| Index: src/gpu/GrAAConvexTessellator.cpp
|
| diff --git a/src/gpu/GrAAConvexTessellator.cpp b/src/gpu/GrAAConvexTessellator.cpp
|
| deleted file mode 100644
|
| index c111b8b56293859fd8590cee31c6dcd40e4ae88d..0000000000000000000000000000000000000000
|
| --- a/src/gpu/GrAAConvexTessellator.cpp
|
| +++ /dev/null
|
| @@ -1,1027 +0,0 @@
|
| -/*
|
| - * Copyright 2015 Google Inc.
|
| - *
|
| - * Use of this source code is governed by a BSD-style license that can be
|
| - * found in the LICENSE file.
|
| - */
|
| -
|
| -#include "GrAAConvexTessellator.h"
|
| -#include "SkCanvas.h"
|
| -#include "SkPath.h"
|
| -#include "SkPoint.h"
|
| -#include "SkString.h"
|
| -#include "GrPathUtils.h"
|
| -
|
| -// Next steps:
|
| -// add an interactive sample app slide
|
| -// add debug check that all points are suitably far apart
|
| -// test more degenerate cases
|
| -
|
| -// The tolerance for fusing vertices and eliminating colinear lines (It is in device space).
|
| -static const SkScalar kClose = (SK_Scalar1 / 16);
|
| -static const SkScalar kCloseSqd = SkScalarMul(kClose, kClose);
|
| -
|
| -// tesselation tolerance values, in device space pixels
|
| -static const SkScalar kQuadTolerance = 0.2f;
|
| -static const SkScalar kCubicTolerance = 0.2f;
|
| -static const SkScalar kConicTolerance = 0.5f;
|
| -
|
| -// dot product below which we use a round cap between curve segments
|
| -static const SkScalar kRoundCapThreshold = 0.8f;
|
| -
|
| -static SkScalar intersect(const SkPoint& p0, const SkPoint& n0,
|
| - const SkPoint& p1, const SkPoint& n1) {
|
| - const SkPoint v = p1 - p0;
|
| - SkScalar perpDot = n0.fX * n1.fY - n0.fY * n1.fX;
|
| - return (v.fX * n1.fY - v.fY * n1.fX) / perpDot;
|
| -}
|
| -
|
| -// This is a special case version of intersect where we have the vector
|
| -// perpendicular to the second line rather than the vector parallel to it.
|
| -static SkScalar perp_intersect(const SkPoint& p0, const SkPoint& n0,
|
| - const SkPoint& p1, const SkPoint& perp) {
|
| - const SkPoint v = p1 - p0;
|
| - SkScalar perpDot = n0.dot(perp);
|
| - return v.dot(perp) / perpDot;
|
| -}
|
| -
|
| -static bool duplicate_pt(const SkPoint& p0, const SkPoint& p1) {
|
| - SkScalar distSq = p0.distanceToSqd(p1);
|
| - return distSq < kCloseSqd;
|
| -}
|
| -
|
| -static SkScalar abs_dist_from_line(const SkPoint& p0, const SkVector& v, const SkPoint& test) {
|
| - SkPoint testV = test - p0;
|
| - SkScalar dist = testV.fX * v.fY - testV.fY * v.fX;
|
| - return SkScalarAbs(dist);
|
| -}
|
| -
|
| -int GrAAConvexTessellator::addPt(const SkPoint& pt,
|
| - SkScalar depth,
|
| - SkScalar coverage,
|
| - bool movable,
|
| - bool isCurve) {
|
| - this->validate();
|
| -
|
| - int index = fPts.count();
|
| - *fPts.push() = pt;
|
| - *fCoverages.push() = coverage;
|
| - *fMovable.push() = movable;
|
| - *fIsCurve.push() = isCurve;
|
| -
|
| - this->validate();
|
| - return index;
|
| -}
|
| -
|
| -void GrAAConvexTessellator::popLastPt() {
|
| - this->validate();
|
| -
|
| - fPts.pop();
|
| - fCoverages.pop();
|
| - fMovable.pop();
|
| -
|
| - this->validate();
|
| -}
|
| -
|
| -void GrAAConvexTessellator::popFirstPtShuffle() {
|
| - this->validate();
|
| -
|
| - fPts.removeShuffle(0);
|
| - fCoverages.removeShuffle(0);
|
| - fMovable.removeShuffle(0);
|
| -
|
| - this->validate();
|
| -}
|
| -
|
| -void GrAAConvexTessellator::updatePt(int index,
|
| - const SkPoint& pt,
|
| - SkScalar depth,
|
| - SkScalar coverage) {
|
| - this->validate();
|
| - SkASSERT(fMovable[index]);
|
| -
|
| - fPts[index] = pt;
|
| - fCoverages[index] = coverage;
|
| -}
|
| -
|
| -void GrAAConvexTessellator::addTri(int i0, int i1, int i2) {
|
| - if (i0 == i1 || i1 == i2 || i2 == i0) {
|
| - return;
|
| - }
|
| -
|
| - *fIndices.push() = i0;
|
| - *fIndices.push() = i1;
|
| - *fIndices.push() = i2;
|
| -}
|
| -
|
| -void GrAAConvexTessellator::rewind() {
|
| - fPts.rewind();
|
| - fCoverages.rewind();
|
| - fMovable.rewind();
|
| - fIndices.rewind();
|
| - fNorms.rewind();
|
| - fInitialRing.rewind();
|
| - fCandidateVerts.rewind();
|
| -#if GR_AA_CONVEX_TESSELLATOR_VIZ
|
| - fRings.rewind(); // TODO: leak in this case!
