxSub = 4; |
- // subdividing the quad reduces d by 4. so we want x = log4(d/tol) |
- // = log4(d*d/tol*tol)/2 |
- // = log2(d*d/tol*tol) |
- |
- // +1 since we're ignoring the mantissa contribution. |
- int log = get_float_exp(dsqd/(gSubdivTol*gSubdivTol)) + 1; |
- log = SkTMin(SkTMax(0, log), kMaxSub); |
- return log; |
- } |
-} |
- |
-/** |
- * Generates the lines and quads to be rendered. Lines are always recorded in |
- * device space. We will do a device space bloat to account for the 1pixel |
- * thickness. |
- * Quads are recorded in device space unless m contains |
- * perspective, then in they are in src space. We do this because we will |
- * subdivide large quads to reduce over-fill. This subdivision has to be |
- * performed before applying the perspective matrix. |
- */ |
-static int gather_lines_and_quads(const SkPath& path, |
- const SkMatrix& m, |
- const SkIRect& devClipBounds, |
- GrAAHairLinePathRenderer::PtArray* lines, |
- GrAAHairLinePathRenderer::PtArray* quads, |
- GrAAHairLinePathRenderer::PtArray* conics, |
- GrAAHairLinePathRenderer::IntArray* quadSubdivCnts, |
- GrAAHairLinePathRenderer::FloatArray* conicWeights) { |
- SkPath::Iter iter(path, false); |
- |
- int totalQuadCount = 0; |
- SkRect bounds; |
- SkIRect ibounds; |
- |
- bool persp = m.hasPerspective(); |
- |
- for (;;) { |
- SkPoint pathPts[4]; |
- SkPoint devPts[4]; |
- SkPath::Verb verb = iter.next(pathPts); |
- switch (verb) { |
- case SkPath::kConic_Verb: { |
- SkConic dst[4]; |
- // We chop the conics to create tighter clipping to hide error |
- // that appears near max curvature of very thin conics. Thin |
- // hyperbolas with high weight still show error. |
- int conicCnt = chop_conic(pathPts, dst, iter.conicWeight()); |
- for (int i = 0; i < conicCnt; ++i) { |
- SkPoint* chopPnts = dst[i].fPts; |
- m.mapPoints(devPts, chopPnts, 3); |
- bounds.setBounds(devPts, 3); |
- bounds.outset(SK_Scalar1, SK_Scalar1); |
- bounds.roundOut(&ibounds); |
- if (SkIRect::Intersects(devClipBounds, ibounds)) { |
- if (is_degen_quad_or_conic(devPts)) { |
- SkPoint* pts = lines->push_back_n(4); |
- pts[0] = devPts[0]; |
- pts[1] = devPts[1]; |
- pts[2] = devPts[1]; |
- pts[3] = devPts[2]; |
- } else { |
- // when in perspective keep conics in src space |
- SkPoint* cPts = persp ? chopPnts : devPts; |
- SkPoint* pts = conics->push_back_n(3); |
- pts[0] = cPts[0]; |
- pts[1] = cPts[1]; |
- pts[2] = cPts[2]; |
- conicWeights->push_back() = dst[i].fW; |
- } |
- } |
- } |
- break; |
- } |
- case SkPath::kMove_Verb: |
- break; |
- case SkPath::kLine_Verb: |
- m.mapPoints(devPts, pathPts, 2); |
- bounds.setBounds(devPts, 2); |
- bounds.outset(SK_Scalar1, SK_Scalar1); |
- bounds.roundOut(&ibounds); |
- if (SkIRect::Intersects(devClipBounds, ibounds)) { |
- SkPoint* pts = lines->push_back_n(2); |
- pts[0] = devPts[0]; |
- pts[1] = devPts[1]; |
- } |
- break; |
- case SkPath::kQuad_Verb: { |
- SkPoint choppedPts[5]; |
- // Chopping the quad helps when the quad is either degenerate or nearly degenerate. |
