| Index: src/pathops/SkQuarticRoot.cpp
 | 
| ===================================================================
 | 
| --- src/pathops/SkQuarticRoot.cpp	(revision 0)
 | 
| +++ src/pathops/SkQuarticRoot.cpp	(revision 0)
 | 
| @@ -0,0 +1,165 @@
 | 
| +// from http://tog.acm.org/resources/GraphicsGems/gems/Roots3And4.c
 | 
| +/*
 | 
| + *  Roots3And4.c
 | 
| + *
 | 
| + *  Utility functions to find cubic and quartic roots,
 | 
| + *  coefficients are passed like this:
 | 
| + *
 | 
| + *      c[0] + c[1]*x + c[2]*x^2 + c[3]*x^3 + c[4]*x^4 = 0
 | 
| + *
 | 
| + *  The functions return the number of non-complex roots and
 | 
| + *  put the values into the s array.
 | 
| + *
 | 
| + *  Author:         Jochen Schwarze (schwarze@isa.de)
 | 
| + *
 | 
| + *  Jan 26, 1990    Version for Graphics Gems
 | 
| + *  Oct 11, 1990    Fixed sign problem for negative q's in SolveQuartic
 | 
| + *                  (reported by Mark Podlipec),
 | 
| + *                  Old-style function definitions,
 | 
| + *                  IsZero() as a macro
 | 
| + *  Nov 23, 1990    Some systems do not declare acos() and cbrt() in
 | 
| + *                  <math.h>, though the functions exist in the library.
 | 
| + *                  If large coefficients are used, EQN_EPS should be
 | 
| + *                  reduced considerably (e.g. to 1E-30), results will be
 | 
| + *                  correct but multiple roots might be reported more
 | 
| + *                  than once.
 | 
| + */
 | 
| +
 | 
| +#include "SkPathOpsCubic.h"
 | 
| +#include "SkPathOpsQuad.h"
 | 
| +#include "SkQuarticRoot.h"
 | 
| +
 | 
| +int SkReducedQuarticRoots(const double t4, const double t3, const double t2, const double t1,
 | 
| +        const double t0, const bool oneHint, double roots[4]) {
 | 
| +#ifdef SK_DEBUG
 | 
| +    // create a string mathematica understands
 | 
| +    // GDB set print repe 15 # if repeated digits is a bother
 | 
| +    //     set print elements 400 # if line doesn't fit
 | 
| +    char str[1024];
 | 
| +    bzero(str, sizeof(str));
 | 
| +    snprintf(str, sizeof(str),
 | 
| +            "Solve[%1.19g x^4 + %1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0, x]",
 | 
| +            t4, t3, t2, t1, t0);
 | 
| +    mathematica_ize(str, sizeof(str));
 | 
| +#if ONE_OFF_DEBUG && ONE_OFF_DEBUG_MATHEMATICA
 | 
| +    SkDebugf("%s\n", str);
 | 
| +#endif
 | 
| +#endif
 | 
| +    if (approximately_zero_when_compared_to(t4, t0) // 0 is one root
 | 
| +            && approximately_zero_when_compared_to(t4, t1)
 | 
| +            && approximately_zero_when_compared_to(t4, t2)) {
 | 
| +        if (approximately_zero_when_compared_to(t3, t0)
 | 
| +            && approximately_zero_when_compared_to(t3, t1)
 | 
| +            && approximately_zero_when_compared_to(t3, t2)) {
 | 
| +            return SkDQuad::RootsReal(t2, t1, t0, roots);
 | 
| +        }
 | 
| +        if (approximately_zero_when_compared_to(t4, t3)) {
 | 
| +            return SkDCubic::RootsReal(t3, t2, t1, t0, roots);
 | 
| +        }
 | 
| +    }
 | 
| +    if ((approximately_zero_when_compared_to(t0, t1) || approximately_zero(t1))  // 0 is one root
 | 
| +      //      && approximately_zero_when_compared_to(t0, t2)
 | 
| +            && approximately_zero_when_compared_to(t0, t3)
 | 
| +            && approximately_zero_when_compared_to(t0, t4)) {
 | 
| +        int num = SkDCubic::RootsReal(t4, t3, t2, t1, roots);
 | 
| +        for (int i = 0; i < num; ++i) {
 | 
| +            if (approximately_zero(roots[i])) {
 | 
| +                return num;
 | 
| +            }
 | 
| +        }
 | 
| +        roots[num++] = 0;
 | 
| +        return num;
