Index: src/gpu/GrAAConvexTessellator.cpp |
diff --git a/src/gpu/GrAAConvexTessellator.cpp b/src/gpu/GrAAConvexTessellator.cpp |
deleted file mode 100644 |
index c111b8b56293859fd8590cee31c6dcd40e4ae88d..0000000000000000000000000000000000000000 |
--- a/src/gpu/GrAAConvexTessellator.cpp |
+++ /dev/null |
@@ -1,1027 +0,0 @@ |
-/* |
- * Copyright 2015 Google Inc. |
- * |
- * Use of this source code is governed by a BSD-style license that can be |
- * found in the LICENSE file. |
- */ |
- |
-#include "GrAAConvexTessellator.h" |
-#include "SkCanvas.h" |
-#include "SkPath.h" |
-#include "SkPoint.h" |
-#include "SkString.h" |
-#include "GrPathUtils.h" |
- |
-// Next steps: |
-// add an interactive sample app slide |
-// add debug check that all points are suitably far apart |
-// test more degenerate cases |
- |
-// The tolerance for fusing vertices and eliminating colinear lines (It is in device space). |
-static const SkScalar kClose = (SK_Scalar1 / 16); |
-static const SkScalar kCloseSqd = SkScalarMul(kClose, kClose); |
- |
-// tesselation tolerance values, in device space pixels |
-static const SkScalar kQuadTolerance = 0.2f; |
-static const SkScalar kCubicTolerance = 0.2f; |
-static const SkScalar kConicTolerance = 0.5f; |
- |
-// dot product below which we use a round cap between curve segments |
-static const SkScalar kRoundCapThreshold = 0.8f; |
- |
-static SkScalar intersect(const SkPoint& p0, const SkPoint& n0, |
- const SkPoint& p1, const SkPoint& n1) { |
- const SkPoint v = p1 - p0; |
- SkScalar perpDot = n0.fX * n1.fY - n0.fY * n1.fX; |
- return (v.fX * n1.fY - v.fY * n1.fX) / perpDot; |
-} |
- |
-// This is a special case version of intersect where we have the vector |
-// perpendicular to the second line rather than the vector parallel to it. |
-static SkScalar perp_intersect(const SkPoint& p0, const SkPoint& n0, |
- const SkPoint& p1, const SkPoint& perp) { |
- const SkPoint v = p1 - p0; |
- SkScalar perpDot = n0.dot(perp); |
- return v.dot(perp) / perpDot; |
-} |
- |
-static bool duplicate_pt(const SkPoint& p0, const SkPoint& p1) { |
- SkScalar distSq = p0.distanceToSqd(p1); |
- return distSq < kCloseSqd; |
-} |
- |
-static SkScalar abs_dist_from_line(const SkPoint& p0, const SkVector& v, const SkPoint& test) { |
- SkPoint testV = test - p0; |
- SkScalar dist = testV.fX * v.fY - testV.fY * v.fX; |
- return SkScalarAbs(dist); |
-} |
- |
-int GrAAConvexTessellator::addPt(const SkPoint& pt, |
- SkScalar depth, |
- SkScalar coverage, |
- bool movable, |
- bool isCurve) { |
- this->validate(); |
- |
- int index = fPts.count(); |
- *fPts.push() = pt; |
- *fCoverages.push() = coverage; |
- *fMovable.push() = movable; |
- *fIsCurve.push() = isCurve; |
- |
- this->validate(); |
- return index; |
-} |
- |
-void GrAAConvexTessellator::popLastPt() { |
- this->validate(); |
- |
- fPts.pop(); |
- fCoverages.pop(); |
- fMovable.pop(); |
- |
- this->validate(); |
-} |
- |
-void GrAAConvexTessellator::popFirstPtShuffle() { |
- this->validate(); |
- |
- fPts.removeShuffle(0); |
- fCoverages.removeShuffle(0); |
- fMovable.removeShuffle(0); |
- |
- this->validate(); |
-} |
- |
-void GrAAConvexTessellator::updatePt(int index, |
- const SkPoint& pt, |
- SkScalar depth, |
- SkScalar coverage) { |
- this->validate(); |
- SkASSERT(fMovable[index]); |
- |
- fPts[index] = pt; |
- fCoverages[index] = coverage; |
-} |
- |
-void GrAAConvexTessellator::addTri(int i0, int i1, int i2) { |
- if (i0 == i1 || i1 == i2 || i2 == i0) { |
- return; |
- } |
- |
- *fIndices.push() = i0; |
- *fIndices.push() = i1; |
- *fIndices.push() = i2; |
-} |
- |
-void GrAAConvexTessellator::rewind() { |
- fPts.rewind(); |
- fCoverages.rewind(); |
- fMovable.rewind(); |
- fIndices.rewind(); |
- fNorms.rewind(); |
- fInitialRing.rewind(); |
- fCandidateVerts.rewind(); |
-#if GR_AA_CONVEX_TESSELLATOR_VIZ |
- fRings.rewind(); // TODO: leak in this case! |
-#else |
- fRings[0].rewind(); |
- fRings[1].rewind(); |
-#endif |
-} |
- |
-void GrAAConvexTessellator::computeBisectors() { |
- fBisectors.setCount(fNorms.count()); |
- |
- int prev = fBisectors.count() - 1; |
- for (int cur = 0; cur < fBisectors.count(); prev = cur, ++cur) { |
- fBisectors[cur] = fNorms[cur] + fNorms[prev]; |
- if (!fBisectors[cur].normalize()) { |
- SkASSERT(SkPoint::kLeft_Side == fSide || SkPoint::kRight_Side == fSide); |
