| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 * Copyright 2015 Google Inc. | |
| 3 * | |
| 4 * Use of this source code is governed by a BSD-style license that can be | |
| 5 * found in the LICENSE file. | |
| 6 */ | |
| 7 | |
| 8 #include "GrAAConvexTessellator.h" | |
| 9 #include "SkCanvas.h" | |
| 10 #include "SkPath.h" | |
| 11 #include "SkPoint.h" | |
| 12 #include "SkString.h" | |
| 13 #include "GrPathUtils.h" | |
| 14 | |
| 15 // Next steps: | |
| 16 // add an interactive sample app slide | |
| 17 // add debug check that all points are suitably far apart | |
| 18 // test more degenerate cases | |
| 19 | |
| 20 // The tolerance for fusing vertices and eliminating colinear lines (It is in de
vice space). | |
| 21 static const SkScalar kClose = (SK_Scalar1 / 16); | |
| 22 static const SkScalar kCloseSqd = SkScalarMul(kClose, kClose); | |
| 23 | |
| 24 // tesselation tolerance values, in device space pixels | |
| 25 static const SkScalar kQuadTolerance = 0.2f; | |
| 26 static const SkScalar kCubicTolerance = 0.2f; | |
| 27 static const SkScalar kConicTolerance = 0.5f; | |
| 28 | |
| 29 // dot product below which we use a round cap between curve segments | |
| 30 static const SkScalar kRoundCapThreshold = 0.8f; | |
| 31 | |
| 32 static SkScalar intersect(const SkPoint& p0, const SkPoint& n0, | |
| 33 const SkPoint& p1, const SkPoint& n1) { | |
| 34 const SkPoint v = p1 - p0; | |
| 35 SkScalar perpDot = n0.fX * n1.fY - n0.fY * n1.fX; | |
| 36 return (v.fX * n1.fY - v.fY * n1.fX) / perpDot; | |
| 37 } | |
| 38 | |
| 39 // This is a special case version of intersect where we have the vector | |
| 40 // perpendicular to the second line rather than the vector parallel to it. | |
| 41 static SkScalar perp_intersect(const SkPoint& p0, const SkPoint& n0, | |
| 42 const SkPoint& p1, const SkPoint& perp) { | |
| 43 const SkPoint v = p1 - p0; | |
| 44 SkScalar perpDot = n0.dot(perp); | |
| 45 return v.dot(perp) / perpDot; | |
| 46 } | |
| 47 | |
| 48 static bool duplicate_pt(const SkPoint& p0, const SkPoint& p1) { | |
| 49 SkScalar distSq = p0.distanceToSqd(p1); | |
| 50 return distSq < kCloseSqd; | |
| 51 } | |
| 52 | |
| 53 static SkScalar abs_dist_from_line(const SkPoint& p0, const SkVector& v, const S
kPoint& test) { | |
| 54 SkPoint testV = test - p0; | |
| 55 SkScalar dist = testV.fX * v.fY - testV.fY * v.fX; | |
| 56 return SkScalarAbs(dist); | |
| 57 } | |
| 58 | |
| 59 int GrAAConvexTessellator::addPt(const SkPoint& pt, | |
| 60 SkScalar depth, | |
| 61 SkScalar coverage, | |
| 62 bool movable, | |
| 63 bool isCurve) { | |
| 64 this->validate(); | |
| 65 | |
| 66 int index = fPts.count(); | |
| 67 *fPts.push() = pt; | |
| 68 *fCoverages.push() = coverage; | |
| 69 *fMovable.push() = movable; | |
| 70 *fIsCurve.push() = isCurve; | |
| 71 | |
| 72 this->validate(); | |
| 73 return index; | |
| 74 } | |
| 75 | |
| 76 void GrAAConvexTessellator::popLastPt() { | |
| 77 this->validate(); | |
| 78 | |
| 79 fPts.pop(); | |
| 80 fCoverages.pop(); | |
| 81 fMovable.pop(); | |
| 82 | |
| 83 this->validate(); | |
| 84 } | |
| 85 | |
| 86 void GrAAConvexTessellator::popFirstPtShuffle() { | |
| 87 this->validate(); | |
| 88 | |
| 89 fPts.removeShuffle(0); | |
| 90 fCoverages.removeShuffle(0); | |
| 91 fMovable.removeShuffle(0); | |
| 92 | |
| 93 this->validate(); | |
| 94 } | |
| 95 | |
| 96 void GrAAConvexTessellator::updatePt(int index, | |
| 97 const SkPoint& pt, | |
| 98 SkScalar depth, | |
| 99 SkScalar coverage) { | |
| 100 this->validate(); | |
| 101 SkASSERT(fMovable[index]); | |
| 102 | |
| 103 fPts[index] = pt; | |
| 104 fCoverages[index] = coverage; | |
| 105 } | |
| 106 | |
| 107 void GrAAConvexTessellator::addTri(int i0, int i1, int i2) { | |
| 108 if (i0 == i1 || i1 == i2 || i2 == i0) { | |
| 109 return; | |
| 110 } | |
| 111 | |
| 112 *fIndices.push() = i0; | |
| 113 *fIndices.push() = i1; | |
| 114 *fIndices.push() = i2; | |
| 115 } | |
| 116 | |
| 117 void GrAAConvexTessellator::rewind() { | |
| 118 fPts.rewind(); | |
| 119 fCoverages.rewind(); | |
| 120 fMovable.rewind(); | |
| 121 fIndices.rewind(); | |
| 122 fNorms.rewind(); | |
| 123 fInitialRing.rewind(); | |
| 124 fCandidateVerts.rewind(); | |
| 125 #if GR_AA_CONVEX_TESSELLATOR_VIZ | |
| 126 fRings.rewind(); // TODO: leak in this case! | |
| 127 #else | |
| 128 fRings[0].rewind(); | |
| 129 fRings[1].rewind(); | |
| 130 #endif | |
| 131 } | |
| 132 | |
| 133 void GrAAConvexTessellator::computeBisectors() { | |