- // When it is degenerate it allows the approximation with lines to work since the |
- // chop point (if there is one) will be at the parabola's vertex. In the nearly |
- // degenerate the QuadUVMatrix computed for the points is almost singular which |
- // can cause rendering artifacts. |
- int n = SkChopQuadAtMaxCurvature(pathPts, choppedPts); |
- for (int i = 0; i < n; ++i) { |
- SkPoint* quadPts = choppedPts + i * 2; |
- m.mapPoints(devPts, quadPts, 3); |
- bounds.setBounds(devPts, 3); |
- bounds.outset(SK_Scalar1, SK_Scalar1); |
- bounds.roundOut(&ibounds); |
- |
- if (SkIRect::Intersects(devClipBounds, ibounds)) { |
- int subdiv = num_quad_subdivs(devPts); |
- SkASSERT(subdiv >= -1); |
- if (-1 == subdiv) { |
- SkPoint* pts = lines->push_back_n(4); |
- pts[0] = devPts[0]; |
- pts[1] = devPts[1]; |
- pts[2] = devPts[1]; |
- pts[3] = devPts[2]; |
- } else { |
- // when in perspective keep quads in src space |
- SkPoint* qPts = persp ? quadPts : devPts; |
- SkPoint* pts = quads->push_back_n(3); |
- pts[0] = qPts[0]; |
- pts[1] = qPts[1]; |
- pts[2] = qPts[2]; |
- quadSubdivCnts->push_back() = subdiv; |
- totalQuadCount += 1 << subdiv; |
- } |
- } |
- } |
- break; |
- } |
- case SkPath::kCubic_Verb: |
- m.mapPoints(devPts, pathPts, 4); |
- bounds.setBounds(devPts, 4); |
- bounds.outset(SK_Scalar1, SK_Scalar1); |
- bounds.roundOut(&ibounds); |
- if (SkIRect::Intersects(devClipBounds, ibounds)) { |
- PREALLOC_PTARRAY(32) q; |
- // we don't need a direction if we aren't constraining the subdivision |
- const SkPathPriv::FirstDirection kDummyDir = SkPathPriv::kCCW_FirstDirection; |
- // We convert cubics to quadratics (for now). |
- // In perspective have to do conversion in src space. |
- if (persp) { |
- SkScalar tolScale = |
- GrPathUtils::scaleToleranceToSrc(SK_Scalar1, m, |
- path.getBounds()); |
- GrPathUtils::convertCubicToQuads(pathPts, tolScale, false, kDummyDir, &q); |
- } else { |
- GrPathUtils::convertCubicToQuads(devPts, SK_Scalar1, false, kDummyDir, &q); |
- } |
- for (int i = 0; i < q.count(); i += 3) { |
- SkPoint* qInDevSpace; |
- // bounds has to be calculated in device space, but q is |
- // in src space when there is perspective. |
- if (persp) { |
- m.mapPoints(devPts, &q[i], 3); |
- bounds.setBounds(devPts, 3); |
- qInDevSpace = devPts; |
- } else { |
- bounds.setBounds(&q[i], 3); |
- qInDevSpace = &q[i]; |
- } |
- bounds.outset(SK_Scalar1, SK_Scalar1); |
- bounds.roundOut(&ibounds); |
- if (SkIRect::Intersects(devClipBounds, ibounds)) { |
- int subdiv = num_quad_subdivs(qInDevSpace); |
- SkASSERT(subdiv >= -1); |
- if (-1 == subdiv) { |
- SkPoint* pts = lines->push_back_n(4); |
- // lines should always be in device coords |
- pts[0] = qInDevSpace[0]; |
- pts[1] = qInDevSpace[1]; |
- pts[2] = qInDevSpace[1]; |
- pts[3] = qInDevSpace[2]; |
- } else { |
- SkPoint* pts = quads->push_back_n(3); |
- // q is already in src space when there is no |
- // perspective and dev coords otherwise. |
- pts[0] = q[0 + i]; |
- pts[1] = q[1 + i]; |
- pts[2] = q[2 + i]; |
- quadSubdivCnts->push_back() = subdiv; |