- fBisectors[cur].setOrthog(fNorms[cur], (SkPoint::Side)-fSide); |
- SkVector other; |
- other.setOrthog(fNorms[prev], fSide); |
- fBisectors[cur] += other; |
- SkAssertResult(fBisectors[cur].normalize()); |
- } else { |
- fBisectors[cur].negate(); // make the bisector face in |
- } |
- |
- SkASSERT(SkScalarNearlyEqual(1.0f, fBisectors[cur].length())); |
- } |
-} |
- |
-// Create as many rings as we need to (up to a predefined limit) to reach the specified target |
-// depth. If we are in fill mode, the final ring will automatically be fanned. |
-bool GrAAConvexTessellator::createInsetRings(Ring& previousRing, SkScalar initialDepth, |
- SkScalar initialCoverage, SkScalar targetDepth, |
- SkScalar targetCoverage, Ring** finalRing) { |
- static const int kMaxNumRings = 8; |
- |
- if (previousRing.numPts() < 3) { |
- return false; |
- } |
- Ring* currentRing = &previousRing; |
- int i; |
- for (i = 0; i < kMaxNumRings; ++i) { |
- Ring* nextRing = this->getNextRing(currentRing); |
- SkASSERT(nextRing != currentRing); |
- |
- bool done = this->createInsetRing(*currentRing, nextRing, initialDepth, initialCoverage, |
- targetDepth, targetCoverage, i == 0); |
- currentRing = nextRing; |
- if (done) { |
- break; |
- } |
- currentRing->init(*this); |
- } |
- |
- if (kMaxNumRings == i) { |
- // Bail if we've exceeded the amount of time we want to throw at this. |
- this->terminate(*currentRing); |
- return false; |
- } |
- bool done = currentRing->numPts() >= 3; |
- if (done) { |
- currentRing->init(*this); |
- } |
- *finalRing = currentRing; |
- return done; |
-} |
- |
-// The general idea here is to, conceptually, start with the original polygon and slide |
-// the vertices along the bisectors until the first intersection. At that |
-// point two of the edges collapse and the process repeats on the new polygon. |
-// The polygon state is captured in the Ring class while the GrAAConvexTessellator |
-// controls the iteration. The CandidateVerts holds the formative points for the |
-// next ring. |
-bool GrAAConvexTessellator::tessellate(const SkMatrix& m, const SkPath& path) { |
- if (!this->extractFromPath(m, path)) { |
- return false; |
- } |
- |
- SkScalar coverage = 1.0f; |
- SkScalar scaleFactor = 0.0f; |
- if (fStrokeWidth >= 0.0f) { |
- SkASSERT(m.isSimilarity()); |
- scaleFactor = m.getMaxScale(); // x and y scale are the same |
- SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth; |
- Ring outerStrokeRing; |
- this->createOuterRing(fInitialRing, effectiveStrokeWidth / 2 - kAntialiasingRadius, |
- coverage, &outerStrokeRing); |
- outerStrokeRing.init(*this); |
- Ring outerAARing; |
- this->createOuterRing(outerStrokeRing, kAntialiasingRadius * 2, 0.0f, &outerAARing); |
- } else { |
- Ring outerAARing; |
- this->createOuterRing(fInitialRing, kAntialiasingRadius, 0.0f, &outerAARing); |
- } |
- |
- // the bisectors are only needed for the computation of the outer ring |
- fBisectors.rewind(); |
- if (fStrokeWidth >= 0.0f && fInitialRing.numPts() > 2) { |
- SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth; |
- Ring* insetStrokeRing; |
- SkScalar strokeDepth = effectiveStrokeWidth / 2 - kAntialiasingRadius; |
- if (this->createInsetRings(fInitialRing, 0.0f, coverage, strokeDepth, coverage, |
- &insetStrokeRing)) { |
- Ring* insetAARing; |
- this->createInsetRings(*insetStrokeRing, strokeDepth, coverage, strokeDepth + |
- kAntialiasingRadius * 2, 0.0f, &insetAARing); |
- } |
- } else { |
- Ring* insetAARing; |
- this->createInsetRings(fInitialRing, 0.0f, 0.5f, kAntialiasingRadius, 1.0f, &insetAARing); |
- } |
- |
- SkDEBUGCODE(this->validate();) |
- return true; |
-} |
- |
-SkScalar GrAAConvexTessellator::computeDepthFromEdge(int edgeIdx, const SkPoint& p) const { |
- SkASSERT(edgeIdx < fNorms.count()); |
- |
- SkPoint v = p - fPts[edgeIdx]; |
- SkScalar depth = -fNorms[edgeIdx].dot(v); |
- return depth; |
-} |
- |
-// Find a point that is 'desiredDepth' away from the 'edgeIdx'-th edge and lies |
-// along the 'bisector' from the 'startIdx'-th point. |
-bool GrAAConvexTessellator::computePtAlongBisector(int startIdx, |
- const SkVector& bisector, |
- int edgeIdx, |
- SkScalar desiredDepth, |
- SkPoint* result) const { |
- const SkPoint& norm = fNorms[edgeIdx]; |
- |
- // First find the point where the edge and the bisector intersect |
