Chromium Code Reviews| Index: src/pathops/SkPathOpsTypes.h |
| =================================================================== |
| --- src/pathops/SkPathOpsTypes.h (revision 0) |
| +++ src/pathops/SkPathOpsTypes.h (revision 0) |
| @@ -0,0 +1,254 @@ |
| +/* |
| + * Copyright 2012 Google Inc. |
| + * |
| + * Use of this source code is governed by a BSD-style license that can be |
| + * found in the LICENSE file. |
| + */ |
| +#ifndef SkPathOpsTypes_DEFINED |
| +#define SkPathOpsTypes_DEFINED |
| + |
| +#include <float.h> // for FLT_EPSILON |
| +#include <math.h> // for fabs, sqrt |
| + |
| +#include "SkFloatingPoint.h" |
| +#include "SkPathOpsDebug.h" |
| +#include "SkScalar.h" |
| + |
| +// FIXME: move these into SkTypes.h |
| +template <typename T> inline T SkTMax(T a, T b) { |
| + if (a < b) |
|
whunt
2013/03/22 18:16:06
min and max can be performance critical operations
caryclark
2013/03/22 19:38:51
Noted.
|
| + a = b; |
| + return a; |
| +} |
| + |
| +template <typename T> inline T SkTMin(T a, T b) { |
| + if (a > b) |
| + a = b; |
| + return a; |
| +} |
| + |
| +// FIXME: move this into SkFloatingPoint.h |
| +#define sk_double_isnan(a) sk_float_isnan(a) |
| + |
| +// FIXME: move this into SkPaths.h or just use the equivalent in SkRegion.h |
| +enum SkPathOp { |
| + kDifference_PathOp, //!< subtract the op region from the first region |
| + kIntersect_PathOp, //!< intersect the two regions |
| + kUnion_PathOp, //!< union (inclusive-or) the two regions |
| + kXOR_PathOp, //!< exclusive-or the two regions |
| + /** subtract the first region from the op region */ |
| + kReverseDifference_PathOp, // FIXME: unsupported |
| + kReplace_PathOp //!< replace the dst region with the op region FIXME: unsupported |
| +}; |
| + |
| +enum SkPathOpsMask { |
| + kWinding_PathOpsMask = -1, |
| + kNo_PathOpsMask = 0, |
| + kEvenOdd_PathOpsMask = 1 |
| +}; |
| + |
| +extern bool AlmostEqualUlps(float A, float B); |
| +inline bool AlmostEqualUlps(double A, double B) { |
| + return AlmostEqualUlps(SkDoubleToScalar(A), SkDoubleToScalar(B)); |
| +} |
| + |
| +// FLT_EPSILON == 1.19209290E-07 == 1 / (2 ^ 23) |
| +// DBL_EPSILON == 2.22045e-16 |
| +const double FLT_EPSILON_CUBED = FLT_EPSILON * FLT_EPSILON * FLT_EPSILON; |
| +const double FLT_EPSILON_HALF = FLT_EPSILON / 2; |
| +const double FLT_EPSILON_SQUARED = FLT_EPSILON * FLT_EPSILON; |
| +const double FLT_EPSILON_SQRT = sqrt(FLT_EPSILON); |
| +const double FLT_EPSILON_INVERSE = 1 / FLT_EPSILON; |
| +const double DBL_EPSILON_ERR = DBL_EPSILON * 4; // FIXME: tune -- allow a few bits of error |
| +const double ROUGH_EPSILON = FLT_EPSILON * 64; |
| +const double MORE_ROUGH_EPSILON = FLT_EPSILON * 256; |
| + |
| +inline bool approximately_zero(double x) { |
| + return fabs(x) < FLT_EPSILON; |
| +} |
| + |
| +inline bool precisely_zero(double x) { |
| + return fabs(x) < DBL_EPSILON_ERR; |
| +} |
| + |
| +inline bool approximately_zero(float x) { |
| + return fabs(x) < FLT_EPSILON; |
| +} |
| + |
| +inline bool approximately_zero_cubed(double x) { |
| + return fabs(x) < FLT_EPSILON_CUBED; |
| +} |
| + |
| +inline bool approximately_zero_half(double x) { |
| + return fabs(x) < FLT_EPSILON_HALF; |
| +} |
| + |
| +inline bool approximately_zero_squared(double x) { |
| + return fabs(x) < FLT_EPSILON_SQUARED; |
| +} |
| + |
| +inline bool approximately_zero_sqrt(double x) { |
| + return fabs(x) < FLT_EPSILON_SQRT; |
| +} |
| + |
| +inline bool approximately_zero_inverse(double x) { |
| + return fabs(x) > FLT_EPSILON_INVERSE; |
| +} |
| + |
| +// OPTIMIZATION: if called multiple times with the same denom, we want to pass 1/y instead |
| +inline bool approximately_zero_when_compared_to(double x, double y) { |
| + return x == 0 || fabs(x / y) < FLT_EPSILON; |
| +} |
| + |
| +// Use this for comparing Ts in the range of 0 to 1. For general numbers (larger and smaller) use |
| +// AlmostEqualUlps instead. |
| +inline bool approximately_equal(double x, double y) { |
| + return approximately_zero(x - y); |
| +} |
| + |
| +inline bool precisely_equal(double x, double y) { |
| + return precisely_zero(x - y); |
| +} |
| + |
| +inline bool approximately_equal_half(double x, double y) { |
| + return approximately_zero_half(x - y); |
