Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(762)

Side by Side Diff: src/jsregexp.h

Issue 1285163003: Move regexp implementation into its own folder. (Closed) Base URL: https://chromium.googlesource.com/v8/v8.git@master
Patch Set: addressed comment Created 5 years, 4 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « src/isolate.cc ('k') | src/jsregexp.cc » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_JSREGEXP_H_
6 #define V8_JSREGEXP_H_
7
8 #include "src/allocation.h"
9 #include "src/assembler.h"
10
11 namespace v8 {
12 namespace internal {
13
14 class NodeVisitor;
15 class RegExpCompiler;
16 class RegExpMacroAssembler;
17 class RegExpNode;
18 class RegExpTree;
19 class BoyerMooreLookahead;
20
21 class RegExpImpl {
22 public:
23 // Whether V8 is compiled with native regexp support or not.
24 static bool UsesNativeRegExp() {
25 #ifdef V8_INTERPRETED_REGEXP
26 return false;
27 #else
28 return true;
29 #endif
30 }
31
32 // Creates a regular expression literal in the old space.
33 // This function calls the garbage collector if necessary.
34 MUST_USE_RESULT static MaybeHandle<Object> CreateRegExpLiteral(
35 Handle<JSFunction> constructor,
36 Handle<String> pattern,
37 Handle<String> flags);
38
39 // Returns a string representation of a regular expression.
40 // Implements RegExp.prototype.toString, see ECMA-262 section 15.10.6.4.
41 // This function calls the garbage collector if necessary.
42 static Handle<String> ToString(Handle<Object> value);
43
44 // Parses the RegExp pattern and prepares the JSRegExp object with
45 // generic data and choice of implementation - as well as what
46 // the implementation wants to store in the data field.
47 // Returns false if compilation fails.
48 MUST_USE_RESULT static MaybeHandle<Object> Compile(Handle<JSRegExp> re,
49 Handle<String> pattern,
50 JSRegExp::Flags flags);
51
52 // See ECMA-262 section 15.10.6.2.
53 // This function calls the garbage collector if necessary.
54 MUST_USE_RESULT static MaybeHandle<Object> Exec(
55 Handle<JSRegExp> regexp,
56 Handle<String> subject,
57 int index,
58 Handle<JSArray> lastMatchInfo);
59
60 // Prepares a JSRegExp object with Irregexp-specific data.
61 static void IrregexpInitialize(Handle<JSRegExp> re,
62 Handle<String> pattern,
63 JSRegExp::Flags flags,
64 int capture_register_count);
65
66
67 static void AtomCompile(Handle<JSRegExp> re,
68 Handle<String> pattern,
69 JSRegExp::Flags flags,
70 Handle<String> match_pattern);
71
72
73 static int AtomExecRaw(Handle<JSRegExp> regexp,
74 Handle<String> subject,
75 int index,
76 int32_t* output,
77 int output_size);
78
79
80 static Handle<Object> AtomExec(Handle<JSRegExp> regexp,
81 Handle<String> subject,
82 int index,
83 Handle<JSArray> lastMatchInfo);
84
85 enum IrregexpResult { RE_FAILURE = 0, RE_SUCCESS = 1, RE_EXCEPTION = -1 };
86
87 // Prepare a RegExp for being executed one or more times (using
88 // IrregexpExecOnce) on the subject.
89 // This ensures that the regexp is compiled for the subject, and that
90 // the subject is flat.
91 // Returns the number of integer spaces required by IrregexpExecOnce
92 // as its "registers" argument. If the regexp cannot be compiled,
93 // an exception is set as pending, and this function returns negative.
94 static int IrregexpPrepare(Handle<JSRegExp> regexp,
95 Handle<String> subject);
96
97 // Execute a regular expression on the subject, starting from index.
98 // If matching succeeds, return the number of matches. This can be larger
99 // than one in the case of global regular expressions.
100 // The captures and subcaptures are stored into the registers vector.
101 // If matching fails, returns RE_FAILURE.
102 // If execution fails, sets a pending exception and returns RE_EXCEPTION.
103 static int IrregexpExecRaw(Handle<JSRegExp> regexp,
104 Handle<String> subject,
105 int index,
106 int32_t* output,
107 int output_size);
108
109 // Execute an Irregexp bytecode pattern.
110 // On a successful match, the result is a JSArray containing
111 // captured positions. On a failure, the result is the null value.
112 // Returns an empty handle in case of an exception.
113 MUST_USE_RESULT static MaybeHandle<Object> IrregexpExec(
114 Handle<JSRegExp> regexp,
115 Handle<String> subject,
116 int index,
117 Handle<JSArray> lastMatchInfo);
118
119 // Set last match info. If match is NULL, then setting captures is omitted.
120 static Handle<JSArray> SetLastMatchInfo(Handle<JSArray> last_match_info,
121 Handle<String> subject,
122 int capture_count,
123 int32_t* match);
124
125
126 class GlobalCache {
127 public:
128 GlobalCache(Handle<JSRegExp> regexp,
129 Handle<String> subject,
130 bool is_global,
131 Isolate* isolate);
132
133 INLINE(~GlobalCache());
134
135 // Fetch the next entry in the cache for global regexp match results.
136 // This does not set the last match info. Upon failure, NULL is returned.
137 // The cause can be checked with Result(). The previous
138 // result is still in available in memory when a failure happens.
139 INLINE(int32_t* FetchNext());
140
141 INLINE(int32_t* LastSuccessfulMatch());
142
143 INLINE(bool HasException()) { return num_matches_ < 0; }
144
145 private:
146 int num_matches_;
147 int max_matches_;
148 int current_match_index_;
149 int registers_per_match_;
150 // Pointer to the last set of captures.
151 int32_t* register_array_;
152 int register_array_size_;
153 Handle<JSRegExp> regexp_;
154 Handle<String> subject_;
155 };
156
157
158 // Array index in the lastMatchInfo array.
159 static const int kLastCaptureCount = 0;
160 static const int kLastSubject = 1;
161 static const int kLastInput = 2;
162 static const int kFirstCapture = 3;
163 static const int kLastMatchOverhead = 3;
164
165 // Direct offset into the lastMatchInfo array.
166 static const int kLastCaptureCountOffset =
167 FixedArray::kHeaderSize + kLastCaptureCount * kPointerSize;
168 static const int kLastSubjectOffset =
169 FixedArray::kHeaderSize + kLastSubject * kPointerSize;
170 static const int kLastInputOffset =
171 FixedArray::kHeaderSize + kLastInput * kPointerSize;
172 static const int kFirstCaptureOffset =
173 FixedArray::kHeaderSize + kFirstCapture * kPointerSize;
174
175 // Used to access the lastMatchInfo array.
176 static int GetCapture(FixedArray* array, int index) {
177 return Smi::cast(array->get(index + kFirstCapture))->value();
178 }
179
180 static void SetLastCaptureCount(FixedArray* array, int to) {
181 array->set(kLastCaptureCount, Smi::FromInt(to));
182 }
183
184 static void SetLastSubject(FixedArray* array, String* to) {
185 array->set(kLastSubject, to);
186 }
187
188 static void SetLastInput(FixedArray* array, String* to) {
189 array->set(kLastInput, to);
190 }
191
192 static void SetCapture(FixedArray* array, int index, int to) {
193 array->set(index + kFirstCapture, Smi::FromInt(to));
194 }
195
196 static int GetLastCaptureCount(FixedArray* array) {
197 return Smi::cast(array->get(kLastCaptureCount))->value();
198 }
199
200 // For acting on the JSRegExp data FixedArray.