- SkPoint newP; |
- |
- SkScalar t = perp_intersect(fPts[startIdx], bisector, fPts[edgeIdx], norm); |
- if (SkScalarNearlyEqual(t, 0.0f)) { |
- // the start point was one of the original ring points |
- SkASSERT(startIdx < fPts.count()); |
- newP = fPts[startIdx]; |
- } else if (t < 0.0f) { |
- newP = bisector; |
- newP.scale(t); |
- newP += fPts[startIdx]; |
- } else { |
- return false; |
- } |
- |
- // Then offset along the bisector from that point the correct distance |
- SkScalar dot = bisector.dot(norm); |
- t = -desiredDepth / dot; |
- *result = bisector; |
- result->scale(t); |
- *result += newP; |
- |
- return true; |
-} |
- |
-bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& path) { |
- SkASSERT(SkPath::kConvex_Convexity == path.getConvexity()); |
- |
- // Outer ring: 3*numPts |
- // Middle ring: numPts |
- // Presumptive inner ring: numPts |
- this->reservePts(5*path.countPoints()); |
- // Outer ring: 12*numPts |
- // Middle ring: 0 |
- // Presumptive inner ring: 6*numPts + 6 |
- fIndices.setReserve(18*path.countPoints() + 6); |
- |
- fNorms.setReserve(path.countPoints()); |
- |
- // TODO: is there a faster way to extract the points from the path? Perhaps |
- // get all the points via a new entry point, transform them all in bulk |
- // and then walk them to find duplicates? |
- SkPath::Iter iter(path, true); |
- SkPoint pts[4]; |
- SkPath::Verb verb; |
- while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { |
- switch (verb) { |
- case SkPath::kLine_Verb: |
- this->lineTo(m, pts[1], false); |
- break; |
- case SkPath::kQuad_Verb: |
- this->quadTo(m, pts); |
- break; |
- case SkPath::kCubic_Verb: |
- this->cubicTo(m, pts); |
- break; |
- case SkPath::kConic_Verb: |
- this->conicTo(m, pts, iter.conicWeight()); |
- break; |
- case SkPath::kMove_Verb: |
- case SkPath::kClose_Verb: |
- case SkPath::kDone_Verb: |
- break; |
- } |
- } |
- |
- if (this->numPts() < 2) { |
- return false; |
- } |
- |
- // check if last point is a duplicate of the first point. If so, remove it. |
- if (duplicate_pt(fPts[this->numPts()-1], fPts[0])) { |
- this->popLastPt(); |
- fNorms.pop(); |
- } |
- |
- SkASSERT(fPts.count() == fNorms.count()+1); |
- if (this->numPts() >= 3) { |
- if (abs_dist_from_line(fPts.top(), fNorms.top(), fPts[0]) < kClose) { |
- // The last point is on the line from the second to last to the first point. |
- this->popLastPt(); |
- fNorms.pop(); |
- } |
- |
- *fNorms.push() = fPts[0] - fPts.top(); |
- SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top()); |
- SkASSERT(len > 0.0f); |
- SkASSERT(fPts.count() == fNorms.count()); |
- } |
- |
- if (this->numPts() >= 3 && abs_dist_from_line(fPts[0], fNorms.top(), fPts[1]) < kClose) { |
- // The first point is on the line from the last to the second. |
- this->popFirstPtShuffle(); |
- fNorms.removeShuffle(0); |
- fNorms[0] = fPts[1] - fPts[0]; |
- SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms[0]); |
- SkASSERT(len > 0.0f); |
- SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[0].length())); |
- } |
- |
- if (this->numPts() >= 3) { |
- // Check the cross product of the final trio |
- SkScalar cross = SkPoint::CrossProduct(fNorms[0], fNorms.top()); |
- if (cross > 0.0f) { |
- fSide = SkPoint::kRight_Side; |
- } else { |
- fSide = SkPoint::kLeft_Side; |
- } |
- |
- // Make all the normals face outwards rather than along the edge |
- for (int cur = 0; cur < fNorms.count(); ++cur) { |
- fNorms[cur].setOrthog(fNorms[cur], fSide); |
- SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length())); |
- } |
- |
- this->computeBisectors(); |
- } else if (this->numPts() == 2) { |
- // We've got two points, so we're degenerate. |
- if (fStrokeWidth < 0.0f) { |
- // it's a fill, so we don't need to worry about degenerate paths |
- return false; |
- } |
- // For stroking, we still need to process the degenerate path, so fix it up |
- fSide = SkPoint::kLeft_Side; |
- |
- // Make all the normals face outwards rather than along the edge |
- for (int cur = 0; cur < fNorms.count(); ++cur) { |
- fNorms[cur].setOrthog(fNorms[cur], fSide); |
- SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length())); |
- } |
- |
- fNorms.push(SkPoint::Make(-fNorms[0].fX, -fNorms[0].fY)); |
- // we won't actually use the bisectors, so just push zeroes |