|
| -#else
|
| - fRings[0].rewind();
|
| - fRings[1].rewind();
|
| -#endif
|
| -}
|
| -
|
| -void GrAAConvexTessellator::computeBisectors() {
|
| - fBisectors.setCount(fNorms.count());
|
| -
|
| - int prev = fBisectors.count() - 1;
|
| - for (int cur = 0; cur < fBisectors.count(); prev = cur, ++cur) {
|
| - fBisectors[cur] = fNorms[cur] + fNorms[prev];
|
| - if (!fBisectors[cur].normalize()) {
|
| - SkASSERT(SkPoint::kLeft_Side == fSide || SkPoint::kRight_Side == fSide);
|
| - fBisectors[cur].setOrthog(fNorms[cur], (SkPoint::Side)-fSide);
|
| - SkVector other;
|
| - other.setOrthog(fNorms[prev], fSide);
|
| - fBisectors[cur] += other;
|
| - SkAssertResult(fBisectors[cur].normalize());
|
| - } else {
|
| - fBisectors[cur].negate(); // make the bisector face in
|
| - }
|
| -
|
| - SkASSERT(SkScalarNearlyEqual(1.0f, fBisectors[cur].length()));
|
| - }
|
| -}
|
| -
|
| -// Create as many rings as we need to (up to a predefined limit) to reach the specified target
|
| -// depth. If we are in fill mode, the final ring will automatically be fanned.
|
| -bool GrAAConvexTessellator::createInsetRings(Ring& previousRing, SkScalar initialDepth,
|
| - SkScalar initialCoverage, SkScalar targetDepth,
|
| - SkScalar targetCoverage, Ring** finalRing) {
|
| - static const int kMaxNumRings = 8;
|
| -
|
| - if (previousRing.numPts() < 3) {
|
| - return false;
|
| - }
|
| - Ring* currentRing = &previousRing;
|
| - int i;
|
| - for (i = 0; i < kMaxNumRings; ++i) {
|
| - Ring* nextRing = this->getNextRing(currentRing);
|
| - SkASSERT(nextRing != currentRing);
|
| -
|
| - bool done = this->createInsetRing(*currentRing, nextRing, initialDepth, initialCoverage,
|
| - targetDepth, targetCoverage, i == 0);
|
| - currentRing = nextRing;
|
| - if (done) {
|
| - break;
|
| - }
|
| - currentRing->init(*this);
|
| - }
|
| -
|
| - if (kMaxNumRings == i) {
|
| - // Bail if we've exceeded the amount of time we want to throw at this.
|
| - this->terminate(*currentRing);
|
| - return false;
|
| - }
|
| - bool done = currentRing->numPts() >= 3;
|
| - if (done) {
|
| - currentRing->init(*this);
|
| - }
|
| - *finalRing = currentRing;
|
| - return done;
|
| -}
|
| -
|
| -// The general idea here is to, conceptually, start with the original polygon and slide
|
| -// the vertices along the bisectors until the first intersection. At that
|
| -// point two of the edges collapse and the process repeats on the new polygon.
|
| -// The polygon state is captured in the Ring class while the GrAAConvexTessellator
|
| -// controls the iteration. The CandidateVerts holds the formative points for the
|
| -// next ring.
|
| -bool GrAAConvexTessellator::tessellate(const SkMatrix& m, const SkPath& path) {
|
| - if (!this->extractFromPath(m, path)) {
|
| - return false;
|
| - }
|
| -
|
| - SkScalar coverage = 1.0f;
|
| - SkScalar scaleFactor = 0.0f;
|
| - if (fStrokeWidth >= 0.0f) {
|
| - SkASSERT(m.isSimilarity());
|
| - scaleFactor = m.getMaxScale(); // x and y scale are the same
|
| - SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth;
|
| - Ring outerStrokeRing;
|
| - this->createOuterRing(fInitialRing, effectiveStrokeWidth / 2 - kAntialiasingRadius,
|
| - coverage, &outerStrokeRing);
|
| - outerStrokeRing.init(*this);
|
| - Ring outerAARing;
|
| - this->createOuterRing(outerStrokeRing, kAntialiasingRadius * 2, 0.0f, &outerAARing);
|
| - } else {
|
| - Ring outerAARing;
|
| - this->createOuterRing(fInitialRing, kAntialiasingRadius, 0.0f, &outerAARing);
|
| - }
|
| -
|
| - // the bisectors are only needed for the computation of the outer ring
|
| - fBisectors.rewind();
|
| - if (fStrokeWidth >= 0.0f && fInitialRing.numPts() > 2) {
|
| - SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth;
|
| - Ring* insetStrokeRing;
|
| - SkScalar strokeDepth = effectiveStrokeWidth / 2 - kAntialiasingRadius;
|
| - if (this->createInsetRings(fInitialRing, 0.0f, coverage, strokeDepth, coverage,
|
| - &insetStrokeRing)) {
|
| - Ring* insetAARing;
|
| - this->createInsetRings(*insetStrokeRing, strokeDepth, coverage, strokeDepth +
|
| - kAntialiasingRadius * 2, 0.0f, &insetAARing);
|
| - }
|
| - } else {
|
| - Ring* insetAARing;
|
| - this->createInsetRings(fInitialRing, 0.0f, 0.5f, kAntialiasingRadius, 1.0f, &insetAARing);
|
| - }
|
| -
|
| - SkDEBUGCODE(this->validate();)
|
| - return true;
|
| -}
|
| -
|
| -SkScalar GrAAConvexTessellator::computeDepthFromEdge(int edgeIdx, const SkPoint& p) const {
|
| - SkASSERT(edgeIdx < fNorms.count());
|
| -
|
| - SkPoint v = p - fPts[edgeIdx];
|
| - SkScalar depth = -fNorms[edgeIdx].dot(v);
|
| - return depth;
|
| -}
|
| -
|
| -// Find a point that is 'desiredDepth' away from the 'edgeIdx'-th edge and lies
|
| -// along the 'bisector' from the 'startIdx'-th point.
