Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1136)

Unified Diff: src/pathops/SkQuarticRoot.cpp

Issue 12880016: Add intersections for path ops (Closed) Base URL: http://skia.googlecode.com/svn/trunk/
Patch Set: Created 7 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/pathops/SkQuarticRoot.h ('k') | src/pathops/SkReduceOrder.h » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/pathops/SkQuarticRoot.cpp
===================================================================
--- src/pathops/SkQuarticRoot.cpp (revision 0)
+++ src/pathops/SkQuarticRoot.cpp (revision 0)
@@ -0,0 +1,165 @@
+// from http://tog.acm.org/resources/GraphicsGems/gems/Roots3And4.c
+/*
+ * Roots3And4.c
+ *
+ * Utility functions to find cubic and quartic roots,
+ * coefficients are passed like this:
+ *
+ * c[0] + c[1]*x + c[2]*x^2 + c[3]*x^3 + c[4]*x^4 = 0
+ *
+ * The functions return the number of non-complex roots and
+ * put the values into the s array.
+ *
+ * Author: Jochen Schwarze (schwarze@isa.de)
+ *
+ * Jan 26, 1990 Version for Graphics Gems
+ * Oct 11, 1990 Fixed sign problem for negative q's in SolveQuartic
+ * (reported by Mark Podlipec),
+ * Old-style function definitions,
+ * IsZero() as a macro
+ * Nov 23, 1990 Some systems do not declare acos() and cbrt() in
+ * <math.h>, though the functions exist in the library.
+ * If large coefficients are used, EQN_EPS should be
+ * reduced considerably (e.g. to 1E-30), results will be
+ * correct but multiple roots might be reported more
+ * than once.
+ */
+
+#include "SkPathOpsCubic.h"
+#include "SkPathOpsQuad.h"
+#include "SkQuarticRoot.h"
+
+int SkReducedQuarticRoots(const double t4, const double t3, const double t2, const double t1,
+ const double t0, const bool oneHint, double roots[4]) {
+#ifdef SK_DEBUG
+ // create a string mathematica understands
+ // GDB set print repe 15 # if repeated digits is a bother
+ // set print elements 400 # if line doesn't fit
+ char str[1024];
+ bzero(str, sizeof(str));
+ snprintf(str, sizeof(str),
+ "Solve[%1.19g x^4 + %1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0, x]",
+ t4, t3, t2, t1, t0);
+ mathematica_ize(str, sizeof(str));
+#if ONE_OFF_DEBUG && ONE_OFF_DEBUG_MATHEMATICA
+ SkDebugf("%s\n", str);
+#endif
+#endif
+ if (approximately_zero_when_compared_to(t4, t0) // 0 is one root
+ && approximately_zero_when_compared_to(t4, t1)
+ && approximately_zero_when_compared_to(t4, t2)) {
+ if (approximately_zero_when_compared_to(t3, t0)
+ && approximately_zero_when_compared_to(t3, t1)
+ && approximately_zero_when_compared_to(t3, t2)) {
+ return SkDQuad::RootsReal(t2, t1, t0, roots);
+ }
+ if (approximately_zero_when_compared_to(t4, t3)) {
+ return SkDCubic::RootsReal(t3, t2, t1, t0, roots);
+ }
+ }
+ if ((approximately_zero_when_compared_to(t0, t1) || approximately_zero(t1)) // 0 is one root
+ // && approximately_zero_when_compared_to(t0, t2)
+ && approximately_zero_when_compared_to(t0, t3)
+ && approximately_zero_when_compared_to(t0, t4)) {
+ int num = SkDCubic::RootsReal(t4, t3, t2, t1, roots);
+ for (int i = 0; i < num; ++i) {
+ if (approximately_zero(roots[i])) {
+ return num;
+ }
+ }
+ roots[num++] = 0;
+ return num;
+ }
+ if (oneHint) {
+ SkASSERT(approximately_zero(t4 + t3 + t2 + t1 + t0)); // 1 is one root
+ // note that -C == A + B + D + E
+ int num = SkDCubic::RootsReal(t4, t4 + t3, -(t1 + t0), -t0, roots);
+ for (int i = 0; i < num; ++i) {
+ if (approximately_equal(roots[i], 1)) {
+ return num;
+ }
+ }
+ roots[num++] = 1;
+ return num;
+ }
+ return -1;
+}
+
+int SkQuarticRootsReal(int firstCubicRoot, const double A, const double B, const double C,
+ const double D, const double E, double s[4]) {
+ double u, v;
+ /* normal form: x^4 + Ax^3 + Bx^2 + Cx + D = 0 */
+ const double invA = 1 / A;
+ const double a = B * invA;
+ const double b = C * invA;
+ const double c = D * invA;
+ const double d = E * invA;
+ /* substitute x = y - a/4 to eliminate cubic term:
+ x^4 + px^2 + qx + r = 0 */
+ const double a2 = a * a;
+ const double p = -3 * a2 / 8 + b;
+ const double q = a2 * a / 8 - a * b / 2 + c;
+ const double r = -3 * a2 * a2 / 256 + a2 * b / 16 - a * c / 4 + d;
+ int num;
+ if (approximately_zero(r)) {
+ /* no absolute term: y(y^3 + py + q) = 0 */
+ num = SkDCubic::RootsReal(1, 0, p, q, s);
+ s[num++] = 0;
+ } else {
+ /* solve the resolvent cubic ... */
+ double cubicRoots[3];
+ int roots = SkDCubic::RootsReal(1, -p / 2, -r, r * p / 2 - q * q / 8, cubicRoots);
+ int index;
+ /* ... and take one real solution ... */
+ double z;
+ num = 0;
+ int num2 = 0;
+ for (index = firstCubicRoot; index < roots; ++index) {
+ z = cubicRoots[index];
+ /* ... to build two quadric equations */
+ u = z * z - r;
+ v = 2 * z - p;
+ if (approximately_zero_squared(u)) {
+ u = 0;
+ } else if (u > 0) {
+ u = sqrt(u);
+ } else {
+ continue;
+ }
+ if (approximately_zero_squared(v)) {
+ v = 0;
+ } else if (v > 0) {
+ v = sqrt(v);
+ } else {
+ continue;
+ }
+ num = SkDQuad::RootsReal(1, q < 0 ? -v : v, z - u, s);
+ num2 = SkDQuad::RootsReal(1, q < 0 ? v : -v, z + u, s + num);
+ if (!((num | num2) & 1)) {
+ break; // prefer solutions without single quad roots
+ }
+ }
+ num += num2;
+ if (!num) {
+ return 0; // no valid cubic root
+ }
+ }
+ /* resubstitute */
+ const double sub = a / 4;
+ for (int i = 0; i < num; ++i) {
+ s[i] -= sub;
+ }
+ // eliminate duplicates
+ for (int i = 0; i < num - 1; ++i) {
+ for (int j = i + 1; j < num; ) {
+ if (AlmostEqualUlps(s[i], s[j])) {
+ if (j < --num) {
+ s[j] = s[num];
+ }
+ } else {
+ ++j;
+ }
+ }
+ }
+ return num;
+}
« no previous file with comments | « src/pathops/SkQuarticRoot.h ('k') | src/pathops/SkReduceOrder.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698