- fBisectors.push(SkPoint::Make(0.0, 0.0)); |
- fBisectors.push(SkPoint::Make(0.0, 0.0)); |
- } else { |
- return false; |
- } |
- |
- fCandidateVerts.setReserve(this->numPts()); |
- fInitialRing.setReserve(this->numPts()); |
- for (int i = 0; i < this->numPts(); ++i) { |
- fInitialRing.addIdx(i, i); |
- } |
- fInitialRing.init(fNorms, fBisectors); |
- |
- this->validate(); |
- return true; |
-} |
- |
-GrAAConvexTessellator::Ring* GrAAConvexTessellator::getNextRing(Ring* lastRing) { |
-#if GR_AA_CONVEX_TESSELLATOR_VIZ |
- Ring* ring = *fRings.push() = new Ring; |
- ring->setReserve(fInitialRing.numPts()); |
- ring->rewind(); |
- return ring; |
-#else |
- // Flip flop back and forth between fRings[0] & fRings[1] |
- int nextRing = (lastRing == &fRings[0]) ? 1 : 0; |
- fRings[nextRing].setReserve(fInitialRing.numPts()); |
- fRings[nextRing].rewind(); |
- return &fRings[nextRing]; |
-#endif |
-} |
- |
-void GrAAConvexTessellator::fanRing(const Ring& ring) { |
- // fan out from point 0 |
- int startIdx = ring.index(0); |
- for (int cur = ring.numPts() - 2; cur >= 0; --cur) { |
- this->addTri(startIdx, ring.index(cur), ring.index(cur + 1)); |
- } |
-} |
- |
-void GrAAConvexTessellator::createOuterRing(const Ring& previousRing, SkScalar outset, |
- SkScalar coverage, Ring* nextRing) { |
- const int numPts = previousRing.numPts(); |
- if (numPts == 0) { |
- return; |
- } |
- |
- int prev = numPts - 1; |
- int lastPerpIdx = -1, firstPerpIdx = -1; |
- |
- const SkScalar outsetSq = SkScalarMul(outset, outset); |
- SkScalar miterLimitSq = SkScalarMul(outset, fMiterLimit); |
- miterLimitSq = SkScalarMul(miterLimitSq, miterLimitSq); |
- for (int cur = 0; cur < numPts; ++cur) { |
- int originalIdx = previousRing.index(cur); |
- // For each vertex of the original polygon we add at least two points to the |
- // outset polygon - one extending perpendicular to each impinging edge. Connecting these |
- // two points yields a bevel join. We need one additional point for a mitered join, and |
- // a round join requires one or more points depending upon curvature. |
- |
- // The perpendicular point for the last edge |
- SkPoint normal1 = previousRing.norm(prev); |
- SkPoint perp1 = normal1; |
- perp1.scale(outset); |
- perp1 += this->point(originalIdx); |
- |
- // The perpendicular point for the next edge. |
- SkPoint normal2 = previousRing.norm(cur); |
- SkPoint perp2 = normal2; |
- perp2.scale(outset); |
- perp2 += fPts[originalIdx]; |
- |
- bool isCurve = fIsCurve[originalIdx]; |
- |
- // We know it isn't a duplicate of the prior point (since it and this |
- // one are just perpendicular offsets from the non-merged polygon points) |
- int perp1Idx = this->addPt(perp1, -outset, coverage, false, isCurve); |
- nextRing->addIdx(perp1Idx, originalIdx); |
- |
- int perp2Idx; |
- // For very shallow angles all the corner points could fuse. |
- if (duplicate_pt(perp2, this->point(perp1Idx))) { |
- perp2Idx = perp1Idx; |
- } else { |
- perp2Idx = this->addPt(perp2, -outset, coverage, false, isCurve); |
- } |
- |
- if (perp2Idx != perp1Idx) { |
- if (isCurve) { |
- // bevel or round depending upon curvature |
- SkScalar dotProd = normal1.dot(normal2); |
- if (dotProd < kRoundCapThreshold) { |
- // Currently we "round" by creating a single extra point, which produces |
- // good results for common cases. For thick strokes with high curvature, we will |
- // need to add more points; for the time being we simply fall back to software |
- // rendering for thick strokes. |
- SkPoint miter = previousRing.bisector(cur); |
- miter.setLength(-outset); |
- miter += fPts[originalIdx]; |
- |
- // For very shallow angles all the corner points could fuse |
- if (!duplicate_pt(miter, this->point(perp1Idx))) { |
- int miterIdx; |
- miterIdx = this->addPt(miter, -outset, coverage, false, false); |
- nextRing->addIdx(miterIdx, originalIdx); |
- // The two triangles for the corner |
- this->addTri(originalIdx, perp1Idx, miterIdx); |
- this->addTri(originalIdx, miterIdx, perp2Idx); |
- } |
- } else { |
- this->addTri(originalIdx, perp1Idx, perp2Idx); |
- } |
- } else { |
- switch (fJoin) { |
- case SkPaint::Join::kMiter_Join: { |
- // The bisector outset point |
- SkPoint miter = previousRing.bisector(cur); |
- SkScalar dotProd = normal1.dot(normal2); |
