OLD | NEW |
| (Empty) |
1 /* | |
2 * Copyright 2015 Google Inc. | |
3 * | |
4 * Use of this source code is governed by a BSD-style license that can be | |
5 * found in the LICENSE file. | |
6 */ | |
7 | |
8 #include "GrAAConvexTessellator.h" | |
9 #include "SkCanvas.h" | |
10 #include "SkPath.h" | |
11 #include "SkPoint.h" | |
12 #include "SkString.h" | |
13 #include "GrPathUtils.h" | |
14 | |
15 // Next steps: | |
16 // add an interactive sample app slide | |
17 // add debug check that all points are suitably far apart | |
18 // test more degenerate cases | |
19 | |
20 // The tolerance for fusing vertices and eliminating colinear lines (It is in de
vice space). | |
21 static const SkScalar kClose = (SK_Scalar1 / 16); | |
22 static const SkScalar kCloseSqd = SkScalarMul(kClose, kClose); | |
23 | |
24 // tesselation tolerance values, in device space pixels | |
25 static const SkScalar kQuadTolerance = 0.2f; | |
26 static const SkScalar kCubicTolerance = 0.2f; | |
27 static const SkScalar kConicTolerance = 0.5f; | |
28 | |
29 // dot product below which we use a round cap between curve segments | |
30 static const SkScalar kRoundCapThreshold = 0.8f; | |
31 | |
32 static SkScalar intersect(const SkPoint& p0, const SkPoint& n0, | |
33 const SkPoint& p1, const SkPoint& n1) { | |
34 const SkPoint v = p1 - p0; | |
35 SkScalar perpDot = n0.fX * n1.fY - n0.fY * n1.fX; | |
36 return (v.fX * n1.fY - v.fY * n1.fX) / perpDot; | |
37 } | |
38 | |
39 // This is a special case version of intersect where we have the vector | |
40 // perpendicular to the second line rather than the vector parallel to it. | |
41 static SkScalar perp_intersect(const SkPoint& p0, const SkPoint& n0, | |
42 const SkPoint& p1, const SkPoint& perp) { | |
43 const SkPoint v = p1 - p0; | |
44 SkScalar perpDot = n0.dot(perp); | |
45 return v.dot(perp) / perpDot; | |
46 } | |
47 | |
48 static bool duplicate_pt(const SkPoint& p0, const SkPoint& p1) { | |
49 SkScalar distSq = p0.distanceToSqd(p1); | |
50 return distSq < kCloseSqd; | |
51 } | |
52 | |
53 static SkScalar abs_dist_from_line(const SkPoint& p0, const SkVector& v, const S
kPoint& test) { | |
54 SkPoint testV = test - p0; | |
55 SkScalar dist = testV.fX * v.fY - testV.fY * v.fX; | |
56 return SkScalarAbs(dist); | |
57 } | |
58 | |
59 int GrAAConvexTessellator::addPt(const SkPoint& pt, | |
60 SkScalar depth, | |
61 SkScalar coverage, | |
62 bool movable, | |
63 bool isCurve) { | |
64 this->validate(); | |
65 | |
66 int index = fPts.count(); | |
67 *fPts.push() = pt; | |
68 *fCoverages.push() = coverage; | |
69 *fMovable.push() = movable; | |
70 *fIsCurve.push() = isCurve; | |
71 | |
72 this->validate(); | |
73 return index; | |
74 } | |
75 | |
76 void GrAAConvexTessellator::popLastPt() { | |
77 this->validate(); | |
78 | |
79 fPts.pop(); | |
80 fCoverages.pop(); | |
81 fMovable.pop(); | |
82 | |
83 this->validate(); | |
84 } | |
85 | |
86 void GrAAConvexTessellator::popFirstPtShuffle() { | |
87 this->validate(); | |
88 | |
89 fPts.removeShuffle(0); | |
90 fCoverages.removeShuffle(0); | |
91 fMovable.removeShuffle(0); | |
92 | |
93 this->validate(); | |
94 } | |
95 | |
96 void GrAAConvexTessellator::updatePt(int index, | |
97 const SkPoint& pt, | |
98 SkScalar depth, | |
99 SkScalar coverage) { | |
100 this->validate(); | |
101 SkASSERT(fMovable[index]); | |
102 | |
103 fPts[index] = pt; | |
104 fCoverages[index] = coverage; | |
105 } | |
106 | |
107 void GrAAConvexTessellator::addTri(int i0, int i1, int i2) { | |
108 if (i0 == i1 || i1 == i2 || i2 == i0) { | |
109 return; | |
110 } | |
111 | |
112 *fIndices.push() = i0; | |
113 *fIndices.push() = i1; | |
114 *fIndices.push() = i2; | |
115 } | |
116 | |
117 void GrAAConvexTessellator::rewind() { | |
118 fPts.rewind(); | |
119 fCoverages.rewind(); | |
120 fMovable.rewind(); | |
121 fIndices.rewind(); | |
122 fNorms.rewind(); | |
123 fInitialRing.rewind(); | |
124 fCandidateVerts.rewind(); | |
125 #if GR_AA_CONVEX_TESSELLATOR_VIZ | |
126 fRings.rewind(); // TODO: leak in this case! | |
127 #else | |
128 fRings[0].rewind(); | |
129 fRings[1].rewind(); | |
130 #endif | |
131 } | |
132 | |
133 void GrAAConvexTessellator::computeBisectors() { | |
134 fBisectors.setCount(fNorms.count()); | |
135 | |