201 static int IrregexpMaxRegisterCount(FixedArray* re);
202 static void SetIrregexpMaxRegisterCount(FixedArray* re, int value);
203 static int IrregexpNumberOfCaptures(FixedArray* re);
204 static int IrregexpNumberOfRegisters(FixedArray* re);
205 static ByteArray* IrregexpByteCode(FixedArray* re, bool is_one_byte);
206 static Code* IrregexpNativeCode(FixedArray* re, bool is_one_byte);
207
208 // Limit the space regexps take up on the heap. In order to limit this we
209 // would like to keep track of the amount of regexp code on the heap. This
210 // is not tracked, however. As a conservative approximation we track the
211 // total regexp code compiled including code that has subsequently been freed
212 // and the total executable memory at any point.
213 static const int kRegExpExecutableMemoryLimit = 16 * MB;
214 static const int kRegExpCompiledLimit = 1 * MB;
215 static const int kRegExpTooLargeToOptimize = 20 * KB;
216
217 private:
218 static bool CompileIrregexp(Handle<JSRegExp> re,
219 Handle<String> sample_subject, bool is_one_byte);
220 static inline bool EnsureCompiledIrregexp(Handle<JSRegExp> re,
221 Handle<String> sample_subject,
222 bool is_one_byte);
223 };
224
225
226 // Represents the location of one element relative to the intersection of
227 // two sets. Corresponds to the four areas of a Venn diagram.
228 enum ElementInSetsRelation {
229 kInsideNone = 0,
230 kInsideFirst = 1,
231 kInsideSecond = 2,
232 kInsideBoth = 3
233 };
234
235
236 // Represents code units in the range from from_ to to_, both ends are
237 // inclusive.
238 class CharacterRange {
239 public:
240 CharacterRange() : from_(0), to_(0) { }
241 // For compatibility with the CHECK_OK macro
242 CharacterRange(void* null) { DCHECK_NULL(null); } // NOLINT
243 CharacterRange(uc16 from, uc16 to) : from_(from), to_(to) { }
244 static void AddClassEscape(uc16 type, ZoneList<CharacterRange>* ranges,
245 Zone* zone);
246 static Vector<const int> GetWordBounds();
247 static inline CharacterRange Singleton(uc16 value) {
248 return CharacterRange(value, value);
249 }
250 static inline CharacterRange Range(uc16 from, uc16 to) {
251 DCHECK(from <= to);
252 return CharacterRange(from, to);
253 }
254 static inline CharacterRange Everything() {
255 return CharacterRange(0, 0xFFFF);
256 }
257 bool Contains(uc16 i) { return from_ <= i && i <= to_; }
258 uc16 from() const { return from_; }
259 void set_from(uc16 value) { from_ = value; }
260 uc16 to() const { return to_; }
261 void set_to(uc16 value) { to_ = value; }
262 bool is_valid() { return from_ <= to_; }
263 bool IsEverything(uc16 max) { return from_ == 0 && to_ >= max; }
264 bool IsSingleton() { return (from_ == to_); }
265 void AddCaseEquivalents(Isolate* isolate, Zone* zone,
266 ZoneList<CharacterRange>* ranges, bool is_one_byte);
267 static void Split(ZoneList<CharacterRange>* base,
268 Vector<const int> overlay,
269 ZoneList<CharacterRange>** included,
270 ZoneList<CharacterRange>** excluded,
271 Zone* zone);
272 // Whether a range list is in canonical form: Ranges ordered by from value,
273 // and ranges non-overlapping and non-adjacent.
274 static bool IsCanonical(ZoneList<CharacterRange>* ranges);
275 // Convert range list to canonical form. The characters covered by the ranges
276 // will still be the same, but no character is in more than one range, and
277 // adjacent ranges are merged. The resulting list may be shorter than the
278 // original, but cannot be longer.
279 static void Canonicalize(ZoneList<CharacterRange>* ranges);
280 // Negate the contents of a character range in canonical form.
281 static void Negate(ZoneList<CharacterRange>* src,
282 ZoneList<CharacterRange>* dst,
283 Zone* zone);
284 static const int kStartMarker = (1 << 24);
285 static const int kPayloadMask = (1 << 24) - 1;
286
287 private:
288 uc16 from_;
289 uc16 to_;
290 };
291
292
293 // A set of unsigned integers that behaves especially well on small
294 // integers (< 32). May do zone-allocation.
295 class OutSet: public ZoneObject {
296 public:
297 OutSet() : first_(0), remaining_(NULL), successors_(NULL) { }
298 OutSet* Extend(unsigned value, Zone* zone);
299 bool Get(unsigned value) const;
300 static const unsigned kFirstLimit = 32;
301
302 private:
303 // Destructively set a value in this set. In most cases you want
304 // to use Extend instead to ensure that only one instance exists
305 // that contains the same values.
306 void Set(unsigned value, Zone* zone);
307
308 // The successors are a list of sets that contain the same values
309 // as this set and the one more value that is not present in this
310 // set.
311 ZoneList<OutSet*>* successors(Zone* zone) { return successors_; }
312
313 OutSet(uint32_t first, ZoneList<unsigned>* remaining)
314 : first_(first), remaining_(remaining), successors_(NULL) { }
315 uint32_t first_;
316 ZoneList<unsigned>* remaining_;
317 ZoneList<OutSet*>* successors_;
318 friend class Trace;
319 };
320
321
322 // A mapping from integers, specified as ranges, to a set of integers.
323 // Used for mapping character ranges to choices.
324 class DispatchTable : public ZoneObject {
325 public:
326 explicit DispatchTable(Zone* zone) : tree_(zone) { }
327
328 class Entry {
329 public:
330 Entry() : from_(0), to_(0), out_set_(NULL) { }
331 Entry(uc16 from, uc16 to, OutSet* out_set)
332 : from_(from), to_(to), out_set_(out_set) { }
333 uc16 from() { return from_; }
334 uc16 to() { return to_; }
335 void set_to(uc16 value) { to_ = value; }
336 void AddValue(int value, Zone* zone) {
337 out_set_ = out_set_->Extend(value, zone);
338 }
339 OutSet* out_set() { return out_set_; }
340 private:
341 uc16 from_;
342 uc16 to_;
343 OutSet* out_set_;
344 };
345
346 class Config {
347 public:
348 typedef uc16 Key;
349 typedef Entry Value;
350 static const uc16 kNoKey;
351 static const Entry NoValue() { return Value(); }
352 static inline int Compare(uc16 a, uc16 b) {
353 if (a == b)
354 return 0;
355 else if (a < b)
356 return -1;
357 else
358 return 1;
359 }
360 };
361
362 void AddRange(CharacterRange range, int value, Zone* zone);
363 OutSet* Get(uc16 value);
364 void Dump();
365
366 template <typename Callback>
367 void ForEach(Callback* callback) {
368 return tree()->ForEach(callback);
369 }
370
371 private:
372 // There can't be a static empty set since it allocates its
373 // successors in a zone and caches them.