 | 
| +    }
 | 
| +    if (oneHint) {
 | 
| +        SkASSERT(approximately_zero(t4 + t3 + t2 + t1 + t0));  // 1 is one root
 | 
| +        // note that -C == A + B + D + E
 | 
| +        int num = SkDCubic::RootsReal(t4, t4 + t3, -(t1 + t0), -t0, roots);  
 | 
| +        for (int i = 0; i < num; ++i) {
 | 
| +            if (approximately_equal(roots[i], 1)) {
 | 
| +                return num;
 | 
| +            }
 | 
| +        }
 | 
| +        roots[num++] = 1;
 | 
| +        return num;
 | 
| +    }
 | 
| +    return -1;
 | 
| +}
 | 
| +
 | 
| +int SkQuarticRootsReal(int firstCubicRoot, const double A, const double B, const double C,
 | 
| +        const double D, const double E, double s[4]) {
 | 
| +    double  u, v;
 | 
| +    /* normal form: x^4 + Ax^3 + Bx^2 + Cx + D = 0 */
 | 
| +    const double invA = 1 / A;
 | 
| +    const double a = B * invA;
 | 
| +    const double b = C * invA;
 | 
| +    const double c = D * invA;
 | 
| +    const double d = E * invA;
 | 
| +    /*  substitute x = y - a/4 to eliminate cubic term:
 | 
| +    x^4 + px^2 + qx + r = 0 */
 | 
| +    const double a2 = a * a;
 | 
| +    const double p = -3 * a2 / 8 + b;
 | 
| +    const double q = a2 * a / 8 - a * b / 2 + c;
 | 
| +    const double r = -3 * a2 * a2 / 256 + a2 * b / 16 - a * c / 4 + d;
 | 
| +    int num;
 | 
| +    if (approximately_zero(r)) {
 | 
| +    /* no absolute term: y(y^3 + py + q) = 0 */
 | 
| +        num = SkDCubic::RootsReal(1, 0, p, q, s);
 | 
| +        s[num++] = 0;
 | 
| +    } else {
 | 
| +        /* solve the resolvent cubic ... */
 | 
| +        double cubicRoots[3];
 | 
| +        int roots = SkDCubic::RootsReal(1, -p / 2, -r, r * p / 2 - q * q / 8, cubicRoots);
 | 
| +        int index;
 | 
| +        /* ... and take one real solution ... */
 | 
| +        double z;
 | 
| +        num = 0;
 | 
| +        int num2 = 0;
 | 
| +        for (index = firstCubicRoot; index < roots; ++index) {
 | 
| +            z = cubicRoots[index];
 | 
| +            /* ... to build two quadric equations */
 | 
| +            u = z * z - r;
 | 
| +            v = 2 * z - p;
 | 
| +            if (approximately_zero_squared(u)) {
 | 
| +                u = 0;
 | 
| +            } else if (u > 0) {
 | 
| +                u = sqrt(u);
 | 
| +            } else {
 | 
| +                continue;
 | 
| +            }
 | 
| +            if (approximately_zero_squared(v)) {
 | 
| +                v = 0;
 | 
| +            } else if (v > 0) {
 | 
| +                v = sqrt(v);
 | 
| +            } else {
 | 
| +                continue;
 | 
| +            }
 | 
| +            num = SkDQuad::RootsReal(1, q < 0 ? -v : v, z - u, s);
 | 
| +            num2 = SkDQuad::RootsReal(1, q < 0 ? v : -v, z + u, s + num);
 | 
| +            if (!((num | num2) & 1)) {
 | 
| +                break;  // prefer solutions without single quad roots
 | 
| +            }
 | 
| +        }
 | 
| +        num += num2;
 | 
| +        if (!num) {
 | 
| +            return 0; // no valid cubic root
 | 
| +        }
 | 
| +    }
 | 
| +    /* resubstitute */
 | 
| +    const double sub = a / 4;
 | 
| +    for (int i = 0; i < num; ++i) {
 | 
| +        s[i] -= sub;
 | 
| +    }
 | 
| +    // eliminate duplicates
 | 
| +    for (int i = 0; i < num - 1; ++i) {
 | 
| +        for (int j = i + 1; j < num; ) {
 | 
| +            if (AlmostEqualUlps(s[i], s[j])) {
 | 
| +                if (j < --num) {
 | 
| +                    s[j] = s[num];
 | 
| +                }
 | 
| +            } else {
 | 
| +                ++j;
 | 
| +            }
 | 
| +        }
 | 
| +    }
 | 
| +    return num;
 | 
| +}
 | 
| 
 |