136 int prev = fBisectors.count() - 1; | |
137 for (int cur = 0; cur < fBisectors.count(); prev = cur, ++cur) { | |
138 fBisectors[cur] = fNorms[cur] + fNorms[prev]; | |
139 if (!fBisectors[cur].normalize()) { | |
140 SkASSERT(SkPoint::kLeft_Side == fSide || SkPoint::kRight_Side == fSi
de); | |
141 fBisectors[cur].setOrthog(fNorms[cur], (SkPoint::Side)-fSide); | |
142 SkVector other; | |
143 other.setOrthog(fNorms[prev], fSide); | |
144 fBisectors[cur] += other; | |
145 SkAssertResult(fBisectors[cur].normalize()); | |
146 } else { | |
147 fBisectors[cur].negate(); // make the bisector face in | |
148 } | |
149 | |
150 SkASSERT(SkScalarNearlyEqual(1.0f, fBisectors[cur].length())); | |
151 } | |
152 } | |
153 | |
154 // Create as many rings as we need to (up to a predefined limit) to reach the sp
ecified target | |
155 // depth. If we are in fill mode, the final ring will automatically be fanned. | |
156 bool GrAAConvexTessellator::createInsetRings(Ring& previousRing, SkScalar initia
lDepth, | |
157 SkScalar initialCoverage, SkScalar
targetDepth, | |
158 SkScalar targetCoverage, Ring** fin
alRing) { | |
159 static const int kMaxNumRings = 8; | |
160 | |
161 if (previousRing.numPts() < 3) { | |
162 return false; | |
163 } | |
164 Ring* currentRing = &previousRing; | |
165 int i; | |
166 for (i = 0; i < kMaxNumRings; ++i) { | |
167 Ring* nextRing = this->getNextRing(currentRing); | |
168 SkASSERT(nextRing != currentRing); | |
169 | |
170 bool done = this->createInsetRing(*currentRing, nextRing, initialDepth,
initialCoverage, | |
171 targetDepth, targetCoverage, i == 0); | |
172 currentRing = nextRing; | |
173 if (done) { | |
174 break; | |
175 } | |
176 currentRing->init(*this); | |
177 } | |
178 | |
179 if (kMaxNumRings == i) { | |
180 // Bail if we've exceeded the amount of time we want to throw at this. | |
181 this->terminate(*currentRing); | |
182 return false; | |
183 } | |
184 bool done = currentRing->numPts() >= 3; | |
185 if (done) { | |
186 currentRing->init(*this); | |
187 } | |
188 *finalRing = currentRing; | |
189 return done; | |
190 } | |
191 | |
192 // The general idea here is to, conceptually, start with the original polygon an
d slide | |
193 // the vertices along the bisectors until the first intersection. At that | |
194 // point two of the edges collapse and the process repeats on the new polygon. | |
195 // The polygon state is captured in the Ring class while the GrAAConvexTessellat
or | |
196 // controls the iteration. The CandidateVerts holds the formative points for the | |
197 // next ring. | |
198 bool GrAAConvexTessellator::tessellate(const SkMatrix& m, const SkPath& path) { | |
199 if (!this->extractFromPath(m, path)) { | |
200 return false; | |
201 } | |
202 | |
203 SkScalar coverage = 1.0f; | |
204 SkScalar scaleFactor = 0.0f; | |
205 if (fStrokeWidth >= 0.0f) { | |
206 SkASSERT(m.isSimilarity()); | |
207 scaleFactor = m.getMaxScale(); // x and y scale are the same | |
208 SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth; | |
209 Ring outerStrokeRing; | |
210 this->createOuterRing(fInitialRing, effectiveStrokeWidth / 2 - kAntialia
singRadius, | |
211 coverage, &outerStrokeRing); | |
212 outerStrokeRing.init(*this); | |
213 Ring outerAARing; | |
214 this->createOuterRing(outerStrokeRing, kAntialiasingRadius * 2, 0.0f, &o
uterAARing); | |
215 } else { | |
216 Ring outerAARing; | |
217 this->createOuterRing(fInitialRing, kAntialiasingRadius, 0.0f, &outerAAR
ing); | |
218 } | |
219 | |
220 // the bisectors are only needed for the computation of the outer ring | |
221 fBisectors.rewind(); | |
222 if (fStrokeWidth >= 0.0f && fInitialRing.numPts() > 2) { | |
223 SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth; | |
224 Ring* insetStrokeRing; | |
225 SkScalar strokeDepth = effectiveStrokeWidth / 2 - kAntialiasingRadius; | |
226 if (this->createInsetRings(fInitialRing, 0.0f, coverage, strokeDepth, co
verage, | |
227 &insetStrokeRing)) { | |
228 Ring* insetAARing; | |
229 this->createInsetRings(*insetStrokeRing, strokeDepth, coverage, stro
keDepth + | |
230 kAntialiasingRadius * 2, 0.0f, &insetAARing); | |
231 } | |
232 } else { | |
233 Ring* insetAARing; | |
234 this->createInsetRings(fInitialRing, 0.0f, 0.5f, kAntialiasingRadius, 1.