- totalQuadCount += 1 << subdiv; |
- } |
- } |
- } |
- } |
- break; |
- case SkPath::kClose_Verb: |
- break; |
- case SkPath::kDone_Verb: |
- return totalQuadCount; |
- } |
- } |
-} |
- |
-struct LineVertex { |
- SkPoint fPos; |
- float fCoverage; |
-}; |
- |
-struct BezierVertex { |
- SkPoint fPos; |
- union { |
- struct { |
- SkScalar fK; |
- SkScalar fL; |
- SkScalar fM; |
- } fConic; |
- SkVector fQuadCoord; |
- struct { |
- SkScalar fBogus[4]; |
- }; |
- }; |
-}; |
- |
-GR_STATIC_ASSERT(sizeof(BezierVertex) == 3 * sizeof(SkPoint)); |
- |
-static void intersect_lines(const SkPoint& ptA, const SkVector& normA, |
- const SkPoint& ptB, const SkVector& normB, |
- SkPoint* result) { |
- |
- SkScalar lineAW = -normA.dot(ptA); |
- SkScalar lineBW = -normB.dot(ptB); |
- |
- SkScalar wInv = SkScalarMul(normA.fX, normB.fY) - |
- SkScalarMul(normA.fY, normB.fX); |
- wInv = SkScalarInvert(wInv); |
- |
- result->fX = SkScalarMul(normA.fY, lineBW) - SkScalarMul(lineAW, normB.fY); |
- result->fX = SkScalarMul(result->fX, wInv); |
- |
- result->fY = SkScalarMul(lineAW, normB.fX) - SkScalarMul(normA.fX, lineBW); |
- result->fY = SkScalarMul(result->fY, wInv); |
-} |
- |
-static void set_uv_quad(const SkPoint qpts[3], BezierVertex verts[kQuadNumVertices]) { |
- // this should be in the src space, not dev coords, when we have perspective |
- GrPathUtils::QuadUVMatrix DevToUV(qpts); |
- DevToUV.apply<kQuadNumVertices, sizeof(BezierVertex), sizeof(SkPoint)>(verts); |
-} |
- |
-static void bloat_quad(const SkPoint qpts[3], const SkMatrix* toDevice, |
- const SkMatrix* toSrc, BezierVertex verts[kQuadNumVertices]) { |
- SkASSERT(!toDevice == !toSrc); |
- // original quad is specified by tri a,b,c |
- SkPoint a = qpts[0]; |
- SkPoint b = qpts[1]; |
- SkPoint c = qpts[2]; |
- |
- if (toDevice) { |
- toDevice->mapPoints(&a, 1); |
- toDevice->mapPoints(&b, 1); |
- toDevice->mapPoints(&c, 1); |
- } |
- // make a new poly where we replace a and c by a 1-pixel wide edges orthog |
- // to edges ab and bc: |
- // |
- // before | after |
- // | b0 |
- // b | |
- // | |
- // | a0 c0 |
- // a c | a1 c1 |
- // |
- // edges a0->b0 and b0->c0 are parallel to original edges a->b and b->c, |
- // respectively. |
- BezierVertex& a0 = verts[0]; |
- BezierVertex& a1 = verts[1]; |
- BezierVertex& b0 = verts[2]; |
- BezierVertex& c0 = verts[3]; |
- BezierVertex& c1 = verts[4]; |
- |
- SkVector ab = b; |
- ab -= a; |
- SkVector ac = c; |
- ac -= a; |
- SkVector cb = b; |
- cb -= c; |
- |
- // We should have already handled degenerates |
- SkASSERT(ab.length() > 0 && cb.length() > 0); |
- |
- ab.normalize(); |
- SkVector abN; |
- abN.setOrthog(ab, SkVector::kLeft_Side); |
- if (abN.dot(ac) > 0) { |
- abN.negate(); |
- } |
- |
- cb.normalize(); |
- SkVector cbN; |
- cbN.setOrthog(cb, SkVector::kLeft_Side); |
- if (cbN.dot(ac) < 0) { |
- cbN.negate(); |
- } |
- |
- a0.fPos = a; |
- a0.fPos += abN; |
- a1.fPos = a; |
- a1.fPos -= abN; |
- |
- c0.fPos = c; |
- c0.fPos += cbN; |
- c1.fPos = c; |
- c1.fPos -= cbN; |
- |
- intersect_lines(a0.fPos, abN, c0.fPos, cbN, &b0.fPos); |
