Index: src/pathops/SkQuarticRoot.cpp |
=================================================================== |
--- src/pathops/SkQuarticRoot.cpp (revision 0) |
+++ src/pathops/SkQuarticRoot.cpp (revision 0) |
@@ -0,0 +1,165 @@ |
+// from http://tog.acm.org/resources/GraphicsGems/gems/Roots3And4.c |
+/* |
+ * Roots3And4.c |
+ * |
+ * Utility functions to find cubic and quartic roots, |
+ * coefficients are passed like this: |
+ * |
+ * c[0] + c[1]*x + c[2]*x^2 + c[3]*x^3 + c[4]*x^4 = 0 |
+ * |
+ * The functions return the number of non-complex roots and |
+ * put the values into the s array. |
+ * |
+ * Author: Jochen Schwarze (schwarze@isa.de) |
+ * |
+ * Jan 26, 1990 Version for Graphics Gems |
+ * Oct 11, 1990 Fixed sign problem for negative q's in SolveQuartic |
+ * (reported by Mark Podlipec), |
+ * Old-style function definitions, |
+ * IsZero() as a macro |
+ * Nov 23, 1990 Some systems do not declare acos() and cbrt() in |
+ * <math.h>, though the functions exist in the library. |
+ * If large coefficients are used, EQN_EPS should be |
+ * reduced considerably (e.g. to 1E-30), results will be |
+ * correct but multiple roots might be reported more |
+ * than once. |
+ */ |
+ |
+#include "SkPathOpsCubic.h" |
+#include "SkPathOpsQuad.h" |
+#include "SkQuarticRoot.h" |
+ |
+int SkReducedQuarticRoots(const double t4, const double t3, const double t2, const double t1, |
+ const double t0, const bool oneHint, double roots[4]) { |
+#ifdef SK_DEBUG |
+ // create a string mathematica understands |
+ // GDB set print repe 15 # if repeated digits is a bother |
+ // set print elements 400 # if line doesn't fit |
+ char str[1024]; |
+ bzero(str, sizeof(str)); |
+ snprintf(str, sizeof(str), |
+ "Solve[%1.19g x^4 + %1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0, x]", |
+ t4, t3, t2, t1, t0); |
+ mathematica_ize(str, sizeof(str)); |
+#if ONE_OFF_DEBUG && ONE_OFF_DEBUG_MATHEMATICA |
+ SkDebugf("%s\n", str); |
+#endif |
+#endif |
+ if (approximately_zero_when_compared_to(t4, t0) // 0 is one root |
+ && approximately_zero_when_compared_to(t4, t1) |
+ && approximately_zero_when_compared_to(t4, t2)) { |
+ if (approximately_zero_when_compared_to(t3, t0) |
+ && approximately_zero_when_compared_to(t3, t1) |
+ && approximately_zero_when_compared_to(t3, t2)) { |
+ return SkDQuad::RootsReal(t2, t1, t0, roots); |
+ } |
+ if (approximately_zero_when_compared_to(t4, t3)) { |
+ return SkDCubic::RootsReal(t3, t2, t1, t0, roots); |
+ } |
+ } |
+ if ((approximately_zero_when_compared_to(t0, t1) || approximately_zero(t1)) // 0 is one root |
+ // && approximately_zero_when_compared_to(t0, t2) |
+ && approximately_zero_when_compared_to(t0, t3) |
+ && approximately_zero_when_compared_to(t0, t4)) { |
+ int num = SkDCubic::RootsReal(t4, t3, t2, t1, roots); |
+ for (int i = 0; i < num; ++i) { |
+ if (approximately_zero(roots[i])) { |
+ return num; |
+ } |
+ } |
+ roots[num++] = 0; |
+ return num; |
+ } |
+ if (oneHint) { |
+ SkASSERT(approximately_zero(t4 + t3 + t2 + t1 + t0)); // 1 is one root |
+ // note that -C == A + B + D + E |
+ int num = SkDCubic::RootsReal(t4, t4 + t3, -(t1 + t0), -t0, roots); |
+ for (int i = 0; i < num; ++i) { |
+ if (approximately_equal(roots[i], 1)) { |
+ return num; |
+ } |
+ } |
+ roots[num++] = 1; |
+ return num; |
+ } |
+ return -1; |
+} |
+ |
+int SkQuarticRootsReal(int firstCubicRoot, const double A, const double B, const double C, |
+ const double D, const double E, double s[4]) { |
+ double u, v; |
+ /* normal form: x^4 + Ax^3 + Bx^2 + Cx + D = 0 */ |
+ const double invA = 1 / A; |
+ const double a = B * invA; |
+ const double b = C * invA; |
+ const double c = D * invA; |
+ const double d = E * invA; |
+ /* substitute x = y - a/4 to eliminate cubic term: |
+ x^4 + px^2 + qx + r = 0 */ |
+ const double a2 = a * a; |
+ const double p = -3 * a2 / 8 + b; |
+ const double q = a2 * a / 8 - a * b / 2 + c; |
+ const double r = -3 * a2 * a2 / 256 + a2 * b / 16 - a * c / 4 + d; |
+ int num; |
+ if (approximately_zero(r)) { |
+ /* no absolute term: y(y^3 + py + q) = 0 */ |
+ num = SkDCubic::RootsReal(1, 0, p, q, s); |
+ s[num++] = 0; |
+ } else { |
+ /* solve the resolvent cubic ... */ |
+ double cubicRoots[3]; |
+ int roots = SkDCubic::RootsReal(1, -p / 2, -r, r * p / 2 - q * q / 8, cubicRoots); |
+ int index; |
+ /* ... and take one real solution ... */ |
+ double z; |
+ num = 0; |
+ int num2 = 0; |
+ for (index = firstCubicRoot; index < roots; ++index) { |
+ z = cubicRoots[index]; |
+ /* ... to build two quadric equations */ |
+ u = z * z - r; |
+ v = 2 * z - p; |
+ if (approximately_zero_squared(u)) { |
+ u = 0; |
+ } else if (u > 0) { |
+ u = sqrt(u); |
+ } else { |
+ continue; |
+ } |
+ if (approximately_zero_squared(v)) { |
+ v = 0; |
+ } else if (v > 0) { |
+ v = sqrt(v); |
+ } else { |
+ continue; |
+ } |
+ num = SkDQuad::RootsReal(1, q < 0 ? -v : v, z - u, s); |
+ num2 = SkDQuad::RootsReal(1, q < 0 ? v : -v, z + u, s + num); |
+ if (!((num | num2) & 1)) { |
+ break; // prefer solutions without single quad roots |
+ } |
+ } |
+ num += num2; |
+ if (!num) { |
+ return 0; // no valid cubic root |
+ } |
+ } |
+ /* resubstitute */ |
+ const double sub = a / 4; |
+ for (int i = 0; i < num; ++i) { |
+ s[i] -= sub; |
+ } |
+ // eliminate duplicates |
+ for (int i = 0; i < num - 1; ++i) { |
+ for (int j = i + 1; j < num; ) { |
+ if (AlmostEqualUlps(s[i], s[j])) { |
+ if (j < --num) { |
+ s[j] = s[num]; |
+ } |
+ } else { |
+ ++j; |
+ } |
+ } |
+ } |
+ return num; |
+} |