0f, &insetAARing); | |
235 } | |
236 | |
237 SkDEBUGCODE(this->validate();) | |
238 return true; | |
239 } | |
240 | |
241 SkScalar GrAAConvexTessellator::computeDepthFromEdge(int edgeIdx, const SkPoint&
p) const { | |
242 SkASSERT(edgeIdx < fNorms.count()); | |
243 | |
244 SkPoint v = p - fPts[edgeIdx]; | |
245 SkScalar depth = -fNorms[edgeIdx].dot(v); | |
246 return depth; | |
247 } | |
248 | |
249 // Find a point that is 'desiredDepth' away from the 'edgeIdx'-th edge and lies | |
250 // along the 'bisector' from the 'startIdx'-th point. | |
251 bool GrAAConvexTessellator::computePtAlongBisector(int startIdx, | |
252 const SkVector& bisector, | |
253 int edgeIdx, | |
254 SkScalar desiredDepth, | |
255 SkPoint* result) const { | |
256 const SkPoint& norm = fNorms[edgeIdx]; | |
257 | |
258 // First find the point where the edge and the bisector intersect | |
259 SkPoint newP; | |
260 | |
261 SkScalar t = perp_intersect(fPts[startIdx], bisector, fPts[edgeIdx], norm); | |
262 if (SkScalarNearlyEqual(t, 0.0f)) { | |
263 // the start point was one of the original ring points | |
264 SkASSERT(startIdx < fPts.count()); | |
265 newP = fPts[startIdx]; | |
266 } else if (t < 0.0f) { | |
267 newP = bisector; | |
268 newP.scale(t); | |
269 newP += fPts[startIdx]; | |
270 } else { | |
271 return false; | |
272 } | |
273 | |
274 // Then offset along the bisector from that point the correct distance | |
275 SkScalar dot = bisector.dot(norm); | |
276 t = -desiredDepth / dot; | |
277 *result = bisector; | |
278 result->scale(t); | |
279 *result += newP; | |
280 | |
281 return true; | |
282 } | |
283 | |
284 bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& pat
h) { | |
285 SkASSERT(SkPath::kConvex_Convexity == path.getConvexity()); | |
286 | |
287 // Outer ring: 3*numPts | |
288 // Middle ring: numPts | |
289 // Presumptive inner ring: numPts | |
290 this->reservePts(5*path.countPoints()); | |
291 // Outer ring: 12*numPts | |
292 // Middle ring: 0 | |
293 // Presumptive inner ring: 6*numPts + 6 | |
294 fIndices.setReserve(18*path.countPoints() + 6); | |
295 | |
296 fNorms.setReserve(path.countPoints()); | |
297 | |
298 // TODO: is there a faster way to extract the points from the path? Perhaps | |
299 // get all the points via a new entry point, transform them all in bulk | |
300 // and then walk them to find duplicates? | |
301 SkPath::Iter iter(path, true); | |
302 SkPoint pts[4]; | |
303 SkPath::Verb verb; | |
304 while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { | |
305 switch (verb) { | |
306 case SkPath::kLine_Verb: | |
307 this->lineTo(m, pts[1], false); | |
308 break; | |
309 case SkPath::kQuad_Verb: | |
310 this->quadTo(m, pts); | |
311 break; | |
312 case SkPath::kCubic_Verb: | |
313 this->cubicTo(m, pts); | |
314 break; | |
315 case SkPath::kConic_Verb: | |
316 this->conicTo(m, pts, iter.conicWeight()); | |
317 break; | |
318 case SkPath::kMove_Verb: | |
319 case SkPath::kClose_Verb: | |
320 case SkPath::kDone_Verb: | |
321 break; | |
322 } | |
323 } | |
324 | |
325 if (this->numPts() < 2) { | |
326 return false; | |
327 } | |
328 | |
329 // check if last point is a duplicate of the first point. If so, remove it. | |
330 if (duplicate_pt(fPts[this->numPts()-1], fPts[0])) { | |
331 this->popLastPt(); | |
332 fNorms.pop(); | |
333 } | |
334 | |
335 SkASSERT(fPts.count() == fNorms.count()+1); | |
336 if (this->numPts() >= 3) { | |
337 if (abs_dist_from_line(fPts.top(), fNorms.top(), fPts[0]) < kClose) { | |
338 // The last point is on the line from the second to last to the firs
t point. | |
339 this->popLastPt(); | |
340 fNorms.pop(); | |
341 } | |
342 | |
343 *fNorms.push() = fPts[0] - fPts.top(); | |
344 SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top()); | |
345 SkASSERT(len > 0.0f); | |
346 SkASSERT(fPts.count() == fNorms.count()); | |
347 } | |
348 | |
349 if (this->numPts() >= 3 && abs_dist_from_line(fPts[0], fNorms.top(), fPts[1]
) < kClose) { | |
350 // The first point is on the line from the last to the second. | |
351 this->popFirstPtShuffle(); | |
352 fNorms.removeShuffle(0); | |
353 fNorms[0] = fPts[1] - fPts[0]; | |
354 SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms[0]); | |
355 SkASSERT(len > 0.0f); | |
356 SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[0].length())); | |
357 } | |
358 | |
359 if (this->numPts() >= 3) { | |
360 // Check the cross product of the final trio | |
361 SkScalar cross = SkPoint::CrossProduct(fNorms[0], fNorms.top()); | |
362 if (cross > 0.0f) { | |
363 fSide = SkPoint::kRight_Side; | |
364 } else { | |
365 fSide = SkPoint::kLeft_Side; | |
366 } | |
367 | |
368 // Make all the normals face outwards rather than along the edge | |
369 for (int cur = 0; cur < fNorms.count(); ++cur) { | |
370 fNorms[cur].setOrthog(fNorms[cur], fSide); | |
371 SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length())); | |
372 } | |
373 | |
374 this->computeBisectors(); | |
375 } else if (this->numPts() == 2) { | |
376 // We've got two points, so we're degenerate. | |
377 if (fStrokeWidth < 0.0f) { | |
378 // it's a fill, so we don't need to worry about degenerate paths | |
379 return false; | |
380 } | |
381 // For stroking, we still need to process the degenerate path, so fix it