| 134 fBisectors.setCount(fNorms.count()); | |
| 135 | |
| 136 int prev = fBisectors.count() - 1; | |
| 137 for (int cur = 0; cur < fBisectors.count(); prev = cur, ++cur) { | |
| 138 fBisectors[cur] = fNorms[cur] + fNorms[prev]; | |
| 139 if (!fBisectors[cur].normalize()) { | |
| 140 SkASSERT(SkPoint::kLeft_Side == fSide || SkPoint::kRight_Side == fSi
de); | |
| 141 fBisectors[cur].setOrthog(fNorms[cur], (SkPoint::Side)-fSide); | |
| 142 SkVector other; | |
| 143 other.setOrthog(fNorms[prev], fSide); | |
| 144 fBisectors[cur] += other; | |
| 145 SkAssertResult(fBisectors[cur].normalize()); | |
| 146 } else { | |
| 147 fBisectors[cur].negate(); // make the bisector face in | |
| 148 } | |
| 149 | |
| 150 SkASSERT(SkScalarNearlyEqual(1.0f, fBisectors[cur].length())); | |
| 151 } | |
| 152 } | |
| 153 | |
| 154 // Create as many rings as we need to (up to a predefined limit) to reach the sp
ecified target | |
| 155 // depth. If we are in fill mode, the final ring will automatically be fanned. | |
| 156 bool GrAAConvexTessellator::createInsetRings(Ring& previousRing, SkScalar initia
lDepth, | |
| 157 SkScalar initialCoverage, SkScalar
targetDepth, | |
| 158 SkScalar targetCoverage, Ring** fin
alRing) { | |
| 159 static const int kMaxNumRings = 8; | |
| 160 | |
| 161 if (previousRing.numPts() < 3) { | |
| 162 return false; | |
| 163 } | |
| 164 Ring* currentRing = &previousRing; | |
| 165 int i; | |
| 166 for (i = 0; i < kMaxNumRings; ++i) { | |
| 167 Ring* nextRing = this->getNextRing(currentRing); | |
| 168 SkASSERT(nextRing != currentRing); | |
| 169 | |
| 170 bool done = this->createInsetRing(*currentRing, nextRing, initialDepth,
initialCoverage, | |
| 171 targetDepth, targetCoverage, i == 0); | |
| 172 currentRing = nextRing; | |
| 173 if (done) { | |
| 174 break; | |
| 175 } | |
| 176 currentRing->init(*this); | |
| 177 } | |
| 178 | |
| 179 if (kMaxNumRings == i) { | |
| 180 // Bail if we've exceeded the amount of time we want to throw at this. | |
| 181 this->terminate(*currentRing); | |
| 182 return false; | |
| 183 } | |
| 184 bool done = currentRing->numPts() >= 3; | |
| 185 if (done) { | |
| 186 currentRing->init(*this); | |
| 187 } | |
| 188 *finalRing = currentRing; | |
| 189 return done; | |
| 190 } | |
| 191 | |
| 192 // The general idea here is to, conceptually, start with the original polygon an
d slide | |
| 193 // the vertices along the bisectors until the first intersection. At that | |
| 194 // point two of the edges collapse and the process repeats on the new polygon. | |
| 195 // The polygon state is captured in the Ring class while the GrAAConvexTessellat
or | |
| 196 // controls the iteration. The CandidateVerts holds the formative points for the | |
| 197 // next ring. | |
| 198 bool GrAAConvexTessellator::tessellate(const SkMatrix& m, const SkPath& path) { | |
| 199 if (!this->extractFromPath(m, path)) { | |
| 200 return false; | |
| 201 } | |
| 202 | |
| 203 SkScalar coverage = 1.0f; | |
| 204 SkScalar scaleFactor = 0.0f; | |
| 205 if (fStrokeWidth >= 0.0f) { | |
| 206 SkASSERT(m.isSimilarity()); | |
| 207 scaleFactor = m.getMaxScale(); // x and y scale are the same | |
| 208 SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth; | |
| 209 Ring outerStrokeRing; | |
| 210 this->createOuterRing(fInitialRing, effectiveStrokeWidth / 2 - kAntialia
singRadius, | |
| 211 coverage, &outerStrokeRing); | |
| 212 outerStrokeRing.init(*this); | |
| 213 Ring outerAARing; | |
| 214 this->createOuterRing(outerStrokeRing, kAntialiasingRadius * 2, 0.0f, &o
uterAARing); | |
| 215 } else { | |
| 216 Ring outerAARing; | |
| 217 this->createOuterRing(fInitialRing, kAntialiasingRadius, 0.0f, &outerAAR
ing); | |
| 218 } | |
| 219 | |
| 220 // the bisectors are only needed for the computation of the outer ring | |
| 221 fBisectors.rewind(); | |
| 222 if (fStrokeWidth >= 0.0f && fInitialRing.numPts() > 2) { | |
| 223 SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth; | |
| 224 Ring* insetStrokeRing; | |
| 225 SkScalar strokeDepth = effectiveStrokeWidth / 2 - kAntialiasingRadius; | |
| 226 if (this->createInsetRings(fInitialRing, 0.0f, coverage, strokeDepth, co
verage, | |
| 227 &insetStrokeRing)) { | |
| 228 Ring* insetAARing; | |
| 229 this->createInsetRings(*insetStrokeRing, strokeDepth, coverage, stro
keDepth + | |
| 230 kAntialiasingRadius * 2, 0.0f, &insetAARing); | |
| 231 } | |
| 232 } else { | |
| 233 Ring* insetAARing; | |
| 234 this->createInsetRings(fInitialRing, 0.0f, 0.5f, kAntialiasingRadius, 1.