- |
- if (toSrc) { |
- toSrc->mapPointsWithStride(&verts[0].fPos, sizeof(BezierVertex), kQuadNumVertices); |
- } |
-} |
- |
-// Equations based off of Loop-Blinn Quadratic GPU Rendering |
-// Input Parametric: |
-// P(t) = (P0*(1-t)^2 + 2*w*P1*t*(1-t) + P2*t^2) / (1-t)^2 + 2*w*t*(1-t) + t^2) |
-// Output Implicit: |
-// f(x, y, w) = f(P) = K^2 - LM |
-// K = dot(k, P), L = dot(l, P), M = dot(m, P) |
-// k, l, m are calculated in function GrPathUtils::getConicKLM |
-static void set_conic_coeffs(const SkPoint p[3], BezierVertex verts[kQuadNumVertices], |
- const SkScalar weight) { |
- SkScalar klm[9]; |
- |
- GrPathUtils::getConicKLM(p, weight, klm); |
- |
- for (int i = 0; i < kQuadNumVertices; ++i) { |
- const SkPoint pnt = verts[i].fPos; |
- verts[i].fConic.fK = pnt.fX * klm[0] + pnt.fY * klm[1] + klm[2]; |
- verts[i].fConic.fL = pnt.fX * klm[3] + pnt.fY * klm[4] + klm[5]; |
- verts[i].fConic.fM = pnt.fX * klm[6] + pnt.fY * klm[7] + klm[8]; |
- } |
-} |
- |
-static void add_conics(const SkPoint p[3], |
- const SkScalar weight, |
- const SkMatrix* toDevice, |
- const SkMatrix* toSrc, |
- BezierVertex** vert) { |
- bloat_quad(p, toDevice, toSrc, *vert); |
- set_conic_coeffs(p, *vert, weight); |
- *vert += kQuadNumVertices; |
-} |
- |
-static void add_quads(const SkPoint p[3], |
- int subdiv, |
- const SkMatrix* toDevice, |
- const SkMatrix* toSrc, |
- BezierVertex** vert) { |
- SkASSERT(subdiv >= 0); |
- if (subdiv) { |
- SkPoint newP[5]; |
- SkChopQuadAtHalf(p, newP); |
- add_quads(newP + 0, subdiv-1, toDevice, toSrc, vert); |
- add_quads(newP + 2, subdiv-1, toDevice, toSrc, vert); |
- } else { |
- bloat_quad(p, toDevice, toSrc, *vert); |
- set_uv_quad(p, *vert); |
- *vert += kQuadNumVertices; |
- } |
-} |
- |
-static void add_line(const SkPoint p[2], |
- const SkMatrix* toSrc, |
- uint8_t coverage, |
- LineVertex** vert) { |
- const SkPoint& a = p[0]; |
- const SkPoint& b = p[1]; |
- |
- SkVector ortho, vec = b; |
- vec -= a; |
- |
- if (vec.setLength(SK_ScalarHalf)) { |
- // Create a vector orthogonal to 'vec' and of unit length |
- ortho.fX = 2.0f * vec.fY; |
- ortho.fY = -2.0f * vec.fX; |
- |
- float floatCoverage = GrNormalizeByteToFloat(coverage); |
- |
- (*vert)[0].fPos = a; |
- (*vert)[0].fCoverage = floatCoverage; |
- (*vert)[1].fPos = b; |
- (*vert)[1].fCoverage = floatCoverage; |
- (*vert)[2].fPos = a - vec + ortho; |
- (*vert)[2].fCoverage = 0; |
- (*vert)[3].fPos = b + vec + ortho; |
- (*vert)[3].fCoverage = 0; |
- (*vert)[4].fPos = a - vec - ortho; |
- (*vert)[4].fCoverage = 0; |
- (*vert)[5].fPos = b + vec - ortho; |
- (*vert)[5].fCoverage = 0; |
- |
- if (toSrc) { |
- toSrc->mapPointsWithStride(&(*vert)->fPos, |
- sizeof(LineVertex), |
- kLineSegNumVertices); |
- } |
- } else { |
- // just make it degenerate and likely offscreen |
- for (int i = 0; i < kLineSegNumVertices; ++i) { |
- (*vert)[i].fPos.set(SK_ScalarMax, SK_ScalarMax); |
- } |
- } |
- |
- *vert += kLineSegNumVertices; |
-} |
- |
-/////////////////////////////////////////////////////////////////////////////// |