up | |
382 fSide = SkPoint::kLeft_Side; | |
383 | |
384 // Make all the normals face outwards rather than along the edge | |
385 for (int cur = 0; cur < fNorms.count(); ++cur) { | |
386 fNorms[cur].setOrthog(fNorms[cur], fSide); | |
387 SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length())); | |
388 } | |
389 | |
390 fNorms.push(SkPoint::Make(-fNorms[0].fX, -fNorms[0].fY)); | |
391 // we won't actually use the bisectors, so just push zeroes | |
392 fBisectors.push(SkPoint::Make(0.0, 0.0)); | |
393 fBisectors.push(SkPoint::Make(0.0, 0.0)); | |
394 } else { | |
395 return false; | |
396 } | |
397 | |
398 fCandidateVerts.setReserve(this->numPts()); | |
399 fInitialRing.setReserve(this->numPts()); | |
400 for (int i = 0; i < this->numPts(); ++i) { | |
401 fInitialRing.addIdx(i, i); | |
402 } | |
403 fInitialRing.init(fNorms, fBisectors); | |
404 | |
405 this->validate(); | |
406 return true; | |
407 } | |
408 | |
409 GrAAConvexTessellator::Ring* GrAAConvexTessellator::getNextRing(Ring* lastRing)
{ | |
410 #if GR_AA_CONVEX_TESSELLATOR_VIZ | |
411 Ring* ring = *fRings.push() = new Ring; | |
412 ring->setReserve(fInitialRing.numPts()); | |
413 ring->rewind(); | |
414 return ring; | |
415 #else | |
416 // Flip flop back and forth between fRings[0] & fRings[1] | |
417 int nextRing = (lastRing == &fRings[0]) ? 1 : 0; | |
418 fRings[nextRing].setReserve(fInitialRing.numPts()); | |
419 fRings[nextRing].rewind(); | |
420 return &fRings[nextRing]; | |
421 #endif | |
422 } | |
423 | |
424 void GrAAConvexTessellator::fanRing(const Ring& ring) { | |
425 // fan out from point 0 | |
426 int startIdx = ring.index(0); | |
427 for (int cur = ring.numPts() - 2; cur >= 0; --cur) { | |
428 this->addTri(startIdx, ring.index(cur), ring.index(cur + 1)); | |
429 } | |
430 } | |
431 | |
432 void GrAAConvexTessellator::createOuterRing(const Ring& previousRing, SkScalar o
utset, | |
433 SkScalar coverage, Ring* nextRing) { | |
434 const int numPts = previousRing.numPts(); | |
435 if (numPts == 0) { | |
436 return; | |
437 } | |
438 | |
439 int prev = numPts - 1; | |
440 int lastPerpIdx = -1, firstPerpIdx = -1; | |
441 | |
442 const SkScalar outsetSq = SkScalarMul(outset, outset); | |
443 SkScalar miterLimitSq = SkScalarMul(outset, fMiterLimit); | |
444 miterLimitSq = SkScalarMul(miterLimitSq, miterLimitSq); | |
445 for (int cur = 0; cur < numPts; ++cur) { | |
446 int originalIdx = previousRing.index(cur); | |
447 // For each vertex of the original polygon we add at least two points to
the | |
448 // outset polygon - one extending perpendicular to each impinging edge.
Connecting these | |
449 // two points yields a bevel join. We need one additional point for a mi
tered join, and | |
450 // a round join requires one or more points depending upon curvature. | |
451 | |
452 // The perpendicular point for the last edge | |
453 SkPoint normal1 = previousRing.norm(prev); | |
454 SkPoint perp1 = normal1; | |
455 perp1.scale(outset); | |
456 perp1 += this->point(originalIdx); | |
457 | |
458 // The perpendicular point for the next edge. | |
459 SkPoint normal2 = previousRing.norm(cur); | |
460 SkPoint perp2 = normal2; | |
461 perp2.scale(outset); | |
462 perp2 += fPts[originalIdx]; | |
463 | |
464 bool isCurve = fIsCurve[originalIdx]; | |
465 | |
466 // We know it isn't a duplicate of the prior point (since it and this | |
467 // one are just perpendicular offsets from the non-merged polygon points
) | |
468 int perp1Idx = this->addPt(perp1, -outset, coverage, false, isCurve); | |
469 nextRing->addIdx(perp1Idx, originalIdx); | |
470 | |
471 int perp2Idx; | |
472 // For very shallow angles all the corner points could fuse. | |
473 if (duplicate_pt(perp2, this->point(perp1Idx))) { | |
474 perp2Idx = perp1Idx; | |
475 } else { | |
476 perp2Idx = this->addPt(perp2, -outset, coverage, false, isCurve); | |
477 } | |
478 | |
479 if (perp2Idx != perp1Idx) { | |
480 if (isCurve) { | |
481 // bevel or round depending upon curvature | |
482 SkScalar dotProd = normal1.dot(normal2); | |
483 if (dotProd < kRoundCapThreshold) { | |
484 // Currently we "round" by creating a single extra point, wh
ich produces | |
485 // good results for common cases. For thick strokes with hig
h curvature, we will | |
486 // need to add more points; for the time being we simply fal
l back to software | |
487 // rendering for thick strokes. | |
488 SkPoint miter = previousRing.bisector(cur); | |
489 miter.setLength(-outset); | |
490 miter += fPts[originalIdx]; | |
491 | |
492 // For very shallow angles all the corner points could fuse | |
493 if (!duplicate_pt(miter, this->point(perp1Idx))) { | |
494 int miterIdx; | |
495 miterIdx = this->addPt(miter, -outset, coverage, false,
false); | |
496 nextRing->addIdx(miterIdx, originalIdx); | |
497 // The two triangles for the corner | |
498 this->addTri(originalIdx, perp1Idx, miterIdx); | |
499 this->addTri(originalIdx, miterIdx, perp2Idx); | |
500 } | |
501 } else { | |
502 this->addTri(originalIdx, perp1Idx, perp2Idx); | |
503 } | |
504 } else { | |
505 switch (fJoin) { | |
506 case SkPaint::Join::kMiter_Join: { | |
507 // The bisector outset point | |
508 SkPoint miter = previousRing.bisector(cur); | |
509 SkScalar dotProd = normal1.dot(normal2); | |