374 OutSet* empty() { return &empty_; }
375 OutSet empty_;
376 ZoneSplayTree<Config>* tree() { return &tree_; }
377 ZoneSplayTree<Config> tree_;
378 };
379
380
381 #define FOR_EACH_NODE_TYPE(VISIT) \
382 VISIT(End) \
383 VISIT(Action) \
384 VISIT(Choice) \
385 VISIT(BackReference) \
386 VISIT(Assertion) \
387 VISIT(Text)
388
389
390 #define FOR_EACH_REG_EXP_TREE_TYPE(VISIT) \
391 VISIT(Disjunction) \
392 VISIT(Alternative) \
393 VISIT(Assertion) \
394 VISIT(CharacterClass) \
395 VISIT(Atom) \
396 VISIT(Quantifier) \
397 VISIT(Capture) \
398 VISIT(Lookahead) \
399 VISIT(BackReference) \
400 VISIT(Empty) \
401 VISIT(Text)
402
403
404 #define FORWARD_DECLARE(Name) class RegExp##Name;
405 FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE)
406 #undef FORWARD_DECLARE
407
408
409 class TextElement final BASE_EMBEDDED {
410 public:
411 enum TextType {
412 ATOM,
413 CHAR_CLASS
414 };
415
416 static TextElement Atom(RegExpAtom* atom);
417 static TextElement CharClass(RegExpCharacterClass* char_class);
418
419 int cp_offset() const { return cp_offset_; }
420 void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
421 int length() const;
422
423 TextType text_type() const { return text_type_; }
424
425 RegExpTree* tree() const { return tree_; }
426
427 RegExpAtom* atom() const {
428 DCHECK(text_type() == ATOM);
429 return reinterpret_cast<RegExpAtom*>(tree());
430 }
431
432 RegExpCharacterClass* char_class() const {
433 DCHECK(text_type() == CHAR_CLASS);
434 return reinterpret_cast<RegExpCharacterClass*>(tree());
435 }
436
437 private:
438 TextElement(TextType text_type, RegExpTree* tree)
439 : cp_offset_(-1), text_type_(text_type), tree_(tree) {}
440
441 int cp_offset_;
442 TextType text_type_;
443 RegExpTree* tree_;
444 };
445
446
447 class Trace;
448 struct PreloadState;
449 class GreedyLoopState;
450 class AlternativeGenerationList;
451
452 struct NodeInfo {
453 NodeInfo()
454 : being_analyzed(false),
455 been_analyzed(false),
456 follows_word_interest(false),
457 follows_newline_interest(false),
458 follows_start_interest(false),
459 at_end(false),
460 visited(false),
461 replacement_calculated(false) { }
462
463 // Returns true if the interests and assumptions of this node
464 // matches the given one.
465 bool Matches(NodeInfo* that) {
466 return (at_end == that->at_end) &&
467 (follows_word_interest == that->follows_word_interest) &&
468 (follows_newline_interest == that->follows_newline_interest) &&
469 (follows_start_interest == that->follows_start_interest);
470 }
471
472 // Updates the interests of this node given the interests of the
473 // node preceding it.
474 void AddFromPreceding(NodeInfo* that) {
475 at_end |= that->at_end;
476 follows_word_interest |= that->follows_word_interest;
477 follows_newline_interest |= that->follows_newline_interest;
478 follows_start_interest |= that->follows_start_interest;
479 }
480
481 bool HasLookbehind() {
482 return follows_word_interest ||
483 follows_newline_interest ||
484 follows_start_interest;
485 }
486
487 // Sets the interests of this node to include the interests of the
488 // following node.
489 void AddFromFollowing(NodeInfo* that) {
490 follows_word_interest |= that->follows_word_interest;
491 follows_newline_interest |= that->follows_newline_interest;
492 follows_start_interest |= that->follows_start_interest;
493 }
494
495 void ResetCompilationState() {
496 being_analyzed = false;
497 been_analyzed = false;
498 }
499
500 bool being_analyzed: 1;
501 bool been_analyzed: 1;
502
503 // These bits are set of this node has to know what the preceding
504 // character was.
505 bool follows_word_interest: 1;
506 bool follows_newline_interest: 1;
507 bool follows_start_interest: 1;
508
509 bool at_end: 1;
510 bool visited: 1;
511 bool replacement_calculated: 1;
512 };
513
514
515 // Details of a quick mask-compare check that can look ahead in the
516 // input stream.
517 class QuickCheckDetails {
518 public:
519 QuickCheckDetails()
520 : characters_(0),
521 mask_(0),
522 value_(0),
523 cannot_match_(false) { }
524 explicit QuickCheckDetails(int characters)
525 : characters_(characters),
526 mask_(0),
527 value_(0),
528 cannot_match_(false) { }
529 bool Rationalize(bool one_byte);
530 // Merge in the information from another branch of an alternation.
531 void Merge(QuickCheckDetails* other, int from_index);
532 // Advance the current position by some amount.
533 void Advance(int by, bool one_byte);
534 void Clear();
535 bool cannot_match() { return cannot_match_; }
536 void set_cannot_match() { cannot_match_ = true; }
537 struct Position {
538 Position() : mask(0), value(0), determines_perfectly(false) { }
539 uc16 mask;
540 uc16 value;
541 bool determines_perfectly;
542 };
543 int characters() { return characters_; }
544 void set_characters(int characters) { characters_ = characters; }
545 Position* positions(int index) {
546 DCHECK(index >= 0);
547 DCHECK(index < characters_);
548 return positions_ + index;
549 }
550 uint32_t mask() { return mask_; }
551 uint32_t value() { return value_; }
552
553 private:
554 // How many characters do we have quick check information from. This is
555 // the same for all branches of a choice node.
556 int characters_;
557 Position positions_[4];
558 // These values are the condensate of the above array after Rationalize().
559 uint32_t mask_;
560 uint32_t value_;
561 // If set to true, there is no way this quick check can match at all.
562 // E.g., if it requires to be at the start of the input, and isn't.
563 bool cannot_match_;
564 };
565
566
567 extern int kUninitializedRegExpNodePlaceHolder;
568
569
570 class RegExpNode: public ZoneObject {
571 public:
572 explicit RegExpNode(Zone* zone)
573 : replacement_(NULL), on_work_list_(false), trace_count_(0), zone_(zone) {
574 bm_info_[0] = bm_info_[1] = NULL;
575 }
576 virtual ~RegExpNode();
577 virtual void Accept(NodeVisitor* visitor) = 0;
578 // Generates a goto to this node or actually generates the code at this point.
579 virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0;
580 // How many characters must this node consume at a minimum in order to
581 // succeed. If we have found at least 'still_to_find' characters that
582 // must be consumed there is no need to ask any following nodes whether
583 // they are sure to eat any more characters. The not_at_start argument is
584 // used to indicate that we know we are not at the start of the input. In
585 // this case anchored branches will always fail and can be ignored when
586 // determining how many characters are consumed on success.
587 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start) = 0;
588 // Emits some quick code that checks whether the preloaded characters match.
589 // Falls through on certain failure, jumps to the label on possible success.
590 // If the node cannot make a quick check it does nothing and returns false.
591 bool EmitQuickCheck(RegExpCompiler* compiler,
592 Trace* bounds_check_trace,
593 Trace* trace,
594 bool preload_has_checked_bounds,
595 Label* on_possible_success,
596 QuickCheckDetails* details_return,
597 bool fall_through_on_failure);
598 // For a given number of characters this returns a mask and a value. The
599 // next n characters are anded with the mask and compared with the value.
600 // A comparison failure indicates the node cannot match the next n characters.
601 // A comparison success indicates the node may match.
602 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
603 RegExpCompiler* compiler,
604 int characters_filled_in,
605 bool not_at_start) = 0;
606 static const int kNodeIsTooComplexForGreedyLoops = -1;
607 virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
608 // Only returns the successor for a text node of length 1 that matches any
609 // character and that has no guards on it.
610 virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
611 RegExpCompiler* compiler) {
612 return NULL;
613 }
614
615 // Collects information on the possible code units (mod 128) that can match if
616 // we look forward. This is used for a Boyer-Moore-like string searching
617 // implementation. TODO(erikcorry): This should share more code with
618 // EatsAtLeast, GetQuickCheckDetails. The budget argument is used to limit
619 // the number of nodes we are willing to look at in order to create this data.