| +} |
| + |
| +inline bool approximately_equal_squared(double x, double y) { |
| + return approximately_equal(x, y); |
| +} |
| + |
| +inline bool approximately_greater(double x, double y) { |
| + return x - FLT_EPSILON >= y; |
| +} |
| + |
| +inline bool approximately_greater_or_equal(double x, double y) { |
| + return x + FLT_EPSILON > y; |
| +} |
| + |
| +inline bool approximately_lesser(double x, double y) { |
| + return x + FLT_EPSILON <= y; |
| +} |
| + |
| +inline bool approximately_lesser_or_equal(double x, double y) { |
| + return x - FLT_EPSILON < y; |
| +} |
| + |
| +inline double approximately_pin(double x) { |
| + return approximately_zero(x) ? 0 : x; |
| +} |
| + |
| +inline float approximately_pin(float x) { |
| + return approximately_zero(x) ? 0 : x; |
| +} |
| + |
| +inline bool approximately_greater_than_one(double x) { |
| + return x > 1 - FLT_EPSILON; |
| +} |
| + |
| +inline bool precisely_greater_than_one(double x) { |
| + return x > 1 - DBL_EPSILON_ERR; |
| +} |
| + |
| +inline bool approximately_less_than_zero(double x) { |
| + return x < FLT_EPSILON; |
| +} |
| + |
| +inline bool precisely_less_than_zero(double x) { |
| + return x < DBL_EPSILON_ERR; |
| +} |
| + |
| +inline bool approximately_negative(double x) { |
| + return x < FLT_EPSILON; |
| +} |
| + |
| +inline bool precisely_negative(double x) { |
| + return x < DBL_EPSILON_ERR; |
| +} |
| + |
| +inline bool approximately_one_or_less(double x) { |
| + return x < 1 + FLT_EPSILON; |
| +} |
| + |
| +inline bool approximately_positive(double x) { |
| + return x > -FLT_EPSILON; |
| +} |
| + |
| +inline bool approximately_positive_squared(double x) { |
| + return x > -(FLT_EPSILON_SQUARED); |
| +} |
| + |
| +inline bool approximately_zero_or_more(double x) { |
| + return x > -FLT_EPSILON; |
| +} |
| + |
| +inline bool approximately_between(double a, double b, double c) { |
| + return a <= c ? approximately_negative(a - b) && approximately_negative(b - c) |
| + : approximately_negative(b - a) && approximately_negative(c - b); |
| +} |
| + |
| +// returns true if (a <= b <= c) || (a >= b >= c) |
| +inline bool between(double a, double b, double c) { |
| + SkASSERT(((a <= b && b <= c) || (a >= b && b >= c)) == ((a - b) * (c - b) <= 0)); |
| + return (a - b) * (c - b) <= 0; |
| +} |
| + |
| +inline bool more_roughly_equal(double x, double y) { |
| + return fabs(x - y) < MORE_ROUGH_EPSILON; |
| +} |
| + |
| +inline bool roughly_equal(double x, double y) { |
| + return fabs(x - y) < ROUGH_EPSILON; |
| +} |
| + |
| +struct SkDPoint; |
| +struct SkDVector; |
| +struct SkDLine; |
| +struct SkDQuad; |
| +struct SkDTriangle; |
| +struct SkDCubic; |
| +struct SkDRect; |
| + |
| +inline double SkDInterp(double A, double B, double t) { |
| + return A + (B - A) * t; |
| +} |
| + |
| +double SkDCubeRoot(double x); |
| + |
| +/* Returns -1 if negative, 0 if zero, 1 if positive |
| +*/ |
| +inline int SkDSign(double x) { |
| + return (x > 0) - (x < 0); |
| +} |
| + |
| +/* Returns 0 if negative, 1 if zero, 2 if positive |
| +*/ |
| +inline int SKDSide(double x) { |
| + return (x > 0) + (x >= 0); |
| +} |
| + |
| +/* Returns 1 if negative, 2 if zero, 4 if positive |
| +*/ |
| +inline int SkDSideBit(double x) { |
| + return 1 << SKDSide(x); |
| +} |
| + |
| +/* Given the set [0, 1, 2, 3], and two of the four members, compute an XOR mask |
| + that computes the other two. Note that: |
| + |
| + one ^ two == 3 for (0, 3), (1, 2) |
| + one ^ two < 3 for (0, 1), (0, 2), (1, 3), (2, 3) |
| + 3 - (one ^ two) is either 0, 1, or 2 |
| + 1 >> 3 - (one ^ two) is either 0 or 1 |
| +thus: |
| + returned == 2 for (0, 3), (1, 2) |
| + returned == 3 for (0, 1), (0, 2), (1, 3), (2, 3) |
| +given that: |
| + (0, 3) ^ 2 -> (2, 1) (1, 2) ^ 2 -> (3, 0) |
| + (0, 1) ^ 3 -> (3, 2) (0, 2) ^ 3 -> (3, 1) (1, 3) ^ 3 -> (2, 0) (2, 3) ^ 3 -> (1, 0) |
| +*/ |
| +inline int SkOtherTwo(int one, int two) { |
| + return 1 >> 3 - (one ^ two) ^ 3; |
|
whunt
2013/03/22 18:16:06
I believe:
((one ^ two) & 1) + 1
will yield you th
caryclark
2013/03/22 19:38:51
This function is no longer used. It's been removed
whunt
2013/03/22 19:50:10
Sad =(, it was an interesting bit-twiddling proble
|
| +} |
| + |
| +#endif |