0f, &insetAARing); | |
| 235 } | |
| 236 | |
| 237 SkDEBUGCODE(this->validate();) | |
| 238 return true; | |
| 239 } | |
| 240 | |
| 241 SkScalar GrAAConvexTessellator::computeDepthFromEdge(int edgeIdx, const SkPoint&
p) const { | |
| 242 SkASSERT(edgeIdx < fNorms.count()); | |
| 243 | |
| 244 SkPoint v = p - fPts[edgeIdx]; | |
| 245 SkScalar depth = -fNorms[edgeIdx].dot(v); | |
| 246 return depth; | |
| 247 } | |
| 248 | |
| 249 // Find a point that is 'desiredDepth' away from the 'edgeIdx'-th edge and lies | |
| 250 // along the 'bisector' from the 'startIdx'-th point. | |
| 251 bool GrAAConvexTessellator::computePtAlongBisector(int startIdx, | |
| 252 const SkVector& bisector, | |
| 253 int edgeIdx, | |
| 254 SkScalar desiredDepth, | |
| 255 SkPoint* result) const { | |
| 256 const SkPoint& norm = fNorms[edgeIdx]; | |
| 257 | |
| 258 // First find the point where the edge and the bisector intersect | |
| 259 SkPoint newP; | |
| 260 | |
| 261 SkScalar t = perp_intersect(fPts[startIdx], bisector, fPts[edgeIdx], norm); | |
| 262 if (SkScalarNearlyEqual(t, 0.0f)) { | |
| 263 // the start point was one of the original ring points | |
| 264 SkASSERT(startIdx < fPts.count()); | |
| 265 newP = fPts[startIdx]; | |
| 266 } else if (t < 0.0f) { | |
| 267 newP = bisector; | |
| 268 newP.scale(t); | |
| 269 newP += fPts[startIdx]; | |
| 270 } else { | |
| 271 return false; | |
| 272 } | |
| 273 | |
| 274 // Then offset along the bisector from that point the correct distance | |
| 275 SkScalar dot = bisector.dot(norm); | |
| 276 t = -desiredDepth / dot; | |
| 277 *result = bisector; | |
| 278 result->scale(t); | |
| 279 *result += newP; | |
| 280 | |
| 281 return true; | |
| 282 } | |
| 283 | |
| 284 bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& pat
h) { | |
| 285 SkASSERT(SkPath::kConvex_Convexity == path.getConvexity()); | |
| 286 | |
| 287 // Outer ring: 3*numPts | |
| 288 // Middle ring: numPts | |
| 289 // Presumptive inner ring: numPts | |
| 290 this->reservePts(5*path.countPoints()); | |
| 291 // Outer ring: 12*numPts | |
| 292 // Middle ring: 0 | |
| 293 // Presumptive inner ring: 6*numPts + 6 | |
| 294 fIndices.setReserve(18*path.countPoints() + 6); | |
| 295 | |
| 296 fNorms.setReserve(path.countPoints()); | |
| 297 | |
| 298 // TODO: is there a faster way to extract the points from the path? Perhaps | |
| 299 // get all the points via a new entry point, transform them all in bulk | |
| 300 // and then walk them to find duplicates? | |
| 301 SkPath::Iter iter(path, true); | |
| 302 SkPoint pts[4]; | |
| 303 SkPath::Verb verb; | |
| 304 while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { | |
| 305 switch (verb) { | |
| 306 case SkPath::kLine_Verb: | |
| 307 this->lineTo(m, pts[1], false); | |
| 308 break; | |
| 309 case SkPath::kQuad_Verb: | |
| 310 this->quadTo(m, pts); | |
| 311 break; | |
| 312 case SkPath::kCubic_Verb: | |
| 313 this->cubicTo(m, pts); | |
| 314 break; | |
| 315 case SkPath::kConic_Verb: | |
| 316 this->conicTo(m, pts, iter.conicWeight()); | |
| 317 break; | |
| 318 case SkPath::kMove_Verb: | |
| 319 case SkPath::kClose_Verb: | |
| 320 case SkPath::kDone_Verb: | |
| 321 break; | |
| 322 } | |
| 323 } | |
| 324 | |
| 325 if (this->numPts() < 2) { | |
| 326 return false; | |
| 327 } | |
| 328 | |
| 329 // check if last point is a duplicate of the first point. If so, remove it. | |
| 330 if (duplicate_pt(fPts[this->numPts()-1], fPts[0])) { | |
| 331 this->popLastPt(); | |
| 332 fNorms.pop(); | |
| 333 } | |
| 334 | |
| 335 SkASSERT(fPts.count() == fNorms.count()+1); | |
| 336 if (this->numPts() >= 3) { | |
| 337 if (abs_dist_from_line(fPts.top(), fNorms.top(), fPts[0]) < kClose) { | |
| 338 // The last point is on the line from the second to last to the firs
t point. | |
| 339 this->popLastPt(); | |
| 340 fNorms.pop(); | |
| 341 } | |
| 342 | |
| 343 *fNorms.push() = fPts[0] - fPts.top(); | |
| 344 SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top()); | |
| 345 SkASSERT(len > 0.0f); | |
| 346 SkASSERT(fPts.count() == fNorms.count()); | |
| 347 } | |
| 348 | |
| 349 if (this->numPts() >= 3 && abs_dist_from_line(fPts[0], fNorms.top(), fPts[1]
) < kClose) { | |
| 350 // The first point is on the line from the last to the second. | |
| 351 this->popFirstPtShuffle(); | |
| 352 fNorms.removeShuffle(0); | |
| 353 fNorms[0] = fPts[1] - fPts[0]; | |
| 354 SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms[0]); | |
| 355 SkASSERT(len > 0.0f); | |
| 356 SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[0].length())); | |
| 357 } | |
| 358 | |
| 359 if (this->numPts() >= 3) { | |
| 360 // Check the cross product of the final trio | |
| 361 SkScalar cross = SkPoint::CrossProduct(fNorms[0], fNorms.top()); | |
| 362 if (cross > 0.0f) { | |
| 363 fSide = SkPoint::kRight_Side; | |
| 364 } else { | |
| 365 fSide = SkPoint::kLeft_Side; | |
| 366 } | |
| 367 | |
| 368 // Make all the normals face outwards rather than along the edge | |
| 369 for (int cur = 0; cur < fNorms.count(); ++cur) { | |
| 370 fNorms[cur].setOrthog(fNorms[cur], fSide); | |
| 371 SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length())); | |
| 372 } | |
| 373 | |
| 374 this->computeBisectors(); | |
| 375 } else if (this->numPts() == 2) { | |
| 376 // We've got two points, so we're degenerate. | |
| 377 if (fStrokeWidth < 0.0f) { | |
| 378 // it's a fill, so we don't need to worry about degenerate paths | |
| 379 return false; | |
| 380 } | |
| 381 // For stroking, we still need to process the degenerate path, so fix it