620 static const int kRecursionBudget = 200;
621 bool KeepRecursing(RegExpCompiler* compiler);
622 virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
623 BoyerMooreLookahead* bm, bool not_at_start) {
624 UNREACHABLE();
625 }
626
627 // If we know that the input is one-byte then there are some nodes that can
628 // never match. This method returns a node that can be substituted for
629 // itself, or NULL if the node can never match.
630 virtual RegExpNode* FilterOneByte(int depth, bool ignore_case) {
631 return this;
632 }
633 // Helper for FilterOneByte.
634 RegExpNode* replacement() {
635 DCHECK(info()->replacement_calculated);
636 return replacement_;
637 }
638 RegExpNode* set_replacement(RegExpNode* replacement) {
639 info()->replacement_calculated = true;
640 replacement_ = replacement;
641 return replacement; // For convenience.
642 }
643
644 // We want to avoid recalculating the lookahead info, so we store it on the
645 // node. Only info that is for this node is stored. We can tell that the
646 // info is for this node when offset == 0, so the information is calculated
647 // relative to this node.
648 void SaveBMInfo(BoyerMooreLookahead* bm, bool not_at_start, int offset) {
649 if (offset == 0) set_bm_info(not_at_start, bm);
650 }
651
652 Label* label() { return &label_; }
653 // If non-generic code is generated for a node (i.e. the node is not at the
654 // start of the trace) then it cannot be reused. This variable sets a limit
655 // on how often we allow that to happen before we insist on starting a new
656 // trace and generating generic code for a node that can be reused by flushing
657 // the deferred actions in the current trace and generating a goto.
658 static const int kMaxCopiesCodeGenerated = 10;
659
660 bool on_work_list() { return on_work_list_; }
661 void set_on_work_list(bool value) { on_work_list_ = value; }
662
663 NodeInfo* info() { return &info_; }
664
665 BoyerMooreLookahead* bm_info(bool not_at_start) {
666 return bm_info_[not_at_start ? 1 : 0];
667 }
668
669 Zone* zone() const { return zone_; }
670
671 protected:
672 enum LimitResult { DONE, CONTINUE };
673 RegExpNode* replacement_;
674
675 LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace);
676
677 void set_bm_info(bool not_at_start, BoyerMooreLookahead* bm) {
678 bm_info_[not_at_start ? 1 : 0] = bm;
679 }
680
681 private:
682 static const int kFirstCharBudget = 10;
683 Label label_;
684 bool on_work_list_;
685 NodeInfo info_;
686 // This variable keeps track of how many times code has been generated for
687 // this node (in different traces). We don't keep track of where the
688 // generated code is located unless the code is generated at the start of
689 // a trace, in which case it is generic and can be reused by flushing the
690 // deferred operations in the current trace and generating a goto.
691 int trace_count_;
692 BoyerMooreLookahead* bm_info_[2];
693
694 Zone* zone_;
695 };
696
697
698 // A simple closed interval.
699 class Interval {
700 public:
701 Interval() : from_(kNone), to_(kNone) { }
702 Interval(int from, int to) : from_(from), to_(to) { }
703 Interval Union(Interval that) {
704 if (that.from_ == kNone)
705 return *this;
706 else if (from_ == kNone)
707 return that;
708 else
709 return Interval(Min(from_, that.from_), Max(to_, that.to_));
710 }
711 bool Contains(int value) {
712 return (from_ <= value) && (value <= to_);
713 }
714 bool is_empty() { return from_ == kNone; }
715 int from() const { return from_; }
716 int to() const { return to_; }
717 static Interval Empty() { return Interval(); }
718 static const int kNone = -1;
719 private:
720 int from_;
721 int to_;
722 };
723
724
725 class SeqRegExpNode: public RegExpNode {
726 public:
727 explicit SeqRegExpNode(RegExpNode* on_success)
728 : RegExpNode(on_success->zone()), on_success_(on_success) { }
729 RegExpNode* on_success() { return on_success_; }
730 void set_on_success(RegExpNode* node) { on_success_ = node; }
731 virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
732 virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
733 BoyerMooreLookahead* bm, bool not_at_start) {
734 on_success_->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start);
735 if (offset == 0) set_bm_info(not_at_start, bm);
736 }
737
738 protected:
739 RegExpNode* FilterSuccessor(int depth, bool ignore_case);
740
741 private:
742 RegExpNode* on_success_;
743 };
744
745
746 class ActionNode: public SeqRegExpNode {
747 public:
748 enum ActionType {
749 SET_REGISTER,
750 INCREMENT_REGISTER,
751 STORE_POSITION,
752 BEGIN_SUBMATCH,
753 POSITIVE_SUBMATCH_SUCCESS,
754 EMPTY_MATCH_CHECK,
755 CLEAR_CAPTURES
756 };
757 static ActionNode* SetRegister(int reg, int val, RegExpNode* on_success);
758 static ActionNode* IncrementRegister(int reg, RegExpNode* on_success);
759 static ActionNode* StorePosition(int reg,
760 bool is_capture,
761 RegExpNode* on_success);
762 static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success);
763 static ActionNode* BeginSubmatch(int stack_pointer_reg,
764 int position_reg,
765 RegExpNode* on_success);
766 static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg,
767 int restore_reg,
768 int clear_capture_count,
769 int clear_capture_from,
770 RegExpNode* on_success);
771 static ActionNode* EmptyMatchCheck(int start_register,
772 int repetition_register,
773 int repetition_limit,
774 RegExpNode* on_success);
775 virtual void Accept(NodeVisitor* visitor);
776 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
777 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
778 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
779 RegExpCompiler* compiler,
780 int filled_in,
781 bool not_at_start) {
782 return on_success()->GetQuickCheckDetails(
783 details, compiler, filled_in, not_at_start);
784 }
785 virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
786 BoyerMooreLookahead* bm, bool not_at_start);
787 ActionType action_type() { return action_type_; }
788 // TODO(erikcorry): We should allow some action nodes in greedy loops.
789 virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
790
791 private:
792 union {
793 struct {
794 int reg;
795 int value;
796 } u_store_register;
797 struct {
798 int reg;
799 } u_increment_register;
800 struct {
801 int reg;
802 bool is_capture;
803 } u_position_register;
804 struct {
805 int stack_pointer_register;
806 int current_position_register;
807 int clear_register_count;
808 int clear_register_from;
809 } u_submatch;
810 struct {
811 int start_register;
812 int repetition_register;
813 int repetition_limit;
814 } u_empty_match_check;
815 struct {
816 int range_from;
817 int range_to;
818 } u_clear_captures;
819 } data_;
820 ActionNode(ActionType action_type, RegExpNode* on_success)
821 : SeqRegExpNode(on_success),
822 action_type_(action_type) { }
823 ActionType action_type_;
824 friend class DotPrinter;
825 };
826
827
828 class TextNode: public SeqRegExpNode {
829 public:
830 TextNode(ZoneList<TextElement>* elms,
831 RegExpNode* on_success)
832 : SeqRegExpNode(on_success),
833 elms_(elms) { }
834 TextNode(RegExpCharacterClass* that,
835 RegExpNode* on_success)
836 : SeqRegExpNode(on_success),
837 elms_(new(zone()) ZoneList<TextElement>(1, zone())) {
838 elms_->Add(TextElement::CharClass(that), zone());
839 }
840 virtual void Accept(NodeVisitor* visitor);
841 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
842 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
843 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
844 RegExpCompiler* compiler,
845 int characters_filled_in,
846 bool not_at_start);
847 ZoneList<TextElement>* elements() { return elms_; }
848 void MakeCaseIndependent(Isolate* isolate, bool is_one_byte);
849 virtual int GreedyLoopTextLength();
850 virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
851 RegExpCompiler* compiler);
852 virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
853 BoyerMooreLookahead* bm, bool not_at_start);
854 void CalculateOffsets();
855 virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
856
857 private:
858 enum TextEmitPassType {
859 NON_LATIN1_MATCH, // Check for characters that can't match.
860 SIMPLE_CHARACTER_MATCH, // Case-dependent single character check.
861 NON_LETTER_CHARACTER_MATCH, // Check characters that have no case equivs.
862 CASE_CHARACTER_MATCH, // Case-independent single character check.
863 CHARACTER_CLASS_MATCH // Character class.
864 };
865 static bool SkipPass(int pass, bool ignore_case);
866 static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH;
867 static const int kLastPass = CHARACTER_CLASS_MATCH;
868 void TextEmitPass(RegExpCompiler* compiler,
869 TextEmitPassType pass,
870 bool preloaded,
871 Trace* trace,
872 bool first_element_checked,
873 int* checked_up_to);
874 int Length();
875 ZoneList<TextElement>* elms_;
876 };
877
878
879 class AssertionNode: public SeqRegExpNode {
880 public:
881 enum AssertionType {
882 AT_END,
883 AT_START,
884 AT_BOUNDARY,
885 AT_NON_BOUNDARY,
886 AFTER_NEWLINE
887 };
888 static AssertionNode* AtEnd(RegExpNode* on_success) {
889 return new(on_success->zone()) AssertionNode(AT_END, on_success);
890 }
891 static AssertionNode* AtStart(RegExpNode* on_success) {
892 return new(on_success->zone()) AssertionNode(AT_START, on_success);
893 }
894 static AssertionNode* AtBoundary(RegExpNode* on_success) {
895 return new(on_success->zone()) AssertionNode(AT_BOUNDARY, on_success);
896 }
897 static AssertionNode* AtNonBoundary(RegExpNode* on_success) {
898 return new(on_success->zone()) AssertionNode(AT_NON_BOUNDARY, on_success);
899 }
900 static AssertionNode* AfterNewline(RegExpNode* on_success) {
901 return new(on_success->zone()) AssertionNode(AFTER_NEWLINE, on_success);
902 }
903 virtual void Accept(NodeVisitor* visitor);
904 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
905 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
906 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
907 RegExpCompiler* compiler,
908 int filled_in,
909 bool not_at_start);
910 virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
911 BoyerMooreLookahead* bm, bool not_at_start);
912 AssertionType assertion_type() { return assertion_type_; }
913
914 private:
915 void EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace);
916 enum IfPrevious { kIsNonWord, kIsWord };
917 void BacktrackIfPrevious(RegExpCompiler* compiler,
918 Trace* trace,
919 IfPrevious backtrack_if_previous);
920 AssertionNode(AssertionType t, RegExpNode* on_success)
921 : SeqRegExpNode(on_success), assertion_type_(t) { }
922 AssertionType assertion_type_;
923 };
924
925
926 class BackReferenceNode: public SeqRegExpNode {
927 public:
928 BackReferenceNode(int start_reg,
929 int end_reg,
930 RegExpNode* on_success)
931 : SeqRegExpNode(on_success),
932 start_reg_(start_reg),
933 end_reg_(end_reg) { }
934 virtual void Accept(NodeVisitor* visitor);
935 int start_register() { return start_reg_; }
936 int end_register() { return end_reg_; }
937 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
938 virtual int EatsAtLeast(int still_to_find,
939 int recursion_depth,
940 bool not_at_start);
941 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
942 RegExpCompiler* compiler,
943 int characters_filled_in,
944 bool not_at_start) {
945 return;
946 }
947 virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
948 BoyerMooreLookahead* bm, bool not_at_start);
949
950 private:
951 int start_reg_;
952 int end_reg_;
953 };
954
955
956 class EndNode: public RegExpNode {
957 public:
958 enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS };
959 explicit EndNode(Action action, Zone* zone)
960 : RegExpNode(zone), action_(action) { }
961 virtual void Accept(NodeVisitor* visitor);
962 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
963 virtual int EatsAtLeast(int still_to_find,
964 int recursion_depth,
965 bool not_at_start) { return 0; }
966 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
967 RegExpCompiler* compiler,
968 int characters_filled_in,
969 bool not_at_start) {
970 // Returning 0 from EatsAtLeast should ensure we never get here.
971 UNREACHABLE();
972 }
973 virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
974 BoyerMooreLookahead* bm, bool not_at_start) {
975 // Returning 0 from EatsAtLeast should ensure we never get here.
976 UNREACHABLE();
977 }
978
979 private:
980 Action action_;
981 };
982
983
984 class NegativeSubmatchSuccess: public EndNode {
985 public:
986 NegativeSubmatchSuccess(int stack_pointer_reg,
987 int position_reg,
988 int clear_capture_count,
989 int clear_capture_start,
990 Zone* zone)
991 : EndNode(NEGATIVE_SUBMATCH_SUCCESS, zone),
992 stack_pointer_register_(stack_pointer_reg),
993 current_position_register_(position_reg),
994 clear_capture_count_(clear_capture_count),
995 clear_capture_start_(clear_capture_start) { }
996 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
997
998 private:
999 int stack_pointer_register_;
1000 int current_position_register_;
1001 int clear_capture_count_;
1002 int clear_capture_start_;
1003 };
1004
1005
1006 class Guard: public ZoneObject {
1007 public:
1008 enum Relation { LT, GEQ };
1009 Guard(int reg, Relation op, int value)
1010 : reg_(reg),
1011 op_(op),
1012 value_(value) { }
1013 int reg() { return reg_; }
1014 Relation op() { return op_; }
1015 int value() { return value_; }
1016
1017 private:
1018 int reg_;
1019 Relation op_;
1020 int value_;
1021 };
1022
1023
1024 class GuardedAlternative {
1025 public:
1026 explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) { }
1027 void AddGuard(Guard* guard, Zone* zone);
1028 RegExpNode* node() { return node_; }
1029 void set_node(RegExpNode* node) { node_ = node; }
1030 ZoneList<Guard*>* guards() { return guards_; }
1031
1032 private:
1033 RegExpNode* node_;
1034 ZoneList<Guard*>* guards_;
1035 };
1036
1037
1038 class AlternativeGeneration;
1039
1040
1041 class ChoiceNode: public RegExpNode {
1042 public:
1043 explicit ChoiceNode(int expected_size, Zone* zone)
1044 : RegExpNode(zone),
1045 alternatives_(new(zone)
1046 ZoneList<GuardedAlternative>(expected_size, zone)),
1047 table_(NULL),
1048 not_at_start_(false),
1049 being_calculated_(false) { }
1050 virtual void Accept(NodeVisitor* visitor);
1051 void AddAlternative(GuardedAlternative node) {
1052 alternatives()->Add(node, zone());
1053 }
1054 ZoneList<GuardedAlternative>* alternatives() { return alternatives_; }
1055 DispatchTable* GetTable(bool ignore_case);
1056 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
1057 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
1058 int EatsAtLeastHelper(int still_to_find,
1059 int budget,
1060 RegExpNode* ignore_this_node,
1061 bool not_at_start);
1062 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
1063 RegExpCompiler* compiler,
1064 int characters_filled_in,
1065 bool not_at_start);
1066 virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
1067 BoyerMooreLookahead* bm, bool not_at_start);
1068
1069 bool being_calculated() { return being_calculated_; }
1070 bool not_at_start() { return not_at_start_; }
1071 void set_not_at_start() { not_at_start_ = true; }
1072 void set_being_calculated(bool b) { being_calculated_ = b; }
1073 virtual bool try_to_emit_quick_check_for_alternative(bool is_first) {
1074 return true;
1075 }
1076 virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
1077
1078 protected:
1079 int GreedyLoopTextLengthForAlternative(GuardedAlternative* alternative);
1080 ZoneList<GuardedAlternative>* alternatives_;
1081
1082 private:
1083 friend class DispatchTableConstructor;
1084 friend class Analysis;
1085 void GenerateGuard(RegExpMacroAssembler* macro_assembler,
1086 Guard* guard,
1087 Trace* trace);
1088 int CalculatePreloadCharacters(RegExpCompiler* compiler, int eats_at_least);
1089 void EmitOutOfLineContinuation(RegExpCompiler* compiler,
1090 Trace* trace,
1091 GuardedAlternative alternative,
1092 AlternativeGeneration* alt_gen,
1093 int preload_characters,
1094 bool next_expects_preload);
1095 void SetUpPreLoad(RegExpCompiler* compiler,
1096 Trace* current_trace,
1097 PreloadState* preloads);
1098 void AssertGuardsMentionRegisters(Trace* trace);
1099 int EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler, Trace* trace);
1100 Trace* EmitGreedyLoop(RegExpCompiler* compiler,
1101 Trace* trace,
1102 AlternativeGenerationList* alt_gens,
1103 PreloadState* preloads,
1104 GreedyLoopState* greedy_loop_state,
1105 int text_length);
1106 void EmitChoices(RegExpCompiler* compiler,
1107 AlternativeGenerationList* alt_gens,
1108 int first_choice,
1109 Trace* trace,
1110 PreloadState* preloads);
1111 DispatchTable* table_;
1112 // If true, this node is never checked at the start of the input.