- SkScalar sinHalfAngleSq = SkScalarHalf(SK_Scalar1 + dotProd); |
- SkScalar lengthSq = outsetSq / sinHalfAngleSq; |
- if (lengthSq > miterLimitSq) { |
- // just bevel it |
- this->addTri(originalIdx, perp1Idx, perp2Idx); |
- break; |
- } |
- miter.setLength(-SkScalarSqrt(lengthSq)); |
- miter += fPts[originalIdx]; |
- |
- // For very shallow angles all the corner points could fuse |
- if (!duplicate_pt(miter, this->point(perp1Idx))) { |
- int miterIdx; |
- miterIdx = this->addPt(miter, -outset, coverage, false, false); |
- nextRing->addIdx(miterIdx, originalIdx); |
- // The two triangles for the corner |
- this->addTri(originalIdx, perp1Idx, miterIdx); |
- this->addTri(originalIdx, miterIdx, perp2Idx); |
- } |
- break; |
- } |
- case SkPaint::Join::kBevel_Join: |
- this->addTri(originalIdx, perp1Idx, perp2Idx); |
- break; |
- default: |
- // kRound_Join is unsupported for now. GrAALinearizingConvexPathRenderer is |
- // only willing to draw mitered or beveled, so we should never get here. |
- SkASSERT(false); |
- } |
- } |
- |
- nextRing->addIdx(perp2Idx, originalIdx); |
- } |
- |
- if (0 == cur) { |
- // Store the index of the first perpendicular point to finish up |
- firstPerpIdx = perp1Idx; |
- SkASSERT(-1 == lastPerpIdx); |
- } else { |
- // The triangles for the previous edge |
- int prevIdx = previousRing.index(prev); |
- this->addTri(prevIdx, perp1Idx, originalIdx); |
- this->addTri(prevIdx, lastPerpIdx, perp1Idx); |
- } |
- |
- // Track the last perpendicular outset point so we can construct the |
- // trailing edge triangles. |
- lastPerpIdx = perp2Idx; |
- prev = cur; |
- } |
- |
- // pick up the final edge rect |
- int lastIdx = previousRing.index(numPts - 1); |
- this->addTri(lastIdx, firstPerpIdx, previousRing.index(0)); |
- this->addTri(lastIdx, lastPerpIdx, firstPerpIdx); |
- |
- this->validate(); |
-} |
- |
-// Something went wrong in the creation of the next ring. If we're filling the shape, just go ahead |
-// and fan it. |
-void GrAAConvexTessellator::terminate(const Ring& ring) { |
- if (fStrokeWidth < 0.0f) { |
- this->fanRing(ring); |
- } |
-} |
- |
-static SkScalar compute_coverage(SkScalar depth, SkScalar initialDepth, SkScalar initialCoverage, |
- SkScalar targetDepth, SkScalar targetCoverage) { |
- if (SkScalarNearlyEqual(initialDepth, targetDepth)) { |
- return targetCoverage; |
- } |
- SkScalar result = (depth - initialDepth) / (targetDepth - initialDepth) * |
- (targetCoverage - initialCoverage) + initialCoverage; |
- return SkScalarClampMax(result, 1.0f); |
-} |
- |
-// return true when processing is complete |
-bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing, |
- SkScalar initialDepth, SkScalar initialCoverage, |
- SkScalar targetDepth, SkScalar targetCoverage, |
- bool forceNew) { |
- bool done = false; |
- |
- fCandidateVerts.rewind(); |
- |
- // Loop through all the points in the ring and find the intersection with the smallest depth |
- SkScalar minDist = SK_ScalarMax, minT = 0.0f; |
- int minEdgeIdx = -1; |
- |
- for (int cur = 0; cur < lastRing.numPts(); ++cur) { |
- int next = (cur + 1) % lastRing.numPts(); |
- SkScalar t = intersect(this->point(lastRing.index(cur)), lastRing.bisector(cur), |
- this->point(lastRing.index(next)), lastRing.bisector(next)); |
- SkScalar dist = -t * lastRing.norm(cur).dot(lastRing.bisector(cur)); |
- |
- if (minDist > dist) { |
- minDist = dist; |
- minT = t; |
- minEdgeIdx = cur; |
- } |
- } |
- |
- if (minEdgeIdx == -1) { |
- return false; |
- } |
- SkPoint newPt = lastRing.bisector(minEdgeIdx); |
- newPt.scale(minT); |
- newPt += this->point(lastRing.index(minEdgeIdx)); |
- |
- SkScalar depth = this->computeDepthFromEdge(lastRing.origEdgeID(minEdgeIdx), newPt); |
- if (depth >= targetDepth) { |
- // None of the bisectors intersect before reaching the desired depth. |
- // Just step them all to the desired depth |
- depth = targetDepth; |
- done = true; |
- } |
- |
- // 'dst' stores where each point in the last ring maps to/transforms into |
- // in the next ring. |
- SkTDArray<int> dst; |
- dst.setCount(lastRing.numPts()); |
- |
- // Create the first point (who compares with no one) |
- if (!this->computePtAlongBisector(lastRing.index(0), |
- lastRing.bisector(0), |
- lastRing.origEdgeID(0), |
- depth, &newPt)) { |
- this->terminate(lastRing); |
- return true; |
- } |