- |
-bool GrAAHairLinePathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const { |
- if (!args.fAntiAlias) { |
- return false; |
- } |
- |
- if (!IsStrokeHairlineOrEquivalent(*args.fStroke, *args.fViewMatrix, nullptr)) { |
- return false; |
- } |
- |
- if (SkPath::kLine_SegmentMask == args.fPath->getSegmentMasks() || |
- args.fShaderCaps->shaderDerivativeSupport()) { |
- return true; |
- } |
- return false; |
-} |
- |
-template <class VertexType> |
-bool check_bounds(const SkMatrix& viewMatrix, const SkRect& devBounds, void* vertices, int vCount) |
-{ |
- SkRect tolDevBounds = devBounds; |
- // The bounds ought to be tight, but in perspective the below code runs the verts |
- // through the view matrix to get back to dev coords, which can introduce imprecision. |
- if (viewMatrix.hasPerspective()) { |
- tolDevBounds.outset(SK_Scalar1 / 1000, SK_Scalar1 / 1000); |
- } else { |
- // Non-persp matrices cause this path renderer to draw in device space. |
- SkASSERT(viewMatrix.isIdentity()); |
- } |
- SkRect actualBounds; |
- |
- VertexType* verts = reinterpret_cast<VertexType*>(vertices); |
- bool first = true; |
- for (int i = 0; i < vCount; ++i) { |
- SkPoint pos = verts[i].fPos; |
- // This is a hack to workaround the fact that we move some degenerate segments offscreen. |
- if (SK_ScalarMax == pos.fX) { |
- continue; |
- } |
- viewMatrix.mapPoints(&pos, 1); |
- if (first) { |
- actualBounds.set(pos.fX, pos.fY, pos.fX, pos.fY); |
- first = false; |
- } else { |
- actualBounds.growToInclude(pos.fX, pos.fY); |
- } |
- } |
- if (!first) { |
- return tolDevBounds.contains(actualBounds); |
- } |
- |
- return true; |
-} |
- |
-class AAHairlineBatch : public GrVertexBatch { |
-public: |
- struct Geometry { |
- GrColor fColor; |
- uint8_t fCoverage; |
- SkMatrix fViewMatrix; |
- SkPath fPath; |
- SkIRect fDevClipBounds; |
- }; |
- |
- static GrDrawBatch* Create(const Geometry& geometry) { return new AAHairlineBatch(geometry); } |
- |
- const char* name() const override { return "AAHairlineBatch"; } |
- |
- void getInvariantOutputColor(GrInitInvariantOutput* out) const override { |
- // When this is called on a batch, there is only one geometry bundle |
- out->setKnownFourComponents(fGeoData[0].fColor); |
- } |
- void getInvariantOutputCoverage(GrInitInvariantOutput* out) const override { |
- out->setUnknownSingleComponent(); |
- } |
- |
-private: |
- void initBatchTracker(const GrPipelineOptimizations& opt) override { |
- // Handle any color overrides |
- if (!opt.readsColor()) { |
- fGeoData[0].fColor = GrColor_ILLEGAL; |
- } |
- opt.getOverrideColorIfSet(&fGeoData[0].fColor); |
- |
- // setup batch properties |
- fBatch.fColorIgnored = !opt.readsColor(); |
- fBatch.fColor = fGeoData[0].fColor; |
- fBatch.fUsesLocalCoords = opt.readsLocalCoords(); |
- fBatch.fCoverageIgnored = !opt.readsCoverage(); |
- fBatch.fCoverage = fGeoData[0].fCoverage; |
- } |
- |
- SkSTArray<1, Geometry, true>* geoData() { return &fGeoData; } |
- |
- void onPrepareDraws(Target*) override; |
- |
- typedef SkTArray<SkPoint, true> PtArray; |