|
| -bool GrAAConvexTessellator::computePtAlongBisector(int startIdx,
|
| - const SkVector& bisector,
|
| - int edgeIdx,
|
| - SkScalar desiredDepth,
|
| - SkPoint* result) const {
|
| - const SkPoint& norm = fNorms[edgeIdx];
|
| -
|
| - // First find the point where the edge and the bisector intersect
|
| - SkPoint newP;
|
| -
|
| - SkScalar t = perp_intersect(fPts[startIdx], bisector, fPts[edgeIdx], norm);
|
| - if (SkScalarNearlyEqual(t, 0.0f)) {
|
| - // the start point was one of the original ring points
|
| - SkASSERT(startIdx < fPts.count());
|
| - newP = fPts[startIdx];
|
| - } else if (t < 0.0f) {
|
| - newP = bisector;
|
| - newP.scale(t);
|
| - newP += fPts[startIdx];
|
| - } else {
|
| - return false;
|
| - }
|
| -
|
| - // Then offset along the bisector from that point the correct distance
|
| - SkScalar dot = bisector.dot(norm);
|
| - t = -desiredDepth / dot;
|
| - *result = bisector;
|
| - result->scale(t);
|
| - *result += newP;
|
| -
|
| - return true;
|
| -}
|
| -
|
| -bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& path) {
|
| - SkASSERT(SkPath::kConvex_Convexity == path.getConvexity());
|
| -
|
| - // Outer ring: 3*numPts
|
| - // Middle ring: numPts
|
| - // Presumptive inner ring: numPts
|
| - this->reservePts(5*path.countPoints());
|
| - // Outer ring: 12*numPts
|
| - // Middle ring: 0
|
| - // Presumptive inner ring: 6*numPts + 6
|
| - fIndices.setReserve(18*path.countPoints() + 6);
|
| -
|
| - fNorms.setReserve(path.countPoints());
|
| -
|
| - // TODO: is there a faster way to extract the points from the path? Perhaps
|
| - // get all the points via a new entry point, transform them all in bulk
|
| - // and then walk them to find duplicates?
|
| - SkPath::Iter iter(path, true);
|
| - SkPoint pts[4];
|
| - SkPath::Verb verb;
|
| - while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
|
| - switch (verb) {
|
| - case SkPath::kLine_Verb:
|
| - this->lineTo(m, pts[1], false);
|
| - break;
|
| - case SkPath::kQuad_Verb:
|
| - this->quadTo(m, pts);
|
| - break;
|
| - case SkPath::kCubic_Verb:
|
| - this->cubicTo(m, pts);
|
| - break;
|
| - case SkPath::kConic_Verb:
|
| - this->conicTo(m, pts, iter.conicWeight());
|
| - break;
|
| - case SkPath::kMove_Verb:
|
| - case SkPath::kClose_Verb:
|
| - case SkPath::kDone_Verb:
|
| - break;
|
| - }
|
| - }
|
| -
|
| - if (this->numPts() < 2) {
|
| - return false;
|
| - }
|
| -
|
| - // check if last point is a duplicate of the first point. If so, remove it.
|
| - if (duplicate_pt(fPts[this->numPts()-1], fPts[0])) {
|
| - this->popLastPt();
|
| - fNorms.pop();
|
| - }
|
| -
|
| - SkASSERT(fPts.count() == fNorms.count()+1);
|
| - if (this->numPts() >= 3) {
|
| - if (abs_dist_from_line(fPts.top(), fNorms.top(), fPts[0]) < kClose) {
|
| - // The last point is on the line from the second to last to the first point.
|
| - this->popLastPt();
|
| - fNorms.pop();
|
| - }
|
| -
|
| - *fNorms.push() = fPts[0] - fPts.top();
|
| - SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top());
|
| - SkASSERT(len > 0.0f);
|
| - SkASSERT(fPts.count() == fNorms.count());
|
| - }
|
| -
|
| - if (this->numPts() >= 3 && abs_dist_from_line(fPts[0], fNorms.top(), fPts[1]) < kClose) {
|
| - // The first point is on the line from the last to the second.
|
| - this->popFirstPtShuffle();
|
| - fNorms.removeShuffle(0);
|
| - fNorms[0] = fPts[1] - fPts[0];
|
| - SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms[0]);
|
| - SkASSERT(len > 0.0f);
|
| - SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[0].length()));
|
| - }
|
| -
|
| - if (this->numPts() >= 3) {
|
| - // Check the cross product of the final trio
|
| - SkScalar cross = SkPoint::CrossProduct(fNorms[0], fNorms.top());
|
| - if (cross > 0.0f) {
|
| - fSide = SkPoint::kRight_Side;
|
| - } else {
|
| - fSide = SkPoint::kLeft_Side;
|
| - }
|
| -
|
| - // Make all the normals face outwards rather than along the edge
|
| - for (int cur = 0; cur < fNorms.count(); ++cur) {
|
| - fNorms[cur].setOrthog(fNorms[cur], fSide);
|
| - SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length()));
|
| - }
|
| -
|
| - this->computeBisectors();
|
| - } else if (this->numPts() == 2) {
|
| - // We've got two points, so we're degenerate.