510 SkScalar sinHalfAngleSq = SkScalarHalf(SK_Scalar1 + dotP
rod); | |
511 SkScalar lengthSq = outsetSq / sinHalfAngleSq; | |
512 if (lengthSq > miterLimitSq) { | |
513 // just bevel it | |
514 this->addTri(originalIdx, perp1Idx, perp2Idx); | |
515 break; | |
516 } | |
517 miter.setLength(-SkScalarSqrt(lengthSq)); | |
518 miter += fPts[originalIdx]; | |
519 | |
520 // For very shallow angles all the corner points could f
use | |
521 if (!duplicate_pt(miter, this->point(perp1Idx))) { | |
522 int miterIdx; | |
523 miterIdx = this->addPt(miter, -outset, coverage, fal
se, false); | |
524 nextRing->addIdx(miterIdx, originalIdx); | |
525 // The two triangles for the corner | |
526 this->addTri(originalIdx, perp1Idx, miterIdx); | |
527 this->addTri(originalIdx, miterIdx, perp2Idx); | |
528 } | |
529 break; | |
530 } | |
531 case SkPaint::Join::kBevel_Join: | |
532 this->addTri(originalIdx, perp1Idx, perp2Idx); | |
533 break; | |
534 default: | |
535 // kRound_Join is unsupported for now. GrAALinearizingCo
nvexPathRenderer is | |
536 // only willing to draw mitered or beveled, so we should
never get here. | |
537 SkASSERT(false); | |
538 } | |
539 } | |
540 | |
541 nextRing->addIdx(perp2Idx, originalIdx); | |
542 } | |
543 | |
544 if (0 == cur) { | |
545 // Store the index of the first perpendicular point to finish up | |
546 firstPerpIdx = perp1Idx; | |
547 SkASSERT(-1 == lastPerpIdx); | |
548 } else { | |
549 // The triangles for the previous edge | |
550 int prevIdx = previousRing.index(prev); | |
551 this->addTri(prevIdx, perp1Idx, originalIdx); | |
552 this->addTri(prevIdx, lastPerpIdx, perp1Idx); | |
553 } | |
554 | |
555 // Track the last perpendicular outset point so we can construct the | |
556 // trailing edge triangles. | |
557 lastPerpIdx = perp2Idx; | |
558 prev = cur; | |
559 } | |
560 | |
561 // pick up the final edge rect | |
562 int lastIdx = previousRing.index(numPts - 1); | |
563 this->addTri(lastIdx, firstPerpIdx, previousRing.index(0)); | |
564 this->addTri(lastIdx, lastPerpIdx, firstPerpIdx); | |
565 | |
566 this->validate(); | |
567 } | |
568 | |
569 // Something went wrong in the creation of the next ring. If we're filling the s
hape, just go ahead | |
570 // and fan it. | |
571 void GrAAConvexTessellator::terminate(const Ring& ring) { | |
572 if (fStrokeWidth < 0.0f) { | |
573 this->fanRing(ring); | |
574 } | |
575 } | |
576 | |
577 static SkScalar compute_coverage(SkScalar depth, SkScalar initialDepth, SkScalar
initialCoverage, | |
578 SkScalar targetDepth, SkScalar targetCoverage) { | |
579 if (SkScalarNearlyEqual(initialDepth, targetDepth)) { | |
580 return targetCoverage; | |
581 } | |
582 SkScalar result = (depth - initialDepth) / (targetDepth - initialDepth) * | |
583 (targetCoverage - initialCoverage) + initialCoverage; | |
584 return SkScalarClampMax(result, 1.0f); | |
585 } | |
586 | |
587 // return true when processing is complete | |
588 bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing
, | |
589 SkScalar initialDepth, SkScalar init
ialCoverage, | |
590 SkScalar targetDepth, SkScalar targe
tCoverage, | |
591 bool forceNew) { | |
592 bool done = false; | |
593 | |
594 fCandidateVerts.rewind(); | |
595 | |
596 // Loop through all the points in the ring and find the intersection with th
e smallest depth | |
597 SkScalar minDist = SK_ScalarMax, minT = 0.0f; | |
598 int minEdgeIdx = -1; | |
599 | |
600 for (int cur = 0; cur < lastRing.numPts(); ++cur) { | |
601 int next = (cur + 1) % lastRing.numPts(); | |
602 SkScalar t = intersect(this->point(lastRing.index(cur)), lastRing.bisec
tor(cur), | |
603 this->point(lastRing.index(next)), lastRing.bisec
tor(next)); | |
604 SkScalar dist = -t * lastRing.norm(cur).dot(lastRing.bisector(cur)); | |
605 | |
606 if (minDist > dist) { | |
607 minDist = dist; | |
608 minT = t; | |
609 minEdgeIdx = cur; | |
610 } | |
611 } | |
612 | |
613 if (minEdgeIdx == -1) { | |
614 return false; | |
615 } | |
616 SkPoint newPt = lastRing.bisector(minEdgeIdx); | |
617 newPt.scale(minT); | |
618 newPt += this->point(lastRing.index(minEdgeIdx)); | |
619 | |
620 SkScalar depth = this->computeDepthFromEdge(lastRing.origEdgeID(minEdgeIdx),
newPt); | |
621 if (depth >= targetDepth) { | |
622 // None of the bisectors intersect before reaching the desired depth. | |
623 // Just step them all to the desired depth | |
624 depth = targetDepth; | |
625 done = true; | |
626 } | |
627 | |
628 // 'dst' stores where each point in the last ring maps to/transforms into | |
629 // in the next ring. | |
630 SkTDArray<int> dst; | |
631 dst.setCount(lastRing.numPts()); | |
632 | |
633 // Create the first point (who compares with no one) | |
634 if (!this->computePtAlongBisector(lastRing.index(0), | |
635 lastRing.bisector(0), | |
636 lastRing.origEdgeID(0), | |
637 depth, &newPt)) { | |
638 this->terminate(lastRing); | |
639 return true; | |
640 } | |
641 dst[0] = fCandidateVerts.addNewPt(newPt, | |
642 lastRing.index(0), lastRing.origEdgeID(0), | |
643 !this->movable(lastRing.index(0))); | |
644 | |
645 // Handle the middle points (who only compare with the prior point) | |
646 for (int cur = 1; cur < lastRing.numPts()-1; ++cur) { | |
647 if (!this->computePtAlongBisector(lastRing.index(cur), | |