1113 // Allows a new trace to start with at_start() set to false.
1114 bool not_at_start_;
1115 bool being_calculated_;
1116 };
1117
1118
1119 class NegativeLookaheadChoiceNode: public ChoiceNode {
1120 public:
1121 explicit NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail,
1122 GuardedAlternative then_do_this,
1123 Zone* zone)
1124 : ChoiceNode(2, zone) {
1125 AddAlternative(this_must_fail);
1126 AddAlternative(then_do_this);
1127 }
1128 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
1129 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
1130 RegExpCompiler* compiler,
1131 int characters_filled_in,
1132 bool not_at_start);
1133 virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
1134 BoyerMooreLookahead* bm, bool not_at_start) {
1135 alternatives_->at(1).node()->FillInBMInfo(isolate, offset, budget - 1, bm,
1136 not_at_start);
1137 if (offset == 0) set_bm_info(not_at_start, bm);
1138 }
1139 // For a negative lookahead we don't emit the quick check for the
1140 // alternative that is expected to fail. This is because quick check code
1141 // starts by loading enough characters for the alternative that takes fewest
1142 // characters, but on a negative lookahead the negative branch did not take
1143 // part in that calculation (EatsAtLeast) so the assumptions don't hold.
1144 virtual bool try_to_emit_quick_check_for_alternative(bool is_first) {
1145 return !is_first;
1146 }
1147 virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
1148 };
1149
1150
1151 class LoopChoiceNode: public ChoiceNode {
1152 public:
1153 explicit LoopChoiceNode(bool body_can_be_zero_length, Zone* zone)
1154 : ChoiceNode(2, zone),
1155 loop_node_(NULL),
1156 continue_node_(NULL),
1157 body_can_be_zero_length_(body_can_be_zero_length)
1158 { }
1159 void AddLoopAlternative(GuardedAlternative alt);
1160 void AddContinueAlternative(GuardedAlternative alt);
1161 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
1162 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
1163 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
1164 RegExpCompiler* compiler,
1165 int characters_filled_in,
1166 bool not_at_start);
1167 virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
1168 BoyerMooreLookahead* bm, bool not_at_start);
1169 RegExpNode* loop_node() { return loop_node_; }
1170 RegExpNode* continue_node() { return continue_node_; }
1171 bool body_can_be_zero_length() { return body_can_be_zero_length_; }
1172 virtual void Accept(NodeVisitor* visitor);
1173 virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
1174
1175 private:
1176 // AddAlternative is made private for loop nodes because alternatives
1177 // should not be added freely, we need to keep track of which node
1178 // goes back to the node itself.
1179 void AddAlternative(GuardedAlternative node) {
1180 ChoiceNode::AddAlternative(node);
1181 }
1182
1183 RegExpNode* loop_node_;
1184 RegExpNode* continue_node_;
1185 bool body_can_be_zero_length_;
1186 };
1187
1188
1189 // Improve the speed that we scan for an initial point where a non-anchored
1190 // regexp can match by using a Boyer-Moore-like table. This is done by
1191 // identifying non-greedy non-capturing loops in the nodes that eat any
1192 // character one at a time. For example in the middle of the regexp
1193 // /foo[\s\S]*?bar/ we find such a loop. There is also such a loop implicitly
1194 // inserted at the start of any non-anchored regexp.
1195 //
1196 // When we have found such a loop we look ahead in the nodes to find the set of
1197 // characters that can come at given distances. For example for the regexp
1198 // /.?foo/ we know that there are at least 3 characters ahead of us, and the
1199 // sets of characters that can occur are [any, [f, o], [o]]. We find a range in
1200 // the lookahead info where the set of characters is reasonably constrained. In
1201 // our example this is from index 1 to 2 (0 is not constrained). We can now
1202 // look 3 characters ahead and if we don't find one of [f, o] (the union of
1203 // [f, o] and [o]) then we can skip forwards by the range size (in this case 2).
1204 //
1205 // For Unicode input strings we do the same, but modulo 128.
1206 //
1207 // We also look at the first string fed to the regexp and use that to get a hint
1208 // of the character frequencies in the inputs. This affects the assessment of
1209 // whether the set of characters is 'reasonably constrained'.
1210 //
1211 // We also have another lookahead mechanism (called quick check in the code),
1212 // which uses a wide load of multiple characters followed by a mask and compare
1213 // to determine whether a match is possible at this point.
1214 enum ContainedInLattice {
1215 kNotYet = 0,
1216 kLatticeIn = 1,
1217 kLatticeOut = 2,
1218 kLatticeUnknown = 3 // Can also mean both in and out.
1219 };
1220
1221
1222 inline ContainedInLattice Combine(ContainedInLattice a, ContainedInLattice b) {
1223 return static_cast<ContainedInLattice>(a | b);
1224 }
1225
1226
1227 ContainedInLattice AddRange(ContainedInLattice a,
1228 const int* ranges,
1229 int ranges_size,
1230 Interval new_range);
1231
1232
1233 class BoyerMoorePositionInfo : public ZoneObject {
1234 public:
1235 explicit BoyerMoorePositionInfo(Zone* zone)
1236 : map_(new(zone) ZoneList<bool>(kMapSize, zone)),
1237 map_count_(0),
1238 w_(kNotYet),
1239 s_(kNotYet),
1240 d_(kNotYet),
1241 surrogate_(kNotYet) {
1242 for (int i = 0; i < kMapSize; i++) {
1243 map_->Add(false, zone);
1244 }
1245 }
1246
1247 bool& at(int i) { return map_->at(i); }
1248
1249 static const int kMapSize = 128;
1250 static const int kMask = kMapSize - 1;
1251
1252 int map_count() const { return map_count_; }
1253
1254 void Set(int character);
1255 void SetInterval(const Interval& interval);
1256 void SetAll();
1257 bool is_non_word() { return w_ == kLatticeOut; }
1258 bool is_word() { return w_ == kLatticeIn; }
1259
1260 private:
1261 ZoneList<bool>* map_;
1262 int map_count_; // Number of set bits in the map.