|
| - if (fStrokeWidth < 0.0f) {
|
| - // it's a fill, so we don't need to worry about degenerate paths
|
| - return false;
|
| - }
|
| - // For stroking, we still need to process the degenerate path, so fix it up
|
| - fSide = SkPoint::kLeft_Side;
|
| -
|
| - // Make all the normals face outwards rather than along the edge
|
| - for (int cur = 0; cur < fNorms.count(); ++cur) {
|
| - fNorms[cur].setOrthog(fNorms[cur], fSide);
|
| - SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length()));
|
| - }
|
| -
|
| - fNorms.push(SkPoint::Make(-fNorms[0].fX, -fNorms[0].fY));
|
| - // we won't actually use the bisectors, so just push zeroes
|
| - fBisectors.push(SkPoint::Make(0.0, 0.0));
|
| - fBisectors.push(SkPoint::Make(0.0, 0.0));
|
| - } else {
|
| - return false;
|
| - }
|
| -
|
| - fCandidateVerts.setReserve(this->numPts());
|
| - fInitialRing.setReserve(this->numPts());
|
| - for (int i = 0; i < this->numPts(); ++i) {
|
| - fInitialRing.addIdx(i, i);
|
| - }
|
| - fInitialRing.init(fNorms, fBisectors);
|
| -
|
| - this->validate();
|
| - return true;
|
| -}
|
| -
|
| -GrAAConvexTessellator::Ring* GrAAConvexTessellator::getNextRing(Ring* lastRing) {
|
| -#if GR_AA_CONVEX_TESSELLATOR_VIZ
|
| - Ring* ring = *fRings.push() = new Ring;
|
| - ring->setReserve(fInitialRing.numPts());
|
| - ring->rewind();
|
| - return ring;
|
| -#else
|
| - // Flip flop back and forth between fRings[0] & fRings[1]
|
| - int nextRing = (lastRing == &fRings[0]) ? 1 : 0;
|
| - fRings[nextRing].setReserve(fInitialRing.numPts());
|
| - fRings[nextRing].rewind();
|
| - return &fRings[nextRing];
|
| -#endif
|
| -}
|
| -
|
| -void GrAAConvexTessellator::fanRing(const Ring& ring) {
|
| - // fan out from point 0
|
| - int startIdx = ring.index(0);
|
| - for (int cur = ring.numPts() - 2; cur >= 0; --cur) {
|
| - this->addTri(startIdx, ring.index(cur), ring.index(cur + 1));
|
| - }
|
| -}
|
| -
|
| -void GrAAConvexTessellator::createOuterRing(const Ring& previousRing, SkScalar outset,
|
| - SkScalar coverage, Ring* nextRing) {
|
| - const int numPts = previousRing.numPts();
|
| - if (numPts == 0) {
|
| - return;
|
| - }
|
| -
|
| - int prev = numPts - 1;
|
| - int lastPerpIdx = -1, firstPerpIdx = -1;
|
| -
|
| - const SkScalar outsetSq = SkScalarMul(outset, outset);
|
| - SkScalar miterLimitSq = SkScalarMul(outset, fMiterLimit);
|
| - miterLimitSq = SkScalarMul(miterLimitSq, miterLimitSq);
|
| - for (int cur = 0; cur < numPts; ++cur) {
|
| - int originalIdx = previousRing.index(cur);
|
| - // For each vertex of the original polygon we add at least two points to the
|
| - // outset polygon - one extending perpendicular to each impinging edge. Connecting these
|
| - // two points yields a bevel join. We need one additional point for a mitered join, and
|
| - // a round join requires one or more points depending upon curvature.
|
| -
|
| - // The perpendicular point for the last edge
|
| - SkPoint normal1 = previousRing.norm(prev);
|
| - SkPoint perp1 = normal1;
|
| - perp1.scale(outset);
|
| - perp1 += this->point(originalIdx);
|
| -
|
| - // The perpendicular point for the next edge.
|
| - SkPoint normal2 = previousRing.norm(cur);
|
| - SkPoint perp2 = normal2;
|
| - perp2.scale(outset);
|
| - perp2 += fPts[originalIdx];
|
| -
|
| - bool isCurve = fIsCurve[originalIdx];
|
| -
|
| - // We know it isn't a duplicate of the prior point (since it and this
|
| - // one are just perpendicular offsets from the non-merged polygon points)
|
| - int perp1Idx = this->addPt(perp1, -outset, coverage, false, isCurve);
|
| - nextRing->addIdx(perp1Idx, originalIdx);
|
| -
|
| - int perp2Idx;
|
| - // For very shallow angles all the corner points could fuse.
|
| - if (duplicate_pt(perp2, this->point(perp1Idx))) {
|
| - perp2Idx = perp1Idx;
|
| - } else {
|
| - perp2Idx = this->addPt(perp2, -outset, coverage, false, isCurve);
|
| - }
|
| -
|
| - if (perp2Idx != perp1Idx) {
|
| - if (isCurve) {
|
| - // bevel or round depending upon curvature
|
| - SkScalar dotProd = normal1.dot(normal2);
|
| - if (dotProd < kRoundCapThreshold) {
|
| - // Currently we "round" by creating a single extra point, which produces
|
| - // good results for common cases. For thick strokes with high curvature, we will
|
| - // need to add more points; for the time being we simply fall back to software
|
| - // rendering for thick strokes.
|
| - SkPoint miter = previousRing.bisector(cur);
|
| - miter.setLength(-outset);
|
| - miter += fPts[originalIdx];
|
| -
|
| - // For very shallow angles all the corner points could fuse
|
| - if (!duplicate_pt(miter, this->point(perp1Idx))) {
|
| - int miterIdx;
|
| - miterIdx = this->addPt(miter, -outset, coverage, false, false);
|
| - nextRing->addIdx(miterIdx, originalIdx);
|
| - // The two triangles for the corner
|
| - this->addTri(originalIdx, perp1Idx, miterIdx);
|
| - this->addTri(originalIdx, miterIdx, perp2Idx);
|
| - }
|
| - } else {
|
| - this->addTri(originalIdx, perp1Idx, perp2Idx);
|
| - }
|
| - } else {
|
| - switch (fJoin) {
|
| - case SkPaint::Join::kMiter_Join: {
|
| - // The bisector outset point
|
| - SkPoint miter = previousRing.bisector(cur);
|
| - SkScalar dotProd = normal1.dot(normal2);
|
| - SkScalar sinHalfAngleSq = SkScalarHalf(SK_Scalar1 + dotProd);
|
| - SkScalar lengthSq = outsetSq / sinHalfAngleSq;
|
| - if (lengthSq > miterLimitSq) {
|
| - // just bevel it
|
| - this->addTri(originalIdx, perp1Idx, perp2Idx);
|
| - break;
|
| - }
|
| - miter.setLength(-SkScalarSqrt(lengthSq));
|
| - miter += fPts[originalIdx];
|
| -
|
| - // For very shallow angles all the corner points could fuse
|
| - if (!duplicate_pt(miter, this->point(perp1Idx))) {
|
| - int miterIdx;
|
| - miterIdx = this->addPt(miter, -outset, coverage, false, false);
|
| - nextRing->addIdx(miterIdx, originalIdx);
|
| - // The two triangles for the corner
|
| - this->addTri(originalIdx, perp1Idx, miterIdx);
|
| - this->addTri(originalIdx, miterIdx, perp2Idx);
|
| - }
|
| - break;
|
| - }
|
| - case SkPaint::Join::kBevel_Join:
|
| - this->addTri(originalIdx, perp1Idx, perp2Idx);
|
| - break;
|
| - default:
|
| - // kRound_Join is unsupported for now. GrAALinearizingConvexPathRenderer is
|
| - // only willing to draw mitered or beveled, so we should never get here.