648 lastRing.bisector(cur), | |
649 lastRing.origEdgeID(cur), | |
650 depth, &newPt)) { | |
651 this->terminate(lastRing); | |
652 return true; | |
653 } | |
654 if (!duplicate_pt(newPt, fCandidateVerts.lastPoint())) { | |
655 dst[cur] = fCandidateVerts.addNewPt(newPt, | |
656 lastRing.index(cur), lastRing.or
igEdgeID(cur), | |
657 !this->movable(lastRing.index(cu
r))); | |
658 } else { | |
659 dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur)); | |
660 } | |
661 } | |
662 | |
663 // Check on the last point (handling the wrap around) | |
664 int cur = lastRing.numPts()-1; | |
665 if (!this->computePtAlongBisector(lastRing.index(cur), | |
666 lastRing.bisector(cur), | |
667 lastRing.origEdgeID(cur), | |
668 depth, &newPt)) { | |
669 this->terminate(lastRing); | |
670 return true; | |
671 } | |
672 bool dupPrev = duplicate_pt(newPt, fCandidateVerts.lastPoint()); | |
673 bool dupNext = duplicate_pt(newPt, fCandidateVerts.firstPoint()); | |
674 | |
675 if (!dupPrev && !dupNext) { | |
676 dst[cur] = fCandidateVerts.addNewPt(newPt, | |
677 lastRing.index(cur), lastRing.origEd
geID(cur), | |
678 !this->movable(lastRing.index(cur)))
; | |
679 } else if (dupPrev && !dupNext) { | |
680 dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur)); | |
681 } else if (!dupPrev && dupNext) { | |
682 dst[cur] = fCandidateVerts.fuseWithNext(); | |
683 } else { | |
684 bool dupPrevVsNext = duplicate_pt(fCandidateVerts.firstPoint(), fCandida
teVerts.lastPoint()); | |
685 | |
686 if (!dupPrevVsNext) { | |
687 dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur)); | |
688 } else { | |
689 const int fused = fCandidateVerts.fuseWithBoth(); | |
690 dst[cur] = fused; | |
691 const int targetIdx = dst[cur - 1]; | |
692 for (int i = cur - 1; i >= 0 && dst[i] == targetIdx; i--) { | |
693 dst[i] = fused; | |
694 } | |
695 } | |
696 } | |
697 | |
698 // Fold the new ring's points into the global pool | |
699 for (int i = 0; i < fCandidateVerts.numPts(); ++i) { | |
700 int newIdx; | |
701 if (fCandidateVerts.needsToBeNew(i) || forceNew) { | |
702 // if the originating index is still valid then this point wasn't | |
703 // fused (and is thus movable) | |
704 SkScalar coverage = compute_coverage(depth, initialDepth, initialCov
erage, | |
705 targetDepth, targetCoverage); | |
706 newIdx = this->addPt(fCandidateVerts.point(i), depth, coverage, | |
707 fCandidateVerts.originatingIdx(i) != -1, false)
; | |
708 } else { | |
709 SkASSERT(fCandidateVerts.originatingIdx(i) != -1); | |
710 this->updatePt(fCandidateVerts.originatingIdx(i), fCandidateVerts.po
int(i), depth, | |
711 targetCoverage); | |
712 newIdx = fCandidateVerts.originatingIdx(i); | |
713 } | |
714 | |
715 nextRing->addIdx(newIdx, fCandidateVerts.origEdge(i)); | |
716 } | |
717 | |
718 // 'dst' currently has indices into the ring. Remap these to be indices | |
719 // into the global pool since the triangulation operates in that space. | |
720 for (int i = 0; i < dst.count(); ++i) { | |
721 dst[i] = nextRing->index(dst[i]); | |
722 } | |
723 | |
724 for (int cur = 0; cur < lastRing.numPts(); ++cur) { | |
725 int next = (cur + 1) % lastRing.numPts(); | |
726 | |
727 this->addTri(lastRing.index(cur), lastRing.index(next), dst[next]); | |
728 this->addTri(lastRing.index(cur), dst[next], dst[cur]); | |
729 } | |
730 | |
731 if (done && fStrokeWidth < 0.0f) { | |
732 // fill | |
733 this->fanRing(*nextRing); | |
734 } | |
735 | |
736 if (nextRing->numPts() < 3) { | |
737 done = true; | |
738 } | |
739 return done; | |
740 } | |
741 | |
742 void GrAAConvexTessellator::validate() const { | |
743 SkASSERT(fPts.count() == fMovable.count()); | |
744 SkASSERT(0 == (fIndices.count() % 3)); | |
745 } | |
746 | |
747 ////////////////////////////////////////////////////////////////////////////// | |
748 void GrAAConvexTessellator::Ring::init(const GrAAConvexTessellator& tess) { | |
749 this->computeNormals(tess); | |
750 this->computeBisectors(tess); | |
751 } | |
752 | |
753 void GrAAConvexTessellator::Ring::init(const SkTDArray<SkVector>& norms, | |
754 const SkTDArray<SkVector>& bisectors) { | |
755 for (int i = 0; i < fPts.count(); ++i) { | |
756 fPts[i].fNorm = norms[i]; | |
757 fPts[i].fBisector = bisectors[i]; | |
758 } | |
759 } | |
760 | |
761 // Compute the outward facing normal at each vertex. | |
762 void GrAAConvexTessellator::Ring::computeNormals(const GrAAConvexTessellator& te
ss) { | |
763 for (int cur = 0; cur < fPts.count(); ++cur) { | |
764 int next = (cur + 1) % fPts.count(); | |
765 | |
766 fPts[cur].fNorm = tess.point(fPts[next].fIndex) - tess.point(fPts[cur].f
Index); | |
767 SkPoint::Normalize(&fPts[cur].fNorm); | |
768 fPts[cur].fNorm.setOrthog(fPts[cur].fNorm, tess.side()); | |
769 } | |
770 } | |
771 | |
772 void GrAAConvexTessellator::Ring::computeBisectors(const GrAAConvexTessellator&
tess) { | |
773 int prev = fPts.count() - 1; | |
774 for (int cur = 0; cur < fPts.count(); prev = cur, ++cur) { | |
775 fPts[cur].fBisector = fPts[cur].fNorm + fPts[prev].fNorm; | |
776 if (!fPts[cur].fBisector.normalize()) { | |
777 SkASSERT(SkPoint::kLeft_Side == tess.side() || SkPoint::kRight_Side
== tess.side()); | |
778 fPts[cur].fBisector.setOrthog(fPts[cur].fNorm, (SkPoint::Side)-tess.