up | |
| 382 fSide = SkPoint::kLeft_Side; | |
| 383 | |
| 384 // Make all the normals face outwards rather than along the edge | |
| 385 for (int cur = 0; cur < fNorms.count(); ++cur) { | |
| 386 fNorms[cur].setOrthog(fNorms[cur], fSide); | |
| 387 SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length())); | |
| 388 } | |
| 389 | |
| 390 fNorms.push(SkPoint::Make(-fNorms[0].fX, -fNorms[0].fY)); | |
| 391 // we won't actually use the bisectors, so just push zeroes | |
| 392 fBisectors.push(SkPoint::Make(0.0, 0.0)); | |
| 393 fBisectors.push(SkPoint::Make(0.0, 0.0)); | |
| 394 } else { | |
| 395 return false; | |
| 396 } | |
| 397 | |
| 398 fCandidateVerts.setReserve(this->numPts()); | |
| 399 fInitialRing.setReserve(this->numPts()); | |
| 400 for (int i = 0; i < this->numPts(); ++i) { | |
| 401 fInitialRing.addIdx(i, i); | |
| 402 } | |
| 403 fInitialRing.init(fNorms, fBisectors); | |
| 404 | |
| 405 this->validate(); | |
| 406 return true; | |
| 407 } | |
| 408 | |
| 409 GrAAConvexTessellator::Ring* GrAAConvexTessellator::getNextRing(Ring* lastRing)
{ | |
| 410 #if GR_AA_CONVEX_TESSELLATOR_VIZ | |
| 411 Ring* ring = *fRings.push() = new Ring; | |
| 412 ring->setReserve(fInitialRing.numPts()); | |
| 413 ring->rewind(); | |
| 414 return ring; | |
| 415 #else | |
| 416 // Flip flop back and forth between fRings[0] & fRings[1] | |
| 417 int nextRing = (lastRing == &fRings[0]) ? 1 : 0; | |
| 418 fRings[nextRing].setReserve(fInitialRing.numPts()); | |
| 419 fRings[nextRing].rewind(); | |
| 420 return &fRings[nextRing]; | |
| 421 #endif | |
| 422 } | |
| 423 | |
| 424 void GrAAConvexTessellator::fanRing(const Ring& ring) { | |
| 425 // fan out from point 0 | |
| 426 int startIdx = ring.index(0); | |
| 427 for (int cur = ring.numPts() - 2; cur >= 0; --cur) { | |
| 428 this->addTri(startIdx, ring.index(cur), ring.index(cur + 1)); | |
| 429 } | |
| 430 } | |
| 431 | |
| 432 void GrAAConvexTessellator::createOuterRing(const Ring& previousRing, SkScalar o
utset, | |
| 433 SkScalar coverage, Ring* nextRing) { | |
| 434 const int numPts = previousRing.numPts(); | |
| 435 if (numPts == 0) { | |
| 436 return; | |
| 437 } | |
| 438 | |
| 439 int prev = numPts - 1; | |
| 440 int lastPerpIdx = -1, firstPerpIdx = -1; | |
| 441 | |
| 442 const SkScalar outsetSq = SkScalarMul(outset, outset); | |
| 443 SkScalar miterLimitSq = SkScalarMul(outset, fMiterLimit); | |
| 444 miterLimitSq = SkScalarMul(miterLimitSq, miterLimitSq); | |
| 445 for (int cur = 0; cur < numPts; ++cur) { | |
| 446 int originalIdx = previousRing.index(cur); | |
| 447 // For each vertex of the original polygon we add at least two points to
the | |
| 448 // outset polygon - one extending perpendicular to each impinging edge.
Connecting these | |
| 449 // two points yields a bevel join. We need one additional point for a mi
tered join, and | |
| 450 // a round join requires one or more points depending upon curvature. | |
| 451 | |
| 452 // The perpendicular point for the last edge | |
| 453 SkPoint normal1 = previousRing.norm(prev); | |
| 454 SkPoint perp1 = normal1; | |
| 455 perp1.scale(outset); | |
| 456 perp1 += this->point(originalIdx); | |
| 457 | |
| 458 // The perpendicular point for the next edge. | |
| 459 SkPoint normal2 = previousRing.norm(cur); | |
| 460 SkPoint perp2 = normal2; | |
| 461 perp2.scale(outset); | |
| 462 perp2 += fPts[originalIdx]; | |
| 463 | |
| 464 bool isCurve = fIsCurve[originalIdx]; | |
| 465 | |
| 466 // We know it isn't a duplicate of the prior point (since it and this | |
| 467 // one are just perpendicular offsets from the non-merged polygon points
) | |
| 468 int perp1Idx = this->addPt(perp1, -outset, coverage, false, isCurve); | |
| 469 nextRing->addIdx(perp1Idx, originalIdx); | |
| 470 | |
| 471 int perp2Idx; | |
| 472 // For very shallow angles all the corner points could fuse. | |
| 473 if (duplicate_pt(perp2, this->point(perp1Idx))) { | |
| 474 perp2Idx = perp1Idx; | |
| 475 } else { | |
| 476 perp2Idx = this->addPt(perp2, -outset, coverage, false, isCurve); | |
| 477 } | |
| 478 | |
| 479 if (perp2Idx != perp1Idx) { | |
| 480 if (isCurve) { | |
| 481 // bevel or round depending upon curvature | |
| 482 SkScalar dotProd = normal1.dot(normal2); | |
| 483 if (dotProd < kRoundCapThreshold) { | |
| 484 // Currently we "round" by creating a single extra point, wh
ich produces | |
| 485 // good results for common cases. For thick strokes with hig
h curvature, we will | |
| 486 // need to add more points; for the time being we simply fal
l back to software | |
| 487 // rendering for thick strokes. | |
| 488 SkPoint miter = previousRing.bisector(cur); | |
| 489 miter.setLength(-outset); | |
| 490 miter += fPts[originalIdx]; | |
| 491 | |
| 492 // For very shallow angles all the corner points could fuse | |
| 493 if (!duplicate_pt(miter, this->point(perp1Idx))) { | |
| 494 int miterIdx; | |
| 495 miterIdx = this->addPt(miter, -outset, coverage, false,
false); | |
| 496 nextRing->addIdx(miterIdx, originalIdx); | |
| 497 // The two triangles for the corner | |
| 498 this->addTri(originalIdx, perp1Idx, miterIdx); | |
| 499 this->addTri(originalIdx, miterIdx, perp2Idx); | |
| 500 } | |
| 501 } else { | |
| 502 this->addTri(originalIdx, perp1Idx, perp2Idx); | |
| 503 } | |
| 504 } else { | |
| 505 switch (fJoin) { | |
| 506 case SkPaint::Join::kMiter_Join: { | |
| 507 // The bisector outset point | |
| 508 SkPoint miter = previousRing.bisector(cur); | |
| 509 SkScalar dotProd = normal1.dot(normal2); | |