|
| - SkASSERT(false);
|
| - }
|
| - }
|
| -
|
| - nextRing->addIdx(perp2Idx, originalIdx);
|
| - }
|
| -
|
| - if (0 == cur) {
|
| - // Store the index of the first perpendicular point to finish up
|
| - firstPerpIdx = perp1Idx;
|
| - SkASSERT(-1 == lastPerpIdx);
|
| - } else {
|
| - // The triangles for the previous edge
|
| - int prevIdx = previousRing.index(prev);
|
| - this->addTri(prevIdx, perp1Idx, originalIdx);
|
| - this->addTri(prevIdx, lastPerpIdx, perp1Idx);
|
| - }
|
| -
|
| - // Track the last perpendicular outset point so we can construct the
|
| - // trailing edge triangles.
|
| - lastPerpIdx = perp2Idx;
|
| - prev = cur;
|
| - }
|
| -
|
| - // pick up the final edge rect
|
| - int lastIdx = previousRing.index(numPts - 1);
|
| - this->addTri(lastIdx, firstPerpIdx, previousRing.index(0));
|
| - this->addTri(lastIdx, lastPerpIdx, firstPerpIdx);
|
| -
|
| - this->validate();
|
| -}
|
| -
|
| -// Something went wrong in the creation of the next ring. If we're filling the shape, just go ahead
|
| -// and fan it.
|
| -void GrAAConvexTessellator::terminate(const Ring& ring) {
|
| - if (fStrokeWidth < 0.0f) {
|
| - this->fanRing(ring);
|
| - }
|
| -}
|
| -
|
| -static SkScalar compute_coverage(SkScalar depth, SkScalar initialDepth, SkScalar initialCoverage,
|
| - SkScalar targetDepth, SkScalar targetCoverage) {
|
| - if (SkScalarNearlyEqual(initialDepth, targetDepth)) {
|
| - return targetCoverage;
|
| - }
|
| - SkScalar result = (depth - initialDepth) / (targetDepth - initialDepth) *
|
| - (targetCoverage - initialCoverage) + initialCoverage;
|
| - return SkScalarClampMax(result, 1.0f);
|
| -}
|
| -
|
| -// return true when processing is complete
|
| -bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing,
|
| - SkScalar initialDepth, SkScalar initialCoverage,
|
| - SkScalar targetDepth, SkScalar targetCoverage,
|
| - bool forceNew) {
|
| - bool done = false;
|
| -
|
| - fCandidateVerts.rewind();
|
| -
|
| - // Loop through all the points in the ring and find the intersection with the smallest depth
|
| - SkScalar minDist = SK_ScalarMax, minT = 0.0f;
|
| - int minEdgeIdx = -1;
|
| -
|
| - for (int cur = 0; cur < lastRing.numPts(); ++cur) {
|
| - int next = (cur + 1) % lastRing.numPts();
|
| - SkScalar t = intersect(this->point(lastRing.index(cur)), lastRing.bisector(cur),
|
| - this->point(lastRing.index(next)), lastRing.bisector(next));
|
| - SkScalar dist = -t * lastRing.norm(cur).dot(lastRing.bisector(cur));
|
| -
|
| - if (minDist > dist) {
|
| - minDist = dist;
|
| - minT = t;
|
| - minEdgeIdx = cur;
|
| - }
|
| - }
|
| -
|
| - if (minEdgeIdx == -1) {
|
| - return false;
|
| - }
|
| - SkPoint newPt = lastRing.bisector(minEdgeIdx);
|
| - newPt.scale(minT);
|
| - newPt += this->point(lastRing.index(minEdgeIdx));
|
| -
|
| - SkScalar depth = this->computeDepthFromEdge(lastRing.origEdgeID(minEdgeIdx), newPt);
|
| - if (depth >= targetDepth) {
|
| - // None of the bisectors intersect before reaching the desired depth.
|
| - // Just step them all to the desired depth
|
| - depth = targetDepth;
|
| - done = true;
|
| - }
|
| -
|
| - // 'dst' stores where each point in the last ring maps to/transforms into
|
| - // in the next ring.
