Index: src/pathops/SkPathOpsTypes.cpp |
=================================================================== |
--- src/pathops/SkPathOpsTypes.cpp (revision 0) |
+++ src/pathops/SkPathOpsTypes.cpp (revision 0) |
@@ -0,0 +1,69 @@ |
+/* |
+ * Copyright 2012 Google Inc. |
+ * |
+ * Use of this source code is governed by a BSD-style license that can be |
+ * found in the LICENSE file. |
+ */ |
+#include "SkPathOpsTypes.h" |
+ |
+const int UlpsEpsilon = 16; |
+ |
+// from http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/ |
+union SkPathOpsUlpsFloat { |
+ int32_t fInt; |
+ float fFloat; |
+ |
+ SkPathOpsUlpsFloat(float num = 0.0f) : fFloat(num) {} |
+ bool negative() const { return (fInt >> 31) != 0; } |
whunt
2013/03/22 18:16:06
why not just compute (fInt < 0)?
caryclark
2013/03/22 19:38:51
No reason. It's copied/pasted code. In general, I'
|
+}; |
+ |
+bool AlmostEqualUlps(float A, float B) { |
+ SkPathOpsUlpsFloat uA(A); |
+ SkPathOpsUlpsFloat uB(B); |
+ // Different signs means they do not match. |
+ if (uA.negative() != uB.negative()) |
+ { |
+ // Check for equality to make sure +0==-0 |
whunt
2013/03/22 18:16:06
0 ==
caryclark
2013/03/22 19:38:51
Done.
|
+ return A == B; |
+ } |
+ // Find the difference in ULPs. |
+ int ulpsDiff = abs(uA.fInt - uB.fInt); |
+ return ulpsDiff <= UlpsEpsilon; |
+} |
+ |
+// cube root approximation using bit hack for 64-bit float |
+// adapted from Kahan's cbrt |
+static double cbrt_5d(double d) { |
+ const unsigned int B1 = 715094163; |
+ double t = 0.0; |
+ unsigned int* pt = (unsigned int*) &t; |
+ unsigned int* px = (unsigned int*) &d; |
+ pt[1]=px[1]/3+B1; |
whunt
2013/03/22 18:16:06
spaces around the ops?
caryclark
2013/03/22 19:38:51
Done.
|
+ return t; |
+} |
+ |
+// iterative cube root approximation using Halley's method (double) |
+static double cbrta_halleyd(const double a, const double R) { |
+ const double a3 = a*a*a; |
+ const double b= a * (a3 + R + R) / (a3 + a3 + R); |
whunt
2013/03/22 18:16:06
b =
caryclark
2013/03/22 19:38:51
Done.
|
+ return b; |
+} |
+ |
+// cube root approximation using 3 iterations of Halley's method (double) |
+static double halley_cbrt3d(double d) { |
+ double a = cbrt_5d(d); |
+ a = cbrta_halleyd(a, d); |
+ a = cbrta_halleyd(a, d); |
+ return cbrta_halleyd(a, d); |
+} |
+ |
+double SkDCubeRoot(double x) { |
+ if (approximately_zero_cubed(x)) { |
+ return 0; |
+ } |
+ double result = halley_cbrt3d(fabs(x)); |
+ if (x < 0) { |
+ result = -result; |
+ } |
+ return result; |
+} |