| 510 SkScalar sinHalfAngleSq = SkScalarHalf(SK_Scalar1 + dotP
rod); | |
| 511 SkScalar lengthSq = outsetSq / sinHalfAngleSq; | |
| 512 if (lengthSq > miterLimitSq) { | |
| 513 // just bevel it | |
| 514 this->addTri(originalIdx, perp1Idx, perp2Idx); | |
| 515 break; | |
| 516 } | |
| 517 miter.setLength(-SkScalarSqrt(lengthSq)); | |
| 518 miter += fPts[originalIdx]; | |
| 519 | |
| 520 // For very shallow angles all the corner points could f
use | |
| 521 if (!duplicate_pt(miter, this->point(perp1Idx))) { | |
| 522 int miterIdx; | |
| 523 miterIdx = this->addPt(miter, -outset, coverage, fal
se, false); | |
| 524 nextRing->addIdx(miterIdx, originalIdx); | |
| 525 // The two triangles for the corner | |
| 526 this->addTri(originalIdx, perp1Idx, miterIdx); | |
| 527 this->addTri(originalIdx, miterIdx, perp2Idx); | |
| 528 } | |
| 529 break; | |
| 530 } | |
| 531 case SkPaint::Join::kBevel_Join: | |
| 532 this->addTri(originalIdx, perp1Idx, perp2Idx); | |
| 533 break; | |
| 534 default: | |
| 535 // kRound_Join is unsupported for now. GrAALinearizingCo
nvexPathRenderer is | |
| 536 // only willing to draw mitered or beveled, so we should
never get here. | |
| 537 SkASSERT(false); | |
| 538 } | |
| 539 } | |
| 540 | |
| 541 nextRing->addIdx(perp2Idx, originalIdx); | |
| 542 } | |
| 543 | |
| 544 if (0 == cur) { | |
| 545 // Store the index of the first perpendicular point to finish up | |
| 546 firstPerpIdx = perp1Idx; | |
| 547 SkASSERT(-1 == lastPerpIdx); | |
| 548 } else { | |
| 549 // The triangles for the previous edge | |
| 550 int prevIdx = previousRing.index(prev); | |
| 551 this->addTri(prevIdx, perp1Idx, originalIdx); | |
| 552 this->addTri(prevIdx, lastPerpIdx, perp1Idx); | |
| 553 } | |
| 554 | |
| 555 // Track the last perpendicular outset point so we can construct the | |
| 556 // trailing edge triangles. | |
| 557 lastPerpIdx = perp2Idx; | |
| 558 prev = cur; | |
| 559 } | |
| 560 | |
| 561 // pick up the final edge rect | |
| 562 int lastIdx = previousRing.index(numPts - 1); | |
| 563 this->addTri(lastIdx, firstPerpIdx, previousRing.index(0)); | |
| 564 this->addTri(lastIdx, lastPerpIdx, firstPerpIdx); | |
| 565 | |
| 566 this->validate(); | |
| 567 } | |
| 568 | |
| 569 // Something went wrong in the creation of the next ring. If we're filling the s
hape, just go ahead | |
| 570 // and fan it. | |
| 571 void GrAAConvexTessellator::terminate(const Ring& ring) { | |
| 572 if (fStrokeWidth < 0.0f) { | |
| 573 this->fanRing(ring); | |
| 574 } | |
| 575 } | |
| 576 | |
| 577 static SkScalar compute_coverage(SkScalar depth, SkScalar initialDepth, SkScalar
initialCoverage, | |
| 578 SkScalar targetDepth, SkScalar targetCoverage) { | |
| 579 if (SkScalarNearlyEqual(initialDepth, targetDepth)) { | |
| 580 return targetCoverage; | |
| 581 } | |
| 582 SkScalar result = (depth - initialDepth) / (targetDepth - initialDepth) * | |
| 583 (targetCoverage - initialCoverage) + initialCoverage; | |
| 584 return SkScalarClampMax(result, 1.0f); | |
| 585 } | |
| 586 | |
| 587 // return true when processing is complete | |
| 588 bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing
, | |
| 589 SkScalar initialDepth, SkScalar init
ialCoverage, | |
| 590 SkScalar targetDepth, SkScalar targe
tCoverage, | |
| 591 bool forceNew) { | |
| 592 bool done = false; | |
| 593 | |
| 594 fCandidateVerts.rewind(); | |
| 595 | |
| 596 // Loop through all the points in the ring and find the intersection with th
e smallest depth | |
| 597 SkScalar minDist = SK_ScalarMax, minT = 0.0f; | |
| 598 int minEdgeIdx = -1; | |
| 599 | |
| 600 for (int cur = 0; cur < lastRing.numPts(); ++cur) { | |
| 601 int next = (cur + 1) % lastRing.numPts(); | |
| 602 SkScalar t = intersect(this->point(lastRing.index(cur)), lastRing.bisec
tor(cur), | |
| 603 this->point(lastRing.index(next)), lastRing.bisec
tor(next)); | |
| 604 SkScalar dist = -t * lastRing.norm(cur).dot(lastRing.bisector(cur)); | |
| 605 | |
| 606 if (minDist > dist) { | |
| 607 minDist = dist; | |
| 608 minT = t; | |
| 609 minEdgeIdx = cur; | |
| 610 } | |
| 611 } | |
| 612 | |
| 613 if (minEdgeIdx == -1) { | |
| 614 return false; | |
| 615 } | |
| 616 SkPoint newPt = lastRing.bisector(minEdgeIdx); | |
| 617 newPt.scale(minT); | |
| 618 newPt += this->point(lastRing.index(minEdgeIdx)); | |
| 619 | |
| 620 SkScalar depth = this->computeDepthFromEdge(lastRing.origEdgeID(minEdgeIdx),
newPt); | |
| 621 if (depth >= targetDepth) { | |
| 622 // None of the bisectors intersect before reaching the desired depth. | |
| 623 // Just step them all to the desired depth | |
| 624 depth = targetDepth; | |
| 625 done = true; | |
| 626 } | |
| 627 | |
| 628 // 'dst' stores where each point in the last ring maps to/transforms into | |
| 629 // in the next ring. | |
| 630 SkTDArray<int> dst; | |
| 631 dst.setCount(lastRing.numPts()); | |
| 632 | |
| 633 // Create the first point (who compares with no one) | |
| 634 if (!this->computePtAlongBisector(lastRing.index(0), | |
| 635 lastRing.bisector(0), | |
| 636 lastRing.origEdgeID(0), | |
| 637 depth, &newPt)) { | |
| 638 this->terminate(lastRing); | |
| 639 return true; | |
| 640 } | |
| 641 dst[0] = fCandidateVerts.addNewPt(newPt, | |
| 642 lastRing.index(0), lastRing.origEdgeID(0), | |
| 643 !this->movable(lastRing.index(0))); | |
| 644 | |
| 645 // Handle the middle points (who only compare with the prior point) | |
| 646 for (int cur = 1; cur < lastRing.numPts()-1; ++cur) { | |
| 647 if (!this->computePtAlongBisector(lastRing.index(cur), | |