|
| - SkTDArray<int> dst;
|
| - dst.setCount(lastRing.numPts());
|
| -
|
| - // Create the first point (who compares with no one)
|
| - if (!this->computePtAlongBisector(lastRing.index(0),
|
| - lastRing.bisector(0),
|
| - lastRing.origEdgeID(0),
|
| - depth, &newPt)) {
|
| - this->terminate(lastRing);
|
| - return true;
|
| - }
|
| - dst[0] = fCandidateVerts.addNewPt(newPt,
|
| - lastRing.index(0), lastRing.origEdgeID(0),
|
| - !this->movable(lastRing.index(0)));
|
| -
|
| - // Handle the middle points (who only compare with the prior point)
|
| - for (int cur = 1; cur < lastRing.numPts()-1; ++cur) {
|
| - if (!this->computePtAlongBisector(lastRing.index(cur),
|
| - lastRing.bisector(cur),
|
| - lastRing.origEdgeID(cur),
|
| - depth, &newPt)) {
|
| - this->terminate(lastRing);
|
| - return true;
|
| - }
|
| - if (!duplicate_pt(newPt, fCandidateVerts.lastPoint())) {
|
| - dst[cur] = fCandidateVerts.addNewPt(newPt,
|
| - lastRing.index(cur), lastRing.origEdgeID(cur),
|
| - !this->movable(lastRing.index(cur)));
|
| - } else {
|
| - dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
|
| - }
|
| - }
|
| -
|
| - // Check on the last point (handling the wrap around)
|
| - int cur = lastRing.numPts()-1;
|
| - if (!this->computePtAlongBisector(lastRing.index(cur),
|
| - lastRing.bisector(cur),
|
| - lastRing.origEdgeID(cur),
|
| - depth, &newPt)) {
|
| - this->terminate(lastRing);
|
| - return true;
|
| - }
|
| - bool dupPrev = duplicate_pt(newPt, fCandidateVerts.lastPoint());
|
| - bool dupNext = duplicate_pt(newPt, fCandidateVerts.firstPoint());
|
| -
|
| - if (!dupPrev && !dupNext) {
|
| - dst[cur] = fCandidateVerts.addNewPt(newPt,
|
| - lastRing.index(cur), lastRing.origEdgeID(cur),
|
| - !this->movable(lastRing.index(cur)));
|
| - } else if (dupPrev && !dupNext) {
|
| - dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
|
| - } else if (!dupPrev && dupNext) {
|
| - dst[cur] = fCandidateVerts.fuseWithNext();
|
| - } else {
|
| - bool dupPrevVsNext = duplicate_pt(fCandidateVerts.firstPoint(), fCandidateVerts.lastPoint());
|
| -
|
| - if (!dupPrevVsNext) {
|
| - dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
|
| - } else {
|
| - const int fused = fCandidateVerts.fuseWithBoth();
|
| - dst[cur] = fused;
|
| - const int targetIdx = dst[cur - 1];
|
| - for (int i = cur - 1; i >= 0 && dst[i] == targetIdx; i--) {
|
| - dst[i] = fused;
|
| - }
|
| - }
|
| - }
|
| -
|
| - // Fold the new ring's points into the global pool
|
| - for (int i = 0; i < fCandidateVerts.numPts(); ++i) {
|
| - int newIdx;
|
| - if (fCandidateVerts.needsToBeNew(i) || forceNew) {
|
| - // if the originating index is still valid then this point wasn't
|
| - // fused (and is thus movable)
|
| - SkScalar coverage = compute_coverage(depth, initialDepth, initialCoverage,
|
| - targetDepth, targetCoverage);
|
| - newIdx = this->addPt(fCandidateVerts.point(i), depth, coverage,
|
| - fCandidateVerts.originatingIdx(i) != -1, false);
|
| - } else {
|
| - SkASSERT(fCandidateVerts.originatingIdx(i) != -1);
|
| - this->updatePt(fCandidateVerts.originatingIdx(i), fCandidateVerts.point(i), depth,
|
| - targetCoverage);
|
| - newIdx = fCandidateVerts.originatingIdx(i);
|
| - }
|
| -
|
| - nextRing->addIdx(newIdx, fCandidateVerts.origEdge(i));
|
| - }
|
| -
|
| - // 'dst' currently has indices into the ring. Remap these to be indices
|
| - // into the global pool since the triangulation operates in that space.
|
| - for (int i = 0; i < dst.count(); ++i) {
|
| - dst[i] = nextRing->index(dst[i]);
|
| - }
|
| -
|
| - for (int cur = 0; cur < lastRing.numPts(); ++cur) {
|
| - int next = (cur + 1) % lastRing.numPts();
|
| -
|
| - this->addTri(lastRing.index(cur), lastRing.index(next), dst[next]);
|
| - this->addTri(lastRing.index(cur), dst[next], dst[cur]);
|
| - }
|
| -
|
| - if (done && fStrokeWidth < 0.0f) {
|
| - // fill
|
| - this->fanRing(*nextRing);
|
| - }
|
| -
|
| - if (nextRing->numPts() < 3) {
|
| - done = true;
|
| - }
|
| - return done;
|
| -}
|
| -
|
| -void GrAAConvexTessellator::validate() const {
|
| - SkASSERT(fPts.count() == fMovable.count());
|
| - SkASSERT(0 == (fIndices.count() % 3));
|
| -}
|
| -
|
| -//////////////////////////////////////////////////////////////////////////////
|
| -void GrAAConvexTessellator::Ring::init(const GrAAConvexTessellator& tess) {
|
| - this->computeNormals(tess);
|
| - this->computeBisectors(tess);
|
| -}
|
| -
|
| -void GrAAConvexTessellator::Ring::init(const SkTDArray<SkVector>& norms,
|
| - const SkTDArray<SkVector>& bisectors) {
|
| - for (int i = 0; i < fPts.count(); ++i) {
|
| - fPts[i].fNorm = norms[i];
|
| - fPts[i].fBisector = bisectors[i];
|
| - }
|
| -}
|
| -
|
| -// Compute the outward facing normal at each vertex.
|
| -void GrAAConvexTessellator::Ring::computeNormals(const GrAAConvexTessellator& tess) {
|
| - for (int cur = 0; cur < fPts.count(); ++cur) {
|
| - int next = (cur + 1) % fPts.count();
|
| -
|
| - fPts[cur].fNorm = tess.point(fPts[next].fIndex) - tess.point(fPts[cur].fIndex);
|
| - SkPoint::Normalize(&fPts[cur].fNorm);
|
| - fPts[cur].fNorm.setOrthog(fPts[cur].fNorm, tess.side());
|
| - }
|
| -}
|
| -
|
| -void GrAAConvexTessellator::Ring::computeBisectors(const GrAAConvexTessellator& tess) {
|
| - int prev = fPts.count() - 1;
|
| - for (int cur = 0; cur < fPts.count(); prev = cur, ++cur) {
|
| - fPts[cur].fBisector = fPts[cur].fNorm + fPts[prev].fNorm;
|
| - if (!fPts[cur].fBisector.normalize()) {
|
| - SkASSERT(SkPoint::kLeft_Side == tess.side() || SkPoint::kRight_Side == tess.side());
|
| - fPts[cur].fBisector.setOrthog(fPts[cur].fNorm, (SkPoint::Side)-tess.side());
|
| - SkVector other;
|
| - other.setOrthog(fPts[prev].fNorm, tess.side());
|
| - fPts[cur].fBisector += other;
|
| - SkAssertResult(fPts[cur].fBisector.normalize());
|
| - } else {
|
| - fPts[cur].fBisector.negate(); // make the bisector face in
|
| - }
|
| - }
|
| -}
|
| -
|
| -//////////////////////////////////////////////////////////////////////////////
|
| -#ifdef SK_DEBUG
|
| -// Is this ring convex?