side()); | |
779 SkVector other; | |
780 other.setOrthog(fPts[prev].fNorm, tess.side()); | |
781 fPts[cur].fBisector += other; | |
782 SkAssertResult(fPts[cur].fBisector.normalize()); | |
783 } else { | |
784 fPts[cur].fBisector.negate(); // make the bisector face in | |
785 } | |
786 } | |
787 } | |
788 | |
789 ////////////////////////////////////////////////////////////////////////////// | |
790 #ifdef SK_DEBUG | |
791 // Is this ring convex? | |
792 bool GrAAConvexTessellator::Ring::isConvex(const GrAAConvexTessellator& tess) co
nst { | |
793 if (fPts.count() < 3) { | |
794 return true; | |
795 } | |
796 | |
797 SkPoint prev = tess.point(fPts[0].fIndex) - tess.point(fPts.top().fIndex); | |
798 SkPoint cur = tess.point(fPts[1].fIndex) - tess.point(fPts[0].fIndex); | |
799 SkScalar minDot = prev.fX * cur.fY - prev.fY * cur.fX; | |
800 SkScalar maxDot = minDot; | |
801 | |
802 prev = cur; | |
803 for (int i = 1; i < fPts.count(); ++i) { | |
804 int next = (i + 1) % fPts.count(); | |
805 | |
806 cur = tess.point(fPts[next].fIndex) - tess.point(fPts[i].fIndex); | |
807 SkScalar dot = prev.fX * cur.fY - prev.fY * cur.fX; | |
808 | |
809 minDot = SkMinScalar(minDot, dot); | |
810 maxDot = SkMaxScalar(maxDot, dot); | |
811 | |
812 prev = cur; | |
813 } | |
814 | |
815 if (SkScalarNearlyEqual(maxDot, 0.0f, 0.005f)) { | |
816 maxDot = 0; | |
817 } | |
818 if (SkScalarNearlyEqual(minDot, 0.0f, 0.005f)) { | |
819 minDot = 0; | |
820 } | |
821 return (maxDot >= 0.0f) == (minDot >= 0.0f); | |
822 } | |
823 | |
824 #endif | |
825 | |
826 void GrAAConvexTessellator::lineTo(SkPoint p, bool isCurve) { | |
827 if (this->numPts() > 0 && duplicate_pt(p, this->lastPoint())) { | |
828 return; | |
829 } | |
830 | |
831 SkASSERT(fPts.count() <= 1 || fPts.count() == fNorms.count()+1); | |
832 if (this->numPts() >= 2 && | |
833 abs_dist_from_line(fPts.top(), fNorms.top(), p) < kClose) { | |
834 // The old last point is on the line from the second to last to the new
point | |
835 this->popLastPt(); | |
836 fNorms.pop(); | |
837 fIsCurve.pop(); | |
838 } | |
839 SkScalar initialRingCoverage = fStrokeWidth < 0.0f ? 0.5f : 1.0f; | |
840 this->addPt(p, 0.0f, initialRingCoverage, false, isCurve); | |
841 if (this->numPts() > 1) { | |
842 *fNorms.push() = fPts.top() - fPts[fPts.count()-2]; | |
843 SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top()); | |
844 SkASSERT(len > 0.0f); | |
845 SkASSERT(SkScalarNearlyEqual(1.0f, fNorms.top().length())); | |
846 } | |
847 } | |
848 | |
849 void GrAAConvexTessellator::lineTo(const SkMatrix& m, SkPoint p, bool isCurve) { | |
850 m.mapPoints(&p, 1); | |
851 this->lineTo(p, isCurve); | |
852 } | |
853 | |
854 void GrAAConvexTessellator::quadTo(SkPoint pts[3]) { | |
855 int maxCount = GrPathUtils::quadraticPointCount(pts, kQuadTolerance); | |
856 fPointBuffer.setReserve(maxCount); | |
857 SkPoint* target = fPointBuffer.begin(); | |
858 int count = GrPathUtils::generateQuadraticPoints(pts[0], pts[1], pts[2], | |
859 kQuadTolerance, &target, maxCount); | |
860 fPointBuffer.setCount(count); | |
861 for (int i = 0; i < count; i++) { | |
862 lineTo(fPointBuffer[i], true); | |
863 } | |
864 } | |
865 | |
866 void GrAAConvexTessellator::quadTo(const SkMatrix& m, SkPoint pts[3]) { | |
867 SkPoint transformed[3]; | |
868 transformed[0] = pts[0]; | |
869 transformed[1] = pts[1]; | |
870 transformed[2] = pts[2]; | |
871 m.mapPoints(transformed, 3); | |
872 quadTo(transformed); | |
873 } | |
874 | |
875 void GrAAConvexTessellator::cubicTo(const SkMatrix& m, SkPoint pts[4]) { | |
876 m.mapPoints(pts, 4); | |
877 int maxCount = GrPathUtils::cubicPointCount(pts, kCubicTolerance); | |
878 fPointBuffer.setReserve(maxCount); | |
879 SkPoint* target = fPointBuffer.begin(); | |
880 int count = GrPathUtils::generateCubicPoints(pts[0], pts[1], pts[2], pts[3],
| |
881 kCubicTolerance, &target, maxCount); | |
882 fPointBuffer.setCount(count); | |
883 for (int i = 0; i < count; i++) { | |
884 lineTo(fPointBuffer[i], true); | |
885 } | |
886 } | |
887 | |
888 // include down here to avoid compilation errors caused by "-" overload in SkGeo
metry.h | |
889 #include "SkGeometry.h" | |
890 | |
891 void GrAAConvexTessellator::conicTo(const SkMatrix& m, SkPoint pts[3], SkScalar
w) { | |
892 m.mapPoints(pts, 3); | |
893 SkAutoConicToQuads quadder; | |
894 const SkPoint* quads = quadder.computeQuads(pts, w, kConicTolerance); | |
895 SkPoint lastPoint = *(quads++); | |
896 int count = quadder.countQuads(); | |
897 for (int i = 0; i < count; ++i) { | |