| 648 lastRing.bisector(cur), | |
| 649 lastRing.origEdgeID(cur), | |
| 650 depth, &newPt)) { | |
| 651 this->terminate(lastRing); | |
| 652 return true; | |
| 653 } | |
| 654 if (!duplicate_pt(newPt, fCandidateVerts.lastPoint())) { | |
| 655 dst[cur] = fCandidateVerts.addNewPt(newPt, | |
| 656 lastRing.index(cur), lastRing.or
igEdgeID(cur), | |
| 657 !this->movable(lastRing.index(cu
r))); | |
| 658 } else { | |
| 659 dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur)); | |
| 660 } | |
| 661 } | |
| 662 | |
| 663 // Check on the last point (handling the wrap around) | |
| 664 int cur = lastRing.numPts()-1; | |
| 665 if (!this->computePtAlongBisector(lastRing.index(cur), | |
| 666 lastRing.bisector(cur), | |
| 667 lastRing.origEdgeID(cur), | |
| 668 depth, &newPt)) { | |
| 669 this->terminate(lastRing); | |
| 670 return true; | |
| 671 } | |
| 672 bool dupPrev = duplicate_pt(newPt, fCandidateVerts.lastPoint()); | |
| 673 bool dupNext = duplicate_pt(newPt, fCandidateVerts.firstPoint()); | |
| 674 | |
| 675 if (!dupPrev && !dupNext) { | |
| 676 dst[cur] = fCandidateVerts.addNewPt(newPt, | |
| 677 lastRing.index(cur), lastRing.origEd
geID(cur), | |
| 678 !this->movable(lastRing.index(cur)))
; | |
| 679 } else if (dupPrev && !dupNext) { | |
| 680 dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur)); | |
| 681 } else if (!dupPrev && dupNext) { | |
| 682 dst[cur] = fCandidateVerts.fuseWithNext(); | |
| 683 } else { | |
| 684 bool dupPrevVsNext = duplicate_pt(fCandidateVerts.firstPoint(), fCandida
teVerts.lastPoint()); | |
| 685 | |
| 686 if (!dupPrevVsNext) { | |
| 687 dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur)); | |
| 688 } else { | |
| 689 const int fused = fCandidateVerts.fuseWithBoth(); | |
| 690 dst[cur] = fused; | |
| 691 const int targetIdx = dst[cur - 1]; | |
| 692 for (int i = cur - 1; i >= 0 && dst[i] == targetIdx; i--) { | |
| 693 dst[i] = fused; | |
| 694 } | |
| 695 } | |
| 696 } | |
| 697 | |
| 698 // Fold the new ring's points into the global pool | |
| 699 for (int i = 0; i < fCandidateVerts.numPts(); ++i) { | |
| 700 int newIdx; | |
| 701 if (fCandidateVerts.needsToBeNew(i) || forceNew) { | |
| 702 // if the originating index is still valid then this point wasn't | |
| 703 // fused (and is thus movable) | |
| 704 SkScalar coverage = compute_coverage(depth, initialDepth, initialCov
erage, | |
| 705 targetDepth, targetCoverage); | |
| 706 newIdx = this->addPt(fCandidateVerts.point(i), depth, coverage, | |
| 707 fCandidateVerts.originatingIdx(i) != -1, false)
; | |
| 708 } else { | |
| 709 SkASSERT(fCandidateVerts.originatingIdx(i) != -1); | |
| 710 this->updatePt(fCandidateVerts.originatingIdx(i), fCandidateVerts.po
int(i), depth, | |
| 711 targetCoverage); | |
| 712 newIdx = fCandidateVerts.originatingIdx(i); | |
| 713 } | |
| 714 | |
| 715 nextRing->addIdx(newIdx, fCandidateVerts.origEdge(i)); | |
| 716 } | |
| 717 | |
| 718 // 'dst' currently has indices into the ring. Remap these to be indices | |
| 719 // into the global pool since the triangulation operates in that space. | |
| 720 for (int i = 0; i < dst.count(); ++i) { | |
| 721 dst[i] = nextRing->index(dst[i]); | |
| 722 } | |
| 723 | |
| 724 for (int cur = 0; cur < lastRing.numPts(); ++cur) { | |
| 725 int next = (cur + 1) % lastRing.numPts(); | |
| 726 | |
| 727 this->addTri(lastRing.index(cur), lastRing.index(next), dst[next]); | |
| 728 this->addTri(lastRing.index(cur), dst[next], dst[cur]); | |
| 729 } | |
| 730 | |
| 731 if (done && fStrokeWidth < 0.0f) { | |
| 732 // fill | |
| 733 this->fanRing(*nextRing); | |
| 734 } | |
| 735 | |
| 736 if (nextRing->numPts() < 3) { | |
| 737 done = true; | |
| 738 } | |
| 739 return done; | |
| 740 } | |
| 741 | |
| 742 void GrAAConvexTessellator::validate() const { | |
| 743 SkASSERT(fPts.count() == fMovable.count()); | |
| 744 SkASSERT(0 == (fIndices.count() % 3)); | |
| 745 } | |
| 746 | |
| 747 ////////////////////////////////////////////////////////////////////////////// | |
| 748 void GrAAConvexTessellator::Ring::init(const GrAAConvexTessellator& tess) { | |
| 749 this->computeNormals(tess); | |
| 750 this->computeBisectors(tess); | |
| 751 } | |
| 752 | |
| 753 void GrAAConvexTessellator::Ring::init(const SkTDArray<SkVector>& norms, | |
| 754 const SkTDArray<SkVector>& bisectors) { | |
| 755 for (int i = 0; i < fPts.count(); ++i) { | |
| 756 fPts[i].fNorm = norms[i]; | |
| 757 fPts[i].fBisector = bisectors[i]; | |
| 758 } | |
| 759 } | |
| 760 | |
| 761 // Compute the outward facing normal at each vertex. | |
| 762 void GrAAConvexTessellator::Ring::computeNormals(const GrAAConvexTessellator& te
ss) { | |
| 763 for (int cur = 0; cur < fPts.count(); ++cur) { | |
| 764 int next = (cur + 1) % fPts.count(); | |
| 765 | |
| 766 fPts[cur].fNorm = tess.point(fPts[next].fIndex) - tess.point(fPts[cur].f
Index); | |
| 767 SkPoint::Normalize(&fPts[cur].fNorm); | |
| 768 fPts[cur].fNorm.setOrthog(fPts[cur].fNorm, tess.side()); | |
| 769 } | |
| 770 } | |
| 771 | |
| 772 void GrAAConvexTessellator::Ring::computeBisectors(const GrAAConvexTessellator&
tess) { | |
| 773 int prev = fPts.count() - 1; | |
| 774 for (int cur = 0; cur < fPts.count(); prev = cur, ++cur) { | |
| 775 fPts[cur].fBisector = fPts[cur].fNorm + fPts[prev].fNorm; | |
| 776 if (!fPts[cur].fBisector.normalize()) { | |
| 777 SkASSERT(SkPoint::kLeft_Side == tess.side() || SkPoint::kRight_Side
== tess.side()); | |
| 778 fPts[cur].fBisector.setOrthog(fPts[cur].fNorm, (SkPoint::Side)-tess.