1263 ContainedInLattice w_; // The \w character class.
1264 ContainedInLattice s_; // The \s character class.
1265 ContainedInLattice d_; // The \d character class.
1266 ContainedInLattice surrogate_; // Surrogate UTF-16 code units.
1267 };
1268
1269
1270 class BoyerMooreLookahead : public ZoneObject {
1271 public:
1272 BoyerMooreLookahead(int length, RegExpCompiler* compiler, Zone* zone);
1273
1274 int length() { return length_; }
1275 int max_char() { return max_char_; }
1276 RegExpCompiler* compiler() { return compiler_; }
1277
1278 int Count(int map_number) {
1279 return bitmaps_->at(map_number)->map_count();
1280 }
1281
1282 BoyerMoorePositionInfo* at(int i) { return bitmaps_->at(i); }
1283
1284 void Set(int map_number, int character) {
1285 if (character > max_char_) return;
1286 BoyerMoorePositionInfo* info = bitmaps_->at(map_number);
1287 info->Set(character);
1288 }
1289
1290 void SetInterval(int map_number, const Interval& interval) {
1291 if (interval.from() > max_char_) return;
1292 BoyerMoorePositionInfo* info = bitmaps_->at(map_number);
1293 if (interval.to() > max_char_) {
1294 info->SetInterval(Interval(interval.from(), max_char_));
1295 } else {
1296 info->SetInterval(interval);
1297 }
1298 }
1299
1300 void SetAll(int map_number) {
1301 bitmaps_->at(map_number)->SetAll();
1302 }
1303
1304 void SetRest(int from_map) {
1305 for (int i = from_map; i < length_; i++) SetAll(i);
1306 }
1307 void EmitSkipInstructions(RegExpMacroAssembler* masm);
1308
1309 private:
1310 // This is the value obtained by EatsAtLeast. If we do not have at least this
1311 // many characters left in the sample string then the match is bound to fail.
1312 // Therefore it is OK to read a character this far ahead of the current match
1313 // point.
1314 int length_;
1315 RegExpCompiler* compiler_;
1316 // 0xff for Latin1, 0xffff for UTF-16.
1317 int max_char_;
1318 ZoneList<BoyerMoorePositionInfo*>* bitmaps_;
1319
1320 int GetSkipTable(int min_lookahead,
1321 int max_lookahead,
1322 Handle<ByteArray> boolean_skip_table);
1323 bool FindWorthwhileInterval(int* from, int* to);
1324 int FindBestInterval(
1325 int max_number_of_chars, int old_biggest_points, int* from, int* to);
1326 };
1327
1328
1329 // There are many ways to generate code for a node. This class encapsulates
1330 // the current way we should be generating. In other words it encapsulates
1331 // the current state of the code generator. The effect of this is that we
1332 // generate code for paths that the matcher can take through the regular
1333 // expression. A given node in the regexp can be code-generated several times
1334 // as it can be part of several traces. For example for the regexp:
1335 // /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part
1336 // of the foo-bar-baz trace and once as part of the foo-ip-baz trace. The code
1337 // to match foo is generated only once (the traces have a common prefix). The
1338 // code to store the capture is deferred and generated (twice) after the places
1339 // where baz has been matched.
1340 class Trace {
1341 public:
1342 // A value for a property that is either known to be true, know to be false,
1343 // or not known.
1344 enum TriBool {
1345 UNKNOWN = -1, FALSE_VALUE = 0, TRUE_VALUE = 1
1346 };
1347
1348 class DeferredAction {
1349 public:
1350 DeferredAction(ActionNode::ActionType action_type, int reg)
1351 : action_type_(action_type), reg_(reg), next_(NULL) { }
1352 DeferredAction* next() { return next_; }
1353 bool Mentions(int reg);
1354 int reg() { return reg_; }
1355 ActionNode::ActionType action_type() { return action_type_; }
1356 private:
1357 ActionNode::ActionType action_type_;
1358 int reg_;
1359 DeferredAction* next_;
1360 friend class Trace;
1361 };
1362
1363 class DeferredCapture : public DeferredAction {
1364 public:
1365 DeferredCapture(int reg, bool is_capture, Trace* trace)
1366 : DeferredAction(ActionNode::STORE_POSITION, reg),
1367 cp_offset_(trace->cp_offset()),
1368 is_capture_(is_capture) { }
1369 int cp_offset() { return cp_offset_; }
1370 bool is_capture() { return is_capture_; }
1371 private:
1372 int cp_offset_;
1373 bool is_capture_;
1374 void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
1375 };
1376
1377 class DeferredSetRegister : public DeferredAction {
1378 public:
1379 DeferredSetRegister(int reg, int value)
1380 : DeferredAction(ActionNode::SET_REGISTER, reg),
1381 value_(value) { }
1382 int value() { return value_; }
1383 private:
1384 int value_;
1385 };
1386
1387 class DeferredClearCaptures : public DeferredAction {
1388 public:
1389 explicit DeferredClearCaptures(Interval range)
1390 : DeferredAction(ActionNode::CLEAR_CAPTURES, -1),
1391 range_(range) { }
1392 Interval range() { return range_; }
1393 private:
1394 Interval range_;
1395 };
1396
1397 class DeferredIncrementRegister : public DeferredAction {
1398 public:
1399 explicit DeferredIncrementRegister(int reg)
1400 : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { }
1401 };
1402
1403 Trace()
1404 : cp_offset_(0),
1405 actions_(NULL),
1406 backtrack_(NULL),
1407 stop_node_(NULL),
1408 loop_label_(NULL),
1409 characters_preloaded_(0),
1410 bound_checked_up_to_(0),
1411 flush_budget_(100),
1412 at_start_(UNKNOWN) { }
1413
1414 // End the trace. This involves flushing the deferred actions in the trace
1415 // and pushing a backtrack location onto the backtrack stack. Once this is
1416 // done we can start a new trace or go to one that has already been
1417 // generated.
1418 void Flush(RegExpCompiler* compiler, RegExpNode* successor);
1419 int cp_offset() { return cp_offset_; }
1420 DeferredAction* actions() { return actions_; }
1421 // A trivial trace is one that has no deferred actions or other state that
1422 // affects the assumptions used when generating code. There is no recorded
1423 // backtrack location in a trivial trace, so with a trivial trace we will
1424 // generate code that, on a failure to match, gets the backtrack location
1425 // from the backtrack stack rather than using a direct jump instruction. We
1426 // always start code generation with a trivial trace and non-trivial traces
1427 // are created as we emit code for nodes or add to the list of deferred
1428 // actions in the trace. The location of the code generated for a node using
1429 // a trivial trace is recorded in a label in the node so that gotos can be
1430 // generated to that code.
1431 bool is_trivial() {
1432 return backtrack_ == NULL &&
1433 actions_ == NULL &&
1434 cp_offset_ == 0 &&
1435 characters_preloaded_ == 0 &&
1436 bound_checked_up_to_ == 0 &&
1437 quick_check_performed_.characters() == 0 &&
1438 at_start_ == UNKNOWN;
1439 }
1440 TriBool at_start() { return at_start_; }
1441 void set_at_start(bool at_start) {
1442 at_start_ = at_start ? TRUE_VALUE : FALSE_VALUE;
1443 }
1444 Label* backtrack() { return backtrack_; }
1445 Label* loop_label() { return loop_label_; }
1446 RegExpNode* stop_node() { return stop_node_; }
1447 int characters_preloaded() { return characters_preloaded_; }
1448 int bound_checked_up_to() { return bound_checked_up_to_; }
1449 int flush_budget() { return flush_budget_; }
1450 QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; }
1451 bool mentions_reg(int reg);
1452 // Returns true if a deferred position store exists to the specified
1453 // register and stores the offset in the out-parameter. Otherwise
1454 // returns false.