- typedef SkTArray<int, true> IntArray; |
- typedef SkTArray<float, true> FloatArray; |
- |
- AAHairlineBatch(const Geometry& geometry) { |
- this->initClassID<AAHairlineBatch>(); |
- fGeoData.push_back(geometry); |
- |
- // compute bounds |
- fBounds = geometry.fPath.getBounds(); |
- geometry.fViewMatrix.mapRect(&fBounds); |
- |
- // This is b.c. hairlines are notionally infinitely thin so without expansion |
- // two overlapping lines could be reordered even though they hit the same pixels. |
- fBounds.outset(0.5f, 0.5f); |
- } |
- |
- bool onCombineIfPossible(GrBatch* t, const GrCaps& caps) override { |
- AAHairlineBatch* that = t->cast<AAHairlineBatch>(); |
- |
- if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(), |
- that->bounds(), caps)) { |
- return false; |
- } |
- |
- if (this->viewMatrix().hasPerspective() != that->viewMatrix().hasPerspective()) { |
- return false; |
- } |
- |
- // We go to identity if we don't have perspective |
- if (this->viewMatrix().hasPerspective() && |
- !this->viewMatrix().cheapEqualTo(that->viewMatrix())) { |
- return false; |
- } |
- |
- // TODO we can actually batch hairlines if they are the same color in a kind of bulk method |
- // but we haven't implemented this yet |
- // TODO investigate going to vertex color and coverage? |
- if (this->coverage() != that->coverage()) { |
- return false; |
- } |
- |
- if (this->color() != that->color()) { |
- return false; |
- } |
- |
- SkASSERT(this->usesLocalCoords() == that->usesLocalCoords()); |
- if (this->usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) { |
- return false; |
- } |
- |
- fGeoData.push_back_n(that->geoData()->count(), that->geoData()->begin()); |
- this->joinBounds(that->bounds()); |
- return true; |
- } |
- |
- GrColor color() const { return fBatch.fColor; } |
- uint8_t coverage() const { return fBatch.fCoverage; } |
- bool usesLocalCoords() const { return fBatch.fUsesLocalCoords; } |
- const SkMatrix& viewMatrix() const { return fGeoData[0].fViewMatrix; } |
- bool coverageIgnored() const { return fBatch.fCoverageIgnored; } |
- |
- struct BatchTracker { |
- GrColor fColor; |
- uint8_t fCoverage; |
- SkRect fDevBounds; |
- bool fUsesLocalCoords; |
- bool fColorIgnored; |
- bool fCoverageIgnored; |
- }; |
- |
- BatchTracker fBatch; |
- SkSTArray<1, Geometry, true> fGeoData; |
-}; |
- |
-void AAHairlineBatch::onPrepareDraws(Target* target) { |
- // Setup the viewmatrix and localmatrix for the GrGeometryProcessor. |
- SkMatrix invert; |
- if (!this->viewMatrix().invert(&invert)) { |
- return; |
- } |
- |
- // we will transform to identity space if the viewmatrix does not have perspective |
- bool hasPerspective = this->viewMatrix().hasPerspective(); |
- const SkMatrix* geometryProcessorViewM = &SkMatrix::I(); |
- const SkMatrix* geometryProcessorLocalM = &invert; |
- const SkMatrix* toDevice = nullptr; |
- const SkMatrix* toSrc = nullptr; |
- if (hasPerspective) { |
- geometryProcessorViewM = &this->viewMatrix(); |
- geometryProcessorLocalM = &SkMatrix::I(); |