side()); | |
| 779 SkVector other; | |
| 780 other.setOrthog(fPts[prev].fNorm, tess.side()); | |
| 781 fPts[cur].fBisector += other; | |
| 782 SkAssertResult(fPts[cur].fBisector.normalize()); | |
| 783 } else { | |
| 784 fPts[cur].fBisector.negate(); // make the bisector face in | |
| 785 } | |
| 786 } | |
| 787 } | |
| 788 | |
| 789 ////////////////////////////////////////////////////////////////////////////// | |
| 790 #ifdef SK_DEBUG | |
| 791 // Is this ring convex? | |
| 792 bool GrAAConvexTessellator::Ring::isConvex(const GrAAConvexTessellator& tess) co
nst { | |
| 793 if (fPts.count() < 3) { | |
| 794 return true; | |
| 795 } | |
| 796 | |
| 797 SkPoint prev = tess.point(fPts[0].fIndex) - tess.point(fPts.top().fIndex); | |
| 798 SkPoint cur = tess.point(fPts[1].fIndex) - tess.point(fPts[0].fIndex); | |
| 799 SkScalar minDot = prev.fX * cur.fY - prev.fY * cur.fX; | |
| 800 SkScalar maxDot = minDot; | |
| 801 | |
| 802 prev = cur; | |
| 803 for (int i = 1; i < fPts.count(); ++i) { | |
| 804 int next = (i + 1) % fPts.count(); | |
| 805 | |
| 806 cur = tess.point(fPts[next].fIndex) - tess.point(fPts[i].fIndex); | |
| 807 SkScalar dot = prev.fX * cur.fY - prev.fY * cur.fX; | |
| 808 | |
| 809 minDot = SkMinScalar(minDot, dot); | |
| 810 maxDot = SkMaxScalar(maxDot, dot); | |
| 811 | |
| 812 prev = cur; | |
| 813 } | |
| 814 | |
| 815 if (SkScalarNearlyEqual(maxDot, 0.0f, 0.005f)) { | |
| 816 maxDot = 0; | |
| 817 } | |
| 818 if (SkScalarNearlyEqual(minDot, 0.0f, 0.005f)) { | |
| 819 minDot = 0; | |
| 820 } | |
| 821 return (maxDot >= 0.0f) == (minDot >= 0.0f); | |
| 822 } | |
| 823 | |
| 824 #endif | |
| 825 | |
| 826 void GrAAConvexTessellator::lineTo(SkPoint p, bool isCurve) { | |
| 827 if (this->numPts() > 0 && duplicate_pt(p, this->lastPoint())) { | |
| 828 return; | |
| 829 } | |
| 830 | |
| 831 SkASSERT(fPts.count() <= 1 || fPts.count() == fNorms.count()+1); | |
| 832 if (this->numPts() >= 2 && | |
| 833 abs_dist_from_line(fPts.top(), fNorms.top(), p) < kClose) { | |
| 834 // The old last point is on the line from the second to last to the new
point | |
| 835 this->popLastPt(); | |
| 836 fNorms.pop(); | |
| 837 fIsCurve.pop(); | |
| 838 } | |
| 839 SkScalar initialRingCoverage = fStrokeWidth < 0.0f ? 0.5f : 1.0f; | |
| 840 this->addPt(p, 0.0f, initialRingCoverage, false, isCurve); | |
| 841 if (this->numPts() > 1) { | |
| 842 *fNorms.push() = fPts.top() - fPts[fPts.count()-2]; | |
| 843 SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top()); | |
| 844 SkASSERT(len > 0.0f); | |
| 845 SkASSERT(SkScalarNearlyEqual(1.0f, fNorms.top().length())); | |
| 846 } | |
| 847 } | |
| 848 | |
| 849 void GrAAConvexTessellator::lineTo(const SkMatrix& m, SkPoint p, bool isCurve) { | |
| 850 m.mapPoints(&p, 1); | |
| 851 this->lineTo(p, isCurve); | |
| 852 } | |
| 853 | |
| 854 void GrAAConvexTessellator::quadTo(SkPoint pts[3]) { | |
| 855 int maxCount = GrPathUtils::quadraticPointCount(pts, kQuadTolerance); | |
| 856 fPointBuffer.setReserve(maxCount); | |
| 857 SkPoint* target = fPointBuffer.begin(); | |
| 858 int count = GrPathUtils::generateQuadraticPoints(pts[0], pts[1], pts[2], | |
| 859 kQuadTolerance, &target, maxCount); | |
| 860 fPointBuffer.setCount(count); | |
| 861 for (int i = 0; i < count; i++) { | |
| 862 lineTo(fPointBuffer[i], true); | |
| 863 } | |
| 864 } | |
| 865 | |
| 866 void GrAAConvexTessellator::quadTo(const SkMatrix& m, SkPoint pts[3]) { | |
| 867 SkPoint transformed[3]; | |
| 868 transformed[0] = pts[0]; | |
| 869 transformed[1] = pts[1]; | |
| 870 transformed[2] = pts[2]; | |
| 871 m.mapPoints(transformed, 3); | |
| 872 quadTo(transformed); | |
| 873 } | |
| 874 | |
| 875 void GrAAConvexTessellator::cubicTo(const SkMatrix& m, SkPoint pts[4]) { | |
| 876 m.mapPoints(pts, 4); | |
| 877 int maxCount = GrPathUtils::cubicPointCount(pts, kCubicTolerance); | |
| 878 fPointBuffer.setReserve(maxCount); | |
| 879 SkPoint* target = fPointBuffer.begin(); | |
| 880 int count = GrPathUtils::generateCubicPoints(pts[0], pts[1], pts[2], pts[3],
| |
| 881 kCubicTolerance, &target, maxCount); | |
| 882 fPointBuffer.setCount(count); | |
| 883 for (int i = 0; i < count; i++) { | |
| 884 lineTo(fPointBuffer[i], true); | |
| 885 } | |
| 886 } | |
| 887 | |
| 888 // include down here to avoid compilation errors caused by "-" overload in SkGeo
metry.h | |
| 889 #include "SkGeometry.h" | |
| 890 | |
| 891 void GrAAConvexTessellator::conicTo(const SkMatrix& m, SkPoint pts[3], SkScalar
w) { | |
| 892 m.mapPoints(pts, 3); | |
| 893 SkAutoConicToQuads quadder; | |
| 894 const SkPoint* quads = quadder.computeQuads(pts, w, kConicTolerance); | |
| 895 SkPoint lastPoint = *(quads++); | |
| 896 int count = quadder.countQuads(); | |
| 897 for (int i = 0; i < count; ++i) { | |