|
| -bool GrAAConvexTessellator::Ring::isConvex(const GrAAConvexTessellator& tess) const {
|
| - if (fPts.count() < 3) {
|
| - return true;
|
| - }
|
| -
|
| - SkPoint prev = tess.point(fPts[0].fIndex) - tess.point(fPts.top().fIndex);
|
| - SkPoint cur = tess.point(fPts[1].fIndex) - tess.point(fPts[0].fIndex);
|
| - SkScalar minDot = prev.fX * cur.fY - prev.fY * cur.fX;
|
| - SkScalar maxDot = minDot;
|
| -
|
| - prev = cur;
|
| - for (int i = 1; i < fPts.count(); ++i) {
|
| - int next = (i + 1) % fPts.count();
|
| -
|
| - cur = tess.point(fPts[next].fIndex) - tess.point(fPts[i].fIndex);
|
| - SkScalar dot = prev.fX * cur.fY - prev.fY * cur.fX;
|
| -
|
| - minDot = SkMinScalar(minDot, dot);
|
| - maxDot = SkMaxScalar(maxDot, dot);
|
| -
|
| - prev = cur;
|
| - }
|
| -
|
| - if (SkScalarNearlyEqual(maxDot, 0.0f, 0.005f)) {
|
| - maxDot = 0;
|
| - }
|
| - if (SkScalarNearlyEqual(minDot, 0.0f, 0.005f)) {
|
| - minDot = 0;
|
| - }
|
| - return (maxDot >= 0.0f) == (minDot >= 0.0f);
|
| -}
|
| -
|
| -#endif
|
| -
|
| -void GrAAConvexTessellator::lineTo(SkPoint p, bool isCurve) {
|
| - if (this->numPts() > 0 && duplicate_pt(p, this->lastPoint())) {
|
| - return;
|
| - }
|
| -
|
| - SkASSERT(fPts.count() <= 1 || fPts.count() == fNorms.count()+1);
|
| - if (this->numPts() >= 2 &&
|
| - abs_dist_from_line(fPts.top(), fNorms.top(), p) < kClose) {
|
| - // The old last point is on the line from the second to last to the new point
|
| - this->popLastPt();
|
| - fNorms.pop();
|
| - fIsCurve.pop();
|
| - }
|
| - SkScalar initialRingCoverage = fStrokeWidth < 0.0f ? 0.5f : 1.0f;
|
| - this->addPt(p, 0.0f, initialRingCoverage, false, isCurve);
|
| - if (this->numPts() > 1) {
|
| - *fNorms.push() = fPts.top() - fPts[fPts.count()-2];
|
| - SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top());
|
| - SkASSERT(len > 0.0f);
|
| - SkASSERT(SkScalarNearlyEqual(1.0f, fNorms.top().length()));
|
| - }
|
| -}
|
| -
|
| -void GrAAConvexTessellator::lineTo(const SkMatrix& m, SkPoint p, bool isCurve) {
|
| - m.mapPoints(&p, 1);
|
| - this->lineTo(p, isCurve);
|
| -}
|
| -
|
| -void GrAAConvexTessellator::quadTo(SkPoint pts[3]) {
|
| - int maxCount = GrPathUtils::quadraticPointCount(pts, kQuadTolerance);
|
| - fPointBuffer.setReserve(maxCount);
|
| - SkPoint* target = fPointBuffer.begin();
|
| - int count = GrPathUtils::generateQuadraticPoints(pts[0], pts[1], pts[2],
|
| - kQuadTolerance, &target, maxCount);
|
| - fPointBuffer.setCount(count);
|
| - for (int i = 0; i < count; i++) {
|
| - lineTo(fPointBuffer[i], true);
|
| - }
|
| -}
|
| -
|
| -void GrAAConvexTessellator::quadTo(const SkMatrix& m, SkPoint pts[3]) {
|
| - SkPoint transformed[3];
|
| - transformed[0] = pts[0];
|
| - transformed[1] = pts[1];
|
| - transformed[2] = pts[2];
|
| - m.mapPoints(transformed, 3);
|
| - quadTo(transformed);
|
| -}
|
| -
|
| -void GrAAConvexTessellator::cubicTo(const SkMatrix& m, SkPoint pts[4]) {
|
| - m.mapPoints(pts, 4);
|
| - int maxCount = GrPathUtils::cubicPointCount(pts, kCubicTolerance);
|
| - fPointBuffer.setReserve(maxCount);
|
| - SkPoint* target = fPointBuffer.begin();
|
| - int count = GrPathUtils::generateCubicPoints(pts[0], pts[1], pts[2], pts[3],
|
| - kCubicTolerance, &target, maxCount);
|
| - fPointBuffer.setCount(count);
|
| - for (int i = 0; i < count; i++) {
|
| - lineTo(fPointBuffer[i], true);
|
| - }
|
| -}
|
| -
|
| -// include down here to avoid compilation errors caused by "-" overload in SkGeometry.h
|
| -#include "SkGeometry.h"
|
| -
|
| -void GrAAConvexTessellator::conicTo(const SkMatrix& m, SkPoint pts[3], SkScalar w) {
|
| - m.mapPoints(pts, 3);
|
| - SkAutoConicToQuads quadder;
|
| - const SkPoint* quads = quadder.computeQuads(pts, w, kConicTolerance);
|
| - SkPoint lastPoint = *(quads++);
|
| - int count = quadder.countQuads();
|
| - for (int i = 0; i < count; ++i) {
|
| - SkPoint quadPts[3];
|
| - quadPts[0] = lastPoint;
|
| - quadPts[1] = quads[0];
|
| - quadPts[2] = i == count - 1 ? pts[2] : quads[1];
|
| - quadTo(quadPts);
|
| - lastPoint = quadPts[2];