- toDevice = &this->viewMatrix(); |
- toSrc = &invert; |
- } |
- |
- SkAutoTUnref<const GrGeometryProcessor> lineGP; |
- { |
- using namespace GrDefaultGeoProcFactory; |
- |
- Color color(this->color()); |
- Coverage coverage(Coverage::kAttribute_Type); |
- LocalCoords localCoords(this->usesLocalCoords() ? LocalCoords::kUsePosition_Type : |
- LocalCoords::kUnused_Type); |
- localCoords.fMatrix = geometryProcessorLocalM; |
- lineGP.reset(GrDefaultGeoProcFactory::Create(color, coverage, localCoords, |
- *geometryProcessorViewM)); |
- } |
- |
- SkAutoTUnref<const GrGeometryProcessor> quadGP( |
- GrQuadEffect::Create(this->color(), |
- *geometryProcessorViewM, |
- kHairlineAA_GrProcessorEdgeType, |
- target->caps(), |
- *geometryProcessorLocalM, |
- this->usesLocalCoords(), |
- this->coverage())); |
- |
- SkAutoTUnref<const GrGeometryProcessor> conicGP( |
- GrConicEffect::Create(this->color(), |
- *geometryProcessorViewM, |
- kHairlineAA_GrProcessorEdgeType, |
- target->caps(), |
- *geometryProcessorLocalM, |
- this->usesLocalCoords(), |
- this->coverage())); |
- |
- // This is hand inlined for maximum performance. |
- PREALLOC_PTARRAY(128) lines; |
- PREALLOC_PTARRAY(128) quads; |
- PREALLOC_PTARRAY(128) conics; |
- IntArray qSubdivs; |
- FloatArray cWeights; |
- int quadCount = 0; |
- |
- int instanceCount = fGeoData.count(); |
- for (int i = 0; i < instanceCount; i++) { |
- const Geometry& args = fGeoData[i]; |
- quadCount += gather_lines_and_quads(args.fPath, args.fViewMatrix, args.fDevClipBounds, |
- &lines, &quads, &conics, &qSubdivs, &cWeights); |
- } |
- |
- int lineCount = lines.count() / 2; |
- int conicCount = conics.count() / 3; |
- |
- // do lines first |
- if (lineCount) { |
- SkAutoTUnref<const GrIndexBuffer> linesIndexBuffer( |
- ref_lines_index_buffer(target->resourceProvider())); |
- target->initDraw(lineGP, this->pipeline()); |
- |
- const GrVertexBuffer* vertexBuffer; |
- int firstVertex; |
- |
- size_t vertexStride = lineGP->getVertexStride(); |
- int vertexCount = kLineSegNumVertices * lineCount; |
- LineVertex* verts = reinterpret_cast<LineVertex*>( |
- target->makeVertexSpace(vertexStride, vertexCount, &vertexBuffer, &firstVertex)); |
- |
- if (!verts|| !linesIndexBuffer) { |
- SkDebugf("Could not allocate vertices\n"); |
- return; |
- } |
- |
- SkASSERT(lineGP->getVertexStride() == sizeof(LineVertex)); |
- |
- for (int i = 0; i < lineCount; ++i) { |
- add_line(&lines[2*i], toSrc, this->coverage(), &verts); |
- } |
- |
- { |
- GrVertices vertices; |
- vertices.initInstanced(kTriangles_GrPrimitiveType, vertexBuffer, linesIndexBuffer, |
- firstVertex, kLineSegNumVertices, kIdxsPerLineSeg, lineCount, |
- kLineSegsNumInIdxBuffer); |
- target->draw(vertices); |
- } |
- } |
- |
- if (quadCount || conicCount) { |
- const GrVertexBuffer* vertexBuffer; |
- int firstVertex; |
- |
- SkAutoTUnref<const GrIndexBuffer> quadsIndexBuffer( |
- ref_quads_index_buffer(target->resourceProvider())); |
- |
- size_t vertexStride = sizeof(BezierVertex); |
- int vertexCount = kQuadNumVertices * quadCount + kQuadNumVertices * conicCount; |