- dst[0] = fCandidateVerts.addNewPt(newPt, |
- lastRing.index(0), lastRing.origEdgeID(0), |
- !this->movable(lastRing.index(0))); |
- |
- // Handle the middle points (who only compare with the prior point) |
- for (int cur = 1; cur < lastRing.numPts()-1; ++cur) { |
- if (!this->computePtAlongBisector(lastRing.index(cur), |
- lastRing.bisector(cur), |
- lastRing.origEdgeID(cur), |
- depth, &newPt)) { |
- this->terminate(lastRing); |
- return true; |
- } |
- if (!duplicate_pt(newPt, fCandidateVerts.lastPoint())) { |
- dst[cur] = fCandidateVerts.addNewPt(newPt, |
- lastRing.index(cur), lastRing.origEdgeID(cur), |
- !this->movable(lastRing.index(cur))); |
- } else { |
- dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur)); |
- } |
- } |
- |
- // Check on the last point (handling the wrap around) |
- int cur = lastRing.numPts()-1; |
- if (!this->computePtAlongBisector(lastRing.index(cur), |
- lastRing.bisector(cur), |
- lastRing.origEdgeID(cur), |
- depth, &newPt)) { |
- this->terminate(lastRing); |
- return true; |
- } |
- bool dupPrev = duplicate_pt(newPt, fCandidateVerts.lastPoint()); |
- bool dupNext = duplicate_pt(newPt, fCandidateVerts.firstPoint()); |
- |
- if (!dupPrev && !dupNext) { |
- dst[cur] = fCandidateVerts.addNewPt(newPt, |
- lastRing.index(cur), lastRing.origEdgeID(cur), |
- !this->movable(lastRing.index(cur))); |
- } else if (dupPrev && !dupNext) { |
- dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur)); |
- } else if (!dupPrev && dupNext) { |
- dst[cur] = fCandidateVerts.fuseWithNext(); |
- } else { |
- bool dupPrevVsNext = duplicate_pt(fCandidateVerts.firstPoint(), fCandidateVerts.lastPoint()); |
- |
- if (!dupPrevVsNext) { |
- dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur)); |
- } else { |
- const int fused = fCandidateVerts.fuseWithBoth(); |
- dst[cur] = fused; |
- const int targetIdx = dst[cur - 1]; |
- for (int i = cur - 1; i >= 0 && dst[i] == targetIdx; i--) { |
- dst[i] = fused; |
- } |
- } |
- } |
- |
- // Fold the new ring's points into the global pool |
- for (int i = 0; i < fCandidateVerts.numPts(); ++i) { |
- int newIdx; |
- if (fCandidateVerts.needsToBeNew(i) || forceNew) { |
- // if the originating index is still valid then this point wasn't |
- // fused (and is thus movable) |
- SkScalar coverage = compute_coverage(depth, initialDepth, initialCoverage, |
- targetDepth, targetCoverage); |
- newIdx = this->addPt(fCandidateVerts.point(i), depth, coverage, |
- fCandidateVerts.originatingIdx(i) != -1, false); |
- } else { |
- SkASSERT(fCandidateVerts.originatingIdx(i) != -1); |
- this->updatePt(fCandidateVerts.originatingIdx(i), fCandidateVerts.point(i), depth, |
- targetCoverage); |
- newIdx = fCandidateVerts.originatingIdx(i); |
- } |
- |
- nextRing->addIdx(newIdx, fCandidateVerts.origEdge(i)); |
- } |
- |
- // 'dst' currently has indices into the ring. Remap these to be indices |
- // into the global pool since the triangulation operates in that space. |
- for (int i = 0; i < dst.count(); ++i) { |
- dst[i] = nextRing->index(dst[i]); |
- } |
- |
- for (int cur = 0; cur < lastRing.numPts(); ++cur) { |
- int next = (cur + 1) % lastRing.numPts(); |
- |
- this->addTri(lastRing.index(cur), lastRing.index(next), dst[next]); |
- this->addTri(lastRing.index(cur), dst[next], dst[cur]); |
- } |
- |
- if (done && fStrokeWidth < 0.0f) { |
- // fill |
- this->fanRing(*nextRing); |
- } |
- |
- if (nextRing->numPts() < 3) { |
- done = true; |
- } |
- return done; |
-} |
- |
-void GrAAConvexTessellator::validate() const { |
- SkASSERT(fPts.count() == fMovable.count()); |
- SkASSERT(0 == (fIndices.count() % 3)); |
-} |
- |
-////////////////////////////////////////////////////////////////////////////// |
-void GrAAConvexTessellator::Ring::init(const GrAAConvexTessellator& tess) { |
- this->computeNormals(tess); |
- this->computeBisectors(tess); |
-} |
- |
-void GrAAConvexTessellator::Ring::init(const SkTDArray<SkVector>& norms, |
- const SkTDArray<SkVector>& bisectors) { |
- for (int i = 0; i < fPts.count(); ++i) { |
- fPts[i].fNorm = norms[i]; |
- fPts[i].fBisector = bisectors[i]; |
- } |
-} |
- |
-// Compute the outward facing normal at each vertex. |
-void GrAAConvexTessellator::Ring::computeNormals(const GrAAConvexTessellator& tess) { |
- for (int cur = 0; cur < fPts.count(); ++cur) { |