| 898 SkPoint quadPts[3]; | |
| 899 quadPts[0] = lastPoint; | |
| 900 quadPts[1] = quads[0]; | |
| 901 quadPts[2] = i == count - 1 ? pts[2] : quads[1]; | |
| 902 quadTo(quadPts); | |
| 903 lastPoint = quadPts[2]; | |
| 904 quads += 2; | |
| 905 } | |
| 906 } | |
| 907 | |
| 908 ////////////////////////////////////////////////////////////////////////////// | |
| 909 #if GR_AA_CONVEX_TESSELLATOR_VIZ | |
| 910 static const SkScalar kPointRadius = 0.02f; | |
| 911 static const SkScalar kArrowStrokeWidth = 0.0f; | |
| 912 static const SkScalar kArrowLength = 0.2f; | |
| 913 static const SkScalar kEdgeTextSize = 0.1f; | |
| 914 static const SkScalar kPointTextSize = 0.02f; | |
| 915 | |
| 916 static void draw_point(SkCanvas* canvas, const SkPoint& p, SkScalar paramValue,
bool stroke) { | |
| 917 SkPaint paint; | |
| 918 SkASSERT(paramValue <= 1.0f); | |
| 919 int gs = int(255*paramValue); | |
| 920 paint.setARGB(255, gs, gs, gs); | |
| 921 | |
| 922 canvas->drawCircle(p.fX, p.fY, kPointRadius, paint); | |
| 923 | |
| 924 if (stroke) { | |
| 925 SkPaint stroke; | |
| 926 stroke.setColor(SK_ColorYELLOW); | |
| 927 stroke.setStyle(SkPaint::kStroke_Style); | |
| 928 stroke.setStrokeWidth(kPointRadius/3.0f); | |
| 929 canvas->drawCircle(p.fX, p.fY, kPointRadius, stroke); | |
| 930 } | |
| 931 } | |
| 932 | |
| 933 static void draw_line(SkCanvas* canvas, const SkPoint& p0, const SkPoint& p1, Sk
Color color) { | |
| 934 SkPaint p; | |
| 935 p.setColor(color); | |
| 936 | |
| 937 canvas->drawLine(p0.fX, p0.fY, p1.fX, p1.fY, p); | |
| 938 } | |
| 939 | |
| 940 static void draw_arrow(SkCanvas*canvas, const SkPoint& p, const SkPoint &n, | |
| 941 SkScalar len, SkColor color) { | |
| 942 SkPaint paint; | |
| 943 paint.setColor(color); | |
| 944 paint.setStrokeWidth(kArrowStrokeWidth); | |
| 945 paint.setStyle(SkPaint::kStroke_Style); | |
| 946 | |
| 947 canvas->drawLine(p.fX, p.fY, | |
| 948 p.fX + len * n.fX, p.fY + len * n.fY, | |
| 949 paint); | |
| 950 } | |
| 951 | |
| 952 void GrAAConvexTessellator::Ring::draw(SkCanvas* canvas, const GrAAConvexTessell
ator& tess) const { | |
| 953 SkPaint paint; | |
| 954 paint.setTextSize(kEdgeTextSize); | |
| 955 | |
| 956 for (int cur = 0; cur < fPts.count(); ++cur) { | |
| 957 int next = (cur + 1) % fPts.count(); | |
| 958 | |
| 959 draw_line(canvas, | |
| 960 tess.point(fPts[cur].fIndex), | |
| 961 tess.point(fPts[next].fIndex), | |
| 962 SK_ColorGREEN); | |
| 963 | |
| 964 SkPoint mid = tess.point(fPts[cur].fIndex) + tess.point(fPts[next].fInde
x); | |
| 965 mid.scale(0.5f); | |
| 966 | |
| 967 if (fPts.count()) { | |
| 968 draw_arrow(canvas, mid, fPts[cur].fNorm, kArrowLength, SK_ColorRED); | |
| 969 mid.fX += (kArrowLength/2) * fPts[cur].fNorm.fX; | |
| 970 mid.fY += (kArrowLength/2) * fPts[cur].fNorm.fY; | |
| 971 } | |
| 972 | |
| 973 SkString num; | |
| 974 num.printf("%d", this->origEdgeID(cur)); | |
| 975 canvas->drawText(num.c_str(), num.size(), mid.fX, mid.fY, paint); | |
| 976 | |
| 977 if (fPts.count()) { | |
| 978 draw_arrow(canvas, tess.point(fPts[cur].fIndex), fPts[cur].fBisector
, | |
| 979 kArrowLength, SK_ColorBLUE); | |
| 980 } | |
| 981 } | |
| 982 } | |
| 983 | |
| 984 void GrAAConvexTessellator::draw(SkCanvas* canvas) const { | |
| 985 for (int i = 0; i < fIndices.count(); i += 3) { | |
| 986 SkASSERT(fIndices[i] < this->numPts()) ; | |
| 987 SkASSERT(fIndices[i+1] < this->numPts()) ; | |
| 988 SkASSERT(fIndices[i+2] < this->numPts()) ; | |
| 989 | |
| 990 draw_line(canvas, | |
| 991 this->point(this->fIndices[i]), this->point(this->fIndices[i+1
]), | |
| 992 SK_ColorBLACK); | |
| 993 draw_line(canvas, | |
| 994 this->point(this->fIndices[i+1]), this->point(this->fIndices[i
+2]), | |
| 995 SK_ColorBLACK); | |
| 996 draw_line(canvas, | |
| 997 this->point(this->fIndices[i+2]), this->point(this->fIndices[i
]), | |
| 998 SK_ColorBLACK); | |
| 999 } | |
| 1000 | |
| 1001 fInitialRing.draw(canvas, *this); | |
| 1002 for (int i = 0; i < fRings.count(); ++i) { | |
| 1003 fRings[i]->draw(canvas, *this); | |
| 1004 } | |
| 1005 | |
| 1006 for (int i = 0; i < this->numPts(); ++i) { | |
| 1007 draw_point(canvas, | |
| 1008 this->point(i), 0.5f + (this->depth(i)/(2 * kAntialiasingRadi
us)), | |
| 1009 !this->movable(i)); | |
| 1010 | |
| 1011 SkPaint paint; | |
| 1012 paint.setTextSize(kPointTextSize); | |
| 1013 paint.setTextAlign(SkPaint::kCenter_Align); | |
| 1014 if (this->depth(i) <= -kAntialiasingRadius) { | |
| 1015 paint.setColor(SK_ColorWHITE); | |
| 1016 } | |
| 1017 | |
| 1018 SkString num; | |
| 1019 num.printf("%d", i); | |
| 1020 canvas->drawText(num.c_str(), num.size(), | |
| 1021 this->point(i).fX, this->point(i).fY+(kPointRadius/2.0f
), | |
| 1022 paint); | |
| 1023 } | |
| 1024 } | |
| 1025 | |
| 1026 #endif | |
| 1027 | |
| OLD | NEW |