- void *vertices = target->makeVertexSpace(vertexStride, vertexCount, |
- &vertexBuffer, &firstVertex); |
- |
- if (!vertices || !quadsIndexBuffer) { |
- SkDebugf("Could not allocate vertices\n"); |
- return; |
- } |
- |
- // Setup vertices |
- BezierVertex* verts = reinterpret_cast<BezierVertex*>(vertices); |
- |
- int unsubdivQuadCnt = quads.count() / 3; |
- for (int i = 0; i < unsubdivQuadCnt; ++i) { |
- SkASSERT(qSubdivs[i] >= 0); |
- add_quads(&quads[3*i], qSubdivs[i], toDevice, toSrc, &verts); |
- } |
- |
- // Start Conics |
- for (int i = 0; i < conicCount; ++i) { |
- add_conics(&conics[3*i], cWeights[i], toDevice, toSrc, &verts); |
- } |
- |
- if (quadCount > 0) { |
- target->initDraw(quadGP, this->pipeline()); |
- |
- { |
- GrVertices verts; |
- verts.initInstanced(kTriangles_GrPrimitiveType, vertexBuffer, quadsIndexBuffer, |
- firstVertex, kQuadNumVertices, kIdxsPerQuad, quadCount, |
- kQuadsNumInIdxBuffer); |
- target->draw(verts); |
- firstVertex += quadCount * kQuadNumVertices; |
- } |
- } |
- |
- if (conicCount > 0) { |
- target->initDraw(conicGP, this->pipeline()); |
- |
- { |
- GrVertices verts; |
- verts.initInstanced(kTriangles_GrPrimitiveType, vertexBuffer, quadsIndexBuffer, |
- firstVertex, kQuadNumVertices, kIdxsPerQuad, conicCount, |
- kQuadsNumInIdxBuffer); |
- target->draw(verts); |
- } |
- } |
- } |
-} |
- |
-static GrDrawBatch* create_hairline_batch(GrColor color, |
- const SkMatrix& viewMatrix, |
- const SkPath& path, |
- const GrStrokeInfo& stroke, |
- const SkIRect& devClipBounds) { |
- SkScalar hairlineCoverage; |
- uint8_t newCoverage = 0xff; |
- if (GrPathRenderer::IsStrokeHairlineOrEquivalent(stroke, viewMatrix, &hairlineCoverage)) { |
- newCoverage = SkScalarRoundToInt(hairlineCoverage * 0xff); |
- } |
- |
- AAHairlineBatch::Geometry geometry; |
- geometry.fColor = color; |
- geometry.fCoverage = newCoverage; |
- geometry.fViewMatrix = viewMatrix; |
- geometry.fPath = path; |
- geometry.fDevClipBounds = devClipBounds; |
- |
- return AAHairlineBatch::Create(geometry); |
-} |
- |
-bool GrAAHairLinePathRenderer::onDrawPath(const DrawPathArgs& args) { |
- SkIRect devClipBounds; |
- args.fPipelineBuilder->clip().getConservativeBounds(args.fPipelineBuilder->getRenderTarget(), |
- &devClipBounds); |
- |
- SkAutoTUnref<GrDrawBatch> batch(create_hairline_batch(args.fColor, *args.fViewMatrix, *args.fPath, |
- *args.fStroke, devClipBounds)); |
- args.fTarget->drawBatch(*args.fPipelineBuilder, batch); |
- |
- return true; |
-} |
- |
-/////////////////////////////////////////////////////////////////////////////////////////////////// |
- |
-#ifdef GR_TEST_UTILS |
- |
-DRAW_BATCH_TEST_DEFINE(AAHairlineBatch) { |
- GrColor color = GrRandomColor(random); |
- SkMatrix viewMatrix = GrTest::TestMatrix(random); |
- GrStrokeInfo stroke(SkStrokeRec::kHairline_InitStyle); |
- SkPath path = GrTest::TestPath(random); |
- SkIRect devClipBounds; |
- devClipBounds.setEmpty(); |
- return create_hairline_batch(color, viewMatrix, path, stroke, devClipBounds); |
-} |
- |
-#endif |