898 SkPoint quadPts[3]; | |
899 quadPts[0] = lastPoint; | |
900 quadPts[1] = quads[0]; | |
901 quadPts[2] = i == count - 1 ? pts[2] : quads[1]; | |
902 quadTo(quadPts); | |
903 lastPoint = quadPts[2]; | |
904 quads += 2; | |
905 } | |
906 } | |
907 | |
908 ////////////////////////////////////////////////////////////////////////////// | |
909 #if GR_AA_CONVEX_TESSELLATOR_VIZ | |
910 static const SkScalar kPointRadius = 0.02f; | |
911 static const SkScalar kArrowStrokeWidth = 0.0f; | |
912 static const SkScalar kArrowLength = 0.2f; | |
913 static const SkScalar kEdgeTextSize = 0.1f; | |
914 static const SkScalar kPointTextSize = 0.02f; | |
915 | |
916 static void draw_point(SkCanvas* canvas, const SkPoint& p, SkScalar paramValue,
bool stroke) { | |
917 SkPaint paint; | |
918 SkASSERT(paramValue <= 1.0f); | |
919 int gs = int(255*paramValue); | |
920 paint.setARGB(255, gs, gs, gs); | |
921 | |
922 canvas->drawCircle(p.fX, p.fY, kPointRadius, paint); | |
923 | |
924 if (stroke) { | |
925 SkPaint stroke; | |
926 stroke.setColor(SK_ColorYELLOW); | |
927 stroke.setStyle(SkPaint::kStroke_Style); | |
928 stroke.setStrokeWidth(kPointRadius/3.0f); | |
929 canvas->drawCircle(p.fX, p.fY, kPointRadius, stroke); | |
930 } | |
931 } | |
932 | |
933 static void draw_line(SkCanvas* canvas, const SkPoint& p0, const SkPoint& p1, Sk
Color color) { | |
934 SkPaint p; | |
935 p.setColor(color); | |
936 | |
937 canvas->drawLine(p0.fX, p0.fY, p1.fX, p1.fY, p); | |
938 } | |
939 | |
940 static void draw_arrow(SkCanvas*canvas, const SkPoint& p, const SkPoint &n, | |
941 SkScalar len, SkColor color) { | |
942 SkPaint paint; | |
943 paint.setColor(color); | |
944 paint.setStrokeWidth(kArrowStrokeWidth); | |
945 paint.setStyle(SkPaint::kStroke_Style); | |
946 | |
947 canvas->drawLine(p.fX, p.fY, | |
948 p.fX + len * n.fX, p.fY + len * n.fY, | |
949 paint); | |
950 } | |
951 | |
952 void GrAAConvexTessellator::Ring::draw(SkCanvas* canvas, const GrAAConvexTessell
ator& tess) const { | |
953 SkPaint paint; | |
954 paint.setTextSize(kEdgeTextSize); | |
955 | |
956 for (int cur = 0; cur < fPts.count(); ++cur) { | |
957 int next = (cur + 1) % fPts.count(); | |
958 | |
959 draw_line(canvas, | |
960 tess.point(fPts[cur].fIndex), | |
961 tess.point(fPts[next].fIndex), | |
962 SK_ColorGREEN); | |
963 | |
964 SkPoint mid = tess.point(fPts[cur].fIndex) + tess.point(fPts[next].fInde
x); | |
965 mid.scale(0.5f); | |
966 | |
967 if (fPts.count()) { | |
968 draw_arrow(canvas, mid, fPts[cur].fNorm, kArrowLength, SK_ColorRED); | |
969 mid.fX += (kArrowLength/2) * fPts[cur].fNorm.fX; | |
970 mid.fY += (kArrowLength/2) * fPts[cur].fNorm.fY; | |
971 } | |
972 | |
973 SkString num; | |
974 num.printf("%d", this->origEdgeID(cur)); | |
975 canvas->drawText(num.c_str(), num.size(), mid.fX, mid.fY, paint); | |
976 | |
977 if (fPts.count()) { | |
978 draw_arrow(canvas, tess.point(fPts[cur].fIndex), fPts[cur].fBisector
, | |
979 kArrowLength, SK_ColorBLUE); | |
980 } | |
981 } | |
982 } | |
983 | |
984 void GrAAConvexTessellator::draw(SkCanvas* canvas) const { | |
985 for (int i = 0; i < fIndices.count(); i += 3) { | |
986 SkASSERT(fIndices[i] < this->numPts()) ; | |
987 SkASSERT(fIndices[i+1] < this->numPts()) ; | |
988 SkASSERT(fIndices[i+2] < this->numPts()) ; | |
989 | |
990 draw_line(canvas, | |
991 this->point(this->fIndices[i]), this->point(this->fIndices[i+1
]), | |
992 SK_ColorBLACK); | |
993 draw_line(canvas, | |
994 this->point(this->fIndices[i+1]), this->point(this->fIndices[i
+2]), | |
995 SK_ColorBLACK); | |
996 draw_line(canvas, | |
997 this->point(this->fIndices[i+2]), this->point(this->fIndices[i
]), | |
998 SK_ColorBLACK); | |
999 } | |
1000 | |
1001 fInitialRing.draw(canvas, *this); | |
1002 for (int i = 0; i < fRings.count(); ++i) { | |
1003 fRings[i]->draw(canvas, *this); | |
1004 } | |
1005 | |
1006 for (int i = 0; i < this->numPts(); ++i) { | |
1007 draw_point(canvas, | |
1008 this->point(i), 0.5f + (this->depth(i)/(2 * kAntialiasingRadi
us)), | |
1009 !this->movable(i)); | |
1010 | |
1011 SkPaint paint; | |
1012 paint.setTextSize(kPointTextSize); | |
1013 paint.setTextAlign(SkPaint::kCenter_Align); | |
1014 if (this->depth(i) <= -kAntialiasingRadius) { | |
1015 paint.setColor(SK_ColorWHITE); | |
1016 } | |
1017 | |
1018 SkString num; | |
1019 num.printf("%d", i); | |
1020 canvas->drawText(num.c_str(), num.size(), | |
1021 this->point(i).fX, this->point(i).fY+(kPointRadius/2.0f
), | |
1022 paint); | |
1023 } | |
1024 } | |
1025 | |
1026 #endif | |
1027 | |
OLD | NEW |