- int next = (cur + 1) % fPts.count(); |
- |
- fPts[cur].fNorm = tess.point(fPts[next].fIndex) - tess.point(fPts[cur].fIndex); |
- SkPoint::Normalize(&fPts[cur].fNorm); |
- fPts[cur].fNorm.setOrthog(fPts[cur].fNorm, tess.side()); |
- } |
-} |
- |
-void GrAAConvexTessellator::Ring::computeBisectors(const GrAAConvexTessellator& tess) { |
- int prev = fPts.count() - 1; |
- for (int cur = 0; cur < fPts.count(); prev = cur, ++cur) { |
- fPts[cur].fBisector = fPts[cur].fNorm + fPts[prev].fNorm; |
- if (!fPts[cur].fBisector.normalize()) { |
- SkASSERT(SkPoint::kLeft_Side == tess.side() || SkPoint::kRight_Side == tess.side()); |
- fPts[cur].fBisector.setOrthog(fPts[cur].fNorm, (SkPoint::Side)-tess.side()); |
- SkVector other; |
- other.setOrthog(fPts[prev].fNorm, tess.side()); |
- fPts[cur].fBisector += other; |
- SkAssertResult(fPts[cur].fBisector.normalize()); |
- } else { |
- fPts[cur].fBisector.negate(); // make the bisector face in |
- } |
- } |
-} |
- |
-////////////////////////////////////////////////////////////////////////////// |
-#ifdef SK_DEBUG |
-// Is this ring convex? |
-bool GrAAConvexTessellator::Ring::isConvex(const GrAAConvexTessellator& tess) const { |
- if (fPts.count() < 3) { |
- return true; |
- } |
- |
- SkPoint prev = tess.point(fPts[0].fIndex) - tess.point(fPts.top().fIndex); |
- SkPoint cur = tess.point(fPts[1].fIndex) - tess.point(fPts[0].fIndex); |
- SkScalar minDot = prev.fX * cur.fY - prev.fY * cur.fX; |
- SkScalar maxDot = minDot; |
- |
- prev = cur; |
- for (int i = 1; i < fPts.count(); ++i) { |
- int next = (i + 1) % fPts.count(); |
- |
- cur = tess.point(fPts[next].fIndex) - tess.point(fPts[i].fIndex); |
- SkScalar dot = prev.fX * cur.fY - prev.fY * cur.fX; |
- |
- minDot = SkMinScalar(minDot, dot); |
- maxDot = SkMaxScalar(maxDot, dot); |
- |
- prev = cur; |
- } |
- |
- if (SkScalarNearlyEqual(maxDot, 0.0f, 0.005f)) { |
- maxDot = 0; |
- } |
- if (SkScalarNearlyEqual(minDot, 0.0f, 0.005f)) { |
- minDot = 0; |
- } |
- return (maxDot >= 0.0f) == (minDot >= 0.0f); |
-} |
- |
-#endif |
- |
-void GrAAConvexTessellator::lineTo(SkPoint p, bool isCurve) { |
- if (this->numPts() > 0 && duplicate_pt(p, this->lastPoint())) { |
- return; |
- } |
- |
- SkASSERT(fPts.count() <= 1 || fPts.count() == fNorms.count()+1); |
- if (this->numPts() >= 2 && |
- abs_dist_from_line(fPts.top(), fNorms.top(), p) < kClose) { |
- // The old last point is on the line from the second to last to the new point |
- this->popLastPt(); |
- fNorms.pop(); |
- fIsCurve.pop(); |
- } |
- SkScalar initialRingCoverage = fStrokeWidth < 0.0f ? 0.5f : 1.0f; |
- this->addPt(p, 0.0f, initialRingCoverage, false, isCurve); |
- if (this->numPts() > 1) { |
- *fNorms.push() = fPts.top() - fPts[fPts.count()-2]; |
- SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top()); |
- SkASSERT(len > 0.0f); |
- SkASSERT(SkScalarNearlyEqual(1.0f, fNorms.top().length())); |
- } |
-} |
- |
-void GrAAConvexTessellator::lineTo(const SkMatrix& m, SkPoint p, bool isCurve) { |
- m.mapPoints(&p, 1); |
- this->lineTo(p, isCurve); |
-} |
- |
-void GrAAConvexTessellator::quadTo(SkPoint pts[3]) { |
- int maxCount = GrPathUtils::quadraticPointCount(pts, kQuadTolerance); |
- fPointBuffer.setReserve(maxCount); |
- SkPoint* target = fPointBuffer.begin(); |
- int count = GrPathUtils::generateQuadraticPoints(pts[0], pts[1], pts[2], |
- kQuadTolerance, &target, maxCount); |
- fPointBuffer.setCount(count); |
- for (int i = 0; i < count; i++) { |
- lineTo(fPointBuffer[i], true); |
- } |
-} |
- |
-void GrAAConvexTessellator::quadTo(const SkMatrix& m, SkPoint pts[3]) { |
- SkPoint transformed[3]; |
- transformed[0] = pts[0]; |
- transformed[1] = pts[1]; |
- transformed[2] = pts[2]; |
- m.mapPoints(transformed, 3); |
- quadTo(transformed); |
-} |
- |
-void GrAAConvexTessellator::cubicTo(const SkMatrix& m, SkPoint pts[4]) { |
- m.mapPoints(pts, 4); |
- int maxCount = GrPathUtils::cubicPointCount(pts, kCubicTolerance); |
- fPointBuffer.setReserve(maxCount); |
- SkPoint* target = fPointBuffer.begin(); |
- int count = GrPathUtils::generateCubicPoints(pts[0], pts[1], pts[2], pts[3], |
- kCubicTolerance, &target, maxCount); |
- fPointBuffer.setCount(count); |
- for (int i = 0; i < count; i++) { |
- lineTo(fPointBuffer[i], true); |
- } |
-} |
- |
-// include down here to avoid compilation errors caused by "-" overload in SkGeometry.h |