|
| - quads += 2;
|
| - }
|
| -}
|
| -
|
| -//////////////////////////////////////////////////////////////////////////////
|
| -#if GR_AA_CONVEX_TESSELLATOR_VIZ
|
| -static const SkScalar kPointRadius = 0.02f;
|
| -static const SkScalar kArrowStrokeWidth = 0.0f;
|
| -static const SkScalar kArrowLength = 0.2f;
|
| -static const SkScalar kEdgeTextSize = 0.1f;
|
| -static const SkScalar kPointTextSize = 0.02f;
|
| -
|
| -static void draw_point(SkCanvas* canvas, const SkPoint& p, SkScalar paramValue, bool stroke) {
|
| - SkPaint paint;
|
| - SkASSERT(paramValue <= 1.0f);
|
| - int gs = int(255*paramValue);
|
| - paint.setARGB(255, gs, gs, gs);
|
| -
|
| - canvas->drawCircle(p.fX, p.fY, kPointRadius, paint);
|
| -
|
| - if (stroke) {
|
| - SkPaint stroke;
|
| - stroke.setColor(SK_ColorYELLOW);
|
| - stroke.setStyle(SkPaint::kStroke_Style);
|
| - stroke.setStrokeWidth(kPointRadius/3.0f);
|
| - canvas->drawCircle(p.fX, p.fY, kPointRadius, stroke);
|
| - }
|
| -}
|
| -
|
| -static void draw_line(SkCanvas* canvas, const SkPoint& p0, const SkPoint& p1, SkColor color) {
|
| - SkPaint p;
|
| - p.setColor(color);
|
| -
|
| - canvas->drawLine(p0.fX, p0.fY, p1.fX, p1.fY, p);
|
| -}
|
| -
|
| -static void draw_arrow(SkCanvas*canvas, const SkPoint& p, const SkPoint &n,
|
| - SkScalar len, SkColor color) {
|
| - SkPaint paint;
|
| - paint.setColor(color);
|
| - paint.setStrokeWidth(kArrowStrokeWidth);
|
| - paint.setStyle(SkPaint::kStroke_Style);
|
| -
|
| - canvas->drawLine(p.fX, p.fY,
|
| - p.fX + len * n.fX, p.fY + len * n.fY,
|
| - paint);
|
| -}
|
| -
|
| -void GrAAConvexTessellator::Ring::draw(SkCanvas* canvas, const GrAAConvexTessellator& tess) const {
|
| - SkPaint paint;
|
| - paint.setTextSize(kEdgeTextSize);
|
| -
|
| - for (int cur = 0; cur < fPts.count(); ++cur) {
|
| - int next = (cur + 1) % fPts.count();
|
| -
|
| - draw_line(canvas,
|
| - tess.point(fPts[cur].fIndex),
|
| - tess.point(fPts[next].fIndex),
|
| - SK_ColorGREEN);
|
| -
|
| - SkPoint mid = tess.point(fPts[cur].fIndex) + tess.point(fPts[next].fIndex);
|
| - mid.scale(0.5f);
|
| -
|
| - if (fPts.count()) {
|
| - draw_arrow(canvas, mid, fPts[cur].fNorm, kArrowLength, SK_ColorRED);
|
| - mid.fX += (kArrowLength/2) * fPts[cur].fNorm.fX;
|
| - mid.fY += (kArrowLength/2) * fPts[cur].fNorm.fY;
|
| - }
|
| -
|
| - SkString num;
|
| - num.printf("%d", this->origEdgeID(cur));
|
| - canvas->drawText(num.c_str(), num.size(), mid.fX, mid.fY, paint);
|
| -
|
| - if (fPts.count()) {
|
| - draw_arrow(canvas, tess.point(fPts[cur].fIndex), fPts[cur].fBisector,
|
| - kArrowLength, SK_ColorBLUE);
|
| - }
|
| - }
|
| -}
|
| -
|
| -void GrAAConvexTessellator::draw(SkCanvas* canvas) const {
|
| - for (int i = 0; i < fIndices.count(); i += 3) {
|
| - SkASSERT(fIndices[i] < this->numPts()) ;
|
| - SkASSERT(fIndices[i+1] < this->numPts()) ;
|
| - SkASSERT(fIndices[i+2] < this->numPts()) ;
|
| -
|
| - draw_line(canvas,
|
| - this->point(this->fIndices[i]), this->point(this->fIndices[i+1]),
|
| - SK_ColorBLACK);
|
| - draw_line(canvas,
|
| - this->point(this->fIndices[i+1]), this->point(this->fIndices[i+2]),
|
| - SK_ColorBLACK);
|
| - draw_line(canvas,
|
| - this->point(this->fIndices[i+2]), this->point(this->fIndices[i]),
|
| - SK_ColorBLACK);
|
| - }
|
| -
|
| - fInitialRing.draw(canvas, *this);
|
| - for (int i = 0; i < fRings.count(); ++i) {
|
| - fRings[i]->draw(canvas, *this);
|
| - }
|
| -
|
| - for (int i = 0; i < this->numPts(); ++i) {
|
| - draw_point(canvas,
|
| - this->point(i), 0.5f + (this->depth(i)/(2 * kAntialiasingRadius)),
|
| - !this->movable(i));
|
| -
|
| - SkPaint paint;
|
| - paint.setTextSize(kPointTextSize);
|
| - paint.setTextAlign(SkPaint::kCenter_Align);
|
| - if (this->depth(i) <= -kAntialiasingRadius) {
|
| - paint.setColor(SK_ColorWHITE);
|
| - }
|
| -
|
| - SkString num;
|
| - num.printf("%d", i);
|
| - canvas->drawText(num.c_str(), num.size(),
|
| - this->point(i).fX, this->point(i).fY+(kPointRadius/2.0f),
|
| - paint);
|
| - }
|
| -}
|
| -
|
| -#endif
|
| -
|
|
|