1455 bool GetStoredPosition(int reg, int* cp_offset);
1456 // These set methods and AdvanceCurrentPositionInTrace should be used only on
1457 // new traces - the intention is that traces are immutable after creation.
1458 void add_action(DeferredAction* new_action) {
1459 DCHECK(new_action->next_ == NULL);
1460 new_action->next_ = actions_;
1461 actions_ = new_action;
1462 }
1463 void set_backtrack(Label* backtrack) { backtrack_ = backtrack; }
1464 void set_stop_node(RegExpNode* node) { stop_node_ = node; }
1465 void set_loop_label(Label* label) { loop_label_ = label; }
1466 void set_characters_preloaded(int count) { characters_preloaded_ = count; }
1467 void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; }
1468 void set_flush_budget(int to) { flush_budget_ = to; }
1469 void set_quick_check_performed(QuickCheckDetails* d) {
1470 quick_check_performed_ = *d;
1471 }
1472 void InvalidateCurrentCharacter();
1473 void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler);
1474
1475 private:
1476 int FindAffectedRegisters(OutSet* affected_registers, Zone* zone);
1477 void PerformDeferredActions(RegExpMacroAssembler* macro,
1478 int max_register,
1479 const OutSet& affected_registers,
1480 OutSet* registers_to_pop,
1481 OutSet* registers_to_clear,
1482 Zone* zone);
1483 void RestoreAffectedRegisters(RegExpMacroAssembler* macro,
1484 int max_register,
1485 const OutSet& registers_to_pop,
1486 const OutSet& registers_to_clear);
1487 int cp_offset_;
1488 DeferredAction* actions_;
1489 Label* backtrack_;
1490 RegExpNode* stop_node_;
1491 Label* loop_label_;
1492 int characters_preloaded_;
1493 int bound_checked_up_to_;
1494 QuickCheckDetails quick_check_performed_;
1495 int flush_budget_;
1496 TriBool at_start_;
1497 };
1498
1499
1500 class GreedyLoopState {
1501 public:
1502 explicit GreedyLoopState(bool not_at_start);
1503
1504 Label* label() { return &label_; }
1505 Trace* counter_backtrack_trace() { return &counter_backtrack_trace_; }
1506
1507 private:
1508 Label label_;
1509 Trace counter_backtrack_trace_;
1510 };
1511
1512
1513 struct PreloadState {
1514 static const int kEatsAtLeastNotYetInitialized = -1;
1515 bool preload_is_current_;
1516 bool preload_has_checked_bounds_;
1517 int preload_characters_;
1518 int eats_at_least_;
1519 void init() {
1520 eats_at_least_ = kEatsAtLeastNotYetInitialized;
1521 }
1522 };
1523
1524
1525 class NodeVisitor {
1526 public:
1527 virtual ~NodeVisitor() { }
1528 #define DECLARE_VISIT(Type) \
1529 virtual void Visit##Type(Type##Node* that) = 0;
1530 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1531 #undef DECLARE_VISIT
1532 virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); }
1533 };
1534
1535
1536 // Node visitor used to add the start set of the alternatives to the
1537 // dispatch table of a choice node.
1538 class DispatchTableConstructor: public NodeVisitor {
1539 public:
1540 DispatchTableConstructor(DispatchTable* table, bool ignore_case,
1541 Zone* zone)
1542 : table_(table),
1543 choice_index_(-1),
1544 ignore_case_(ignore_case),
1545 zone_(zone) { }
1546
1547 void BuildTable(ChoiceNode* node);
1548
1549 void AddRange(CharacterRange range) {
1550 table()->AddRange(range, choice_index_, zone_);
1551 }
1552
1553 void AddInverse(ZoneList<CharacterRange>* ranges);
1554
1555 #define DECLARE_VISIT(Type) \
1556 virtual void Visit##Type(Type##Node* that);
1557 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1558 #undef DECLARE_VISIT
1559
1560 DispatchTable* table() { return table_; }
1561 void set_choice_index(int value) { choice_index_ = value; }
1562
1563 protected:
1564 DispatchTable* table_;
1565 int choice_index_;
1566 bool ignore_case_;
1567 Zone* zone_;
1568 };
1569
1570
1571 // Assertion propagation moves information about assertions such as
1572 // \b to the affected nodes. For instance, in /.\b./ information must
1573 // be propagated to the first '.' that whatever follows needs to know
1574 // if it matched a word or a non-word, and to the second '.' that it
1575 // has to check if it succeeds a word or non-word. In this case the
1576 // result will be something like:
1577 //
1578 // +-------+ +------------+
1579 // | . | | . |
1580 // +-------+ ---> +------------+
1581 // | word? | | check word |
1582 // +-------+ +------------+
1583 class Analysis: public NodeVisitor {
1584 public:
1585 Analysis(Isolate* isolate, bool ignore_case, bool is_one_byte)
1586 : isolate_(isolate),
1587 ignore_case_(ignore_case),
1588 is_one_byte_(is_one_byte),
1589 error_message_(NULL) {}
1590 void EnsureAnalyzed(RegExpNode* node);
1591
1592 #define DECLARE_VISIT(Type) \
1593 virtual void Visit##Type(Type##Node* that);
1594 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1595 #undef DECLARE_VISIT
1596 virtual void VisitLoopChoice(LoopChoiceNode* that);
1597
1598 bool has_failed() { return error_message_ != NULL; }
1599 const char* error_message() {
1600 DCHECK(error_message_ != NULL);
1601 return error_message_;
1602 }
1603 void fail(const char* error_message) {
1604 error_message_ = error_message;
1605 }
1606
1607 Isolate* isolate() const { return isolate_; }
1608
1609 private:
1610 Isolate* isolate_;
1611 bool ignore_case_;
1612 bool is_one_byte_;
1613 const char* error_message_;
1614
1615 DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis);
1616 };
1617
1618
1619 struct RegExpCompileData {
1620 RegExpCompileData()
1621 : tree(NULL),
1622 node(NULL),
1623 simple(true),
1624 contains_anchor(false),
1625 capture_count(0) { }
1626 RegExpTree* tree;
1627 RegExpNode* node;
1628 bool simple;
1629 bool contains_anchor;
1630 Handle<String> error;
1631 int capture_count;
1632 };
1633
1634
1635 class RegExpEngine: public AllStatic {
1636 public:
1637 struct CompilationResult {
1638 CompilationResult(Isolate* isolate, const char* error_message)
1639 : error_message(error_message),
1640 code(isolate->heap()->the_hole_value()),
1641 num_registers(0) {}
1642 CompilationResult(Object* code, int registers)
1643 : error_message(NULL), code(code), num_registers(registers) {}
1644 const char* error_message;
1645 Object* code;
1646 int num_registers;
1647 };
1648
1649 static CompilationResult Compile(Isolate* isolate, Zone* zone,
1650 RegExpCompileData* input, bool ignore_case,
1651 bool global, bool multiline, bool sticky,
1652 Handle<String> pattern,
1653 Handle<String> sample_subject,
1654 bool is_one_byte);
1655
1656 static bool TooMuchRegExpCode(Handle<String> pattern);
1657
1658 static void DotPrint(const char* label, RegExpNode* node, bool ignore_case);
1659 };
1660
1661
1662 } } // namespace v8::internal
1663
1664 #endif // V8_JSREGEXP_H_
OLDNEW
« no previous file with comments | « src/isolate.cc ('k') | src/jsregexp.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698