-#include "SkGeometry.h" |
- |
-void GrAAConvexTessellator::conicTo(const SkMatrix& m, SkPoint pts[3], SkScalar w) { |
- m.mapPoints(pts, 3); |
- SkAutoConicToQuads quadder; |
- const SkPoint* quads = quadder.computeQuads(pts, w, kConicTolerance); |
- SkPoint lastPoint = *(quads++); |
- int count = quadder.countQuads(); |
- for (int i = 0; i < count; ++i) { |
- SkPoint quadPts[3]; |
- quadPts[0] = lastPoint; |
- quadPts[1] = quads[0]; |
- quadPts[2] = i == count - 1 ? pts[2] : quads[1]; |
- quadTo(quadPts); |
- lastPoint = quadPts[2]; |
- quads += 2; |
- } |
-} |
- |
-////////////////////////////////////////////////////////////////////////////// |
-#if GR_AA_CONVEX_TESSELLATOR_VIZ |
-static const SkScalar kPointRadius = 0.02f; |
-static const SkScalar kArrowStrokeWidth = 0.0f; |
-static const SkScalar kArrowLength = 0.2f; |
-static const SkScalar kEdgeTextSize = 0.1f; |
-static const SkScalar kPointTextSize = 0.02f; |
- |
-static void draw_point(SkCanvas* canvas, const SkPoint& p, SkScalar paramValue, bool stroke) { |
- SkPaint paint; |
- SkASSERT(paramValue <= 1.0f); |
- int gs = int(255*paramValue); |
- paint.setARGB(255, gs, gs, gs); |
- |
- canvas->drawCircle(p.fX, p.fY, kPointRadius, paint); |
- |
- if (stroke) { |
- SkPaint stroke; |
- stroke.setColor(SK_ColorYELLOW); |
- stroke.setStyle(SkPaint::kStroke_Style); |
- stroke.setStrokeWidth(kPointRadius/3.0f); |
- canvas->drawCircle(p.fX, p.fY, kPointRadius, stroke); |
- } |
-} |
- |
-static void draw_line(SkCanvas* canvas, const SkPoint& p0, const SkPoint& p1, SkColor color) { |
- SkPaint p; |
- p.setColor(color); |
- |
- canvas->drawLine(p0.fX, p0.fY, p1.fX, p1.fY, p); |
-} |
- |
-static void draw_arrow(SkCanvas*canvas, const SkPoint& p, const SkPoint &n, |
- SkScalar len, SkColor color) { |
- SkPaint paint; |
- paint.setColor(color); |
- paint.setStrokeWidth(kArrowStrokeWidth); |
- paint.setStyle(SkPaint::kStroke_Style); |
- |
- canvas->drawLine(p.fX, p.fY, |
- p.fX + len * n.fX, p.fY + len * n.fY, |
- paint); |
-} |
- |
-void GrAAConvexTessellator::Ring::draw(SkCanvas* canvas, const GrAAConvexTessellator& tess) const { |
- SkPaint paint; |
- paint.setTextSize(kEdgeTextSize); |
- |
- for (int cur = 0; cur < fPts.count(); ++cur) { |
- int next = (cur + 1) % fPts.count(); |
- |
- draw_line(canvas, |
- tess.point(fPts[cur].fIndex), |
- tess.point(fPts[next].fIndex), |
- SK_ColorGREEN); |
- |
- SkPoint mid = tess.point(fPts[cur].fIndex) + tess.point(fPts[next].fIndex); |
- mid.scale(0.5f); |
- |
- if (fPts.count()) { |
- draw_arrow(canvas, mid, fPts[cur].fNorm, kArrowLength, SK_ColorRED); |
- mid.fX += (kArrowLength/2) * fPts[cur].fNorm.fX; |
- mid.fY += (kArrowLength/2) * fPts[cur].fNorm.fY; |
- } |
- |
- SkString num; |
- num.printf("%d", this->origEdgeID(cur)); |
- canvas->drawText(num.c_str(), num.size(), mid.fX, mid.fY, paint); |
- |
- if (fPts.count()) { |
- draw_arrow(canvas, tess.point(fPts[cur].fIndex), fPts[cur].fBisector, |
- kArrowLength, SK_ColorBLUE); |
- } |
- } |
-} |
- |
-void GrAAConvexTessellator::draw(SkCanvas* canvas) const { |
- for (int i = 0; i < fIndices.count(); i += 3) { |
- SkASSERT(fIndices[i] < this->numPts()) ; |
- SkASSERT(fIndices[i+1] < this->numPts()) ; |
- SkASSERT(fIndices[i+2] < this->numPts()) ; |
- |
- draw_line(canvas, |
- this->point(this->fIndices[i]), this->point(this->fIndices[i+1]), |
- SK_ColorBLACK); |
- draw_line(canvas, |
- this->point(this->fIndices[i+1]), this->point(this->fIndices[i+2]), |
- SK_ColorBLACK); |
- draw_line(canvas, |
- this->point(this->fIndices[i+2]), this->point(this->fIndices[i]), |
- SK_ColorBLACK); |
- } |
- |
- fInitialRing.draw(canvas, *this); |
- for (int i = 0; i < fRings.count(); ++i) { |
- fRings[i]->draw(canvas, *this); |
- } |
- |
- for (int i = 0; i < this->numPts(); ++i) { |
- draw_point(canvas, |
- this->point(i), 0.5f + (this->depth(i)/(2 * kAntialiasingRadius)), |
- !this->movable(i)); |
- |
- SkPaint paint; |
- paint.setTextSize(kPointTextSize); |
- paint.setTextAlign(SkPaint::kCenter_Align); |
- if (this->depth(i) <= -kAntialiasingRadius) { |
- paint.setColor(SK_ColorWHITE); |
- } |
- |
- SkString num; |
- num.printf("%d", i); |
- canvas->drawText(num.c_str(), num.size(), |
- this->point(i).fX, this->point(i).fY+(kPointRadius/2.0f), |
- paint); |
- } |
-} |
- |
-#endif |
- |